JPH0356848A - Method and device for surface cracking measurement - Google Patents

Method and device for surface cracking measurement

Info

Publication number
JPH0356848A
JPH0356848A JP19178089A JP19178089A JPH0356848A JP H0356848 A JPH0356848 A JP H0356848A JP 19178089 A JP19178089 A JP 19178089A JP 19178089 A JP19178089 A JP 19178089A JP H0356848 A JPH0356848 A JP H0356848A
Authority
JP
Japan
Prior art keywords
current
potential difference
crack
depth
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19178089A
Other languages
Japanese (ja)
Inventor
Seiichi Nishino
西野 精一
Teruo Koyama
小山 輝夫
Yasushi Sato
恭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP19178089A priority Critical patent/JPH0356848A/en
Publication of JPH0356848A publication Critical patent/JPH0356848A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To measure a surface crack without using any comparison material by detecting a potential difference when a reference current is fed to an object to be measured and a potential difference when a contrast current is fed and calculating the depth of the surface crack from the ratio of the both. CONSTITUTION:A function generation part 1 switches and outputs either of a DC signal and an alternating current of determined frequency to a voltage amplification part 2 according to a signal 10 which is inputted from a control and arithmetic part 4. A current control part 3 outputs a DC or AC constant current 13 according to the signal inputted from the voltage amplification part 2 and the constant current 13 is supplied to the object 22 to be measured. The potential differences Eo and E which are generated with the reference current and contrast current flowing through the object 22 to be measured are outputted to a lock-in amplifier 7. The detection signal 17 of the lock-in amplifier 7 is converted into a digital signal, which is sent to the control and arithmetic part 4; and the control and arithmetic part 4 uses the potential differences Eo and E and calculates the object depth of the crack to output to an output part 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電位差法を利用して表面き裂深さを測定する方
法および装置に係り、特に比較材(き裂の入っていない
材料)を用いず高精度にき裂深さを測定する表面き裂測
定方法および装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for measuring surface crack depth using a potentiometric method, and particularly relates to a method and an apparatus for measuring surface crack depth using a potentiometric method. The present invention relates to a method and device for measuring surface cracks that measure crack depths with high precision without using any surface cracks.

〔従来の技術〕[Conventional technology]

機械製品や機械構造物の使用中に金属材料に発生したき
裂の検出及び深さの測定には、顕微鏡やモニターテレビ
を用いる直接測定法と電位差法、超音波法、渦電流法、
レプリカ法等の間接法があり,対象となる金属の材質や
形状及びき裂の種類により使い分けがなされている. その中で電位差法は、高温、低温、高圧中、腐食液中等
の環境でも使用可能な方法として利用されている。電位
差法は、き裂が入ることによる金属材料の電気抵抗の変
化を利用してき裂深さを測定する方法で、一般には測定
対象に一定電流を流した際の電位差の変化からき裂深さ
が求められ、流す電流によって直流電位差法と交流電位
差法に大別される。
To detect and measure the depth of cracks that occur in metal materials during the use of mechanical products and mechanical structures, there are two methods: direct measurement using a microscope or monitor TV, potentiometric method, ultrasonic method, eddy current method,
There are indirect methods such as the replica method, which are used depending on the material and shape of the target metal and the type of crack. Among them, the potentiometric method is used as a method that can be used in environments such as high temperature, low temperature, high pressure, and corrosive liquid. The potentiometric method is a method of measuring the depth of a crack by using the change in electrical resistance of a metal material caused by a crack. Generally, the depth of a crack is determined from the change in potential difference when a constant current is passed through the object to be measured. The method is roughly divided into the DC potential difference method and the AC potential difference method, depending on the current applied.

直流電位差法は、直流電流を通電してき裂深さを求める
方法であり、電流供給装置及び電位差検出装置が簡単で
、測定は容易であるが、電流が測定対象の全断面を流れ
るため、金属表面の微小き裂の深さを測定するには,測
定感度を高めるために大電流(数A)を流す必要がある
。このため、長時間測定を行った場合測定対象が発熱し
て抵抗値が変化するため電位差がドリフトするという問
題点がある。直流電位差法で、このドリフトを避ける方
法として、通電する電流の極性を一定時間ごとに交番す
ることで、通電時間を短縮する交番直流電位差法がある
が交番時のノイズ等の問題がある。
The DC potential difference method is a method of determining the crack depth by passing a DC current. The current supply device and potential difference detection device are simple, and measurement is easy. However, since the current flows through the entire cross section of the object to be measured, In order to measure the depth of microcracks in , it is necessary to flow a large current (several amperes) to increase the measurement sensitivity. For this reason, there is a problem in that when a long-time measurement is performed, the object to be measured generates heat and the resistance value changes, causing the potential difference to drift. To avoid this drift in the DC potential difference method, there is an alternating DC potential difference method in which the polarity of the applied current is alternated at regular intervals to shorten the current application time, but there are problems such as noise during alternation.

