JP4529976B2 - Method for producing silicon single crystal - Google Patents
Method for producing silicon single crystal Download PDFInfo
- Publication number
- JP4529976B2 JP4529976B2 JP2006528465A JP2006528465A JP4529976B2 JP 4529976 B2 JP4529976 B2 JP 4529976B2 JP 2006528465 A JP2006528465 A JP 2006528465A JP 2006528465 A JP2006528465 A JP 2006528465A JP 4529976 B2 JP4529976 B2 JP 4529976B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- resistivity
- gas
- silicon single
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013078 crystal Substances 0.000 title claims description 162
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims description 120
- 229910052710 silicon Inorganic materials 0.000 title claims description 118
- 239000010703 silicon Substances 0.000 title claims description 118
- 238000004519 manufacturing process Methods 0.000 title claims description 49
- 239000007789 gas Substances 0.000 claims description 126
- 239000002019 doping agent Substances 0.000 claims description 60
- 239000002994 raw material Substances 0.000 claims description 59
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 48
- 238000002844 melting Methods 0.000 claims description 47
- 230000008018 melting Effects 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 42
- 239000011261 inert gas Substances 0.000 claims description 11
- 230000004927 fusion Effects 0.000 claims description 6
- 238000005507 spraying Methods 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 29
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 235000012431 wafers Nutrition 0.000 description 8
- 229910001873 dinitrogen Inorganic materials 0.000 description 7
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000007664 blowing Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 2
- 239000005052 trichlorosilane Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000013316 zoning Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B13/00—Single-crystal growth by zone-melting; Refining by zone-melting
- C30B13/08—Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone
- C30B13/10—Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone with addition of doping materials
- C30B13/12—Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone with addition of doping materials in the gaseous or vapour state
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
本発明は、FZ法によるシリコン単結晶の製造方法及び製造装置に関するものであり、特に高抵抗率のシリコン単結晶を効率よく製造する方法及び製造装置に関する。
The present invention relates to a method and an apparatus for manufacturing a silicon single crystal by the FZ method, and particularly to a method and an apparatus for efficiently manufacturing a silicon single crystal having a high resistivity.
従来、高耐圧パワーデバイスやサイリスタ等のパワーデバイス用に、フローティングゾーン(Floating Zone、FZ)法により製造されたシリコン単結晶(以下、FZ単結晶と記述することがある)を用いた高抵抗率のシリコンウェーハが使用されてきた。さらに、特に近年では、移動体通信用の半導体デバイスや最先端のC−MOSデバイスでは、寄生容量の低減が必要とされている。信号の伝送ロスやショットキーバリヤダイオードにおける寄生容量は、高抵抗率の基板を用いることによって効果的に低減できることが報告されている。従って、このようなデバイスの用途に用いられる基板として、抵抗率が3000Ω・cm以上の高抵抗率FZシリコン単結晶ウェーハの要求が強くなってきている。 Conventionally, high resistivity using a silicon single crystal (hereinafter sometimes referred to as FZ single crystal) manufactured by a floating zone (FZ) method for a power device such as a high voltage power device or a thyristor. Silicon wafers have been used. Further, particularly in recent years, semiconductor devices for mobile communication and state-of-the-art C-MOS devices are required to reduce parasitic capacitance. It has been reported that signal transmission loss and parasitic capacitance in a Schottky barrier diode can be effectively reduced by using a high resistivity substrate. Therefore, there is an increasing demand for a high resistivity FZ silicon single crystal wafer having a resistivity of 3000 Ω · cm or more as a substrate used for such device applications.
FZ法によってシリコン単結晶棒を製造する場合、多結晶シリコンの原料棒の先端を、アルゴン等の不活性ガス雰囲気中でヒータコイル等を用いた高周波誘導加熱により溶解し、種結晶と接触させてなじませた後、部分的な溶融帯域(溶融部)を、通常、原料棒の下部から上部に向かって移動させることにより、種結晶と同じ結晶軸をもつ単結晶を、溶融部下方に成長させる。このとき、ドーパントのドーピング方法としては、N型単結晶にする場合はホスフィン(PH3)、P型単結晶にする場合はジボラン(B2H6)をそれぞれ含むアルゴンガスを、ノズルを用いて溶融部に吹きつけるガスドープ法があり、これによりシリコン単結晶の抵抗率を制御することができる(例えば、WOLFGANG KELLER、 ALFRED MUHLBAUER 著、「Floating−zone silicon」、MARCEL DEKKER INC.発行、pp.82−92 参照)。When a silicon single crystal rod is manufactured by the FZ method, the tip of a polycrystalline silicon raw material rod is melted by high-frequency induction heating using a heater coil or the like in an inert gas atmosphere such as argon and brought into contact with a seed crystal. After acclimation, the partial melting zone (melting part) is usually moved from the lower part of the raw material bar to the upper part to grow a single crystal having the same crystal axis as the seed crystal below the melting part. . At this time, as a doping method of the dopant, argon gas containing phosphine (PH 3 ) in the case of N-type single crystal and diborane (B 2 H 6 ) in the case of P-type single crystal is used by using a nozzle. There is a gas doping method in which the molten portion is blown, and the resistivity of the silicon single crystal can be controlled by this (for example, WOLFGANG KELLER, ALFRED MUHLBAUER, “Floating-zone silicon”, published by MARCEL DEKER INC., Pp. 82). -92).
ところで、FZ法において原料となる多結晶シリコンの製造方法としてシーメンス法が知られている。この方法は、トリクロロシランと水素の混合ガス等からなる原料ガスを赤熱した多結晶シリコン芯棒に接触させて、原料ガスの熱分解等により生じたシリコンをその芯棒の表面に析出させ、次第に径の太い多結晶のシリコン棒に成長させる製造方法である。この場合、密閉したベルジャー(反応炉)に多数のシリコン芯棒を立設した装置が用いられている。そして、通常ベルジャー単位の1回の反応で製造される多結晶シリコン棒を1ロットとしている。 Incidentally, the Siemens method is known as a method for producing polycrystalline silicon which is a raw material in the FZ method. In this method, a raw material gas composed of a mixed gas of trichlorosilane and hydrogen is brought into contact with a red-hot polycrystalline silicon core rod, and silicon generated by thermal decomposition of the source gas is deposited on the surface of the core rod, and gradually. This is a manufacturing method in which a polycrystalline silicon rod having a large diameter is grown. In this case, an apparatus is used in which a number of silicon core rods are erected on a sealed bell jar (reactor). A single lot of polycrystalline silicon rods produced by a single reaction in a normal bell jar unit is used.
従来、抵抗率が3000Ω・cm以上の高抵抗率FZシリコン単結晶を使用する場合には、単結晶を成長させる際に、上記のように製造した多結晶シリコン棒を原料棒として、ガスドープ等の不純物添加をせずにノンドープでFZ法による単結晶製造を行い、こうして製造したシリコン単結晶の導電型及び抵抗率を測定、評価し、その評価結果から目的とする導電型及び抵抗率に適合するシリコン単結晶を選別して使用していた。
Conventionally, when a high resistivity FZ silicon single crystal having a resistivity of 3000 Ω · cm or more is used, when the single crystal is grown, the polycrystalline silicon rod produced as described above is used as a raw material rod, such as gas doping. Non-doped single crystal production by FZ method is performed without adding impurities, and the conductivity type and resistivity of the silicon single crystal thus produced are measured and evaluated, and the target conductivity type and resistivity are adapted from the evaluation results. A silicon single crystal was selected and used.
本発明の目的は、抵抗率が所望の値、特に3000Ω・cm以上のシリコン単結晶を効率よく、安定して製造する方法及び装置を提供することにある。 An object of the present invention is to provide a method and an apparatus for efficiently and stably producing a silicon single crystal having a desired resistivity, particularly 3000 Ω · cm or more.
