JPS6044857A - Crack growth detector for conductive materials - Google Patents

Crack growth detector for conductive materials

Info

Publication number
JPS6044857A
JPS6044857A JP15360983A JP15360983A JPS6044857A JP S6044857 A JPS6044857 A JP S6044857A JP 15360983 A JP15360983 A JP 15360983A JP 15360983 A JP15360983 A JP 15360983A JP S6044857 A JPS6044857 A JP S6044857A
Authority
JP
Japan
Prior art keywords
test piece
output
amplifier
crack growth
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15360983A
Other languages
Japanese (ja)
Other versions
JPH0363016B2 (en
Inventor
Kazuo Kageyama
和郎 影山
Katsunobu Nonaka
野中 勝信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP15360983A priority Critical patent/JPS6044857A/en
Publication of JPS6044857A publication Critical patent/JPS6044857A/en
Publication of JPH0363016B2 publication Critical patent/JPH0363016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To detect with high sensitivity growth of cracks of carbon-fiber reinforced plastic materials, etc., by applying an AC source under a mechanical load to a test piece of conductive material and detecting simultaneously changes of potential difference and phase derived from the test piece. CONSTITUTION:A crack growth detector 1 is composed of variable phase 2 output function generator 2, testing system 3, and locking-in amplifier 4. An output of the variable phase 2 output function generator 2 is delivered to an amplifier- type constant current power source 5 and amplified by it and later, applied to a test piece 6. A load 9 is applied to the test piece 6 and an output from the test piece 6 is detected by a detecting transformer 7 and delivered to a locking amplifier 4. To this locking-in amplifier 4, in addition to an output signal from the detecting transformer 7, output signals of the generator 2 and temperature compensating system 3b are delivered and an output signal of the test piece 6 is measured under condition of temperature compensation of changes of potential difference and phase. A Niquist diagram of the test piece is drawn from these measurements and creation and growth of the cracks are determined.

Description

【発明の詳細な説明】 この発明は導電性材わ1単体若しくは炭素繊組強化プラ
スチックのごとき導電性材料の内部に発生した亀裂の成
長を検出するだめの検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a detection device for detecting the growth of cracks generated inside a conductive material 1 or a conductive material such as carbon fiber reinforced plastic.

材料内の欠陥を検出Jるための非破壊検査装置としては
超音波探m装置等が開発されているが、装置の価格が高
価であり、測定のための操作も煩雑で熟練を必要とする
ものであった。
Ultrasonic probes and other devices have been developed as non-destructive testing devices for detecting defects in materials, but the devices are expensive and the measurement operations are complicated and require skill. It was something.

一方、金属材料等の導電性を有す為材料の亀裂成長検出
には、電位差法亀裂成長検出装置が開発されており、こ
の装置は試験片に直流電流を流し、試験片に対する入力
電流と出力電流の電位差を計測して試験片内の亀裂成長
を検出しているが、検出感度が必ずしも充分でなく、ま
た、炭素繊維強化プラスチック等はプラスチックである
電気絶縁体と炭素繊維等の電気導体との複合体であり、
電気的特性が複雑で、単に前記の電位差だけを計測した
のでは、亀裂成長を正確に検出することはできない。
On the other hand, a potentiometric crack growth detection device has been developed to detect crack growth in conductive materials such as metal materials. Crack growth within a test piece is detected by measuring the potential difference between electric currents, but the detection sensitivity is not always sufficient, and carbon fiber reinforced plastics, etc. It is a complex of
The electrical characteristics are complex, and crack growth cannot be detected accurately by simply measuring the potential difference.

このようなことから、導電性+413+ lit (4
名しくは炭素繊組強化プラスチックのごとき電気的特性
が複雑な81電性材料繊維強化プラスデックの亀裂成長
を感度良く、正確に検出することができ、かつ操作が簡
単な導電性材料用の亀裂成長検出装置の開発が望まれて
いる。
Because of this, conductivity +413+ lit (4
The crack growth of 81 conductive material fiber-reinforced plastic deck, which has complex electrical characteristics such as carbon fiber reinforced plastic, can be detected sensitively and accurately, and cracks for conductive materials are easy to operate. Development of a growth detection device is desired.

この発明は上記の如き事情に鑑みてなされたものであっ
て、炭素繊維強化プラスチックのごとき導電性材料の亀
裂成長を感度良(、正確に検出することができ、かつ操
作が簡単な導電性材料用亀裂成長検出装置を提供するこ
とを目的とするものである。
This invention was made in view of the above circumstances, and is a conductive material that can detect crack growth in conductive materials such as carbon fiber reinforced plastics with high sensitivity (and accuracy) and is easy to operate. The object of the present invention is to provide a crack growth detection device for use in the present invention.

この目的に対応して、この発明の導電性材料用亀裂成長
検出装置は、荷重を作用させた導電性材料からなる試験
片に定電流源から交流を通電し、出力電流の電位差変化
と位相変化をあわせて計測して前記試験片の亀裂成長を
検出するように構成したことを特徴としている。
Corresponding to this purpose, the crack growth detection device for conductive materials of the present invention applies alternating current from a constant current source to a test piece made of a conductive material to which a load is applied, and changes in the potential difference and phase of the output current. The present invention is characterized in that it is configured such that crack growth in the test piece is detected by measuring both of the above.

以下、この発明の詳細を伏素m14強化プラスチック用
亀裂成長検出装置に適用した一実施例を承り図面につい
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment in which the present invention is applied to a crack growth detection device for abrasive M14 reinforced plastic will be explained in detail with reference to the drawings.

第1図において、1は亀裂成長検出装置であり、亀裂成
長検出装置1は、可変位相2出力関数発生器2、試験片
系3、ロックインアンプ4を備えており、試験片系3は
増幅器型定電流源5、試験片6、及び検出トランス7を
備えている。可変位相2出力関数発生器2の出力は増幅
器型定電流源5に入力され、増幅された後、試験片6に
負荷される。試験片6には試験荷重Pが負荷される。試
験片6からの出力は検出トランス7で検出され、検出ト
ランス7の出力はロックインアンプ4に入力される。
In FIG. 1, 1 is a crack growth detection device, and the crack growth detection device 1 is equipped with a variable phase two-output function generator 2, a test piece system 3, and a lock-in amplifier 4, and the test piece system 3 is an amplifier. It is equipped with a type constant current source 5, a test piece 6, and a detection transformer 7. The output of the variable phase two-output function generator 2 is input to an amplifier type constant current source 5, amplified, and then applied to a test piece 6. A test load P is applied to the test piece 6. The output from the test piece 6 is detected by a detection transformer 7, and the output of the detection transformer 7 is input to the lock-in amplifier 4.

−hz可変位相2出ツノ関数発生器2の出力波形は参照
用信号としてロックインアンプ4に入ツノされ、検出ト
ランス7の出力と対比される。ロックイン試験片のナイ
キスト線図をめることができ、電位差と位相の変化から
試験片6内の亀裂の発生及び成長をめることができる。
The output waveform of the -hz variable phase two-output horn function generator 2 is input to the lock-in amplifier 4 as a reference signal and compared with the output of the detection transformer 7. A Nyquist diagram of the lock-in test piece can be obtained, and the occurrence and growth of cracks in the test piece 6 can be determined from changes in potential difference and phase.

前記の亀裂成長検出装置1には温度補償系3bが組込ま
れている。すなわち、温度補償系3bは可変位相2出力
関数発生器2とロックインアンプ4との間に試験片系3
ど並列に組込まれており、増幅器型定電流源5b、ダミ
ー試験片6b及び検出トランス7bとを備えている。増
幅器型定電流源5bは増幅器型定電流源5ど同特性のも
のとし、ダミー試験片6bは試験片6と同特性のものと
し、かつ、検出トランス7bは検出トランス7と同特性
のものとし、かつ温度補償系3bは全体として試験片系
3と同特性に構成しである。ただし、ダミー試験片6b
には試験荷重は負荷されていない。
A temperature compensation system 3b is incorporated in the crack growth detection device 1 described above. That is, the temperature compensation system 3b includes the test piece system 3 between the variable phase two-output function generator 2 and the lock-in amplifier 4.
They are built in parallel, and include an amplifier type constant current source 5b, a dummy test piece 6b, and a detection transformer 7b. The amplifier type constant current source 5b has the same characteristics as the amplifier type constant current source 5, the dummy test piece 6b has the same characteristics as the test piece 6, and the detection transformer 7b has the same characteristics as the detection transformer 7. , and the temperature compensation system 3b has the same characteristics as the test piece system 3 as a whole. However, dummy test piece 6b
No test load was applied.

温度補償系3bの出力はロックインアンプ4において試
験片系3の出力から減拝される。
The output of the temperature compensation system 3b is subtracted from the output of the test piece system 3 by a lock-in amplifier 4.

以上のにうに構成された亀裂成長検出装置1においては
、負荷電流として交流電流を使用し、かつ、電位差変化
のみならず、同時に、位相変化をも目測することによっ
て、ナイキスト線等をめることを可能にし、複雑な電気
的特性をもつ炭素繊維強化プラスチツク材料等の亀裂成
長を高感度で、正確かつ容易に検出することができる。
In the crack growth detection device 1 configured as described above, an alternating current is used as the load current, and the Nyquist line etc. can be determined by visually measuring not only the change in potential difference but also the change in phase at the same time. This enables highly sensitive, accurate, and easy detection of crack growth in materials such as carbon fiber-reinforced plastic materials that have complex electrical characteristics.

なお以上の説明は、この発明を主として炭素繊維強化プ
ラスチック石亀裂成長検出装置に適用した実施例につい
てなされたが、この発明は炭素繊維強化プラスチツク以
外の導電性材料繊維強化プラスチツク用、繊維強化金属
用その他の複合材料用、及び導電性材料単体用の亀裂成
長検出装置にそのまま適用することができる。
The above explanation has been made regarding an embodiment in which the present invention is mainly applied to a carbon fiber reinforced plastic stone crack growth detection device, but this invention is applicable to conductive materials other than carbon fiber reinforced plastics, such as fiber reinforced plastics and fiber reinforced metals. It can be applied as is to crack growth detection devices for other composite materials and single conductive materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係わる検出装置を示すブ
[lツク図、及び第2図はナイキスト線を示すグラフで
ある。 1・・・亀裂成長検出装置 2・・・可変位相2出力関
数発生機器 3・・・試験片系 4・・・ロックインア
ンプ 5・・・増幅器型定電流源 6・・・試験片7・
・・検出トランス
FIG. 1 is a block diagram showing a detection device according to an embodiment of the present invention, and FIG. 2 is a graph showing a Nyquist line. 1... Crack growth detection device 2... Variable phase 2 output function generator 3... Test piece system 4... Lock-in amplifier 5... Amplifier type constant current source 6... Test piece 7.
・Detection transformer

Claims (1)

【特許請求の範囲】[Claims] 荷重を作用さVtC導電性材料からなる試験片に定電流
源から交流を通電し、出力電流の電位差変化と位相変化
をあわせて計測して前記試験片の亀裂成長を検出するよ
うに構成したことを特徴とする導電性材料用亀裂成長検
出装置
The test piece is configured to apply alternating current from a constant current source to a test piece made of a VtC conductive material on which a load is applied, and measure both potential difference changes and phase changes of the output current to detect crack growth in the test piece. Crack growth detection device for conductive materials featuring
JP15360983A 1983-08-22 1983-08-22 Crack growth detector for conductive materials Granted JPS6044857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15360983A JPS6044857A (en) 1983-08-22 1983-08-22 Crack growth detector for conductive materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15360983A JPS6044857A (en) 1983-08-22 1983-08-22 Crack growth detector for conductive materials

Publications (2)

Publication Number Publication Date
JPS6044857A true JPS6044857A (en) 1985-03-11
JPH0363016B2 JPH0363016B2 (en) 1991-09-27

Family

ID=15566223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15360983A Granted JPS6044857A (en) 1983-08-22 1983-08-22 Crack growth detector for conductive materials

Country Status (1)

Country Link
JP (1) JPS6044857A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485821B2 (en) 2003-12-15 2009-02-03 Preh Gmbh Control element with animated symbols

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2948770B1 (en) * 2009-07-31 2011-10-07 Airbus Operations Sas METHOD FOR ELECTRICALLY CHARACTERIZING COMPOSITE MATERIAL FOR MANUFACTURING AN AIRCRAFT

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107386A (en) * 1978-02-09 1979-08-23 Koa Oil Co Ltd Flaw detecting system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107386A (en) * 1978-02-09 1979-08-23 Koa Oil Co Ltd Flaw detecting system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485821B2 (en) 2003-12-15 2009-02-03 Preh Gmbh Control element with animated symbols

Also Published As

Publication number Publication date
JPH0363016B2 (en) 1991-09-27

Similar Documents

Publication Publication Date Title
US3197693A (en) Nondestructive eddy current subsurface testing device providing compensation for variation in probe-to-specimen spacing and surface irregularities
US4006407A (en) Non-destructive testing systems having automatic balance and sample and hold operational modes
Wei et al. An assessment of AC and DC potential systems for monitoring fatigue crack growth
US5847562A (en) Thickness gauging of single-layer conductive materials with two-point non linear calibration algorithm
US3555412A (en) Probe for detection of surface cracks in metals utilizing a hall probe
US4237419A (en) Method and apparatus for non-destructive testing using a plurality of frequencies
JPS6044857A (en) Crack growth detector for conductive materials
JPH0545184B2 (en)
SE8701082L (en) PHASELECTIVE DETECTION BY PRODUCT AND / OR QUOTA GENERATION
CN105675414B (en) Stress-electric coupling surveys crack growth rate detection method
US3224257A (en) Rotating body strain meter
Garcia-Martin et al. Comparative evaluation of coil and hall probes in hole detection and thickness measurement on aluminum plates using eddy current testing
US6343513B1 (en) Non-destructive evaluation method and apparatus for measuring acoustic material nonlinearity
EP0049951A2 (en) Device and method for measuring carburization in furnace tubes
COHEN et al. Crack measurement in metals by the four-point probe technique
RU2194976C1 (en) Device measuring conductivity
GB1512201A (en) Apparatus for electrically testing workpieces
SU1379715A1 (en) Device for eddy current inspection
Pasadas et al. Detection of Sub-Surface Cracks Using ECT with Planar Excitation Coil, GMR and TMR Sensors
SU1744620A1 (en) Method of calibration of electropotential flaw detector
SU920506A1 (en) Method and device for electromagnetic checking of flaw depth
KR101706577B1 (en) Sensor Network Balancing Control Appartus and It's Control Method
JPS587331Y2 (en) Eddy current flaw detection equipment
SU828062A1 (en) Method and device for electromagnetic checking
GB1492411A (en) Measuring or indicating apparatus for instruments