交流電位差法は、交流電流を通電してき裂深さを求める
方法である。金属材料に交流電流を流した場合、電流は
金眞表面の薄い層に流れる。これは、表皮効果と呼ばれ
、表皮深さδと通電される交流電流の周波数fとの間に
は次式の関係がある。
The AC potential difference method is a method of determining the crack depth by applying an AC current. When an alternating current is passed through a metal material, the current flows through a thin layer on the metal surface. This is called the skin effect, and the relationship between the skin depth δ and the frequency f of the applied alternating current is expressed by the following equation.

δ=(/Laμ.σf )− ”    −・・・−(
1)ここで,μ。は真空中の透磁率、μ,は導体の相対
透磁率、σは導体の電気伝導度である。この表皮効果に
よって、交流電位差法の場合直流電位差法に比べて小さ
な電流(LA以下)で高感度のき裂測定が可能である。
δ=(/Laμ.σf)−”−・・・−(
1) Here, μ. is the magnetic permeability in vacuum, μ is the relative magnetic permeability of the conductor, and σ is the electrical conductivity of the conductor. Due to this skin effect, the AC potentiometric method enables highly sensitive crack measurement with a smaller current (less than LA) than the DC potentiometric method.

上述した様に、電位差法はき裂による金属材料の電気抵
抗の変化を利用してき裂深さを求める方法であるが、金
属材料の電気抵抗はき裂だけでなく測定時の温度や金属
組織変化、塑性変形等によっても変化する.このため、
高精度のき裂測定をするには、き裂以外の因子による電
気抵抗の変化を取除く必要があり、従来は測定対象と同
じ組織の金属でできたき裂の入っていない比較材を同条
件で測定して得られた値との比を利用したり、比較材と
測定対象とでブリッジ回路を組むことで、き裂以外の因
子による電気抵抗の変化を除去していた。しかし,ボイ
ラやタービン等の高温下で長時間使用された材料に発生
したき裂を測定する場合上記の様な比較材を用意するこ
とは困難であり、き裂深さを精度良く測定することはで
きなかった。
As mentioned above, the potentiometric method is a method to determine the crack depth by using the change in the electrical resistance of a metal material due to a crack, but the electrical resistance of a metal material is determined not only by the crack but also by the temperature at the time of measurement and changes in the metal structure. , it also changes due to plastic deformation, etc. For this reason,
In order to measure cracks with high precision, it is necessary to remove changes in electrical resistance caused by factors other than cracks, and conventionally, a comparison material with no cracks made of metal with the same structure as the measurement target was measured under the same conditions. Changes in electrical resistance caused by factors other than cracks were eliminated by using the ratio between the measured values and by creating a bridge circuit between the comparison material and the measurement target. However, when measuring cracks that occur in materials that have been used for long periods of time under high temperatures, such as in boilers and turbines, it is difficult to prepare comparative materials such as those mentioned above, and it is difficult to accurately measure crack depth. I couldn't.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のように、金属材料の電気抵抗は、き裂の有無、組
織変化、塑性変形によって変化する。従って従来の電位
差法で,疲労やクリープ又は時効損傷を受けた金属材料
に入ったき裂の深さを測定するには,測定対象と同じ疲
労、クリープ又は時効損傷を受け、かつき裂の入ってい
ない比較材が必要であり、入手が大変困難だった。
As mentioned above, the electrical resistance of a metal material changes depending on the presence or absence of cracks, structural changes, and plastic deformation. Therefore, to measure the depth of a crack in a metal material that has undergone fatigue, creep, or age damage using the conventional potentiometric method, it is necessary to Comparative materials were required, which were extremely difficult to obtain.

本発明の目的は,比較材を用いることなく、金属表面に
発生したき裂の深さを高精度に測定するにある。
An object of the present invention is to measure the depth of a crack generated on a metal surface with high precision without using a comparison material.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、測定対象である金属材料に通電し、該金
属材料の通電区域の電位差を検出して該金属材料表面の
亀裂深さを測定する表面亀裂測定方法において、測定対
象に基準電流が通電されたときの電位差と対比電流が通
電されたときの電位差とを検出し、両者の比と、試験片
上で予め測定された表面亀裂深さと通電される電流の周
波数と該電流の通電時に検出された電伯差との関数と、
から測定対象の表面亀裂深さを算出することにより達威
される。
The above problem arises when a surface crack measurement method involves applying current to a metal material to be measured and detecting the potential difference in the energized area of the metal material to measure the crack depth on the surface of the metal material. Detect the potential difference when current is applied and the potential difference when a contrasting current is applied, and detect the ratio of the two, the surface crack depth measured in advance on the test piece, the frequency of the current to be applied, and the time when the current is applied. The function with the electronic difference that was
This is achieved by calculating the surface crack depth of the measured object from

上記の方法において、基準電流が直流であっても、].
 O O K H Zを超える周波数の交流もしくは1
0OHZ未満の周波数の交流であってもよい。
In the above method, even if the reference current is DC].
O O K H Alternating current with a frequency exceeding Z or 1
It may be an alternating current with a frequency less than 0OHZ.

