JP4042853B2 - Hardening depth measuring device for steel - Google Patents

Hardening depth measuring device for steel Download PDF

Info

Publication number
JP4042853B2
JP4042853B2 JP2003104441A JP2003104441A JP4042853B2 JP 4042853 B2 JP4042853 B2 JP 4042853B2 JP 2003104441 A JP2003104441 A JP 2003104441A JP 2003104441 A JP2003104441 A JP 2003104441A JP 4042853 B2 JP4042853 B2 JP 4042853B2
Authority
JP
Japan
Prior art keywords
current
probes
probe
steel
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003104441A
Other languages
Japanese (ja)
Other versions
JP2004309355A5 (en
JP2004309355A (en
Inventor
小島  隆
里志 赤松
成弘 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Prefecture
Denshijiki Industry Co Ltd
Original Assignee
Kanagawa Prefecture
Denshijiki Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Prefecture, Denshijiki Industry Co Ltd filed Critical Kanagawa Prefecture
Priority to JP2003104441A priority Critical patent/JP4042853B2/en
Publication of JP2004309355A publication Critical patent/JP2004309355A/en
Publication of JP2004309355A5 publication Critical patent/JP2004309355A5/ja
Application granted granted Critical
Publication of JP4042853B2 publication Critical patent/JP4042853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼材の表面に生成された焼入れ層の深さを非破壊で測定する鋼材の焼入れ深さ測定装置に関する。
【0002】
【従来の技術】
例えば、自動車部品としてのクランクシャフトやコンロッド等の鋼製部品においては、耐摩耗性、疲労特性を向上させるために高周波焼き入れにより鋼材の表面硬化が施されている。鋼材の表面に生成した焼入れ層(硬化層)の深さ(以下「焼入深さ」という)を評価する場合、従来からビッカース硬さ試験、ブルネル硬さ試験、ロックウエル硬さ試験、ショア硬さ試験、マクロ組織試験法等の破壊方式が採用されている。硬さ試験による焼入深さの測定方法は、焼入された部品を焼入れ層に垂直に切断し、切断面を研磨仕上げ後ダイヤモンド等の非常に硬いものにより所定の荷重を加えて前記仕上げ面に凹みをつけ、この凹みの一辺の長さを測定して硬さ推移曲線からビッカース硬さにより有効焼入れ層の深さを、又は凹みの深さを測定して硬さ推移曲線からブルネル硬さにより有効焼入れ層の深さを、算出するものである。マクロ組織試験法は、試料の切断面を腐食させて低倍率の拡大鏡で観察し、焼入れ層の深さを測定するものである。
【0003】
また、渦電流を利用して焼入深さを測定する非破壊検査方法も提案されている(例えば、非特許文献1参照)。
【0004】
【非特許文献1】
「非破壊検査第49巻1号」(社)日本非破壊検査協会出版平成12年1月1日発行P.55〜65
【0005】
【発明が解決しようとする課題】
しかしながら、ビッカース硬さ試験、ブルネル硬さ試験、ロックウエル硬さ試験、ショア硬さ試験、或いはマクロ組織試験法等の非破壊検査による評価方法は、非常に手間がかかり、大変な労力を要するばかりでなく、材料を無駄にする、抜き取り破壊検査のため実サンプルでない、全数検査をすることができない等の多くの問題がある。
【0006】
また、渦電流を利用して焼入深さを測定する検査方法においては、鋼材に導電率と透磁率の2つのパラメータが存在するために測定が難しいという問題がある。
また、4探針プローブを用いた電位差法によって焼入れ層の深さを非破壊で評価することが可能であることが古くから知られているが未だに実用とされていない。その理由は、評価精度が明らかとされていないこと、精度と作業性の両方を考慮したプローブの検討がなされていないこと等が考えられる。
【0007】
本発明は、上述の点に鑑みてなされたもので、鋼材の表面に生成された焼入れ層の深さを非破壊で簡単に且つ精度良く測定することが可能な鋼材の焼入れ深さ測定装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するべく本発明に係る鋼材の焼入深さ測定装置は、
< > 前記鋼材の表面に接触して電流を供給する一対の電流探針、および前記鋼材表面の前記電流探針とは異なる位置に接触して前記鋼材の表面における異なる二つの電圧を検出する二対の検出探針を有する6探針プローブと、
< > 前記電流探針に電流を供給する励磁手段と、
< > この励磁手段により前記電流探針を介して前記鋼材に電流を流したとき前記二対の検出探針間に生じる電圧をそれぞれ検出する電圧検出手段と、
< > 前記一対の電流探針間に流れる電流Iと前記二対の検出探針によりそれぞれ検出される電圧Va , Vbとの、前記各探針間の相互の位置関係により定まる関係から前記焼入れ層の焼入れ深さdを算出する演算手段と
を備えたことを特徴としている。
ちなみに前記一対の電流探針および前記二対の検出探針が直線上に対称配列され、前記一対の電流探針の離反距離がS、前記二対の検出探針の前記一対の電流探針からの離反距離がそれぞれr , であるとき、
前記演算手段は、例えば前記鋼材の焼入深さdおよび焼入れ層の抵抗率ρとその母材の抵抗率ρ との抵抗比α(=ρ/ρ )を未知数とし、fa , fbがQ=(1−α)/(1+α),mを収束回数として下記の式 ( )( ) にてそれぞれ示されるものとして
Va=fa(ρ ・I/S) , Vb=fb(ρ ・I/S)
なる二つの連立方程式を演算して焼入れ深さdを算出するように構成される。
【0009】
【数2】

Figure 0004042853
【0010】
上述した構成の鋼材の焼入深さ測定装置によれば、6探針プローブの三対の探針が鋼材の表面に接触させ、励磁回路から一対の電流探針間に電流Iを供給すると、二対の検出探針間に夫々異なる電圧Va , Vbが発生する。これらの異なる二つの電圧Va , Vbと上記電流Iとの関係は、上記探針間の位置関係、および焼入れ層の深さdにより一義的に定まるので、焼入深さdおよび焼入れ層の抵抗率ρと母材の抵抗率ρ との抵抗比α(=ρ/ρ )を未知数とする前記二つの電圧Va , Vbに関する連立方程式を演算することで、焼入深さdを算出することができる。これにより、鋼材の表面に生成された焼入れ層の深さdを精度良く、迅速且つ簡単に測定することができる。
またプローブについては、2本の電流探針と4本の検出探針とで6探針構成とすることでその測定を1回の操作で済ませることができ、測定誤差、測定間違いを軽減することができる。
【0011】
【発明の実施の形態】
以下、本発明に係わる鋼材の焼入れ深さ測定装置を図面により詳細に説明する。
先ず、焼入れ深さの測定方法の原理について説明する。鋼材の表面に焼入れをした場合、焼入れ層の抵抗率が母材(母層)の抵抗率と異なり、焼入れ層の抵抗率が母材の抵抗率よりも高くなる。そこで、母材と焼入れ層の抵抗率が異なることに着目して実用的な電位差法を用いて焼入れ深さの測定を行うものである。
【0012】
図1に示すように十分大きな試料(鋼材)1の母材2の表面に焼入れ層3が生成されている場合、母材2の抵抗率をρ0、焼入れ層3の抵抗率をρ、焼入れ深さをdとする。そして、この試料1の表面に測定プローブ5を接触させる。6探針プローブ5は、三対(6本の)電極探針(以下、単に「探針」という)A〜Fを有し、一対の探針A―Dを電極探針としてこれらの探針A−D間に電流Iを供給し、一対の探針E―F、及び一対の探針B−Cを夫々検出探針としてこれらの検出探針E−F間、B−C間の各電位差VEF、VBCを測定する。各探針A〜Fは、不図示のスプリングのばね力により先端が焼入れ層3の表面に一定圧で接触可能とされている。探針A〜Fは、プローブの中心位置に対して左右対称に一列に配置されており、探針A−E、F−Dの間隔を夫々r1、探針A−B、C−Dの間隔を夫々r2としている。このとき電位差Vnは、次式で表される。
【0013】
【数3】
Figure 0004042853
【0014】
電位差VEF、VBCは測定可能であり、電流I、探針総隔値S、探針間隔r1、r2は既知であるから、母材2の抵抗率ρ0が予め分かっていれば、未知数はρとdだけとなり、電位差VEFとVBCとを表す2つの式より2つの未知数ρ、dを連立して求めることが可能となる。
電位差から焼入れ深さdと抵抗率の比α(ρ/ρ0)を求める方法は、測定した電位差VEF、VBCを満たすdとαの関係により求める。即ち、VEFを満たすdとαの関係をdEF(α)、VBCを満たすdとαの関係をdBC(α)とし、これを満たすdとαを求める。具体的には図2に示す2本の曲線の交点を求めて、dとαを求める。
【0015】
電位差の測定値には通常誤差が含まれる。従って、二つの電位差から上式(1)に基づいて値dとαを求める過程において誤差がdとαに拡大して伝播する。この誤差伝播の特性は、プローブの探針総間隔S、検出探針間隔r1、r2の取り方で変化する。そこで、誤差伝播のシミュレーションを実施し、その結果に基づいて評価精度明らかにすると共に、精度が最も良い探針間隔を決定する。即ち、測定精度が最も良いプローブの設計を誤差伝播解析に基づいて行う。
【0016】
実際に導入される焼入れ層3の焼入深さは1〜7mm程度である。また、最も良く使われる鋼材としてはS45C、SCM435があり、自動車部品等の高周波焼き入れに用いられる部品の約8割がこれらの鋼材が占めている。S45Cでは理想的に焼入れをした場合、α(=ρ/ρ0)が約1.3である。そこで、αの値を典型的な焼入れ鋼の場合の値α=1.3として、1<d<7mmの焼入れ層3に対して探針間隔が異なる2つのプローブを適用した場合について、夫々電位差の測定誤差|ΔV/V|が±0.5%の場合に現れる焼入れ深さdの評価誤差|Δd|(mm)と、αの相対評価誤差|Δα|/α(%)の伝播をシミュレートした。その結果を図3、図4、及び図5に示す。Δdは、dを真値としたときに、真値dから電位差が±0.5%変化した時のdの値を引いた値を、Δαは、αを真値としたときに、真値αから電位差が±0.5%変化した時のαの値を引いた値である。
【0017】
図3は、図1に示す6探針プローブ5においてr1=1mm、r2=4mm、S=15mmに設定した場合を、図4は、r1=5mm、r2=10mm、S=25mmに設定した場合を、図5は、r1=2mm、r2=6mm、S=25mmに設定した場合を示す。図3乃至図5において太線は|Δd|(mm)を、細線は|Δα|/α(%)を示す。これにより、探針総間隔S、検出探針間隔r1、r2によって誤差伝播の特性が大きく異なることが明らかとなった。特に、図5に示すプローブを使用した場合、αの誤差が5%以下(5%を超えると評価できなくなる)で、焼入れ深さdが1〜5mmにおいて誤差±0.5mmの範囲で評価可能であることが明らかとなった。
【0018】
図5において誤差±0.5%の範囲内のdの最小値が約1.7mm、最大値が約4.8mmであり、dの有効範囲は、約1.7〜4.8mmである。そこで、r1を2mmに固定してr2を変化させ、誤差±0.5%以内におけるdの最小値、最大値をシミュレートした結果、dの有効範囲は、図6の曲線IaとIbの間の領域[I]となった。同様にr1=1mmに固定してr2を変化させた場合dの有効範囲は、曲線IIaとIIbの間の領域[II]、r1=3mmに固定してr2を変化させた場合dの有効範囲は曲線IIIaとIIIbの間の領域[III]の範囲となった。
【0019】
具体的には、r1を1mmとし、r2を10mmとした場合dの有効測定範囲は約1.0mm〜6.5mm、r2を6mmとした場合dの有効測定範囲は約1.1mm〜5.4mmである。また、r1を3mmとし、r2を10mmとした場合dの有効測定範囲は約2.2mm〜5.5mm、r2を6mmとした場合dの有効範囲は約2.0mm〜3.6mmである。
【0020】
同様に図3において誤差±0.5%の範囲内のdの最小値が約1.2mm、最大値が約4.0mmであり、dの有効範囲は、約1.2mm〜4mmである。そこで、r1を1mmに固定してr2を変化させ、誤差±0.5%以内におけるdの最小値、最大値をシミュレートした結果、dの有効範囲は、図7の曲線IVaとIVbの間の領域[IV]となった。同様にr1=2mmに固定してr2を変化させた場合dの有効範囲は、曲線VaとVbの間の領域[V]となった。
【0021】
具体的には、r1を1mmとし、r2を7mmとした場合dの有効測定範囲は約1.0mm〜4.7mm、r2を5mmとした場合dの有効測定範囲は約1.0mm〜4.3mmである。また、r1を2mmとし、r2を7mmとした場合dの有効測定範囲は約1.5mm〜4.3mm、r2を5mmとした場合dの有効範囲は約1.4mm〜3.6mmである。
【0022】
従って、探針の総間隔S、検出探針の間隔r1、r2を変えることで、種々の仕様に対応することが可能である。尚、これらの間隔S、r1、r2をプローブ定数と称することとする。
さて、図1に示すプローブにおいて、探針間隔をsとすると、式(1)は、次式で表される。
【0023】
【数4】
Figure 0004042853
【0024】
ここに、FBC、FEFは無次元の係数である。
上式(2)、(3)において電流I、抵抗率ρ0、探針間隔sが既知であり、従って、電位差VEF、VBCを測定することで、1/FEF、1/FBCが求まる。例えば、探針間隔が等間隔sの場合、1/FEF、1/FBCは、次式で表される。
【0025】
【数5】
Figure 0004042853
【0026】
これらの式(4)、(5)において、αをパラメータとし、d/sを変化させると、1/FEF、1/FBCは、図8、図9のように表される。
上述したように測定した電位差VEFと、既知の電流I、抵抗率ρ0、探針間隔sとにより1/FEFが求まるから、図8において前記求めた1/FEFの値における各特性曲線との各交点の各αと各d/sとを読み取り、図10に示すように横軸をα、縦軸をd/sとして特性曲線VIを描く。同様にして図9において1/FBCの値と各特性曲線との交点の各αと各d/sとを読み取り、図10に特性曲線VIIを描く。そして、これらの2本の特性曲線VIとVIIとの交点が求める値αと、d/sとなる。値sは、既知であり、従って、dを求めることができる。
【0027】
前述した(2)式、(3)式は、試料が無限に広い平らな表面と無限の厚さを持つ場合(以下「半無限体」という)に成り立つ関係式である。従って、有限の大きさを持つ現実の試料にプローブを当てて測定した電位差を夫々Vef、Vbcとするときこれに形状補正係数1/Cef、1/Cbcを掛けて次式に示すように試料が半無限体の場合に測定される電位差VEF、VBCに補正する。
【0028】
【数6】
Figure 0004042853
【0029】
そして、これらの補正した値VEF、VBCを前記(2)式、(3)式の電位差として代入して焼入深さの評価を行う。尚、形状補正係数1/Cef、1/Cbcは鋼材の形状に応じて予め求める。以下に焼入深さの評価の実施例を示す。
【0030】
【実施例】
(1)試料:SCM435、φ48mm、長さ300mm
(2)エッチングによって評価した焼入れ深さd=3.7mm
(3)測定プローブ:図1に示す6探針プローブを使用
探針総間隔S=15mm、r1=1mm、r2=4mmに設定した。
(4)信頼限界=標本平均±k(不偏分散/データ数)1/2で表し、kの値を、データ数30未満のときt分布表より、データ数30以上のとき正規分布表より求めた。
(5)信頼限界90%の区間で評価した測定結果を以下に示す。
(i)データ数=30のとき
d=3.55±0.31mm
α=1.23±0.007
(ii)データ数=10のとき
d=3.46±0.57mm
α=1.24±0.016
(iii)データ数=10のとき
d=3.58±0.62mm
α=1.22±0.011
(iv)データ数=10のとき
d=3.60±0.66mm
α=1.23±0.011
以上の各評価結果から、α(ρ/ρ0)の誤差が5%以下で、焼入れ深さdが1<d<7mmにおいて誤差±0.5mmの範囲で評価可能であり、十分に実用的であることが明らかとなった。
【0031】
尚、上記測定方法において6探針プローブ5は、電流探針AとDの内側に検出探針EとF、BとCを配置した構成としたが、これに限るものではなく、図11に示す6探針プローブ6のように電流探針AとDの内側に検出探針BとCを、外側に検出探針EとFとを配置した構成としてもよく、或いは図12に示す6探針プローブ7のように、電流探針AとDの外側に検出探針BとCを配置し、検出探針BとCの外側に検出探針EとFとを配置する構成としてもよい。
【0032】
また、これらの6探針プローブ5、6、7においては6本の探針A〜Fを一直線上に一列に配置したがこれに限るものではない。即ち、検出探針EとF、BとCは、電流探針AとDにより材料に電流を供給したときに異なる2つの電位差を検出できればよく、従って、電流探針AとD、検出探針EとF、及びBとCの配置や、各探針の間隔等は、被測定対象物の形状や測定個所等に応じて最適な配置や間隔に設定すればよい。
【0033】
次に、本発明に係る鋼材の焼入れ深さ測定装置について説明する。
図13は、鋼材の焼入れ深さ測定装置の実施形態を示すブロック図である。図13において材料1は、例えば、S45Cの丸棒鋼で母材2の表面に深さdの焼入れ層3が生成されている。そして、母材2の抵抗率がρ0、焼入層3の抵抗率がρであるとする。
【0034】
鋼材の焼入深さ測定装置10のプローブ11は、図1に示すような探針間隔が等間隔Sの6探針プローブとされ、各探針A〜Fは、不図示のスプリングのばね力により先端が焼入れ層3の表面に一定圧で接触可能とされている。探針AとDが電流探針とされ、探針EとF、BとCが夫々電位差Vef、Vbcを検出する検出探針とされている。電流探針AとDは、励磁回路12に接続されて材料1に電流(直流電流)Iを供給(通電)し、検出探針EとFは、電位差(以下「電圧」という)Vefを検出し、検出探針BとCは、電位差(以下「電圧」という)Vbcを検出する。これらの検出探針EとF、BとCは、切換回路13に接続されている。
【0035】
切換回路13は、後述する演算手段としてのコンピュータ18により切換制御されて、電圧VefとVbcを交互に取り込んで出力する。プローブ11を2本の電流探針と4本の検出探針とで6探針構成とすることで測定を1回で済ませることができ、測定誤差、間違いを軽減することができる。また、切換回路13により4本の検出探針EとF、BとCから差動入力方式で2つの電圧を切り換えて交互に取り込み出力することで、装置の安定化、小型化が可能となる。
【0036】
入力手段としての操作キー14は、コンピュータ18に各種のパラメータを入力する。パラメータとしては、鋼材の形状(丸棒、パイプ、角棒等)に依存する形状補正係数(1/Cef、1/Cbc )、プローブ11の探針の総間隔S、探針間隔r1、r2等のプローブ定数、供給する電流値I、母材2の抵抗率ρ0、メモリ番号等がある。メモリ番号とは、ユーザによって測定すべき材料の形状、寸法、探針位置及び電流値が特定している場合において、これらの情報をメモリに記憶させたときに、これらの情報の組合せについて付ける番号である。この番号を入力することで、これらの情報の入力の手間が省ける。
【0037】
前段増幅回路15、後段増幅回路16は、切換回路13から交互に出力された電圧Vef、Vbcを増幅して所定の電圧として出力する。負帰還回路17は、前段増幅回路15、後段増幅回路16に接続されており、接点電圧即ち、検出された電圧Vef、Vbc、増幅回路15、16の残留電圧を、負帰還を掛けて測定前の0(零)値を取るためのものである。
【0038】
コンピュータ18は、励磁回路12を制御して電流探針A、Dに加える電流Iの方向を所定時間毎に電極探針A→D、D→Aへと所定回数例えば、10回切り換え、その都度検出探針EとF間の電圧Vef 、検出探針BとC間の電圧Vbcを測定してその平均値(以下「平均電圧」という)Vefm、Vbcmを算出する。また、コンピュータ18は、探針A〜Fの材料1への接触時及び離隔時にアークの発生を防止するために、測定開始時に6本の探針が全て材料1の表面に接触した後に電流探針A、D間に通電させ、所定回測定後電流を遮断する。
【0039】
また、コンピュータ18は、前段増幅回路15、後段増幅回路16の各増幅率を最適な値に切換制御して後段増幅器16から所定の電圧を出力させる。電源回路20は、前記各回路12、13、15〜18に所定の電源を供給する。
以下に測定の動作を説明する。
コンピュータ18は、測定に際して検出探針EとFとの間、BとCとの間を短絡させてゼロ調節する。また、電流探針AとDとの間の電流Iが0(開放時)のときに前段増幅回路15と後段増幅回路16の各オフセット電圧をキャンセルして、測定前のゼロを取る。
【0040】
プローブ11の探針A〜Fの先端が材料1の表面に押し付けられて接触し、電流探針AからDに電流Iが供給されると、検出探針EとF間に電圧Vefが発生し、探針BとCとの間に電圧Vbcが発生する。コンピュータ18は、電流探針AとDとの間の電流Iの方向を前述したように10回切り換えて切換回路13から交互に出力されて前段増幅回路15及び後段増幅回路16で増幅された各電圧Vef、Vbcを入力する。
【0041】
コンピュータ18は、10回づつ測定した検出探針EとF間の電圧Vef、検出探針BとC間の電圧Vbcの平均電圧Vefm、Vbcmを算出し、これらの平均電圧Vefm、Vbcmを操作キー14から入力されてメモリに記憶されている形状補正係数1/Cef、1/Cbcにより補正し、材料1が半無限体の場合に測定される電位差VEF(=Vefm/Cef )、VBC(=Vbcm/Cbc )に補正し、これらの補正した電位差VEF、VBCにより前式(2)〜(5)に沿って演算処理して値d/s、αを算出し、これらの値から焼入れ深さd、焼入硬化層3の抵抗率ρを算出する。このように、検出探針EとF間の電圧Vef、検出探針BとC間の電圧Vbcを複数回(10回)づつ測定してその平均電圧Vefm、Vbcmを算出し、これらの平均電圧Vefm、Vbcmを用いてVEF、VBCを補正して(2)式、(3)式の演算を行うことで、演算時間の大幅な短縮を図ることが可能となる。コンピュータ18は、算出した焼入れ深さdを表示回路19に表示する。これにより、焼入れ層3の焼入深さdを迅速、且つ精度よく測定することが可能となる。
【0042】
【発明の効果】
以上説明したように本発明によれば、6探針プローブにより鋼材表面の異なる2箇所の電圧を検出し、焼入深さd及び焼入れ層の抵抗率ρと母材の抵抗率ρ0との抵抗比α(=ρ/ρ0)を未知数として所定の演算式で表される前記二つの電圧の連立方程式を演算することにより、鋼材の表面に生成された焼入れ層の深さdを非破壊で精度良く、迅速且つ簡単に測定し、表示手段にすることができ、製品検査の作業性の大幅な向上が図られると共に、全数検査を行うことができ、信頼性の向上が図られる。
【図面の簡単な説明】
【図1】本発明に係る鋼材の焼入れ深さ測定装置の測定方法を説明する図である。
【図2】図1の測定方法により測定した電位差を満たす焼入れ深さと抵抗率の比との関係を示す図である。
【図3】図1に示す測定方法における誤差の評価の一例を示す図である。
【図4】図1に示す測定方法における誤差評価の一例を示す図である。
【図5】図1に示す測定方法における誤差評価の一例を示す図である。
【図6】図5に示す誤差評価から焼入れ深さの有効範囲と探針間隔との関係の一例を示す図である。
【図7】図3に示す誤差評価から焼入れ深さの有効範囲と探針間隔との関係の一例を示す図である。
【図8】測定した一の電位差から抵抗率比と焼入れ深さとの関係の一例を示す図である。
【図9】測定したもう一つの電位差から抵抗率比と焼入れ深さとの関係の一例を示す図である。
【図10】図8及び図9に示す特性から求めた焼入れ深さと抵抗率比との関係の一例を示す図である。
【図11】図1に示す6探針プローブの他の構成例を示す説明図である。
【図12】図1に示す6探針プローブの他の構成例を示す説明図である。
【図13】本発明に係る鋼材の焼入れ深さ測定装置の実施形態を示すブロック図である。
【符号の説明】
1 材料(鋼材)
2 母材
3 焼入れ層
5、6、7、11 6探針プローブ
10 鋼材の焼入れ深さ測定装置
12 励磁回路
13 切換回路
14 操作キー(入力手段)
15、16 増幅回路
17 負帰還回路
18 コンピュータ(演算手段)
19 表示回路(表示手段)
20 電源回路
A、D 電流探針
B、C、E、F 検出探針[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a quenching depth measuring device for a steel material that measures the depth of a quenching layer generated on the surface of the steel material in a nondestructive manner.
[0002]
[Prior art]
For example, steel parts such as crankshafts and connecting rods as automobile parts are subjected to surface hardening of the steel by induction hardening in order to improve wear resistance and fatigue characteristics. When evaluating the depth of the hardened layer (hardened layer) generated on the surface of steel (hereinafter referred to as “hardened depth”), Vickers hardness test, Brunel hardness test, Rockwell hardness test, Shore hardness Destructive methods such as testing and macro-structure testing are adopted. The method of measuring the quenching depth by the hardness test is to cut the hardened part perpendicularly to the quenching layer, polish the cut surface and then apply a predetermined load with a very hard object such as diamond to finish the finished surface. Measure the length of one side of this dent and measure the depth of the effective quenching layer by Vickers hardness from the hardness transition curve, or measure the depth of the dent and Brunel hardness from the hardness transition curve. Thus, the depth of the effective quenching layer is calculated. In the macro structure test method, the cut surface of a sample is corroded and observed with a low-magnification magnifier, and the depth of the hardened layer is measured.
[0003]
In addition, a nondestructive inspection method that measures quenching depth using eddy current has been proposed (see, for example, Non-Patent Document 1).
[0004]
[Non-Patent Document 1]
“Non-destructive Inspection Vol. 49 No.1” (published by the Japan Non-Destructive Inspection Association, published January 1, 2000) 55-65
[0005]
[Problems to be solved by the invention]
However, non-destructive evaluation methods such as Vickers hardness test, Brunel hardness test, Rockwell hardness test, Shore hardness test, or macro structure test method are very laborious and require a lot of labor. There are many problems such as waste of materials, non-real samples due to sampling destructive inspection, and inability to perform 100% inspection.
[0006]
Further, in the inspection method for measuring the quenching depth using eddy current, there is a problem that the measurement is difficult because the steel material has two parameters of conductivity and permeability.
Further, it has been known for a long time that the depth of a hardened layer can be evaluated nondestructively by a potentiometric method using a four-probe probe, but has not yet been put into practical use. The reason may be that the evaluation accuracy is not clarified and the probe considering both accuracy and workability has not been studied.
[0007]
The present invention has been made in view of the above points, and provides a quenching depth measuring device for a steel material capable of measuring the depth of a quenching layer generated on the surface of a steel material easily and accurately in a nondestructive manner. The purpose is to provide.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a quenching depth measuring apparatus for steel according to the present invention is as follows:
Detecting the two different voltages at the surface of the steel material in contact with a position different from the current probe of <a> pair of current probe for supplying a current in contact with the surface of the steel, and the steel surface A six-probe probe having two pairs of detection probes;
< b > excitation means for supplying current to the current probe;
< c > Voltage detection means for detecting voltages generated between the two pairs of detection probes when current is passed through the steel material via the current probe by the excitation means,
< d > The quenching based on the relationship between the current I flowing between the pair of current probes and the voltages Va and Vb detected by the two pairs of detection probes, determined by the mutual positional relationship between the probes. Computing means for calculating the quenching depth d of the layer;
It is characterized by having.
Incidentally, the pair of current probes and the two pairs of detection probes are symmetrically arranged on a straight line, the separation distance of the pair of current probes is S, and the pair of current probes of the two pairs of detection probes When the separation distance is r 1 and r 2 respectively ,
For example, the calculation means uses the resistance ratio α (= ρ / ρ 0 ) between the quenching depth d of the steel material and the resistivity ρ of the quenched layer and the resistivity ρ 0 of the base material as an unknown, and fa and fb are Q = (1−α) / (1 + α), where m is the number of convergence times and is expressed by the following equations ( 1 ) and ( 2 ), respectively.
Va = fa (ρ 0 · I / S) , Vb = fb (ρ 0 · I / S)
The two simultaneous equations are calculated to calculate the quenching depth d.
[0009]
[Expression 2]
Figure 0004042853
[0010]
According to the steel material quenching depth measuring apparatus having the above-described configuration, when three pairs of six probe probes are brought into contact with the surface of the steel material and current I is supplied between the pair of current probes from the excitation circuit, Different voltages Va and Vb are generated between the two pairs of detection probes. Since the relationship between these two different voltages Va and Vb and the current I is uniquely determined by the positional relationship between the probes and the depth d of the hardened layer, the quenching depth d and the resistance of the hardened layer are determined. The quenching depth d is calculated by calculating simultaneous equations relating to the two voltages Va and Vb with the resistance ratio α (= ρ / ρ 0 ) between the rate ρ and the base material resistivity ρ 0 as an unknown. be able to. Thereby, the depth d of the hardened layer produced | generated on the surface of steel materials can be measured accurately and rapidly.
The probe has a 6-probe configuration with 2 current probes and 4 detection probes, so that the measurement can be completed with a single operation , reducing measurement errors and measurement errors. It is Ru can.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a steel quenching depth measuring apparatus according to the present invention will be described in detail with reference to the drawings.
First, the principle of the quenching depth measurement method will be described. When the surface of the steel is quenched, the resistivity of the quenched layer is different from the resistivity of the base material (base layer), and the resistivity of the quenched layer is higher than the resistivity of the base material. Therefore, the depth of quenching is measured using a practical potential difference method, paying attention to the fact that the resistivity of the base material and the quenching layer are different.
[0012]
When the hardened layer 3 is generated on the surface of the base material 2 of a sufficiently large sample (steel material) 1 as shown in FIG. 1, the resistivity of the base material 2 is ρ 0 , and the resistivity of the hardened layer 3 is ρ Let the depth be d. Then, the measurement probe 5 is brought into contact with the surface of the sample 1. The six-probe probe 5 has three pairs (six) of electrode probes (hereinafter simply referred to as “probes”) A to F, and these probes are used as a pair of probes AD. A current I is supplied between A and D, and a pair of probes EF and a pair of probes BC are used as detection probes, respectively, and each potential difference between these detection probes EF and BC. V EF and V BC are measured. The tips of the probes A to F can be brought into contact with the surface of the hardened layer 3 at a constant pressure by the spring force of a spring (not shown). The probes A to F are arranged in a line symmetrically with respect to the center position of the probe, and the intervals between the probes A-E and FD are r 1 , the probes A-B, and C-D, respectively. The intervals are r 2 respectively. At this time, the potential difference V n is expressed by the following equation.
[0013]
[Equation 3]
Figure 0004042853
[0014]
Since the potential differences V EF and V BC can be measured, and the current I, the total probe spacing value S, and the probe spacings r 1 and r 2 are known, if the resistivity ρ 0 of the base material 2 is known in advance. The unknowns are only ρ and d, and the two unknowns ρ and d can be obtained simultaneously from the two expressions representing the potential differences V EF and V BC .
The method of obtaining the quenching depth d and resistivity ratio α (ρ / ρ 0 ) from the potential difference is obtained from the relationship between d and α satisfying the measured potential differences V EF and V BC . That is, the relationship between d and α satisfying V EF is d EF (α), the relationship between d and α satisfying V BC is d BC (α), and d and α satisfying this are obtained. Specifically, the intersection of two curves shown in FIG. 2 is obtained, and d and α are obtained.
[0015]
The measured value of the potential difference usually includes an error. Accordingly, in the process of obtaining the values d and α from the two potential differences based on the above equation (1) , the error propagates to d and α. This error propagation characteristic varies depending on how the total probe spacing S and detection probe spacings r 1 and r 2 are determined. Therefore, a simulation of error propagation is performed, and the evaluation accuracy is clarified based on the result, and the probe interval with the best accuracy is determined. That is, the probe with the best measurement accuracy is designed based on error propagation analysis.
[0016]
The quenching depth of the quenching layer 3 that is actually introduced is about 1 to 7 mm. The most frequently used steel materials are S45C and SCM435, and these steel materials account for about 80% of parts used for induction hardening such as automobile parts. In S45C, when ideally quenched, α (= ρ / ρ 0 ) is about 1.3. Therefore, in the case where α is set to α = 1.3 in the case of typical hardened steel and two probes having different probe intervals are applied to the hardened layer 3 of 1 <d <7 mm, the potential difference is applied. Simulation error | Δd | (mm) of quenching depth d that appears when measurement error | ΔV / V | of ± 0.5% and propagation of relative evaluation error | Δα | / α (%) of α I did. The results are shown in FIG. 3, FIG. 4, and FIG. Δd is a value obtained by subtracting the value of d when the potential difference is changed by ± 0.5% when d is a true value, and Δα is a true value when α is a true value. This is a value obtained by subtracting the value of α when the potential difference changes ± 0.5% from α.
[0017]
3 shows a case where r 1 = 1 mm, r 2 = 4 mm, and S = 15 mm are set in the six-probe probe 5 shown in FIG. 1. FIG. 4 shows r 1 = 5 mm, r 2 = 10 mm, and S = 25 mm. FIG. 5 shows the case where r 1 = 2 mm, r 2 = 6 mm, and S = 25 mm. 3 to 5, the thick line represents | Δd | (mm), and the thin line represents | Δα | / α (%). As a result, it became clear that the error propagation characteristics differ greatly depending on the total probe interval S and the detection probe intervals r 1 and r 2 . In particular, when the probe shown in FIG. 5 is used, the error of α is 5% or less (evaluation cannot be made when it exceeds 5%), and the evaluation can be made in the range of error ± 0.5 mm when the quenching depth d is 1 to 5 mm. It became clear that.
[0018]
In FIG. 5, the minimum value of d within the range of error ± 0.5% is about 1.7 mm, the maximum value is about 4.8 mm, and the effective range of d is about 1.7 to 4.8 mm. Therefore, as a result of simulating the minimum and maximum values of d within an error of ± 0.5% while changing r 2 while fixing r 1 to 2 mm, the effective range of d is the curves Ia and Ib in FIG. It became area [I] between. Similarly, when r 1 is fixed at 1 mm and r 2 is changed, the effective range of d is the region [II] between curves IIa and IIb, when r 2 is fixed at r 1 = 3 mm and r 2 is changed The effective range of d is the range [III] between the curves IIIa and IIIb.
[0019]
Specifically, when r 1 is 1 mm and r 2 is 10 mm, the effective measurement range of d is about 1.0 mm to 6.5 mm, and when r 2 is 6 mm, the effective measurement range of d is about 1.1 mm. ~ 5.4 mm. When r 1 is 3 mm and r 2 is 10 mm, the effective measurement range of d is about 2.2 mm to 5.5 mm, and when r 2 is 6 mm, the effective range of d is about 2.0 mm to 3.6 mm. It is.
[0020]
Similarly, in FIG. 3, the minimum value of d within the range of error ± 0.5% is about 1.2 mm, the maximum value is about 4.0 mm, and the effective range of d is about 1.2 mm to 4 mm. Therefore, as a result of simulating the minimum and maximum values of d within an error of ± 0.5% while changing r 2 while fixing r 1 at 1 mm, the effective range of d is the curves IVa and IVb in FIG. Region [IV] between. Similarly, when r 2 is changed with r 1 = 2 mm fixed, the effective range of d is the region [V] between the curves Va and Vb.
[0021]
Specifically, when r 1 is 1 mm and r 2 is 7 mm, the effective measurement range of d is about 1.0 mm to 4.7 mm, and when r 2 is 5 mm, the effective measurement range of d is about 1.0 mm. -4.3 mm. When r 1 is 2 mm and r 2 is 7 mm, the effective measurement range of d is about 1.5 mm to 4.3 mm, and when r 2 is 5 mm, the effective range of d is about 1.4 mm to 3.6 mm. It is.
[0022]
Therefore, it is possible to cope with various specifications by changing the total probe spacing S and the detection probe intervals r 1 and r 2 . These intervals S, r 1 and r 2 are referred to as probe constants.
Now, in the probe shown in FIG. 1, when the probe interval is s, equation (1) is expressed by the following equation.
[0023]
[Expression 4]
Figure 0004042853
[0024]
Here, F BC and F EF are dimensionless coefficients.
In the above formulas (2) and (3), the current I, the resistivity ρ 0 , and the probe interval s are known. Therefore, by measuring the potential differences V EF and V BC , 1 / F EF and 1 / F BC Is obtained. For example, when the probe intervals are equal intervals s, 1 / F EF and 1 / F BC are expressed by the following equations.
[0025]
[Equation 5]
Figure 0004042853
[0026]
In these formulas (4) and (5), when α is a parameter and d / s is changed, 1 / F EF and 1 / F BC are expressed as shown in FIGS.
Since 1 / F EF is obtained from the potential difference V EF measured as described above, the known current I, the resistivity ρ 0 , and the probe interval s, each characteristic at the obtained 1 / F EF value in FIG. Each α and each d / s at each intersection with the curve is read, and a characteristic curve VI is drawn with α as the horizontal axis and d / s as the vertical axis as shown in FIG. Similarly, in FIG. 9, each α and each d / s at the intersection of the 1 / F BC value and each characteristic curve are read, and the characteristic curve VII is drawn in FIG. Then, the value α obtained by the intersection of these two characteristic curves VI and VII is d / s. The value s is known, so d can be determined.
[0027]
Expressions (2) and (3) described above are relational expressions that hold when the sample has an infinitely wide flat surface and an infinite thickness (hereinafter referred to as “semi-infinite body”). Therefore, when the potential difference measured by applying a probe to an actual sample having a finite size is set to Vef and Vbc, respectively, the sample is multiplied by the shape correction coefficients 1 / Cef and 1 / Cbc to obtain the sample as shown in the following equation. The potential difference V EF and V BC measured in the case of a semi-infinite body is corrected.
[0028]
[Formula 6]
Figure 0004042853
[0029]
Then, these corrected values V EF and V BC are substituted as potential differences in the expressions (2) and (3) to evaluate the quenching depth. The shape correction coefficients 1 / Cef and 1 / Cbc are obtained in advance according to the shape of the steel material. Examples of the evaluation of the quenching depth are shown below.
[0030]
【Example】
(1) Sample: SCM435, φ48mm, length 300mm
(2) Hardening depth evaluated by etching d = 3.7 mm
(3) Measurement probe: Six probe probes shown in FIG. 1 were used. The total probe spacing S was set to 15 mm, r 1 = 1 mm, and r 2 = 4 mm.
(4) Confidence limit = sample mean ± k (unbiased variance / number of data) 1/2 , and the value of k is obtained from the t distribution table when the number of data is less than 30 and from the normal distribution table when the number of data is 30 or more. It was.
(5) The measurement results evaluated in the interval of 90% confidence limit are shown below.
(I) When the number of data = 30, d = 3.55 ± 0.31 mm
α = 1.23 ± 0.007
(Ii) When the number of data = 10, d = 3.46 ± 0.57 mm
α = 1.24 ± 0.016
(Iii) When the number of data is 10, d = 3.58 ± 0.62 mm
α = 1.22 ± 0.011
(Iv) When the number of data = 10, d = 3.60 ± 0.66 mm
α = 1.23 ± 0.011
From the above evaluation results, it is possible to evaluate within an error range of ± 0.5 mm when the error of α (ρ / ρ 0 ) is 5% or less and the quenching depth d is 1 <d <7 mm, which is sufficiently practical. It became clear that.
[0031]
In the above measurement method, the six-probe probe 5 has a configuration in which the detection probes E and F and B and C are arranged inside the current probes A and D. However, the present invention is not limited to this. Like the six-probe probe 6 shown, the detection probes B and C may be arranged inside the current probes A and D, and the detection probes E and F may be arranged outside, or the six-probe shown in FIG. Like the probe 7, the detection probes B and C may be arranged outside the current probes A and D, and the detection probes E and F may be arranged outside the detection probes B and C.
[0032]
In these six probe probes 5, 6, and 7, the six probes A to F are arranged in a line on a straight line, but the present invention is not limited to this. That is, the detection probes E and F and B and C need only be able to detect two different potential differences when a current is supplied to the material by the current probes A and D. Therefore, the current probes A and D and the detection probes The arrangement of E and F and B and C, the interval between the probes, and the like may be set to an optimum arrangement and interval according to the shape of the measurement object, the measurement location, and the like.
[0033]
Next, a steel material quenching depth measuring apparatus according to the present invention will be described.
FIG. 13: is a block diagram which shows embodiment of the hardening depth measuring apparatus of steel materials. In FIG. 13, the material 1 is, for example, S45C round steel bar, and a hardened layer 3 having a depth d is generated on the surface of the base material 2. Further, it is assumed that the resistivity of the base material 2 is ρ 0 and the resistivity of the hardened layer 3 is ρ.
[0034]
The probe 11 of the steel material quenching depth measuring apparatus 10 is a six-probe probe having a regular interval S as shown in FIG. 1, and each of the probes A to F is a spring force of a spring (not shown). Thus, the tip can be brought into contact with the surface of the quenching layer 3 at a constant pressure. Probes A and D are current probes, and probes E and F, B and C are detection probes for detecting potential differences Vef and Vbc, respectively. The current probes A and D are connected to the excitation circuit 12 to supply (energize) a current (direct current) I to the material 1, and the detection probes E and F detect a potential difference (hereinafter referred to as “voltage”) Vef. The detection probes B and C detect a potential difference (hereinafter referred to as “voltage”) Vbc. These detection probes E and F and B and C are connected to the switching circuit 13.
[0035]
The switching circuit 13 is controlled to be switched by a computer 18 as arithmetic means described later, and alternately takes in and outputs voltages Vef and Vbc. When the probe 11 has a six-probe configuration with two current probes and four detection probes, the measurement can be completed once, and measurement errors and errors can be reduced. Further, the switching circuit 13 switches the two voltages from the four detection probes E and F, and B and C by the differential input method, and alternately captures and outputs them, thereby enabling stabilization and miniaturization of the apparatus. .
[0036]
An operation key 14 as an input unit inputs various parameters to the computer 18. Parameters include shape correction factors (1 / Cef, 1 / Cbc) depending on the shape of the steel material (round bar, pipe, square bar, etc.), the total probe spacing S, and the probe spacing r 1 , r. 2 and the like, a current value I to be supplied, a resistivity ρ 0 of the base material 2, a memory number, and the like. The memory number is a number assigned to a combination of information when the shape, size, probe position, and current value of the material to be measured are specified by the user and the information is stored in the memory. It is. By inputting this number, the labor of inputting such information can be saved.
[0037]
The pre-stage amplifier circuit 15 and the post-stage amplifier circuit 16 amplify the voltages Vef and Vbc output alternately from the switching circuit 13 and output them as predetermined voltages. The negative feedback circuit 17 is connected to the preamplifier circuit 15 and the postamplifier circuit 16, and the contact voltages, that is, the detected voltages Vef and Vbc and the residual voltages of the amplifier circuits 15 and 16 are subjected to negative feedback before measurement. This is for taking 0 (zero) value.
[0038]
The computer 18 controls the excitation circuit 12 to switch the direction of the current I applied to the current probes A and D from the electrode probes A → D and D → A every predetermined time, for example, 10 times, each time. The voltage Vef between the detection probes E and F and the voltage Vbc between the detection probes B and C are measured, and the average values (hereinafter referred to as “average voltage”) Vefm and Vbcm are calculated. The computer 18 also detects the current probe after all the six probes have contacted the surface of the material 1 at the start of measurement in order to prevent arcs when the probes A to F are in contact with the material 1 and when they are separated. A current is passed between the needles A and D, and the current is interrupted after a predetermined number of measurements.
[0039]
Further, the computer 18 controls the respective amplification factors of the pre-stage amplifier circuit 15 and the post-stage amplifier circuit 16 to be optimal values and outputs a predetermined voltage from the post-stage amplifier 16. The power supply circuit 20 supplies a predetermined power to each of the circuits 12, 13, 15-18.
The measurement operation will be described below.
The computer 18 performs zero adjustment by short-circuiting between the detection probes E and F and between B and C at the time of measurement. Further, when the current I between the current probes A and D is 0 (when opened), the offset voltages of the front-stage amplifier circuit 15 and the rear-stage amplifier circuit 16 are canceled, and zero before measurement is taken.
[0040]
When the tips of the probes A to F of the probe 11 are pressed against and contact the surface of the material 1 and the current I is supplied from the current probes A to D, a voltage Vef is generated between the detection probes E and F. A voltage Vbc is generated between the probes B and C. The computer 18 switches the direction of the current I between the current probes A and D ten times as described above, and is alternately output from the switching circuit 13 and amplified by the front stage amplifier circuit 15 and the rear stage amplifier circuit 16. Input the voltages Vef and Vbc.
[0041]
The computer 18 calculates the voltage Vef between the detection probes E and F measured 10 times and the average voltage Vefm and Vbcm of the voltage Vbc between the detection probes B and C, and operates these average voltages Vefm and Vbcm with the operation keys. 14 and corrected by the shape correction coefficients 1 / Cef and 1 / Cbc stored in the memory, and the potential difference V EF (= Vefm / Cef), V BC (measured when the material 1 is a semi-infinite body. = Vbcm / Cbc), and the values d / s and α are calculated by calculating the potential differences V EF and V BC according to the above equations (2) to (5) and calculating the values d / s and α. The quenching depth d and the resistivity ρ of the quench hardened layer 3 are calculated. In this way, the voltage Vef between the detection probes E and F and the voltage Vbc between the detection probes B and C are measured a plurality of times (10 times) to calculate the average voltages Vefm and Vbcm, and these average voltages are calculated. By correcting V EF and V BC using Vefm and Vbcm and performing the calculations of equations (2) and (3), the calculation time can be greatly reduced. The computer 18 displays the calculated quenching depth d on the display circuit 19. Thereby, the quenching depth d of the quenching layer 3 can be measured quickly and accurately.
[0042]
【The invention's effect】
As described above, according to the present invention, two different voltages on the steel surface are detected by the six-probe probe, and the quenching depth d, the quenching layer resistivity ρ, and the base metal resistivity ρ 0 are obtained. By calculating the simultaneous equations of the two voltages represented by a predetermined arithmetic expression with the resistance ratio α (= ρ / ρ 0 ) as an unknown, the depth d of the hardened layer generated on the surface of the steel material is nondestructive. Therefore, it is possible to measure quickly and easily with high accuracy and use it as a display means, and the workability of the product inspection can be greatly improved, and the total inspection can be performed, thereby improving the reliability.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a measuring method of a steel material quenching depth measuring apparatus according to the present invention.
FIG. 2 is a diagram showing the relationship between the quenching depth that satisfies the potential difference measured by the measuring method of FIG. 1 and the resistivity ratio;
FIG. 3 is a diagram showing an example of error evaluation in the measurement method shown in FIG. 1;
4 is a diagram showing an example of error evaluation in the measurement method shown in FIG. 1. FIG.
FIG. 5 is a diagram showing an example of error evaluation in the measurement method shown in FIG. 1;
6 is a diagram showing an example of the relationship between the effective range of the quenching depth and the probe interval based on the error evaluation shown in FIG. 5;
7 is a diagram showing an example of the relationship between the effective range of the quenching depth and the probe interval based on the error evaluation shown in FIG. 3;
FIG. 8 is a diagram showing an example of a relationship between a resistivity ratio and a quenching depth based on one measured potential difference.
FIG. 9 is a diagram showing an example of the relationship between the resistivity ratio and the quenching depth based on another measured potential difference.
10 is a diagram showing an example of a relationship between a quenching depth and a resistivity ratio obtained from the characteristics shown in FIGS. 8 and 9. FIG.
11 is an explanatory view showing another configuration example of the six-probe probe shown in FIG. 1. FIG.
12 is an explanatory diagram showing another configuration example of the six-probe probe shown in FIG. 1. FIG.
FIG. 13 is a block diagram showing an embodiment of a steel material quenching depth measuring apparatus according to the present invention.
[Explanation of symbols]
1 Material (steel)
2 Base material 3 Hardened layer 5, 6, 7, 11 6 Probe probe 10 Steel material quenching depth measuring device 12 Excitation circuit 13 Switching circuit 14 Operation key (input means)
15, 16 Amplifier circuit 17 Negative feedback circuit 18 Computer (calculation means)
19 Display circuit (display means)
20 Power supply circuit A, D Current probe B, C, E, F Detection probe

Claims (3)

鋼材の表面に生成された焼入れ層の深さを非破壊測定する鋼材の焼入深さ測定装置であって、
前記鋼材の表面に接触して電流を供給する一対の電流探針、および前記鋼材表面の前記電流探針とは異なる位置に接触して前記鋼材の表面における異なる二つの電圧を検出する二対の検出探針有する6探針プローブと、
前記電流探針に電流を供給する励磁手段と、
この励磁手段により前記電流探針を介して前記鋼材に電流を流したとき前記二対の検出探針間に生じる電圧をそれぞれ検出する電圧検出手段と、
前記一対の電流探針間に流れる電流Iと前記二対の検出探針によりそれぞれ検出される電圧Va , Vbとの、前記各探針間の相互の位置関係により定まる関係から前記焼入れ層の焼入れ深さdを算出する演算手段と
を具備したことを特徴とする鋼材の焼入れ深さ測定装置。
A quenching depth measuring device for steel that nondestructively measures the depth of a hardened layer generated on the surface of the steel,
Two pairs of detecting two different voltages on the surface of the steel material in contact with a position different from the current probe of the contact with the surface of the pair of current probe supplying a current of steel, and the steel surface and 6-point probe having a detection probe,
Excitation means for supplying current to the current probe;
Voltage detecting means for detecting a voltage generated between the two pairs of detection probes when current is passed through the steel material via the current probe by the excitation means;
The quenching layer is quenched from the relationship between the current I flowing between the pair of current probes and the voltages Va and Vb detected by the two pairs of detection probes, determined by the mutual positional relationship between the probes. Computing means for calculating the depth d;
An apparatus for measuring the quenching depth of a steel material , comprising:
前記一対の電流探針および前記二対の検出探針が直線上に対称配列され、前記一対の電流探針の離反距離がS、前記二対の検出探針の前記一対の電流探針からの離反距離がそれぞれrThe pair of current probes and the two pairs of detection probes are arranged symmetrically on a straight line, the separation distance of the pair of current probes is S, and the two pairs of detection probes are separated from the pair of current probes. The separation distance is r 1 ,, r 2 であるとき、When
前記演算手段は、前記鋼材の焼入深さdおよび焼入れ層の抵抗率ρとその母材の抵抗率ρThe calculation means includes a quenching depth d of the steel material, a resistivity ρ of the quenched layer, and a resistivity ρ of the base material. 0 との抵抗比α(=ρ/ρResistance ratio α to (= ρ / ρ 0 )を未知数とし、fa) Is unknown and fa ,, fbがQ=(1−α)/(1+α),mを収束回数として下記の式にてそれぞれ示されるものとしてIt is assumed that fb is expressed by the following formulas where Q = (1−α) / (1 + α) and m is the number of convergence times.
Va=fa(ρVa = fa (ρ 0 ・I/S)・ I / S) ,, Vb=fb(ρ  Vb = fb (ρ 0 ・I/S)・ I / S)
なる二つの連立方程式を演算して焼入れ深さdを算出するものである請求項1に記載の鋼材の焼入れ深さ測定装置。The quenching depth measuring device for steel materials according to claim 1, wherein the quenching depth d is calculated by calculating two simultaneous equations.
Figure 0004042853
Figure 0004042853
請求項2に記載の鋼材の焼入れ深さ測定装置において、前記二対の検出探針によりそれぞれ検出される電圧VaThe steel material quenching depth measuring apparatus according to claim 2, wherein the voltages Va detected by the two pairs of detection probes are respectively. ,, Vbを、前記鋼材の形状に応じて補正した後、焼入れ深さdの算出に用いることを特徴とする鋼材の焼入れ深さ測定装置。An apparatus for measuring the quenching depth of steel, wherein Vb is used for calculating the quenching depth d after correcting according to the shape of the steel.
JP2003104441A 2003-04-08 2003-04-08 Hardening depth measuring device for steel Expired - Fee Related JP4042853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003104441A JP4042853B2 (en) 2003-04-08 2003-04-08 Hardening depth measuring device for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104441A JP4042853B2 (en) 2003-04-08 2003-04-08 Hardening depth measuring device for steel

Publications (3)

Publication Number Publication Date
JP2004309355A JP2004309355A (en) 2004-11-04
JP2004309355A5 JP2004309355A5 (en) 2006-06-01
JP4042853B2 true JP4042853B2 (en) 2008-02-06

Family

ID=33467269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104441A Expired - Fee Related JP4042853B2 (en) 2003-04-08 2003-04-08 Hardening depth measuring device for steel

Country Status (1)

Country Link
JP (1) JP4042853B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4831298B2 (en) * 2005-08-31 2011-12-07 電子磁気工業株式会社 Hardening depth measuring device
JP4665704B2 (en) * 2005-10-17 2011-04-06 セイコーインスツル株式会社 Measuring probe, surface characteristic measuring apparatus, and surface characteristic measuring method
JP4822545B2 (en) * 2007-03-27 2011-11-24 電子磁気工業株式会社 Nugget diameter measuring method and nugget diameter measuring apparatus
JP5138305B2 (en) * 2007-08-06 2013-02-06 公益財団法人鉄道総合技術研究所 Method for measuring film thickness of hardened rail rail surface
JP5149562B2 (en) * 2007-08-23 2013-02-20 トヨタ自動車株式会社 Nondestructive measuring method and nondestructive measuring device
JP2010243173A (en) * 2009-04-01 2010-10-28 Ntn Corp Device and method for inspecting hardening quality
JP2010281657A (en) * 2009-06-04 2010-12-16 Ntn Corp Hardening quality inspection device and hardening quality inspection method
JP5665098B2 (en) * 2012-09-20 2015-02-04 独立行政法人産業技術総合研究所 Quenching depth measuring device, quenching depth measuring method, surface layer depth measuring device, surface layer depth measuring method
JP2014126376A (en) * 2012-12-25 2014-07-07 Ntn Corp Hardening quality inspection device and hardening quality inspection method
JP5907566B2 (en) * 2013-09-12 2016-04-26 国立研究開発法人産業技術総合研究所 Surface depth measuring device, surface depth measuring method

Also Published As

Publication number Publication date
JP2004309355A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
Sposito et al. Potential drop mapping for the monitoring of corrosion or erosion
JP5021620B2 (en) Method and apparatus for measuring the state of a steel structure
JP4042853B2 (en) Hardening depth measuring device for steel
Dziczkowski Elimination of coil liftoff from eddy current measurements of conductivity
WO2007088913A1 (en) Damage detecting device or and damage detection method
EP3403083B1 (en) Fast hall effect measurement system
CN104614283B (en) A kind of analysis method of corresponding object phase change in metal material heat treatment process
Ye et al. A decay time approach for linear measurement of electrical conductivity
Hamel et al. A LabVIEW-based real-time acquisition system for crack detection in conductive materials
Sposito Advances in potential drop techniques for non-destructive testing
CN104165795A (en) Method for determining residual flexural capacity of historic building beams
Wan et al. Investigation of drag effect using the field signature method
TWI597475B (en) Method, device, and computer program product for film measurement
JP3728286B2 (en) Nondestructive high temperature creep damage evaluation method
CN110133053B (en) Metal pipeline corrosion monitoring method and system
CN105784936B (en) The quick determination method and system of a kind of composite dash-board injury
JP4831298B2 (en) Hardening depth measuring device
JPH0356848A (en) Method and device for surface cracking measurement
Tomlinson et al. Thermoelastic investigations for fatigue life assessment
CN108680607A (en) Pipeline crack corrosion monitoring process based on multi-communication potential drop
JP4007484B2 (en) Resistivity measuring method and resistivity meter
Betta et al. Calibration and adjustment of an eddy current based multi-sensor probe for non-destructive testing
JPH0989845A (en) Method and equipment for nondestructive inspection of hardening depth
Martens et al. Fast precise eddy current measurement of metals
CN114543711B (en) Sensing data processing method of gas distance measurement system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071017

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20071107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees