JPH0363016B2 - - Google Patents

Info

Publication number
JPH0363016B2
JPH0363016B2 JP58153609A JP15360983A JPH0363016B2 JP H0363016 B2 JPH0363016 B2 JP H0363016B2 JP 58153609 A JP58153609 A JP 58153609A JP 15360983 A JP15360983 A JP 15360983A JP H0363016 B2 JPH0363016 B2 JP H0363016B2
Authority
JP
Japan
Prior art keywords
test piece
crack growth
output
amplifier
current source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58153609A
Other languages
Japanese (ja)
Other versions
JPS6044857A (en
Inventor
Kazuo Kageyama
Katsunobu Nonaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP15360983A priority Critical patent/JPS6044857A/en
Publication of JPS6044857A publication Critical patent/JPS6044857A/en
Publication of JPH0363016B2 publication Critical patent/JPH0363016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 この発明は炭素繊維強化プラスチツクのごとき
導電性材料で強化されたプラスチツクの内部に発
生した亀裂の成長を検出するための検出方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a detection method for detecting the growth of cracks in plastics reinforced with conductive materials, such as carbon fiber reinforced plastics.

材料内の欠陥を検出するための非破環検査装置
としては超音波探傷装置等が発されているが、装
置の価格が高価であり、測定のための操作も煩雑
で熟練を必要とするものであつた。
Ultrasonic flaw detection devices have been developed as non-ring-breaking inspection devices for detecting defects in materials, but these devices are expensive, and the measurement operations are complicated and require skill. It was hot.

一方、金属材料等の導電性を有する材料の亀裂
成長検出には、電位差法亀裂成長検出装置が開発
されており、この装置は試験片に直流電流を流
し、試験片に対する入力電流と出力電流の電位差
を計測して試験片内の亀裂成長を検出している
が、検出感度が必ずしも充分でなく、また、炭素
繊維強化プラスチツク等はプラスチツクである電
気絶縁体と炭素繊維等の電気導体との複合体であ
り、電気的特性が複雑で、単に前記の電位差だけ
を計測したのでは、亀裂成長を正確に検出するこ
とはできない。
On the other hand, a potentiometric crack growth detection device has been developed to detect crack growth in electrically conductive materials such as metal materials. Crack growth within a test piece is detected by measuring the potential difference, but the detection sensitivity is not always sufficient, and carbon fiber reinforced plastics are composites of electrical insulators such as plastic and electrical conductors such as carbon fibers. It is a body with complex electrical characteristics, and crack growth cannot be detected accurately by simply measuring the potential difference.

このようなことから、炭素繊維強化プラスチツ
クのごとき電気的特性が複雑な導電性材料繊維強
化プラスチツクの亀裂成長を感度良く、正確に検
出することができ、かつ操作が簡単な導電性材料
用の亀裂成長検出方法の開発が望まれている。
For this reason, it is possible to sensitively and accurately detect crack growth in conductive materials such as carbon fiber-reinforced plastics, which have complex electrical properties. Development of growth detection methods is desired.

この発明は上記の如き事情に鑑みてなされたも
のであつて、炭素繊維強化プラスチツクのごとき
導電性材料の亀裂成長を感度良く、正確に検出す
ることができ、かつ操作が簡単な導電性材料繊維
強化プラスチツク用亀裂成長検出方法を提供する
ことを目的とするものである。
This invention has been made in view of the above circumstances, and is capable of detecting crack growth in conductive materials such as carbon fiber reinforced plastics with high sensitivity and accuracy, and which is easy to operate. It is an object of the present invention to provide a crack growth detection method for reinforced plastics.

この目的に対応して、この発明の導電性材料繊
維強化プラスチツク用亀裂成長検出方法は、荷重
を作用させた導電性材料からなる試験片に定電流
源から交流を通電し、出力電流の電位差変化と位
相変化をあわせて計測して前記試験片の亀裂成長
を検出するように構成したことを特徴としてい
る。
Corresponding to this purpose, the crack growth detection method for conductive fiber-reinforced plastics of the present invention involves applying an alternating current from a constant current source to a test piece made of a conductive material to which a load is applied, and changing the potential difference in the output current. The present invention is characterized in that it is configured to measure both the phase change and the phase change to detect crack growth in the test piece.

以下、この発明の詳細を炭素繊維強化プラスチ
ツク用亀裂成長検出装置に適用した一実施例を示
す図面について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Below, a drawing showing an embodiment in which the present invention is applied to a crack growth detection device for carbon fiber reinforced plastics will be described.