上記の課題は、また、対比電流が交流である請求項1ま
たは2または3に記載の表面亀裂測定方法によっても達
或される。
The above object is also achieved by the method for measuring surface cracks according to claim 1, 2 or 3, wherein the contrast current is alternating current.

上記の方法において対比電流の周波数は、10〜90K
HZであってもよい。
In the above method, the frequency of the contrast current is 10 to 90K.
It may be HZ.

上記の課題は、さらに、定電流を供給する電流供給手段
と、供給された電流を測定対象の金属材料に通電する給
電端子と、該金属材料の通電区域の電位差を検出する検
出端子と、検出された電位差を亀裂深さ信号に変換する
制御・演算手段と、亀裂深さ信号を数値化して表示する
出力手段と、を備えた表面亀裂測定装置において,前記
電流供給手段を基準電流と対比電流を交互に供給するも
のとし、前記制御・演算手段を前記基準電流通電時に検
出された電僚差と前記対比電流通電時に検出された電位
差と予め測定された亀裂深さ,通電電流の周波数,電位
差の関数とから亀裂深さを算出・出力するものとするこ
とによっても達或される。
The above problem further requires a current supply means for supplying a constant current, a power supply terminal for supplying the supplied current to a metal material to be measured, a detection terminal for detecting a potential difference in an energized area of the metal material, and a detection In the surface crack measuring device, the current supply means is connected to a reference current and a comparison current. shall be supplied alternately, and the control/calculation means is controlled to control the voltage difference detected when the reference current is energized, the potential difference detected when the comparison current is energized, and the crack depth, frequency of the energizing current, and potential difference measured in advance. This can also be achieved by calculating and outputting the crack depth from the function.

上記の装置において、基準電流を直流、対比電流を交流
としても、基準電流を周波数100KHZ以上もしくは
10OHZ以下の交流、対比電流を10KHZ〜90K
HZの交流としてもよい。
In the above device, even if the reference current is DC and the contrast current is AC, the reference current is AC with a frequency of 100KHZ or more or 10OHZ or less, and the comparison current is 10KHZ to 90K.
It may also be HZ AC.

〔作用〕[Effect]

金属材料+:*流が流された場合、流される電流の種類
(直流、交流)によって、第3図〜第5図に示されるよ
うに電流の流れ方が異なる。第3図は直流電流が流され
たときの流れを示し、電流は測定対象の全断面を一様に
流れる。第4図は10KHZ、第5図は10OKHZの
交流電流がそれぞれ流されたときの流れを示し、電流は
表皮効果によって、金属表面の薄い層に流れる。この金
属表面の薄い層の深さ(表皮深さ)は、前記(1)式に
示されるように流される電流の周波数に依存し、周波数
が高いほど表皮深さは浅くなり、き裂による電位差の変
化の割合が大きくなる。
Metal material +: *When a current is passed, the way the current flows differs depending on the type of current (direct current, alternating current) as shown in FIGS. 3 to 5. FIG. 3 shows the flow when a direct current is applied, and the current flows uniformly over the entire cross section of the object to be measured. Fig. 4 shows the flow when an alternating current of 10 KHZ and Fig. 5 shows the flow when an alternating current of 10 OK HZ is applied, respectively, and the current flows in a thin layer on the metal surface due to the skin effect. The depth of this thin layer on the metal surface (skin depth) depends on the frequency of the current flowing as shown in equation (1) above, and the higher the frequency, the shallower the skin depth, and the potential difference due to cracks. The rate of change in will increase.

しかし、流される電流の周波数が極端に高いと、表皮深
さが極端に浅くなり、き裂面がコンデンサ的な役割を果
すため、第5図に示されるように、き裂測定が不可能に
なる。第6図は直流、周波数10KHZの交流および周
波数100KHZの交流が流された場合の電位差比と、
き裂深さの関係を示し、電流の種類によって、き裂深さ
の測定感度が異なるのを示している。
However, if the frequency of the applied current is extremely high, the skin depth becomes extremely shallow and the crack surface acts like a capacitor, making crack measurement impossible, as shown in Figure 5. Become. Figure 6 shows the potential difference ratios when direct current, alternating current with a frequency of 10 KHz, and alternating current with a frequency of 100 KHz are applied.
It shows the relationship between crack depth and shows that the crack depth measurement sensitivity differs depending on the type of current.

本発明は、き裂による電位差変化が、このように電流の
種類によって異なることを利用する.定電流(一定値の
電流)が測定対象に流された場合に検出される電位差E
と該定電流の周波数fとの間には第7図に示される関係
がある。測定対象金属自体の電気抵抗が、組織変化や塑
性変形によって変化している場合にも電僚差が平均的に
変化するだけで、周波数依存性は変らない。また、基準
電流として直流電流が流された場合に検出される電位差
E0は、測定対象の金属組織、塑性変形等を反映した基
準となる電位差であり、対比電流として交流電流が流さ
れた場合に検出される電位差Eは、金属組織、塑性変形
と共にき裂の影響を大きく反映した電位差である.従っ
て両者の比(電位差比) E/E,をとることで、測定
時の温度や金属組織の影響を除いた、き裂の影響による
電位差変化だけが取り出されるので、比較材なしでき裂
深さが測定される。
The present invention takes advantage of the fact that the potential difference change due to a crack differs depending on the type of current. Potential difference E detected when a constant current (current with a constant value) is passed through the measurement target
The relationship shown in FIG. 7 exists between the frequency f of the constant current and the frequency f of the constant current. Even if the electrical resistance of the metal to be measured itself changes due to structural changes or plastic deformation, the electrical difference changes only on average, and the frequency dependence does not change. In addition, the potential difference E0 detected when a DC current is passed as a reference current is a reference potential difference that reflects the metal structure, plastic deformation, etc. of the object to be measured. The detected potential difference E is a potential difference that largely reflects the effects of cracks as well as metal structure and plastic deformation. Therefore, by taking the ratio of the two (potential difference ratio) E/E, only the potential difference change due to the influence of the crack is extracted, excluding the influence of the temperature and metallographic structure at the time of measurement. is measured.

〔実施例〕〔Example〕

本発明の1実施例である表面き裂測定装置の全体構或を
第1図に示す。本装置は、電流供給及び電{〃差検出装
置20と、端子部21とを備える。
FIG. 1 shows the overall structure of a surface crack measuring device that is an embodiment of the present invention. This device includes a current supply and voltage difference detection device 20 and a terminal section 21.

電流供給および電位差検出装置20は、関数発生部1と
、該関数発生部1の出力側に接続された電圧増幅部2と
,該電圧増幅部2の出力側に接続された電流制御部3と
、前記関数発生部1に接続され、かつ検出された電位差
が入力されるロツクインアンプ7と、該ロックインアン
プ7の出力側に接禎されたA/Dコンバータ6と、該A
/Dコンバータ6の出力側に接続された制御・演算部4
と、該制御演算部4の出力側に接続された出力部5とを
備えている。関数発生部1と、電圧増幅部2と電流制御
部3とが電流供給手段をなしている。制御・演算手段を
なす前記制御・演算部4は、前記関数発生部1および電
流制御部3にも接続されている。出力部5はき裂深さを
数値表示する表示管を備えている。端子部21は,前記
電流制御部3の出力側に接続された給電端子9と、前記
ロックインアンプ7の入力側に接続された検出端子8と
、を備えている。
The current supply and potential difference detection device 20 includes a function generation section 1, a voltage amplification section 2 connected to the output side of the function generation section 1, and a current control section 3 connected to the output side of the voltage amplification section 2. , a lock-in amplifier 7 connected to the function generating section 1 and into which the detected potential difference is input; an A/D converter 6 connected to the output side of the lock-in amplifier 7;
/Control/calculation unit 4 connected to the output side of the D converter 6
and an output section 5 connected to the output side of the control calculation section 4. The function generating section 1, the voltage amplifying section 2, and the current controlling section 3 constitute current supply means. The control/calculation section 4, which serves as control/calculation means, is also connected to the function generation section 1 and the current control section 3. The output section 5 is equipped with a display tube that numerically displays the crack depth. The terminal section 21 includes a power supply terminal 9 connected to the output side of the current control section 3 and a detection terminal 8 connected to the input side of the lock-in amplifier 7.

上記構成の表面き裂測定装置において、関数発生部1は
制御・演算部4から入力される信号10に基づいて、直
流信号と定められた周波数f(数十KHZ程度)の交流
信号のいずれかを電圧増幅部2に切り替え出力し、電圧
増幅部2は入力された直流信号もしくは交流信号を増幅
して電流制御部3に出力する。電流制御部3は,電圧増
幅部2から入力される信号に基づいて、所定の誤差範囲
内に制御された直流もしくは交流の定電流13を出力し
、該定電流13は給電端子9を経て測定対象22に流さ
れる。
In the surface crack measuring device having the above configuration, the function generating unit 1 generates either a DC signal or an AC signal at a predetermined frequency f (about several tens of KHz) based on the signal 10 input from the control/calculation unit 4. The voltage amplifying unit 2 amplifies the input DC signal or AC signal and outputs the amplified DC signal or AC signal to the current control unit 3. The current control unit 3 outputs a DC or AC constant current 13 controlled within a predetermined error range based on the signal input from the voltage amplification unit 2, and the constant current 13 is measured via the power supply terminal 9. Swept away by target 22.

測定対象22を流れる基準電流である直流定電流及び対
比電流である交流定電流によって測定対象に生ずる電位
差E0およびEは、検出端子8によって検出されてロッ
クインアンプ7に出力され、ロックインアンプ7によっ
て定電流13と同じ周波数の検出信号17として、A/
Dコンバータ6に出力される。A/Dコンバータ6は、
アナログ信号である検出信号工7をデジタル信号18に
変換して制御・演算部4に送り、該制御・演算部4は入
力されたデジタル信号18である電位差E。
Potential differences E0 and E generated in the measurement object due to the constant DC current that is the reference current and the constant AC current that is the contrast current flowing through the measurement object 22 are detected by the detection terminal 8 and output to the lock-in amplifier 7. As a detection signal 17 with the same frequency as the constant current 13, A/
It is output to the D converter 6. The A/D converter 6 is
The detection signal generator 7, which is an analog signal, is converted into a digital signal 18 and sent to the control/calculation section 4, which converts the potential difference E, which is the input digital signal 18, into a digital signal 18.

及びEを用いて、き裂深さを算出し、出力部5に出力す
る。出力部5は入力されたき裂深さを表示管上に数値表
示する。
and E, the crack depth is calculated and output to the output section 5. The output unit 5 numerically displays the input crack depth on a display tube.

測定対象が選定されると、その測定対象と同一金属材料
を用いて,種々の深さの人工割れ(き裂)を備えた試験
片が、作製され、該試験片に直流および各種の周波数の
定電流が流されて電位差が測定される。測定結果に基づ
いて第7図が作成され、さらに対比電流の周波数と第7
図に基づいて第8図に示す図表が作威される。第8図に
示される関数が演算データとして、あらかじめ制御・演
算部4に格納される。制御・演算部4は、A/Dコンバ
ータ6から電位差EQ,Eを表わすデジタル信サ18が
入力されると、これから、電伯差比E/Eaを算出し、
次いで算出された電位差比E/E,と前記関数から、き
裂深さCを算出する。算出されたき裂深さは数値信号と
して出力部5に出力され、表示管に数値表示される。
Once the measurement target is selected, test pieces with artificial cracks of various depths are prepared using the same metal material as the measurement target, and the test pieces are subjected to direct current and various frequencies. A constant current is applied and the potential difference is measured. Figure 7 was created based on the measurement results, and the frequency of the contrast current and Figure 7 were also created.
The chart shown in FIG. 8 is created based on the diagram. The functions shown in FIG. 8 are stored in advance in the control/calculation unit 4 as calculation data. When the digital signal 18 representing the potential difference EQ, E is inputted from the A/D converter 6, the control/calculation unit 4 calculates the electrical potential difference ratio E/Ea from this,
Next, the crack depth C is calculated from the calculated potential difference ratio E/E and the above function. The calculated crack depth is output as a numerical signal to the output section 5 and displayed numerically on the display tube.

上述の実施例においては,基$電流として直流電流を、
対比電流として交流電流を流して電位差を測定したが、
定電流を流して測定された電位差は、第7図に示された
ように、流される電流の周波数が10OHZ以下、10
OKHZ以上では、流される電流が直流である場合に近
く、直流電流のかわりに10OHZ以下の交流電流又は
100KHZ以上の交流電流を基準電流として流した場
合に検出される電位差を基準(E0)に用いても、上記
実施例と同様にき裂測定が可能である。ただし、この場
合、第8図に示す関数を事前に第7図に基づいて作或す
る際に、直流を流して得られた電位差のかわりに基準と
する周波数の交流な流して得られた電イ6差をE0とし
て用いる必要がある。
In the above embodiment, the base $ current is a direct current,
I measured the potential difference by flowing an alternating current as a contrast current, but
As shown in Figure 7, the potential difference measured when a constant current is applied is 10 OHZ or less,
At OKHZ or higher, it is similar to when the flowing current is direct current, and the potential difference detected when an alternating current of 10 OHZ or less or an alternating current of 100 KHz or more is passed as the reference current instead of direct current is used as the reference (E0). However, crack measurement is possible in the same manner as in the above embodiment. However, in this case, when creating the function shown in Figure 8 based on Figure 7 in advance, instead of the potential difference obtained by flowing a direct current, the voltage obtained by flowing an alternating current at the reference frequency is used. It is necessary to use the A6 difference as E0.

また、第8図に示された関数を事前に作或しておくので
なく、第7図に示された周波数一電イη差一き裂深さデ
ータを制御・演算部4に格納しておき、き裂測定の際、
基準とする電位差E。測定のために流される電流の周波
数を指定し、制御・演算部4で第8図に示された関数を
その都度、前記周波数一電位差一き裂深さデータから演
算し、得られた関数と電位差比E / E Oとからき
裂深さを算出してもよい。
Moreover, instead of creating the function shown in FIG. 8 in advance, the data of frequency, voltage, η difference, and crack depth shown in FIG. When measuring cracks and cracks,
Reference potential difference E. The frequency of the current to be passed for measurement is specified, and the control/calculation unit 4 calculates the function shown in FIG. 8 from the frequency, potential difference, and crack depth data each time, and the obtained function The crack depth may be calculated from the potential difference ratio E/EO.

第2図に上述の検出手順を示す。測定に際しては、制御
・演算部4の出力信号工○により、第2図の手!.IN
 1 0 2〜107が所定の時間間隔で繰返えされ、
表示管には、制御・演算部4から出力されるき裂深さが
連続して表示される。
FIG. 2 shows the above-mentioned detection procedure. During measurement, the control/calculation section 4's output signal switch ○ is used as shown in Fig. 2! .. IN
1 0 2 to 107 are repeated at predetermined time intervals,
The crack depth output from the control/calculation unit 4 is continuously displayed on the display tube.

上記実施例によれば、測定対象である金属材料の金属組
織、疲労等の条件を含み、き裂の影響の小さい電位差と
、前記金属組織、疲労等の条件およびき裂の影響の大き
い電僚差とが計測されるので、比較材を用いることなく
き裂計測が可能となった。又、比較材を用いないので測
定対象と比較材の表面粗さの違いによる測定誤差をなく
すための材料の表面研摩が不要となり、かつ,測定対象
の材質が異なっても、き裂深さと電位差比の関係は変化
しないので、測定が迅速かつ簡便になった。
According to the above embodiment, the potential difference includes conditions such as the metallographic structure and fatigue of the metal material to be measured, and the electric potential difference has a small effect of cracks, and the electrical potential difference has a large effect of cracks. Since the difference between the two is measured, it is now possible to measure cracks without using a comparison material. In addition, since no comparison material is used, there is no need to polish the surface of the material to eliminate measurement errors due to differences in surface roughness between the measurement target and the comparison material, and even if the materials to be measured are different, the crack depth and potential difference Since the ratio relationship does not change, measurements are quick and easy.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、測定対象の金属材料の疲労、クリープ
、又は時効損傷等は反映されるが、表面き裂の影響をう
けにくい基準電流による電佇差と、上記疲労、クリープ
、又は時効損傷等が反映されるとともに、表面き裂の影
響を大きく受ける対比電流による電位差とが測定され、
上記両者から疲労、クリープ又は時効損傷等の影響が消
去された、表面き裂の関数としての電位差が検知される
ので,比較材を用いることなしに、測定対象の表面き裂
の検出が可能となり、供用中の測定対象の表面き裂の検
出が容易となった。
According to the present invention, the fatigue, creep, aging damage, etc. of the metal material to be measured is reflected, but the electrical profile difference due to the reference current, which is less susceptible to the influence of surface cracks, and the fatigue, creep, or aging damage mentioned above are reflected. etc. are reflected, and the potential difference due to the contrast current, which is greatly affected by surface cracks, is measured.
Since the potential difference as a function of the surface crack is detected from both of the above, the effects of fatigue, creep, or aging damage are eliminated, so it is possible to detect the surface crack of the object to be measured without using a comparison material. , it has become easier to detect surface cracks in the measurement target during service.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例である表面き裂深さ測定装置
の主要構或を示すブロック図、第2図は本発明の方法の
一例を示す手順図、第3図、第4図、第5図は表面き裂
を有する材料に各種の電流が流されたときの電流の流れ
方を示す模式図、第6図は種々の深さの表面き裂に対す
る電位差比の周波数依存性を示すグラフ、第7図は種々
の深さの表面き裂に対して流された電流の周波数と検出
される電僚差の関係を示す概念図で、第8図は電位差比
とき裂深さの関係を示す概念図である。 1,2.3・・・電流供給手段、 4・・・制御・演算手段、5・・・出力手段、8・・・
検出端子、9・・・給電端子。
FIG. 1 is a block diagram showing the main structure of a surface crack depth measuring device which is an embodiment of the present invention, FIG. 2 is a procedure diagram showing an example of the method of the present invention, and FIGS. 3 and 4. , Figure 5 is a schematic diagram showing how various currents flow when applied to a material with surface cracks, and Figure 6 shows the frequency dependence of the potential difference ratio for surface cracks at various depths. The graph shown in Figure 7 is a conceptual diagram showing the relationship between the frequency of the current applied to surface cracks at various depths and the detected electrical difference, and Figure 8 is a conceptual diagram showing the relationship between the potential difference ratio and the crack depth. It is a conceptual diagram showing a relationship. 1, 2.3... Current supply means, 4... Control/calculation means, 5... Output means, 8...
Detection terminal, 9...Power supply terminal.

Claims (1)

【特許請求の範囲】 1、測定対象である金属材料に通電し、該金属材料の通
電区域の電位差を検出して該金属材料表面の亀裂深さを
測定する表面亀裂測定方法において、測定対象に基準電
流が通電されたときの電位差と対比電流が通電されたと
きの電位差とを検出し、両者の比と、試験片上で予め測
定された表面亀裂深さと通電される電流の周波数と該電
流の通電時に検出された電位差との関数と、から測定対
象の表面亀裂深さを算出することを特徴とする表面亀裂
測定方法。 2、基準電流が直流であることを特徴とする請求項1に
記載の表面亀裂測定方法。 3、基準電流が100KHZを超える周波数の交流もし
くは100HZ未満の周波数の交流であることを特徴と
する請求項1に記載の表面亀裂測定方法。 4、対比電流が交流であることを特徴とする請求項1ま
たは2または3に記載の表面亀裂測定方法。 5、対比電流の周波数が、10〜90KHZであること
を特徴とする請求項4に記載の表面亀裂測定方法。 6、定電流を供給する電流供給手段と、供給された電流
を測定対象の金属材料に通電する給電端子と、該金属材
料の通電区域の電位差を検出する検出端子と、検出され
た電位差を亀裂深さ信号に変換する制御・演算手段と、
亀裂深さ信号を数値化して表示する出力手段と、を備え
た表面亀裂測定装置において、前記電流供給手段が基準
電流と対比電流を交互に供給するものであることと、前
記制御・演算手段が前記基準電流通電時に検出された電
位差と前記対比電流通電時に検出された電位差と予め測
定された亀裂深さ、通電電流の周波数、電位差の関数と
から亀裂深さを算出・出力するものであることと、を特
徴とする表面亀裂測定装置。 7、基準電流が直流であり、対比電流が交流であること
を特徴とする請求項6に記載の表面亀裂測定装置。 8、基準電流が周波数100KHZ以上もしくは100
HZ以下の交流であり、対比電流が10KHZ〜90K
HZの交流であることを特徴とする請求項6に記載の表
面亀裂測定装置。
[Claims] 1. In a surface crack measurement method in which a metal material to be measured is energized and a potential difference in a energized area of the metal material is detected to measure the depth of a crack on the surface of the metal material, The potential difference when the reference current is applied and the potential difference when the contrast current is applied are detected, and the ratio of the two, the surface crack depth measured in advance on the test piece, the frequency of the applied current, and the current A surface crack measuring method characterized by calculating the surface crack depth of a measurement target from a function of a potential difference detected during energization. 2. The method for measuring surface cracks according to claim 1, wherein the reference current is a direct current. 3. The method for measuring surface cracks according to claim 1, wherein the reference current is an alternating current with a frequency exceeding 100 KHz or an alternating current with a frequency below 100 Hz. 4. The method for measuring surface cracks according to claim 1, 2 or 3, wherein the contrast current is alternating current. 5. The method for measuring surface cracks according to claim 4, wherein the frequency of the contrast current is 10 to 90 KHz. 6. A current supply means for supplying a constant current, a power supply terminal for passing the supplied current to the metal material to be measured, a detection terminal for detecting the potential difference in the current-carrying area of the metal material, and a detection terminal for detecting the potential difference in the current-carrying area of the metal material. control/calculation means for converting into a depth signal;
In the surface crack measuring device, the current supply means alternately supplies a reference current and a comparison current, and the control/calculation means comprises: The crack depth is calculated and output from the potential difference detected when the reference current is applied, the potential difference detected when the comparison current is applied, the crack depth measured in advance, the frequency of the applied current, and a function of the potential difference. A surface crack measuring device characterized by the following. 7. The surface crack measuring device according to claim 6, wherein the reference current is a direct current and the comparison current is an alternating current. 8. The reference current has a frequency of 100 KHZ or higher or 100
It is an alternating current below HZ, and the contrast current is 10KHZ to 90K.
The surface crack measuring device according to claim 6, characterized in that it uses HZ alternating current.
JP19178089A 1989-07-25 1989-07-25 Method and device for surface cracking measurement Pending JPH0356848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19178089A JPH0356848A (en) 1989-07-25 1989-07-25 Method and device for surface cracking measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19178089A JPH0356848A (en) 1989-07-25 1989-07-25 Method and device for surface cracking measurement

Publications (1)

Publication Number Publication Date
JPH0356848A true JPH0356848A (en) 1991-03-12

Family

ID=16280415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19178089A Pending JPH0356848A (en) 1989-07-25 1989-07-25 Method and device for surface cracking measurement

Country Status (1)

Country Link
JP (1) JPH0356848A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345157A (en) * 2004-05-31 2005-12-15 Toshiba Corp Crack depth inspection method of metallic material
JP2008083038A (en) * 2006-08-30 2008-04-10 Atlus:Kk Method of detecting damage of structure made of conductive material
JP2010243173A (en) * 2009-04-01 2010-10-28 Ntn Corp Device and method for inspecting hardening quality
JP2011174823A (en) * 2010-02-25 2011-09-08 Railway Technical Research Institute Crack monitoring device and crack monitoring method
WO2018093889A1 (en) * 2016-11-16 2018-05-24 3M Innovative Properties Company Temperature-independent verifying of structural integrity of materials using electrical properties
US10816495B2 (en) 2016-12-16 2020-10-27 3M Innovative Properties Company Verifying structural integrity of materials
US10983081B2 (en) 2016-11-16 2021-04-20 3M Innovative Properties Company Electrode placement for verifying structural integrity of materials
US11060993B2 (en) 2016-11-16 2021-07-13 3M Innovative Properties Company Suppressing thermally induced voltages for verifying structural integrity of materials
US11105762B2 (en) 2016-12-16 2021-08-31 3M Innovative Properties Company Verifying structural integrity of materials using reference impedance
US11112374B2 (en) 2016-12-16 2021-09-07 3M Innovative Properties Company Verifying structural integrity of materials
US11255807B2 (en) 2016-11-16 2022-02-22 3M Innovative Properties Company Verifying structural integrity of materials

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345157A (en) * 2004-05-31 2005-12-15 Toshiba Corp Crack depth inspection method of metallic material
JP2008083038A (en) * 2006-08-30 2008-04-10 Atlus:Kk Method of detecting damage of structure made of conductive material
JP2010243173A (en) * 2009-04-01 2010-10-28 Ntn Corp Device and method for inspecting hardening quality
JP2011174823A (en) * 2010-02-25 2011-09-08 Railway Technical Research Institute Crack monitoring device and crack monitoring method
US10983081B2 (en) 2016-11-16 2021-04-20 3M Innovative Properties Company Electrode placement for verifying structural integrity of materials
WO2018093889A1 (en) * 2016-11-16 2018-05-24 3M Innovative Properties Company Temperature-independent verifying of structural integrity of materials using electrical properties
US11060993B2 (en) 2016-11-16 2021-07-13 3M Innovative Properties Company Suppressing thermally induced voltages for verifying structural integrity of materials
US11181498B2 (en) 2016-11-16 2021-11-23 3M Innovative Propperties Company Temperature-independent verifying of structural integrity of materials using electrical properties
US11255807B2 (en) 2016-11-16 2022-02-22 3M Innovative Properties Company Verifying structural integrity of materials
US11609202B2 (en) 2016-11-16 2023-03-21 3M Innovative Properties Company Electrode placement for verifying structural integrity of materials
US11609203B2 (en) 2016-11-16 2023-03-21 3M Innovative Properties Company Suppressing thermally induced voltages for verifying structural integrity of materials
US10816495B2 (en) 2016-12-16 2020-10-27 3M Innovative Properties Company Verifying structural integrity of materials
US11105762B2 (en) 2016-12-16 2021-08-31 3M Innovative Properties Company Verifying structural integrity of materials using reference impedance
US11112374B2 (en) 2016-12-16 2021-09-07 3M Innovative Properties Company Verifying structural integrity of materials
US11371952B2 (en) 2016-12-16 2022-06-28 3M Innovative Properties Company Verifying structural integrity of materials

Similar Documents

Publication Publication Date Title
JP4432766B2 (en) Electrical resistance measurement method and apparatus
US5059902A (en) Electromagnetic method and system using voltage induced by a decaying magnetic field to determine characteristics, including distance, dimensions, conductivity and temperature, of an electrically conductive material
FI96994B (en) Device for calculating the crack length of conductive sensors
US4677855A (en) Method for measuring damage to structural components
JPH0356848A (en) Method and device for surface cracking measurement
JPS60152950A (en) Eddy current nondestructive testing method and device thereof
EP1240499B1 (en) Method and apparatus for measuring accumulated and instant rate of material loss or material gain
JP2023515125A (en) Method and measurement set-up for determining internal corrosion rate of steel structures
CN209745854U (en) dynamic detection system for electric heating performance
Corcoran et al. A quasi-DC potential drop measurement system for material testing
CN110133053B (en) Metal pipeline corrosion monitoring method and system
CN110220947B (en) Method for determining corrosion degree of pipeline
JPH0545184B2 (en)
JP2004309355A (en) Hardening depth measuring apparatus of steel material
Belloni et al. On the experimental calibration of a potential drop system for crack length measurements in a compact tension specimen
JPS643071Y2 (en)
JPH0324403A (en) Apparatus for measuring depth of crack
JP2512178B2 (en) Corrosion environment crack growth tester
JPS62134552A (en) Apparatus for measuring depth of crack by eddy current flaw detection method
JP4007484B2 (en) Resistivity measuring method and resistivity meter
JPS63139202A (en) Method and apparatus for measuring electromagnetic induction type thickness
KR100354837B1 (en) Cracklength measuring device and method of metallic materials
WO1992018839A1 (en) Method for measuring mechanical stresses and fatigue conditions in steel
JPS5850456A (en) Detection of crack
JPS6044857A (en) Crack growth detector for conductive materials