上記目的達成のため、本発明は、FZ法によるシリコン単結晶の製造方法であって、原料棒とする多結晶シリコンの導電型及び抵抗率を予め測定した後、該測定値に基づいて製造される単結晶の抵抗率が所望の値となるようにドーパントガスの導電型、濃度及びガス流量を決定し、該決定されたドーパントガスをガスドープしつつFZ法により前記所望の値の抵抗率のシリコン単結晶を製造することを特徴とするシリコン単結晶の製造方法を提供する。 In order to achieve the above object, the present invention is a method for producing a silicon single crystal by the FZ method, which is produced based on the measured value after measuring the conductivity type and resistivity of polycrystalline silicon used as a raw material rod in advance. The conductivity type, concentration, and gas flow rate of the dopant gas are determined so that the resistivity of the single crystal is a desired value, and the resistivity silicon having the desired value is obtained by FZ method while gas doping the determined dopant gas. Provided is a method for producing a silicon single crystal, characterized by producing a single crystal.
このように、原料棒とする多結晶シリコンの導電型及び抵抗率を予め測定した後、該測定値に基づいて製造される単結晶の抵抗率が所望の値となるようにドーパントガスの導電型、濃度及びガス流量を決定し、該決定されたドーパントガスをガスドープすれば、製造されるシリコン単結晶の抵抗率が所望の値の高抵抗率のものであっても、目標とする導電型及び抵抗率に確実に制御することが可能になるため、効率的で安定した高抵抗率シリコン単結晶の製造が可能になる。 Thus, after measuring the conductivity type and resistivity of the polycrystalline silicon used as the raw material rod in advance, the conductivity type of the dopant gas so that the resistivity of the single crystal manufactured based on the measured value becomes a desired value. If the concentration and gas flow rate are determined and the determined dopant gas is gas-doped, even if the resistivity of the silicon single crystal to be manufactured has a desired high resistivity, the target conductivity type and Since the resistivity can be reliably controlled, an efficient and stable high resistivity silicon single crystal can be manufactured.
この場合、前記所望の値を3000Ω・cm以上とすることができる。
このように、製造されるシリコン単結晶の抵抗率が特に3000Ω・cm以上の高抵抗率のものであっても、目標とする導電型及び抵抗率に確実に制御することが可能になるため、効率的で安定した高抵抗率シリコン単結晶の製造が可能になる。In this case, the desired value can be 3000 Ω · cm or more.
In this way, even if the resistivity of the silicon single crystal to be manufactured is a high resistivity of 3000 Ω · cm or more in particular, it becomes possible to reliably control the target conductivity type and resistivity. An efficient and stable high resistivity silicon single crystal can be produced.
この場合、前記予め行なう測定は、前記多結晶シリコンと同一ロットの多結晶シリコンを原料棒としてFZ法によりシリコン単結晶を製造し、該シリコン単結晶を用いて導電型及び抵抗率の測定を行なうことが好ましい。
このように、前記予め行なう測定は、前記多結晶シリコンと同一ロットの多結晶シリコンを原料棒としてFZ法によりシリコン単結晶を製造し、該シリコン単結晶を用いて導電型及び抵抗率の測定を行なえば、より正確に目標とする導電型及び抵抗率に制御することが可能となる。In this case, the measurement performed in advance is to manufacture a silicon single crystal by the FZ method using polycrystalline silicon of the same lot as the polycrystalline silicon as a raw material rod, and measure the conductivity type and resistivity using the silicon single crystal. It is preferable.
As described above, in the measurement performed in advance, a silicon single crystal is manufactured by the FZ method using polycrystalline silicon of the same lot as the polycrystalline silicon as a raw material rod, and the conductivity type and resistivity are measured using the silicon single crystal. If it carries out, it will become possible to control to the target conductivity type and resistivity more accurately.
この場合、前記予め測定した多結晶シリコンの抵抗率が前記製造するシリコン単結晶の目標抵抗率より高い場合は、前記多結晶シリコンと同一の導電型のドーパントをガスドープすることにより、また目標抵抗率より低い場合は、前記多結晶シリコンとは反対の導電型のドーパントをガスドープすることにより、抵抗率が前記所望の値となるシリコン単結晶を製造することが好ましい。
このように、前記予め測定した多結晶シリコンの抵抗率が前記製造するシリコン単結晶の目標抵抗率より高い場合は、それに応じて前記多結晶シリコンと同一の導電型のドーパントをガスドープし、極微量のドープ量により抵抗率を確実に低下させることができ、また目標抵抗率より低い場合は、それに応じて前記多結晶シリコンとは反対の導電型のドーパントをガスドープし、極微量のコンペンセート量で抵抗率を確実に高めることができ、その結果目標とする導電型であって且つ抵抗率が所望の値、特に3000Ω・cm以上のシリコン単結晶を容易に且つ効率的に製造することが可能となる。In this case, when the resistivity of the polycrystalline silicon measured in advance is higher than the target resistivity of the silicon single crystal to be manufactured, the target resistivity is obtained by gas doping with a dopant having the same conductivity type as that of the polycrystalline silicon. In the case where it is lower, it is preferable to manufacture a silicon single crystal having a desired resistivity by gas doping with a dopant having a conductivity type opposite to that of the polycrystalline silicon.
Thus, when the resistivity of the polycrystalline silicon measured in advance is higher than the target resistivity of the silicon single crystal to be manufactured, the dopant of the same conductivity type as that of the polycrystalline silicon is gas-doped accordingly, The resistivity can be reliably reduced by the amount of doping of the material, and if it is lower than the target resistivity, the dopant of the conductivity type opposite to that of the polycrystalline silicon is gas-doped accordingly, and a very small amount of compensate is used. It is possible to reliably increase the resistivity, and as a result, it is possible to easily and efficiently manufacture a silicon single crystal having a target conductivity type and a desired resistivity, particularly 3000 Ω · cm or more. Become.
また、前記ドーパントをPH3またはB2H6とし、該ドーパントを含むガスをFZの溶融部に近接したノズルより吹き付けてガスドープを行うことが好ましい。
このように、前記ドーパントをPH3またはB2H6とし、該ドーパントを含むガスをFZの溶融部に近接したノズルより吹き付けてガスドープを行えば、より優れた抵抗率制御を行なうことができるので、抵抗率不良のおそれがなくなり、極めて安定したシリコン単結晶の製造が可能となる。The dopant is preferably PH 3 or B 2 H 6, and gas doping is preferably performed by spraying a gas containing the dopant from a nozzle close to the FZ melting portion.
Thus, if the dopant is PH 3 or B 2 H 6 and the gas containing the dopant is blown from a nozzle adjacent to the FZ melted portion and gas doping is performed, more excellent resistivity control can be performed. This eliminates the possibility of defective resistivity, and makes it possible to manufacture an extremely stable silicon single crystal.
また、不活性ガスを前記溶融部よりも上方から導入し、下方から排気しながらシリコン単結晶を製造することが好ましい。
このように、アルゴン等の不活性ガスを前記溶融部よりも上方から導入し、下方から排気しながらシリコン単結晶を製造すれば、ドーパントガスを溶融部に吹き付けてガスドープを行なう際に溶融部上方の原料棒表面にドーパントが付着することを防止できるため、所望の値、特に3000Ω・cm以上の高抵抗率であっても結晶棒の軸方向に均一な抵抗率分布のシリコン単結晶を安定して製造することができる。Moreover, it is preferable to produce a silicon single crystal while introducing an inert gas from above the melting portion and exhausting from below.
In this way, if an inert gas such as argon is introduced from above the melting part and a silicon single crystal is produced while exhausting from below, the dopant gas is blown onto the melting part and gas doping is performed above the melting part. Since it is possible to prevent the dopant from adhering to the surface of the raw material rod, it is possible to stabilize a silicon single crystal having a uniform resistivity distribution in the axial direction of the crystal rod even at a desired value, particularly a high resistivity of 3000 Ω · cm or more Can be manufactured.
また、前記溶融部の上方にガス整流筒を設置してシリコン単結晶を製造することが好ましい。
このように、前記溶融部の上方にガス整流筒を設置してシリコン単結晶を製造すれば、原料棒表面へのドーパントの付着の防止をより確実に行なうことができる。Moreover, it is preferable to manufacture a silicon single crystal by installing a gas rectifying cylinder above the melting part.