第1図において、1は亀裂成長検出装置であ
り、亀裂成長検出装置1は、可変位相2出力関数
発生器2、試験片系3、ロツクインアンプ4を備
えており、試験片系3は増幅器型定電流源5、試
験片6、及び検出トランス7を備えている。可変
位相2出力関数発生器2の出力は増幅器型定電流
源5に入力され、増幅された後、試験片6に負荷
される。試験片6には試験荷重Pが負荷される。
試験片6からの出力は検出トランス7で検出さ
れ、検出トランス7の出力はロツクインアンプ4
に入力される。
In FIG. 1, 1 is a crack growth detection device, and the crack growth detection device 1 is equipped with a variable phase two-output function generator 2, a test piece system 3, and a lock-in amplifier 4, and the test piece system 3 is an amplifier. It is equipped with a type constant current source 5, a test piece 6, and a detection transformer 7. The output of the variable phase two-output function generator 2 is input to an amplifier type constant current source 5, amplified, and then applied to a test piece 6. A test load P is applied to the test piece 6.
The output from the test piece 6 is detected by a detection transformer 7, and the output of the detection transformer 7 is sent to a lock-in amplifier 4.
is input.

試験片6の入出力用端子の取付例を第3図に示
す。一方、可変位相2出力関数発生器2の出力波
形は参照用信号としてロツクインアンプ4に入力
され、検出トランス7の出力と対比される。ロツ
クインアンプ4は試験片6の出力電流の電位差△
E及び参照用信号と出力信号の差すなわち位相調
整量として求められる位相φを計測すれば、例え
ば第2図に示すごとき、電位差と位相の変化から
試験片6内の亀裂の発生及び成長を求めることが
できる。
FIG. 3 shows an example of how the input/output terminals of the test piece 6 are attached. On the other hand, the output waveform of the variable phase two-output function generator 2 is input to the lock-in amplifier 4 as a reference signal and compared with the output of the detection transformer 7. The lock-in amplifier 4 has a potential difference △ of the output current of the test piece 6.
By measuring the difference between E and the reference signal and the output signal, that is, the phase φ, which is determined as the amount of phase adjustment, the occurrence and growth of cracks in the test piece 6 can be determined from changes in the potential difference and phase, as shown in FIG. 2, for example. be able to.

前記の亀裂成長検出装置1には温度補償系3b
が組込まれている。すなわち、温度補償系3bは
可変位相2出力関数発生器2とロツクインアンプ
4との間に試験片系3と並列に組込まれており、
増幅器型定電流源5b、ダミー試験片6b及び検
出トランス7bとを備えている。増幅器型定電流
源5bは増幅器型定電流源5と同特性のものと
し、ダミー試験片6bは試験片6と同特性のもの
とし、かつ、検出トランス7bは検出トランス7
と同特性のものとし、かつ温度補償系3bは全体
として試験片系3と同特性に構成してある。ただ
し、ダミー試験片6bには試験荷重は負荷されて
いない。温度補償系3bの出力はロツクインアン
プ4において試験片系3の出力から減算される。
The crack growth detection device 1 includes a temperature compensation system 3b.
is incorporated. That is, the temperature compensation system 3b is installed in parallel with the test piece system 3 between the variable phase two-output function generator 2 and the lock-in amplifier 4,
It includes an amplifier type constant current source 5b, a dummy test piece 6b, and a detection transformer 7b. The amplifier type constant current source 5b has the same characteristics as the amplifier type constant current source 5, the dummy test piece 6b has the same characteristics as the test piece 6, and the detection transformer 7b has the same characteristics as the amplifier type constant current source 5.
The temperature compensation system 3b is configured to have the same characteristics as the test piece system 3 as a whole. However, no test load was applied to the dummy test piece 6b. The output of the temperature compensation system 3b is subtracted from the output of the test piece system 3 in the lock-in amplifier 4.

以上のように構成された亀裂成長検出装置1に
おいては、負荷電流として交流電流を使用し、か
つ、電位差変化のみならず、同時に、位相変化を
も計測することによつて、複雑な電気的特性をも
つ炭素繊維強化プラスチツク材料等の亀裂成長を
高感度で、正確かつ容易に検出することができ
る。
In the crack growth detection device 1 configured as described above, an alternating current is used as the load current, and by simultaneously measuring not only changes in potential difference but also changes in phase, complex electrical characteristics can be detected. It is possible to detect crack growth in carbon fiber-reinforced plastic materials with high sensitivity, accuracy, and ease.

なお以上の説明は、この発明を主として炭素繊
維強化プラスチツク用亀裂成長検出装置に適用し
た実施例についてなされたが、この発明は炭素繊
維強化プラスチツク以外の導電性材料繊維強化プ
ラスチツク用の亀裂成長検出方法にそのまま適用
することができる。
The above explanation has been made regarding an embodiment in which the present invention is mainly applied to a crack growth detection device for carbon fiber reinforced plastics, but this invention also applies to a crack growth detection method for fiber reinforced plastics made of conductive materials other than carbon fiber reinforced plastics. It can be applied as is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係わる検出装置
を示すブロツク図、第2図は電位差及び位相差を
示すグラフ、及び第3図は試験片の入出力用端子
取付例を示す説明図である。 1…亀裂成長検出装置、2…可変位相2出力関
数発生器、3…試験片系、4…ロツクインアン
プ、5…増幅器型定電流源、6…試験片、7…検
出トランス。
Fig. 1 is a block diagram showing a detection device according to an embodiment of the present invention, Fig. 2 is a graph showing potential difference and phase difference, and Fig. 3 is an explanatory diagram showing an example of attaching input/output terminals to a test piece. be. DESCRIPTION OF SYMBOLS 1... Crack growth detection device, 2... Variable phase two-output function generator, 3... Test piece system, 4... Lock-in amplifier, 5... Amplifier type constant current source, 6... Test piece, 7... Detection transformer.

Claims (1)

【特許請求の範囲】[Claims] 1 荷重を作用させた導電性材料からなる試験片
に定電流源から交流を通電し、出力電流の電位差
変化と位相変化をあわせて計測して前記試験片の
亀裂成長を検出するように構成したことを特徴と
する導電性材料繊維強化プラスチツク用亀裂成長
検出方法。
1 A test piece made of a conductive material to which a load is applied is configured to pass an alternating current from a constant current source, measure both the potential difference change and the phase change of the output current to detect crack growth in the test piece. A method for detecting crack growth in a conductive material, fiber-reinforced plastic, characterized by:
JP15360983A 1983-08-22 1983-08-22 Crack growth detector for conductive materials Granted JPS6044857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15360983A JPS6044857A (en) 1983-08-22 1983-08-22 Crack growth detector for conductive materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15360983A JPS6044857A (en) 1983-08-22 1983-08-22 Crack growth detector for conductive materials

Publications (2)

Publication Number Publication Date
JPS6044857A JPS6044857A (en) 1985-03-11
JPH0363016B2 true JPH0363016B2 (en) 1991-09-27

Family

ID=15566223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15360983A Granted JPS6044857A (en) 1983-08-22 1983-08-22 Crack growth detector for conductive materials

Country Status (1)

Country Link
JP (1) JPS6044857A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501216A (en) * 2009-07-31 2013-01-10 エアバス オペラシオン ソシエテ パ アクシオンス シンプリフィエ Method for electrical analysis of composite materials for aircraft manufacturing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10358945A1 (en) 2003-12-15 2005-07-14 Preh Gmbh Control element with animated symbols

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107386A (en) * 1978-02-09 1979-08-23 Koa Oil Co Ltd Flaw detecting system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107386A (en) * 1978-02-09 1979-08-23 Koa Oil Co Ltd Flaw detecting system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501216A (en) * 2009-07-31 2013-01-10 エアバス オペラシオン ソシエテ パ アクシオンス シンプリフィエ Method for electrical analysis of composite materials for aircraft manufacturing

Also Published As

Publication number Publication date
JPS6044857A (en) 1985-03-11

Similar Documents

Publication Publication Date Title
US3781672A (en) Continuous condition measuring system
US4893079A (en) Method and apparatus for correcting eddy current signal voltage for temperature effects
US3085566A (en) Apparatus for measuring the electrical response of living tissue
US3197693A (en) Nondestructive eddy current subsurface testing device providing compensation for variation in probe-to-specimen spacing and surface irregularities
US4006407A (en) Non-destructive testing systems having automatic balance and sample and hold operational modes
Wei et al. An assessment of AC and DC potential systems for monitoring fatigue crack growth
US5847562A (en) Thickness gauging of single-layer conductive materials with two-point non linear calibration algorithm
US4843318A (en) Distance compensation in magnetic probe testing systems wherein object to probe spacing is employed as an exponent in excitings probes or processing probe outputs
US4237419A (en) Method and apparatus for non-destructive testing using a plurality of frequencies
JPH0363016B2 (en)
US2985824A (en) Nondestructive eddy current testing
US3566258A (en) Eddy current flaw detector having automatically balancing bridge circuit
US2877406A (en) Non-destructive method and means for flaw detection
EP0049951A2 (en) Device and method for measuring carburization in furnace tubes
US2942187A (en) Electrostatic means for indicating voltage amplitude
US2916701A (en) Method and device for measuring electrical voltages
Tamburrino Detection of Sub-Surface Cracks Using ECT with Planar Excitation Coil, GMR and TMR Sensors
JP2001083183A (en) Current detection circuit and its inspection method
JPS587331Y2 (en) Eddy current flaw detection equipment
SU1744620A1 (en) Method of calibration of electropotential flaw detector
SU1379715A1 (en) Device for eddy current inspection
GB1492411A (en) Measuring or indicating apparatus for instruments
KR101706577B1 (en) Sensor Network Balancing Control Appartus and It's Control Method
SU1763965A1 (en) Electrochemical analysis device
SU1536289A1 (en) Device for measuring depth of surface in conducting materials