Thus, if a gas rectification | straightening cylinder is installed above the said fusion | melting part and a silicon single crystal is manufactured, the adhesion of the dopant to the raw material rod surface can be prevented more reliably.
また、本発明は、FZ法によるシリコン単結晶の製造方法であって、不活性ガスをFZの溶融部よりも上方から導入し、下方から排気しながら、ドーパントを含むガスを前記溶融部に近接したノズルより吹き付けてガスドープを行うことにより、シリコン単結晶を製造することを特徴とするシリコン単結晶の製造方法を提供する。 The present invention is also a method for producing a silicon single crystal by the FZ method, wherein an inert gas is introduced from above the melting portion of FZ and exhausted from below, and a gas containing a dopant is brought close to the melting portion. A silicon single crystal manufacturing method is provided, wherein a silicon single crystal is manufactured by performing gas doping by spraying from a nozzle.
このように、不活性ガスをFZの溶融部よりも上方から導入し、下方から排気しながら、ドーパントを含むガスを前記溶融部に近接したノズルより吹き付けてガスドープを行なえば、ドーパントガスを溶融部に吹き付けてガスドープを行なう際に溶融部上方の原料棒表面にドーパントが付着することを防止できるため、抵抗率によらず、結晶棒の軸方向の抵抗率分布が均一なシリコン単結晶を安定して効率よく製造することができる。 As described above, if the inert gas is introduced from above the melting part of the FZ and exhausted from below, the gas containing the dopant is blown from the nozzle adjacent to the melting part to perform gas doping, the dopant gas is melted into the melting part. It is possible to prevent dopants from adhering to the surface of the raw material rod above the melted portion when gas doping is performed on the silicon, so that a single crystal with a uniform resistivity distribution in the axial direction of the crystal rod can be stabilized regardless of the resistivity. And can be manufactured efficiently.
この場合、前記溶融部の上方にガス整流筒を設置してシリコン単結晶を製造することが好ましい。
このように、前記溶融部の上方にガス整流筒を設置してシリコン単結晶を製造すれば、原料棒表面へのドーパントの付着防止をより確実に行なうことができる。In this case, it is preferable to manufacture a silicon single crystal by installing a gas rectifying cylinder above the melting portion.
Thus, if a gas rectification | straightening cylinder is installed above the said fusion | melting part and a silicon single crystal is manufactured, the adhesion prevention of the dopant to the raw material rod surface can be performed more reliably.
また、本発明は、FZ法によるシリコン単結晶の製造装置であって、少なくとも、FZの溶融部に近接し、ドーパントを含むガスを該溶融部に吹き付けてガスドープを行うためのノズルと、不活性ガスを前記溶融部よりも上方から導入し、下方から排気するための給排気機構とを備えるものであることを特徴とするシリコン単結晶の製造装置を提供する。 The present invention also relates to an apparatus for producing a silicon single crystal by the FZ method, at least in the vicinity of a molten portion of FZ, and a nozzle for performing gas doping by blowing a gas containing a dopant to the molten portion; An apparatus for producing a silicon single crystal is provided, comprising a gas supply / exhaust mechanism for introducing gas from above the melting portion and exhausting gas from below.
このように、少なくとも、FZの溶融部に近接し、ドーパントを含むガスを該溶融部に吹き付けてガスドープを行うためのノズルと、不活性ガスを前記溶融部よりも上方から導入し、下方から排気するための給排気機構とを備えるFZ単結晶製造装置であれば、ドーパントガスを溶融部に吹き付けてガスドープを行なう際に溶融部上方の原料棒表面にドーパントが付着することを防止できるものとなるため、抵抗率によらず、結晶棒の軸方向の抵抗率分布が均一なシリコン単結晶を安定して効率よく製造できる製造装置となる。 As described above, at least in the vicinity of the FZ melting portion, a nozzle for performing gas doping by spraying a gas containing a dopant to the melting portion, an inert gas is introduced from above the melting portion, and exhausted from below. If it is an FZ single-crystal manufacturing apparatus provided with the supply / exhaust mechanism for performing this, when dopant gas is sprayed on a fusion | melting part and gas doping is performed, it will be able to prevent that a dopant adheres to the raw material stick | rod surface above a fusion | melting part. Therefore, a silicon single crystal having a uniform resistivity distribution in the axial direction of the crystal rod can be manufactured stably and efficiently regardless of the resistivity.
この場合、前記溶融部の上方に設置されるガス整流筒を備えるものであることが好ましい。
このように、前記溶融部の上方に設置されるガス整流筒を備えるものであれば、原料棒表面へのドーパントの付着防止をより確実に行なうことができる製造装置となる。In this case, it is preferable that a gas rectifying cylinder installed above the melting part is provided.
Thus, if it has a gas baffle installed above the above-mentioned fusion part, it will become a manufacturing device which can perform adhesion prevention of a dopant to a raw material stick surface more certainly.
本発明に従い、原料棒とする多結晶シリコンの導電型及び抵抗率を予め測定した後、該測定値に基づいて製造される単結晶の抵抗率が所望の値となるようにドーパントガスの導電型、濃度及びガス流量を決定し、該決定されたドーパントガスをガスドープすれば、効率的で安定して所望の高抵抗率シリコン単結晶の製造が可能になる。
また、本発明に従い、不活性ガスをFZの溶融部よりも上方から導入し、下方から排気しながら、ドーパントを含むガスを前記溶融部に近接したノズルより吹き付けてガスドープを行なえば、抵抗率によらず結晶棒の軸方向に均一な抵抗率分布のシリコン単結晶を安定して効率よく製造することができる。
また、本発明に従う製造装置であれば、抵抗率によらず結晶棒の軸方向に均一な抵抗率分布のシリコン単結晶を安定して効率よく製造できる製造装置となる。
In accordance with the present invention, after measuring the conductivity type and resistivity of polycrystalline silicon as a raw material rod in advance, the conductivity type of the dopant gas so that the resistivity of the single crystal produced based on the measured value becomes a desired value. If the concentration and gas flow rate are determined and the determined dopant gas is doped, the desired high resistivity silicon single crystal can be produced efficiently and stably.
In addition, according to the present invention, if an inert gas is introduced from above the melting part of FZ and exhausted from below, a gas containing a dopant is blown from a nozzle adjacent to the melting part and gas doping is performed. However, a silicon single crystal having a uniform resistivity distribution in the axial direction of the crystal rod can be stably and efficiently manufactured.
Moreover, the manufacturing apparatus according to the present invention is a manufacturing apparatus capable of stably and efficiently manufacturing a silicon single crystal having a uniform resistivity distribution in the axial direction of the crystal rod regardless of the resistivity.
以下、本発明について詳述する。
前述のように、特に抵抗率が3000Ω・cm以上の高抵抗率FZシリコン単結晶を製造する場合には、多結晶シリコンの原料棒からノンドープでFZ法によりシリコン単結晶を製造し、こうして製造したシリコン単結晶の導電型及び抵抗率を測定、評価し、その評価結果から目的とする導電型及び抵抗率に適合するシリコン単結晶を選別して使用していた。Hereinafter, the present invention will be described in detail.
As described above, particularly when a high resistivity FZ silicon single crystal having a resistivity of 3000 Ω · cm or more is manufactured, a silicon single crystal is manufactured by a non-doped FZ method from a polycrystalline silicon raw material rod, and thus manufactured. The conductivity type and resistivity of the silicon single crystal were measured and evaluated, and a silicon single crystal suitable for the intended conductivity type and resistivity was selected from the evaluation results and used.
しかし、多結晶シリコンは製造の際にトリクロロシランや水素中及びベルジャーから不純物(ドーパント)が導入されてその導電型及び抵抗率が決まるが、このドーパントの種類及び汚染量は不安定であり多結晶シリコンを反応させるロット間で異なる。従ってこの多結晶シリコンを原料棒としてFZ単結晶を製造した後、FZ単結晶棒の導電型及び抵抗率を測定すると、ロット間で導電型及び抵抗率が大きく異なっていた。図6は、異なる複数のロットの多結晶シリコンを原料棒として、ノンドープで直径150mmのN型FZ単結晶を301本製造したときの抵抗率のヒストグラムの一例を示す。このように、異なる複数のロットの多結晶シリコンから製造したFZ単結晶は抵抗率のバラツキが極めて大きい。例えば5000〜10000Ω・cmの抵抗率のデバイスを作製するとすると、面内抵抗率分布を考慮するとシリコンウェーハの平均抵抗率(シリコン単結晶の抵抗率)は6500〜7700Ω・cmとする必要があり、これに適合するシリコン単結晶は全体のわずか13%しかない。 However, polycrystalline silicon is doped with impurities (dopants) from trichlorosilane, hydrogen, and bell jar during production to determine its conductivity type and resistivity. However, the type and contamination of this dopant are unstable and polycrystalline. Varies between lots that react with silicon. Therefore, after manufacturing an FZ single crystal using this polycrystalline silicon as a raw material rod, the conductivity type and resistivity of the FZ single crystal rod were measured. FIG. 6 shows an example of a resistivity histogram when 301 non-doped N-type FZ single crystals having a diameter of 150 mm are manufactured using polycrystalline silicon of different lots as a raw material rod. Thus, FZ single crystals manufactured from different lots of polycrystalline silicon have extremely large variations in resistivity. For example, when a device with a resistivity of 5000 to 10000 Ω · cm is manufactured, the average resistivity of the silicon wafer (the resistivity of the silicon single crystal) needs to be 6500 to 7700 Ω · cm in consideration of the in-plane resistivity distribution. Only 13% of the total silicon single crystal meets this requirement.
そのため、予め何本ものシリコン単結晶を製造しておいて、その評価結果から目的とする導電型及び抵抗率に適合する単結晶を選別するといった、製造時の不安定な要因で決まる原料の抵抗率に依存した、極めて効率の低い、高コストの製造方法となっていた。 Therefore, the resistance of the raw material determined by unstable factors at the time of manufacturing, such as manufacturing a number of silicon single crystals in advance and selecting the single crystal that matches the target conductivity type and resistivity from the evaluation results It has become a very low cost, high cost manufacturing method that is rate dependent.
また、ガスドープにより抵抗率を制御してFZ法によりシリコン単結晶を製造する場合には、結晶棒の軸方向に抵抗率分布が不均一となり、目標の抵抗率のシリコン単結晶を安定して製造できない場合があった。本発明者らは、この原因は、溶融部に吹き付けるドーパントガスの一部が溶融部上方の原料棒表面に付着し、その付着量は結晶成長工程が進行するに従って増加するため、溶融部に供給されるドーパントの量が徐々に増加するためであると考えた。 In addition, when the silicon single crystal is manufactured by the FZ method while controlling the resistivity by gas doping, the resistivity distribution is non-uniform in the axial direction of the crystal rod, and the silicon single crystal having the target resistivity is stably manufactured. There were cases where it was not possible. The reason for this is that a part of the dopant gas sprayed to the melted part adheres to the surface of the raw material rod above the melted part, and the amount of adhesion increases as the crystal growth process proceeds. This was thought to be due to the gradual increase in the amount of dopant produced.
そして、本発明者らは、特に抵抗率が3000Ω・cm以上の高抵抗率FZシリコン単結晶への要求が近年強くなっていることに鑑み、上記の問題の解決のため、原料棒とする多結晶シリコンの導電型及び抵抗率を予め測定した後、該測定値に基づいて製造される単結晶の抵抗率が所望の値、特に3000Ω・cm以上となるようにドーパントガスの導電型、濃度及びガス流量を決定し、該決定されたドーパントガスをガスドープすれば、目標とする導電型及び抵抗率に確実に制御することが可能になることに想到した。また不活性ガスをFZの溶融部よりも上方から導入し、下方から排気しながら、ドーパントを含むガスを前記溶融部に近接したノズルより吹き付けてガスドープを行なえば、ガスドープを行なう際に溶融部上方の原料棒表面にドーパントが付着することを防止できることに想到し、本発明を完成させた。 In view of the recent increase in demand for a high resistivity FZ silicon single crystal having a resistivity of 3000 Ω · cm or more in recent years, the present inventors have developed a material rod for solving the above problems. After preliminarily measuring the conductivity type and resistivity of the crystalline silicon, the conductivity type, concentration, and concentration of the dopant gas are adjusted so that the resistivity of the single crystal produced based on the measured value is a desired value, particularly 3000 Ω · cm or more. The inventors have conceived that if the gas flow rate is determined and the determined dopant gas is doped, the target conductivity type and resistivity can be reliably controlled. In addition, if an inert gas is introduced from above the melting portion of FZ and exhausted from below, and a gas containing a dopant is blown from a nozzle adjacent to the melting portion and gas doping is performed, The inventors have conceived that the dopant can be prevented from adhering to the surface of the raw material rod and completed the present invention.
以下では、本発明の実施の形態について図面を用いて説明するが、本発明はこれに限定されるものではない。
図1は、本発明に係るシリコン単結晶の製造に用いるFZ単結晶製造装置の一例を示す概略図である。
本発明のFZ単結晶製造装置1は、少なくとも、ガスドープを行うためのドープガスノズル22と、チャンバー26内にアルゴン(Ar)ガス等の不活性ガスを上方から導入し、下方から排気するためのガス供給機構28a、排気機構28bとを備える。図1では、供給機構28aはノズル22にドープガスも供給するが、別々に供給するものであってもよい。また、ガス整流筒24を備えることが好ましい。Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
FIG. 1 is a schematic view showing an example of an FZ single crystal manufacturing apparatus used for manufacturing a silicon single crystal according to the present invention.
The FZ single
次に、本発明に係るシリコン単結晶の製造方法について述べる。
まず、本発明ではFZ法によりシリコン単結晶を製造するが、その際に、原料棒とする多結晶シリコンの導電型及び抵抗率を予め測定した後、該測定値に基づいて製造される単結晶の抵抗率が所望の値となるようにドーパントガスの導電型、濃度及びガス流量を決定し、該決定されたドーパントガスをガスドープしつつFZ法によりシリコン単結晶を製造する。この時、好ましくは同一ロットの多結晶シリコンを原料棒としてFZ法によりシリコン単結晶を製造し、該シリコン単結晶を用いて導電型及び抵抗率の測定を行なう。Next, a method for producing a silicon single crystal according to the present invention will be described.
First, in the present invention, a silicon single crystal is manufactured by the FZ method. In this case, after measuring in advance the conductivity type and resistivity of polycrystalline silicon used as a raw material rod, the single crystal manufactured based on the measured value The conductivity type, concentration, and gas flow rate of the dopant gas are determined so that the resistivity of the above becomes a desired value, and a silicon single crystal is manufactured by the FZ method while gas doping the determined dopant gas. At this time, a silicon single crystal is preferably manufactured by the FZ method using polycrystalline silicon of the same lot as a raw material rod, and the conductivity type and resistivity are measured using the silicon single crystal.
多結晶シリコン棒を原料棒としてノンドープのFZ単結晶を製造したときの抵抗率は同一ロット間ではほぼ同じ値となるので、上記のように、同一ロットから代表として1本の多結晶シリコン棒を選び、それを原料棒として製造したFZ単結晶の導電型及び抵抗率を測定すれば、同一ロットのその他の多結晶シリコン棒を原料棒としてノンドープのFZ単結晶を製造したときの抵抗率を正確に予測することができる。従って、同一ロットのその他の多結晶シリコン棒を原料棒とした場合、上記抵抗率の測定結果から目標とする導電型及び抵抗率になるように、ガスドープのドーパントの種類を決定し、ドーパント濃度及びガス流量を算出して決定することができる。これによって、元々多結晶シリコン原料棒に不確定に含まれていたドーパントの影響によって発生していた抵抗率のバラツキを解消することができる。 Since the resistivity when a non-doped FZ single crystal is manufactured using a polycrystalline silicon rod as a raw material rod is almost the same value between the same lots, as described above, one polycrystalline silicon rod is representatively represented from the same lot. By selecting and measuring the conductivity type and resistivity of the FZ single crystal manufactured using it as the raw material rod, the resistivity when the non-doped FZ single crystal is manufactured using other polycrystalline silicon rods of the same lot as the raw material rod is accurate. Can be predicted. Therefore, when other polycrystalline silicon rods of the same lot are used as raw material rods, the type of gas-doped dopant is determined so as to obtain the target conductivity type and resistivity from the resistivity measurement results, and the dopant concentration and The gas flow rate can be calculated and determined. As a result, it is possible to eliminate the variation in resistivity caused by the influence of the dopant that was originally included in the polycrystalline silicon raw material rod indefinitely.
次に、多結晶シリコン棒の溶融を開始する部分をコーン形状に加工し、加工歪みを除去するために表面のエッチングを行なう。その後、チャンバー26内に設置された上軸4の上部保持冶具6にネジ等で固定してシリコン原料棒2をセットし、下軸8の下部保持冶具10には種結晶12を取り付ける。
Next, the part of the polycrystalline silicon rod where melting starts is processed into a cone shape, and the surface is etched to remove the processing distortion. Thereafter, the silicon
次に、シリコン原料棒2のコーン部の下端をカーボンリング(不図示)で予備加熱する。その後、ガス供給機構28aによりチャンバー26上部から不活性ガス、例えば窒素ガスを含んだArガスを供給し、チャンバー26下部の排気機構28bにより排気して、例えば炉内圧力を0.05MPa、Arガスの流量を20〜30l/min、チャンバー内窒素濃度を0.1〜0.5%とする。そして、シリコン原料棒2を誘導加熱コイル(高周波コイル)14で加熱溶融した後、コーン部先端を種結晶12に融着させ、絞り16により無転位化し、上軸4と下軸8を回転させながらシリコン原料棒2を例えば2.3mm/minの速度で下降させることで溶融部である溶融帯(メルト)18をシリコン原料棒の下端から上端まで移動させてゾーニングし、抵抗率が所望の値、特に3000Ω・cm以上のシリコン単結晶3を溶融帯18下方に成長させる。該成長は、前記のようにして決定されたドーパントガスをガスドープしつつ行なう。
Next, the lower end of the cone portion of the silicon
ガスドープは、公知の方法に従いFZの溶融帯18に近接したドープガスノズル22から前記のように決定された導電型、濃度及びガス流量のドープガスを溶融帯18に吹きつけることにより行うことができる。ドーパントガスについては限定されないが、ジボラン(B2H6)やホスフィン(PH3)を用いれば、優れた抵抗率制御ができ、抵抗率不良のおそれがなくなる。これらのドーパントガスをArガスで希釈して所定の濃度のドープガスとすることができる。The gas doping can be performed by blowing a doping gas of the conductivity type, concentration and gas flow determined as described above from the doping gas nozzle 22 adjacent to the FZ melting zone 18 according to a known method. The dopant gas is not limited, but if diborane (B 2 H 6 ) or phosphine (PH 3 ) is used, excellent resistivity control can be performed, and there is no fear of resistivity failure. These dopant gases can be diluted with Ar gas to obtain a dope gas having a predetermined concentration.
このとき、予め測定したシリコン原料棒2の抵抗率が製造するシリコン単結晶の目標抵抗率より高い場合は、シリコン原料棒2と同一の導電型のドーパントをガスドープし、目標抵抗率より低い場合は、シリコン原料棒2とは反対の導電型のドーパントをガスドープすることが好ましい。例えば、シリコン原料棒2の抵抗率が5000Ω・cm以上の場合は、同一導電型のドーパントをガスドープして抵抗率3000Ω・cm以上のFZ単結晶を製造できるし、シリコン原料棒2の抵抗率が1000Ω・cm以上3000Ω・cm未満の場合は、反対導電型のドーパントをガスドープして抵抗率3000Ω・cm以上のFZ単結晶を製造できる。この場合、ドープ量の調整により、シリコン単結晶の導電型を多結晶シリコン棒の導電型と同じものにすることも反対のものにすることもできる。
At this time, when the resistivity of the silicon
なお、炉内のガスフローを従来のようにチャンバー下部から供給し、上部から排気する場合、チャンバー内に下方から上方に向かってガスの流れが発生するので、溶融帯に吹き付けたドープガスの一部が溶融帯より上部の原料棒表面に付着するため、原料棒と同じ導電型のドーパントをドープする場合は成長に伴い抵抗率の低下が顕著になる。またこれとは逆に、原料棒と反対の導電型のドーパントでコンペンセートする場合は成長に伴い抵抗率の上昇が顕著となる。
従って、上記のように、チャンバー上部で溶融帯18より上方から窒素ガスを含んだArガスを供給し、チャンバー下部より排気すれば、ドープガスが溶融帯より上部の原料棒表面に付着することがなくなるため、軸方向の抵抗率分布を均一にすることができる。Note that when the gas flow in the furnace is supplied from the lower part of the chamber and exhausted from the upper part as in the past, a gas flow is generated from the lower part to the upper part in the chamber, so a part of the dope gas sprayed on the melting zone. Adheres to the surface of the raw material rod above the melting zone, so that when the dopant having the same conductivity type as that of the raw material rod is doped, the resistivity decreases significantly with growth. On the other hand, when compensating with a dopant having a conductivity type opposite to that of the raw material rod, the resistivity rises with growth.
Therefore, as described above, if Ar gas containing nitrogen gas is supplied from above the melting zone 18 at the upper portion of the chamber and exhausted from the lower portion of the chamber, the dope gas will not adhere to the surface of the raw material rod above the melting zone. Therefore, the resistivity distribution in the axial direction can be made uniform.
さらに、溶融帯の上方にガス整流筒24を設置すれば、上方から下方に向かうガスの流れが整流されるため、原料棒表面へのドーパントの付着防止をより確実に行うことができ、軸方向の抵抗率分布をより均一にすることができる。
Further, if the gas
なお、単結晶育成の際、シリコン原料棒2を育成する際に回転中心となる軸4と、単結晶化の際に単結晶の単結晶の回転中心となる軸8とをずらして(偏芯させて)単結晶を育成することが好ましい。このように両中心をずらすことにより単結晶化の際に溶融状態を攪拌させ、製造する単結晶の品質を均一化することができるので好ましい。偏芯量は例えば単結晶の直径に応じて設定すればよい。
When the single crystal is grown, the axis 4 serving as the center of rotation when growing the silicon
また、上記のようにチャンバー26内を窒素を含む雰囲気にすれば、シリコン単結晶3に窒素がドープされ、シリコン単結晶3の成長時にFPDやスワール欠陥等の結晶欠陥が形成されるのを防止でき、より高品質のシリコン単結晶を成長させることができるので好ましい。この場合、雰囲気中の窒素濃度を0.1〜0.5%とすれば、上記の欠陥形成を防止するのに適当な濃度の窒素がドープされるので好ましい。また、窒素ガスの代わりにアンモニア、ヒドラジン、三フッ化窒素等の窒素を含む化合物ガスを用いてもよい。このときシリコン単結晶にドープされる窒素濃度は、例えば3×1014atoms/cm3程度である。
Further, if the atmosphere in the
以下に本発明の実施例と比較例をあげてさらに具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
直径130mmの多結晶シリコン棒のロットから1本を選び、これを原料棒としてノンドープのFZ法によりシリコン単結晶を製造し、その導電型と抵抗率を測定したところ、導電型がN型で抵抗率が24200Ω・cmであった。この測定結果に基づき、該多結晶シリコン棒と同一ロットの多結晶シリコン棒を原料棒として、Arガスで希釈した原料棒と同一導電型のPH3ガス(Ar希釈PH3ガス)のガスドープにより、直径154mm、直胴長さ26cmの原料棒と同じN型の導電型で目標抵抗率が7000Ω・cmのシリコン単結晶をFZ法により製造した。Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited thereto.
Example 1
A single-crystal silicon rod with a diameter of 130 mm was selected, and a silicon single crystal was manufactured by using this as a raw material rod by the non-doped FZ method. The conductivity type and resistivity were measured. The rate was 24200 Ω · cm. Based on this measurement result, by using a polycrystalline silicon rod of the same lot as the polycrystalline silicon rod as a raw material rod, by gas doping of PH 3 gas (Ar diluted PH 3 gas) of the same conductivity type as the raw material rod diluted with Ar gas, A silicon single crystal having the same N-type conductivity as the material rod having a diameter of 154 mm and a straight body length of 26 cm and a target resistivity of 7000 Ω · cm was manufactured by the FZ method.
このとき、溶融帯よりも上方のチャンバー上部から窒素ガスを含んだArガスを20l/min供給し、チャンバー下部から排気して、炉内圧を0.05MPa、窒素濃度を0.30%とした。
そして、上記実測値から決定した条件に従い、目標とする導電型および抵抗率(N型、7000Ω・cm)になるように濃度20ppmのAr希釈PH3ガス0.5cc/minをArガス5000cc/minと混合し、この混合ガスをノズルから500cc/minで溶融帯に吹き付けてガスドープしながら、2.3mm/minの成長速度でFZ法によりシリコン単結晶を育成した。At this time, Ar gas containing nitrogen gas was supplied at 20 l / min from the upper part of the chamber above the melting zone, and exhausted from the lower part of the chamber to set the furnace pressure to 0.05 MPa and the nitrogen concentration to 0.30%.
Then, according to the conditions determined from the measured values, Ar diluted PH 3 gas of 0.5 cc / min with a concentration of 20 ppm is added to Ar gas at 5000 cc / min so as to have a target conductivity type and resistivity (N type, 7000 Ω · cm). A silicon single crystal was grown by the FZ method at a growth rate of 2.3 mm / min while this mixed gas was sprayed from a nozzle to the melting zone at 500 cc / min to perform gas doping.
そして、シリコン単結晶を製造後、直胴長さ0cm、12cm、26cmの部位からウェーハを採取し、ドライ酸素中で1200℃、100分の熱処理後、任意の直行する2方向に2.5mmピッチで全点の抵抗率ρを4探針測定法により測定し、軸方向抵抗率分布を評価した。 Then, after manufacturing the silicon single crystal, a wafer is taken from a part having a straight body length of 0 cm, 12 cm, and 26 cm, and after heat treatment at 1200 ° C. for 100 minutes in dry oxygen, a 2.5 mm pitch in any two orthogonal directions. Then, the resistivity ρ of all points was measured by a four-probe measurement method, and the axial resistivity distribution was evaluated.
このとき、上記各部位の抵抗率ρは各部位におけるウェーハ全点の平均値とし、上記部位のρの最大値をρmax、最小値をρminとして、軸方向抵抗率分布を次の式で定義した。
軸方向抵抗率分布=(ρmax−ρmin)/ρmin ×100%
さらに、直胴26cmの位置ではライフタイムについても測定した。
その結果、得られた単結晶はN型の導電型で抵抗率は6890〜7440Ω・cmとなり、軸方向抵抗率分布は8.0%であった(図2参照)。また、ライフタイムは1000μsecであった。At this time, the resistivity ρ of each part is defined as the average value of all the wafer points in each part, the maximum value of ρ of the part is defined as ρmax, the minimum value is ρmin, and the axial resistivity distribution is defined by the following equation. .
Axial resistivity distribution = (ρmax−ρmin) / ρmin × 100%
Furthermore, the lifetime was also measured at a position of the
As a result, the obtained single crystal was N-type conductivity, the resistivity was 6890-7440 Ω · cm, and the axial resistivity distribution was 8.0% (see FIG. 2). The lifetime was 1000 μsec.
(実施例2)
ガス整流筒を設置した以外は実施例1と同じ製造条件でシリコン単結晶を製造し、実施例1と同様の結晶品質特性の評価を行った。
その結果、得られた単結晶はN型の導電型で抵抗率が6650〜6800Ω・cmとなり、軸方向抵抗率分布は2.3%であった(図2参照)。また、ライフタイムは1000μsecであった。(Example 2)
A silicon single crystal was produced under the same production conditions as in Example 1 except that a gas flow straightening tube was installed, and the same crystal quality characteristics as in Example 1 were evaluated.
As a result, the obtained single crystal was N-type conductivity, the resistivity was 6650-6800 Ω · cm, and the axial resistivity distribution was 2.3% (see FIG. 2). The lifetime was 1000 μsec.
(実施例3)
直径105mmの多結晶シリコン棒のロットから1本を選び、これを原料棒としてノンドープのFZ法によりシリコン単結晶を製造し、その導電型と抵抗率を測定したところ、導電型がN型で抵抗率が1150Ω・cmであった。この測定結果に基づき、該多結晶シリコン棒と同一ロットの多結晶シリコン棒を原料棒として、原料棒と反対導電型のAr希釈B2H6ガスのガスドープにより、直径105mm、直胴長さ105cmの原料棒と同じN型の導電型で目標抵抗率が7500Ω・cmのシリコン単結晶をFZ法により製造した。(Example 3)
A single-crystal silicon rod having a diameter of 105 mm was selected from the lot, and a silicon single crystal was manufactured by using this as a raw material rod by the non-doped FZ method, and its conductivity type and resistivity were measured. The rate was 1150 Ω · cm. Based on this measurement result, a polycrystalline silicon rod of the same lot as the polycrystalline silicon rod is used as a raw material rod, and by gas doping of Ar diluted B 2 H 6 gas having the opposite conductivity type to that of the raw material rod, a diameter of 105 mm and a straight cylinder length of 105 cm A silicon single crystal having the same N conductivity type as that of the raw material rod and a target resistivity of 7500 Ω · cm was manufactured by the FZ method.
このとき、溶融帯よりも上方のチャンバー上部から窒素ガスを含んだArガスを20l/min供給し、チャンバー下部から排気して、炉内圧を0.05MPa、窒素濃度を0.10%とした。
そして、上記実測値から決定した条件に従い、目標とする導電型および抵抗率(N型、7500Ω・cm)になるように濃度20ppmのAr希釈B2H6ガス1.0cc/minをArガス5000cc/minと混合し、この混合ガスをノズルから500cc/minで溶融帯に吹き付けてガスドープしながら、2.4mm/minの成長速度でFZ法によりシリコン単結晶を育成した。At this time, Ar gas containing nitrogen gas was supplied at a rate of 20 l / min from the upper part of the chamber above the melting zone, and exhausted from the lower part of the chamber to set the furnace pressure to 0.05 MPa and the nitrogen concentration to 0.10%.
Then, in accordance with the conditions determined from the actual measurement values, Ar diluted B 2 H 6 gas of 1.0 cc / min at a concentration of 20 ppm was added to Arcc to reach a target conductivity type and resistivity (N type, 7500 Ω · cm). A silicon single crystal was grown by the FZ method at a growth rate of 2.4 mm / min while gas doping was performed by spraying this mixed gas at a rate of 500 cc / min from a nozzle to the melting zone.
そして、シリコン単結晶を製造後、直胴長さ0cm、30cm、60cm、105cmの部位からウェーハを採取し、実施例1と同じ測定方法により抵抗率、軸方向抵抗率分布を評価した。また、直胴105cmの位置ではライフタイムについても測定した。
その結果、得られた単結晶はN型の導電型で抵抗率は7125〜8150Ω・cmとなり、軸方向抵抗率分布は14.4%であった(図3参照)。また、ライフタイムは800μsecであった。And after manufacturing a silicon single crystal, the wafer was extract | collected from the site | part of straight cylinder length 0cm, 30cm, 60cm, 105cm, and the resistivity and axial direction resistivity distribution were evaluated with the same measuring method as Example 1. FIG. The lifetime was also measured at a position of 105 cm in the straight body.
As a result, the obtained single crystal was N-type conductivity, the resistivity was 7125-8150 Ω · cm, and the axial resistivity distribution was 14.4% (see FIG. 3). The lifetime was 800 μsec.
(実施例4)
ガス整流筒を設置した以外は実施例3と同じ製造条件でシリコン単結晶を製造し、実施例3と同様の結晶品質特性の評価を行った。
その結果、得られた単結晶はN型の導電型で抵抗率が7420〜8114Ω・cmとなり、軸方向抵抗率分布は9.4%であった(図3参照)。また、ライフタイムは900μsecであった。Example 4
A silicon single crystal was produced under the same production conditions as in Example 3 except that a gas flow straightening tube was installed, and the same crystal quality characteristics as in Example 3 were evaluated.
As a result, the obtained single crystal had an N-type conductivity, a resistivity of 7420-8114 Ω · cm, and an axial resistivity distribution of 9.4% (see FIG. 3). The lifetime was 900 μsec.
(実施例5)
直径105mmの多結晶シリコン棒のロットから1本を選び、これを原料棒としてノンドープのFZ法によりシリコン単結晶を製造し、その導電型と抵抗率を測定したところ、導電型がP型で抵抗率が2300Ω・cmであった。この測定結果に基づき、該多結晶シリコン棒と同一ロットの多結晶シリコン棒を原料棒として、原料棒と反対導電型のAr希釈PH3ガスのガスドープにより、直径105mm、直胴長さ105cmの原料棒と反対のN型の導電型で目標抵抗率が7000Ω・cmのシリコン単結晶をFZ法により製造した。(Example 5)
A single-crystal silicon rod having a diameter of 105 mm was selected from a lot, and a silicon single crystal was produced by using this as a raw material rod by the non-doped FZ method, and its conductivity type and resistivity were measured. The rate was 2300 Ω · cm. Based on this measurement result, a polycrystalline silicon rod of the same lot as the polycrystalline silicon rod is used as a raw material rod, and a raw material having a diameter of 105 mm and a straight body length of 105 cm is obtained by gas doping of Ar diluted PH 3 gas having a conductivity type opposite to that of the raw material rod. A silicon single crystal having an N-type conductivity type opposite to the rod and a target resistivity of 7000 Ω · cm was manufactured by the FZ method.
このとき、溶融帯よりも上方のチャンバー上部から窒素ガスを含んだArガスを20l/min供給し、チャンバー下部から排気して、炉内圧を0.05MPa、窒素濃度を0.10%とした。
そして、上記実測値から決定した条件に従い、目標とする導電型および抵抗率(N型、7000Ω・cm)になるように濃度20ppmのAr希釈PH3ガス4.6cc/minをArガス5000cc/minと混合し、この混合ガスをノズルから500cc/minで溶融帯に吹き付けてガスドープしながら、2.4mm/minの成長速度でFZ法によりシリコン単結晶を育成した。At this time, Ar gas containing nitrogen gas was supplied at a rate of 20 l / min from the upper part of the chamber above the melting zone, and exhausted from the lower part of the chamber to set the furnace pressure to 0.05 MPa and the nitrogen concentration to 0.10%.
Then, in accordance with the conditions determined from the actual measurement values, Ar diluted PH 3 gas 4.6 cc / min with a concentration of 20 ppm was added to Ar gas 5000 cc / min so as to achieve the target conductivity type and resistivity (N type, 7000 Ω · cm). A silicon single crystal was grown by the FZ method at a growth rate of 2.4 mm / min while gas doping was performed by blowing this mixed gas from a nozzle to the melting zone at 500 cc / min.
そして、シリコン単結晶を製造後、直胴長さ0cm、30cm、60cm、105cmの部位からウェーハを採取し、実施例1と同じ測定方法により抵抗率、軸方向抵抗率分布を評価した。また、直胴105cmの位置ではライフタイムについても測定した。
その結果、得られた単結晶はN型の導電型で抵抗率が6620〜6930Ω・cmとなり、軸方向抵抗率分布は4.7%であった(図4参照)。また、ライフタイムは1000μsecであった。And after manufacturing a silicon single crystal, the wafer was extract | collected from the site | part of straight cylinder length 0cm, 30cm, 60cm, 105cm, and the resistivity and axial direction resistivity distribution were evaluated with the same measuring method as Example 1. FIG. The lifetime was also measured at a position of 105 cm in the straight body.
As a result, the obtained single crystal was N-type conductivity, the resistivity was 6620-6930 Ω · cm, and the axial resistivity distribution was 4.7% (see FIG. 4). The lifetime was 1000 μsec.
(実施例6)
ガス整流筒を設置した以外は実施例5と同じ製造条件でシリコン単結晶を製造し、実施例5と同様の結晶品質特性の評価を行った。
その結果、得られた単結晶はN型の導電型で抵抗率が6920〜7140Ω・cmとなり、軸方向抵抗率分布は3.2%であった(図4参照)。また、ライフタイムは900μsecであった。(Example 6)
A silicon single crystal was produced under the same production conditions as in Example 5 except that a gas flow straightening tube was installed, and the same crystal quality characteristics as in Example 5 were evaluated.
As a result, the obtained single crystal was N-type conductivity, the resistivity was 6920-7140 Ω · cm, and the axial resistivity distribution was 3.2% (see FIG. 4). The lifetime was 900 μsec.
(比較例1)
直径130mmの多結晶シリコンを原料棒として、導電型及び抵抗率の実測は行なわず、ノンドープにより、直径154mm、直胴長さ30cmのN型の導電型で目標抵抗率が7500Ω・cmのシリコン単結晶を製造した。(Comparative Example 1)
Using polycrystalline silicon with a diameter of 130 mm as a raw material rod, the conductivity type and resistivity are not actually measured. By non-doping, a silicon single unit having a diameter of 154 mm and a straight body length of 30 cm and a target resistivity of 7500 Ω · cm is used. Crystals were produced.
このとき、溶融部よりも上方のチャンバー上部から窒素ガスを含んだArガスを30l/min供給し、チャンバー下部から排気して、炉内圧を0.05MPa、窒素濃度を0.30%とした。
そして、2.3mm/minの成長速度でFZ法によりシリコン単結晶を育成した。At this time, Ar gas containing nitrogen gas was supplied at 30 l / min from the upper part of the chamber above the melting part and exhausted from the lower part of the chamber to set the furnace pressure to 0.05 MPa and the nitrogen concentration to 0.30%.
A silicon single crystal was grown by the FZ method at a growth rate of 2.3 mm / min.
そして、シリコン単結晶を製造後、直胴長さ0cm、10cm、20cm、30cmの部位からウェーハを採取し、実施例1と同様にして、抵抗率、軸方向抵抗率分布およびライフタイムを測定した。
その結果、N型の導電型で抵抗率が9430〜10206Ω・cmとなり、目標抵抗率から大きく外れた値となった。なお、軸方向抵抗率分布は5.9%であった(図5参照)。また、ライフタイムは900μsecであった。
このように、抵抗率に関しては目標抵抗率から大きく外れた値となったが、軸方向抵抗率分布に関しては、Arガスを上方から供給し、下方から排気したので、小さい値となった。And after manufacturing a silicon single crystal, a wafer was taken from a part having a straight body length of 0 cm, 10 cm, 20 cm, and 30 cm, and the resistivity, axial resistivity distribution, and lifetime were measured in the same manner as in Example 1. .
As a result, the resistivity of the N-type conductivity was 9430 to 10206 Ω · cm, which was a value greatly deviating from the target resistivity. The axial resistivity distribution was 5.9% (see FIG. 5). The lifetime was 900 μsec.
As described above, the resistivity was greatly deviated from the target resistivity, but the axial resistivity distribution was small because Ar gas was supplied from above and exhausted from below.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
例えば、予め測定した多結晶シリコンの抵抗率が製造するシリコン単結晶の目標抵抗率と同じ場合は、ドーパントガスのガス流量をゼロと決定し、FZ法によりシリコン単結晶を製造することもできる。The present invention is not limited to the above embodiment. The above embodiment is merely an example, and the present invention has the same configuration as that of the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
For example, when the resistivity of the polycrystalline silicon measured in advance is the same as the target resistivity of the silicon single crystal to be manufactured, the gas flow rate of the dopant gas can be determined to be zero, and the silicon single crystal can be manufactured by the FZ method.
Claims (6)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004193118 | 2004-06-30 | ||
JP2004193118 | 2004-06-30 | ||
PCT/JP2005/010771 WO2006003782A1 (en) | 2004-06-30 | 2005-06-13 | Silicon single crystal manufacturing method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2006003782A1 JPWO2006003782A1 (en) | 2008-04-17 |
JP4529976B2 true JP4529976B2 (en) | 2010-08-25 |
Family
ID=35782594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006528465A Expired - Fee Related JP4529976B2 (en) | 2004-06-30 | 2005-06-13 | Method for producing silicon single crystal |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4529976B2 (en) |
WO (1) | WO2006003782A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1333114C (en) * | 2006-04-21 | 2007-08-22 | 天津市环欧半导体材料技术有限公司 | Process for preparing vapor doping zone-melted silicon single crystal |
JP5070737B2 (en) * | 2006-05-26 | 2012-11-14 | 信越半導体株式会社 | Method for producing FZ single crystal silicon using silicon crystal rod produced by CZ method as raw material |
JP5049544B2 (en) | 2006-09-29 | 2012-10-17 | Sumco Techxiv株式会社 | Silicon single crystal manufacturing method, silicon single crystal manufacturing control device, and program |
JP5029637B2 (en) * | 2009-03-13 | 2012-09-19 | 信越半導体株式会社 | Manufacturing method of semiconductor single crystal |
JP5077320B2 (en) * | 2009-10-20 | 2012-11-21 | 信越半導体株式会社 | Method for producing N-type silicon single crystal and phosphorus-doped N-type silicon single crystal |
CN101979719B (en) * | 2010-11-03 | 2011-07-13 | 天津市环欧半导体材料技术有限公司 | Method for producing gas phase heavy phosphorus-doped float zone silicon single crystal |
DK2679706T3 (en) * | 2011-02-23 | 2018-12-17 | Shinetsu Handotai Kk | PROCEDURE FOR MANUFACTURING N-TYPE SILICON MONO CRYSTAL |
JP2013103874A (en) * | 2011-11-11 | 2013-05-30 | Yutaka Kamaike | Silicon and method for manufacturing the same |
CN107502950A (en) * | 2017-09-04 | 2017-12-22 | 青海鑫诺光电科技有限公司 | The process equipment and its application method of monocrystalline silicon |
JP6954088B2 (en) * | 2017-12-19 | 2021-10-27 | 株式会社Sumco | Method for manufacturing silicon single crystal |
JP7287521B2 (en) * | 2018-05-23 | 2023-06-06 | 信越半導体株式会社 | Method for measuring resistivity of raw material crystal produced by CZ method and method for producing FZ silicon single crystal |
JP7067267B2 (en) * | 2018-05-23 | 2022-05-16 | 信越半導体株式会社 | Method for measuring resistivity of raw material crystal and method for manufacturing FZ silicon single crystal |
JP7240827B2 (en) * | 2018-07-02 | 2023-03-16 | 信越半導体株式会社 | Method for measuring resistivity of raw material crystal and method for producing FZ silicon single crystal |
CN109554756A (en) * | 2018-12-27 | 2019-04-02 | 西安奕斯伟硅片技术有限公司 | The preparation method and monocrystalline silicon of a kind of single crystal pulling apparatus, monocrystalline silicon |
US11585010B2 (en) | 2019-06-28 | 2023-02-21 | Globalwafers Co., Ltd. | Methods for producing a single crystal silicon ingot using boric acid as a dopant and ingot puller apparatus that use a solid-phase dopant |
CN112210818B (en) * | 2020-08-31 | 2021-07-20 | 北京理工大学 | Method for preparing single-crystal metal deuteride by movable zone melting |
US11866844B2 (en) | 2020-12-31 | 2024-01-09 | Globalwafers Co., Ltd. | Methods for producing a single crystal silicon ingot using a vaporized dopant |
US11795569B2 (en) | 2020-12-31 | 2023-10-24 | Globalwafers Co., Ltd. | Systems for producing a single crystal silicon ingot using a vaporized dopant |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0365586A (en) * | 1989-07-31 | 1991-03-20 | Shin Etsu Handotai Co Ltd | Apparatus for growing single crystal |
JP2002134518A (en) * | 2000-10-27 | 2002-05-10 | Mitsubishi Materials Silicon Corp | Resistibility-adjusted silicon wafer and its manufacturing method |
JP2002226295A (en) * | 2001-01-31 | 2002-08-14 | Shin Etsu Handotai Co Ltd | Control method for manufacturing process of silicon single crystal by czochralski method, manufacturing method for high resistance-silicon single crystal by czochralski method, and silicon single crystal |
-
2005
- 2005-06-13 WO PCT/JP2005/010771 patent/WO2006003782A1/en active Application Filing
- 2005-06-13 JP JP2006528465A patent/JP4529976B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0365586A (en) * | 1989-07-31 | 1991-03-20 | Shin Etsu Handotai Co Ltd | Apparatus for growing single crystal |
JP2002134518A (en) * | 2000-10-27 | 2002-05-10 | Mitsubishi Materials Silicon Corp | Resistibility-adjusted silicon wafer and its manufacturing method |
JP2002226295A (en) * | 2001-01-31 | 2002-08-14 | Shin Etsu Handotai Co Ltd | Control method for manufacturing process of silicon single crystal by czochralski method, manufacturing method for high resistance-silicon single crystal by czochralski method, and silicon single crystal |
Also Published As
Publication number | Publication date |
---|---|
JPWO2006003782A1 (en) | 2008-04-17 |
WO2006003782A1 (en) | 2006-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4529976B2 (en) | Method for producing silicon single crystal | |
JP5070737B2 (en) | Method for producing FZ single crystal silicon using silicon crystal rod produced by CZ method as raw material | |
US6899760B2 (en) | Silicon single crystal growing furnace supplemented with low melting point dopant feeding instrument and the low melting point dopant feeding method thereof | |
KR101522480B1 (en) | Method of manufacturing silicon single crystal, silicon single crystal, and wafer | |
JP5246163B2 (en) | Silicon single crystal wafer for IGBT and manufacturing method of silicon single crystal wafer for IGBT | |
KR20070077073A (en) | Single crystal silicon wafer for insulated gate bipolar transistors and process for producing the same | |
JP4367213B2 (en) | Method for producing silicon single crystal | |
US20030021894A1 (en) | Method of producing high-purity polycrystallin silicon | |
JP5176101B2 (en) | Silicon single crystal manufacturing method and apparatus, and silicon single crystal ingot | |
JP5399212B2 (en) | Method for producing silicon single crystal | |
KR100720366B1 (en) | ENHANCED n-TYPE SILICON MATERIAL FOR EPITAXIAL WAFER SUBSTRATE AND METHOD OF MAKING SAME | |
JP6119642B2 (en) | Manufacturing method of semiconductor single crystal | |
US8083852B2 (en) | Single crystal growth method and single crystal pulling apparatus | |
JP6756244B2 (en) | Manufacturing method of semiconductor silicon single crystal | |
JP5437565B2 (en) | Semiconductor single crystal manufacturing equipment | |
KR20050120707A (en) | Process for producing single crystal | |
JP6720841B2 (en) | Method for manufacturing semiconductor silicon single crystal | |
JP5201730B2 (en) | Manufacturing method of FZ method silicon single crystal | |
WO2017169290A1 (en) | Method of manufacturing silicon epitaxial wafer | |
JP2015101521A (en) | Method of manufacturing semiconductor crystal | |
KR101129928B1 (en) | Method for Manufacturing Single Crystal | |
JP5880415B2 (en) | Single crystal manufacturing method | |
JP5316487B2 (en) | Manufacturing method of silicon epitaxial wafer | |
KR100324481B1 (en) | Graphite crucible for growth of single crystalline silicon by czochralski method | |
WO2004065667A1 (en) | Process for producing single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090901 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091028 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100518 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100531 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4529976 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |