JP4529647B2 - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
JP4529647B2
JP4529647B2 JP2004325551A JP2004325551A JP4529647B2 JP 4529647 B2 JP4529647 B2 JP 4529647B2 JP 2004325551 A JP2004325551 A JP 2004325551A JP 2004325551 A JP2004325551 A JP 2004325551A JP 4529647 B2 JP4529647 B2 JP 4529647B2
Authority
JP
Japan
Prior art keywords
processed
plasma
electrode
gap length
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004325551A
Other languages
English (en)
Other versions
JP2006134830A (ja
Inventor
俊洋 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004325551A priority Critical patent/JP4529647B2/ja
Publication of JP2006134830A publication Critical patent/JP2006134830A/ja
Application granted granted Critical
Publication of JP4529647B2 publication Critical patent/JP4529647B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、プラズマ処理装置に関する。
従来、大気圧、または大気圧近傍において、基板(被処理体)の表面にプラズマ処理を施す装置として、大気圧プラズマ処理装置が知られている(例えば、特許文献1参照)。
通常、大気圧プラズマ処理装置としては一対の電極を有する平行平板型のプラズマ処理装置が用いられる。この平行平板型のプラズマ処理装置は、高周波電力が印加された電極間に処理ガスを導入してプラズマを発生し、該発生したプラズマによって当該電極間に配された基板の表面にプラズマ処理を施す。
従来、プラズマ処理装置によってプラズマ処理が施される基板はプリント基板やプラスチックフィルムなど比較的小型の基板であり、プラズマ処理装置は、プリント基板の半田濡れ性改善処理やプラスチックフィルムの表面改質処理、例えば、親液性または撥水性向上などを行っていた。
ところで、液晶ディスプレイや有機EL(organic electroluminescence)ディスプレイなどの表示装置用のガラス基板は、その表面に所定の材料をインクジェット法などによって塗布して成膜する工程を経て製造されることから、成膜の品質を向上すべく、成膜の前に表面改質処理が施される。そして、これら表示装置用のガラス基板の表面改質処理にもプラズマ処理装置が用いられる。表示装置用のガラス基板は、近年、大型化している。
大気圧プラズマ装置においては、プラズマを安定的に発生させるために、基板表面とそれに対向する電極との間に形成される放電ギャップ長の管理が重要な要素となる。従来は、放電ギャップ長を管理するためには、電極間ギャップを固定させておくことが必要不可欠であるとされているが、基板の厚さに誤差があったり、基板に反りやうねりがあったりした場合には、基板の面内での位置によって放電ギャップ長が変化してしまうので、放電ギャップ長の管理が難しく、処理する基板が大きい場合には特に難しい。このようなことから、プラズマを照射する基板の形状によっては、必要な放電ギャップ長を得ることができなくなってしまい、その結果として、プラズマの当り具合の差により、基板に処理ムラを生ずるという問題がある。
特開2003−273084号公報
本発明の目的は、被処理面に処理ムラを生ずることなく、全体を均一に処理することができるプラズマ処理装置を提供することにある。
このような目的は、下記の本発明により達成される。
本発明のプラズマ処理装置は、電圧を印加した一対の電極間に供給した処理ガスを活性化させてプラズマを発生させ、該プラズマにより、被処理体における被処理面をプラズマ処理するプラズマ処理装置であって、
前記被処理体を搬送する搬送手段で構成され、前記プラズマが前記被処理面に沿って相対的に移動するように前記電極と前記被処理体とを相対移動させる相対移動機構と、
前記一対の電極間に形成される電極間ギャップの長さである電極間ギャップ長を変化させる電極間ギャップ長可変機構と、
前記電極に対する前記被処理面の高さを計測する高さ計測手段と、
前記電極に対する前記被処理面の高さに関する情報に基づいて前記電極間ギャップ長可変機構を作動させ、前記電極間ギャップ長を調整する電極間ギャップ長調整手段と
前記処理ガスを供給する処理ガス供給口を有する処理ガス供給部とを備え、
前記一対の電極は、前記被処理体の搬送経路を挟んで互いに対向して配置されているとともに、前記被処理体の搬送方向と直交する方向に沿って細長い形状をなし、
前記処理ガス供給口は、一方の前記電極を貫通するとともに、前記搬送方向と直交する方向に沿って細長く開口し、
前記高さ計測手段は、前記被処理面の四隅付近および中央部における高さを同時に計測可能なように、5個以上設けられており、
前記被処理面のうちの、前記プラズマが照射される部位の前記電極に対する高さに応じて、前記電極間ギャップ長調整手段により前記電極間ギャップ長を調整しつつ、前記プラズマを前記被処理面に沿って相対的に移動させて前記被処理面をプラズマ処理することを特徴とする。
このようなプラズマ処理装置によれば、被処理体に反りやうねり等の変形が生じていたり厚さの不均一があったりして被処理面の高さが一定でなかった場合であっても、プラズマの発生態様が変化することなく安定するとともに、被処理面に対するプラズマの当たり具合もほぼ一定に保たれるので、被処理面の全体を、ムラを生じることなく均一にプラズマ処理することができる。特に、大型の被処理体に対しても、上記効果を十分に発揮することができる。
また、従来の大気圧プラズマ処理装置では、ギャップおよび整合器の調整に時間がかかり、装置を安定稼動させるまではカット・アンド・トライの繰り返しであるが、本発明のプラズマ処理装置によれば、電極間ギャップが自動的に調整されるので、短期間で安定稼動させることができる。
本発明のプラズマ処理装置では、前記電極間ギャップ長調整手段は、前記被処理面と前記被処理面に対向する電極との間に形成される放電ギャップの長さである放電ギャップ長が可及的に一定となるように、前記電極間ギャップ長を調整することが好ましい。
これにより、被処理面に対するプラズマの当たり具合をさらに高いレベルで均一にすることができるので、被処理面の全体をより均一にプラズマ処理することができる。
本発明のプラズマ処理装置では、前記一対の電極のうち、前記被処理面側に位置する電極は、前記電極間ギャップ長可変機構の作動によって移動し、前記被処理面と反対側に位置する電極は、固定的に設置されていることが好ましい。
これにより、簡単な構造で、電極間ギャップ長を変化させることができる。
本発明のプラズマ処理装置では、前記相対移動機構は、前記被処理体を搬送する搬送手段で構成され、
前記一対の電極は、前記被処理体の搬送経路を挟んで互いに対向して配置されているとともに、前記被処理体の搬送方向と直交する方向に沿って細長い形状をなしていることが好ましい。
これにより、プラズマ処理装置を小型化することができ、被処理体が大型のものである場合であっても、プラズマ処理装置のレイアウトを容易にすることができる。
本発明のプラズマ処理装置では、一方の電極と前記被処理体との間の空間に供給された処理ガスを回収するガス回収部をさらに備えることが好ましい。
これにより、プラズマが拡散するのを確実に防止することができ、プラズマ処理領域の制御を容易に行うことができる。
本発明のプラズマ処理装置では、前記搬送手段は、ローラーコンベアであることが好ましい。
これにより、被処理体を一対の電極の間の空間に安定して搬送することができ、もってプラズマ処理の均一化をより充分に達成することができる。
以下、本発明のプラズマ処理装置の好適な実施形態について、添付図面を参照しつつ詳細に説明する。
図1は、本発明のプラズマ処理装置の実施形態を示す斜視図である。
図1に示すように、プラズマ処理装置(大気圧プラズマ処理装置)1は、例えばガラス基板のような平板状のワーク(被処理体)2を搬送する搬送手段としての第1のコンベア3および第2のコンベア4と、ワーク2に所定のプラズマ処理を施すプラズマ処理部5と、ワーク2の被処理面21の高さを計測するワーク計測部6とを備える。
第1のコンベア3は、互いに平行に配置された複数のローラー7からなるローラーコンベア8を有し、各ローラー7はワーク2の裏面(被処理面21と反対側の面)を支持する。また、第1のコンベア3は、図示しないモータによってローラー7を回転させることによってワーク2を自在に搬送する。ローラー7の表面は絶縁体、例えば、セラミックスやゴムで覆われる。これにより、第1のコンベア3とワーク2とが導通してワーク2が帯電するのを防止できる。特に、ローラー7の表面をゴムで覆った場合、ワーク2に傷が付くのを防止することもでき、好ましい。また、第1のコンベア3の上方は作業空間に開放されており、作業者が未処理のワーク2を投入し、若しくはプラズマ処理済みのワーク2を回収するワーク投入口として機能する。
第2のコンベア4は、第1のコンベア3と同様の構成を有し、プラズマ処理部5を挟んで第1のコンベア3と縦列に配置される。
また、第1のコンベア3および第2のコンベア4におけるローラーコンベア8の高さは、プラズマ処理部5における後述の処理空間24とほぼ同じ高さに設定される。したがって、第1のコンベア3および第2のコンベア4は、ワーク2をプラズマ処理部5における処理空間24へ搬送する。
ワーク計測部6は、第2のコンベア4の上方に配置されている。ワーク計測部6では、ワーク2の被処理面21の高さを計測する。このワーク計測部6については、後述する。
プラズマ処理部5は、上述したように第1のコンベア3および第2のコンベア4の間に配置されている。プラズマ処理装置1では、ワーク計測部6にてワーク2の被処理面21の高さを計測した後、第1のコンベア3および第2のコンベア4の作動によって図1中の奥側から手前側に向かってワーク2を搬送することによりプラズマ処理部5を通過させつつ、ワーク2の被処理面21に対しプラズマ処理を行う。これにより、被処理面21の全面に対しプラズマ処理を行うことができる。このように、プラズマ処理装置1では、プラズマ処理時におけるワーク2の搬送方向(以下、「ワーク搬送方向」と言う)は、図1中の白抜き矢印方向である。
図2は、図1に示すプラズマ処理装置におけるプラズマ処理部の内部構成を示す斜視図である。なお、以下の説明では、図2中の上側を「上方」、下側を「下方」と言う。
図2に示すように、プラズマ処理部5の内部には、上下動可能に設置された上部電極部10と、該上部電極部10に対してワーク2の搬送経路を挟んで対向するように下方に固定的に設置された下部電極11と、上部電極部10を上下動させる電極間ギャップ長可変機構9とが設けられている。
上部電極部10と下部電極11との間の空間は、プラズマを発生させてプラズマ処理を行う処理空間24を構成する。
上部電極部10の両端部は、それぞれ、リニアガイド91によって支持されている。上部電極部10は、両リニアガイド91に案内され、上下方向にスムーズに移動可能になっている。
上部電極部10の一端側の近傍には、サーボモータ92と、サーボモータ92により回転駆動されるボールねじ等の送りねじ93と、送りねじ93に螺合するねじ孔を有する可動片94とが設置されている。サーボモータ92は、プラズマ処理部5の本体に形成された固定部95に固定されている。可動片94は、上部電極部10の一端に固定されている。
サーボモータ92が回転すると、可動片94が上下動し、これに伴って上部電極部10も上下動して、例えば図2中の二点鎖線で示す位置へ変位することができる。これにより、上部電極部10と下部電極11との間に形成される電極間ギャップの長さである電極間ギャップ長(図4中のLで示す長さ)が変化する。
このように、本実施形態では、リニアガイド91、サーボモータ92、送りねじ93および可動片94により、電極間ギャップ長可変機構9が構成される。
図3は、図2中から、上部電極部10の外装のカバーと、電極間ギャップ長可変機構9とを取り去った状態を示す斜視図である。
図3に示すように、上部電極部10内には、印加電極14と、印加電極14の下側に接合された誘電体15とが設置されている。印加電極14は、導電性の材料、例えば、銅などで構成され、誘電体15は、セラミックス、例えば、SiOなどで構成されている。
下部電極11は、接地されており、アース電極として機能する。
プラズマ処理部5は、上部電極部10の印加電極14に高周波電力を供給する高周波電源12と、高周波電源12および印加電極14の間に介在し、高周波電力を整合する整合器(Matcher)13とをさらに有している。高周波電源12は、印加電極14に例えば周波数が数百Hz〜100MHzであって、出力が数十W〜数kWである高周波電力を供給する。整合器13は、印加電極14からの高周波電力の反射を低減して該高周波電力の印加電極14への供給効率を最大にする。具体的には、整合器13および印加電極14の間を流れる電流の変動に応じたインピーダンスの変動を補正する。
印加電極14は、整合器13と導電性の電極接続部16を介して接続され、整合器13によって整合された高周波電力が印加される。高周波電力が印加された印加電極14は、対向する下部電極11との間に高周波電界Eを発生する。このとき、誘電体15は印加電極14および高周波電界Eが直接接触するのを防止してアーク放電などの異常放電の発生を防止する。誘電体15の厚みは、厚すぎると高周波電界Eを発生するために高電圧を要することがあり、薄すぎると高周波電力印加時に絶縁破壊が起こり、アーク放電が発生することがあるため、通常は、0.01〜4mm程度であることが好ましい。
本実施形態では、印加電極14、誘電体15および下部電極11は、それぞれ、ワーク搬送方向(図3中の白抜き矢印で示す方向)と直交する方向に沿って細長い形状をなしている。また、印加電極14および誘電体15には、ワーク搬送方向と直交する方向に沿って細長く延びるスリット状の処理ガス供給口18が貫通するように形成されている。
図4は、図2中のI−I線での断面図である。なお、以下の説明では、図4中の上側を「上方」、下側を「下方」と言う。また、図4中の白抜き矢印方向がワーク搬送方向である。
図4に示すように、上部電極部10内には、印加電極14および誘電体15を上下方向に貫通する処理ガス供給口18を有する処理ガス供給部23が設けられている。
印加電極14や誘電体15の上方は、逆升状のカバー17により覆われている。カバー17は、印加電極14および誘電体15によって下方の開口部が閉鎖されて、内部に処理ガス供給流路20を形成する。該処理ガス供給流路20には、カバー17の端部に接続された図示しない処理ガス供給装置から供給された混合ガスが充填され、該混合ガスは処理ガス供給口18から噴出する。処理ガス供給口18は、ワーク搬送方向と直交する方向に沿って細長くスリット状に開口しており、印加電極14の長手方向に沿って一様に混合ガスを噴出する。
該混合ガスは、OガスやCFガスなどの処理ガスと、Heガスなどのキャリアガスから成り、混合ガスの導入量としては、例えば、数十SCCM〜数SLMであることが好ましい。また、処理ガスとキャリアガスの混合割合は、プラズマ処理の種類によって異なるが、処理ガスの割合が大きすぎると、高周波電界Eにおいて放電が発生せず、若しくは、プラズマ処理の効率向上に寄与しないため、例えば、処理ガスの割合が0.1〜10体積%であることが好ましい。
処理ガス供給口18から噴出された混合ガスのうち処理ガスは、処理空間24に形成された高周波電界Eに流入し、放電によって活性化されてプラズマ、例えば、イオンやラジカルになる。該プラズマはワーク2の表面に接触してプラズマ処理を施す。
ワーク搬送方向に関してカバー17の両側(前方および後方)には、それぞれ、ガス回収部19a、19bが隣接して設けられている。各ガス回収部19a、19bは、ワーク搬送方向と直交する方向に細長い直方体状の筐体で構成され、ワーク搬送方向と直交する方向に沿ってスリット状に細長く形成されたガス回収口191a、191bを有している。ガス回収部19a、19bの内部は、ガス回収部19の端部に接続された図示しない排気ポンプによって排気されるため、ガス回収部19の内部は排気流路27として機能し、該排気流路27は、ガス回収口191a、191bを介して処理空間24に存在するプラズマ(活性化された処理ガス)やキャリアガスを回収する。
図4において、処理ガス供給口18から噴出されガス回収部19によって回収される混合ガスの流れを黒矢印で示す。ガス回収部19aのガス回収口191aは、ワーク搬送方向に関して、印加電極14の前端142や下部電極11の前端112よりさらに前方に位置している。処理ガス供給口18からガス回収口191aまでの間には、ワーク2の移動方向と同方向に流れる気流、すなわちパラレルフローが形成される。
これに対し、ガス回収部19bのガス回収口191bは、ワーク搬送方向に関して、印加電極14の後端141や下部電極11の後端111よりさらに後方に位置している。処理ガス供給口18からガス回収口191bまでの間には、ワーク2の移動方向と反対方向に流れる気流、すなわちカウンターフローが形成される。
このような構成により、処理空間24に外気が流入するのを確実に防止することができ、処理空間24のプラズマを安定的に発生させることができる。
図5は、図1に示すプラズマ処理装置1のワーク計測部6の内部構成を示す斜視図である。
図5に示すように、ワーク計測部6内には、下部電極11に対するワーク2の被処理面21の高さを計測する高さ計測手段61が設けられている。高さ計測手段61は、5個設けられている。5個の高さ計測手段61は、ワーク2が第2のコンベア4によって所定の位置に搬送されたときに、被処理面21の四隅付近および中央に対して対向するような位置にそれぞれ設置されている。
本実施形態における高さ計測手段61は、レーザー光を投光および受光してドップラー効果を利用して計測を行うレーザー変位計で構成されている。各高さ計測手段61により、被処理面21の四隅付近および中央の5箇所の高さを同時に計測することができる。
なお、高さ計測手段61としては、レーザー変位計に限らず、他の光学式センサ、超音波センサ、機械式センサなど、いかなるものでもよい。
図6は、図1に示すプラズマ処理装置1の電気的接続関係を示すブロック図である。
図6に示すように、高周波電源12は、整合器13に接続されており、該整合器13は、印加電極14に接続されている。これにより、高周波電源12は、印加電極14と電気的に接続され、高周波電源12は所定の高周波電力を印加電極14に供給する。
所定の高周波電力を供給された印加電極14は、下部電極11に向けて放電を行うことによって処理空間24に高周波電力を印加して高周波電界Eを形成する。これにより、処理空間24に供給されている処理ガスが活性化してプラズマが発生する。
また、プラズマ処理装置1は、プラズマ処理装置1の各部を制御する制御部25を有している。制御部25は、後述するようなプラズマ処理装置1の一連の動作を実現させるための各種プログラムを記憶した記憶部と、該プログラムを実行するCPUとを備えたコンピュータで構成されている。
制御部25は、高周波電源12、整合器13、第1のコンベア3および第2のコンベア4のローラーコンベア8、電極間ギャップ長可変機構9の作動をそれぞれ制御する。また、プラズマ処理装置1には、処理ガス供給口18から噴出するガスの流量を制御するガス流量コントローラー26が設けられており、該流量コントローラー26も制御部25により制御される。
制御部25は、第1のコンベア3および第2のコンベア4のローラーコンベア8を駆動するサーボモータ(図示せず)をオープンループ制御することにより、第1のコンベア3および第2のコンベア4上でのワーク2の位置を制御する。あるいは、ワーク2の位置を検出するセンサーを設けてクローズドループ制御を行うことによってワーク2の位置を制御するようにしてもよい。
また、制御部25は、電極間ギャップ長可変機構9のサーボモータ92をオープンループ制御することにより、電極間ギャップ長Lの大きさを制御する。あるいは、電極間ギャップ長Lを検出するセンサーを設けてクローズドループ制御を行うことによって電極間ギャップ長Lを制御するようにしてもよい。
以下、プラズマ処理装置1がワーク2に対しプラズマ処理を施す場合のプラズマ処理装置1の一連の動作を順を追って説明する。
まず、作業者が第1のコンベア3のローラーコンベア8上にワーク2を載置する。ワーク2が第1のコンベア3上に載置されたら、第1のコンベア3および第2のコンベア4が作動し、ワーク2を第2のコンベア4上の所定位置へ搬送する。これにより、ワーク2は、ワーク計測部6内に入り、被処理面21が5個の高さ計測手段61と対向する。
この状態で、5個の高さ計測手段61が、被処理面21の四隅付近および中央の5箇所の高さを同時に計測する。各高さ計測手段61は、計測結果を示す信号を制御部25へ出力する。
制御部25は、各高さ計測手段61から入力された信号に基づいて、被処理面21内の5箇所の高さに関するデータ(情報)を得、このデータを記憶する。さらに、制御部25は、被処理面21内の5箇所の高さデータに基づいて、補間演算を行うことにより、被処理面21内の他の場所での高さデータを取得し、これを記憶する。以上により、制御部25は、被処理面21の全域の高さデータを得ることができる。
制御部25は、上記のようにして取得した被処理面21の高さデータに基づいて、電極間ギャップ長可変機構9を作動させることにより、電極間ギャップ長Lを微調整する。例えば、ワーク2の厚さが厚く、被処理面21の平均高さが高い場合には、電極間ギャップ長Lを大きくし、逆に、ワーク2の厚さが薄く、被処理面21の平均高さが低い場合には、電極間ギャップ長Lを小さくする。
次いで、制御部25は、現時点での電極間ギャップ長Lに対するインピーダンスを算出する。制御部25は、電極間ギャップ長Lからインピーダンスを算出するための演算式を予め記憶しており、この演算式を用いて、インピーダンスを算出する。
制御部25は、算出したインピーダンス値に基づいて、整合範囲内であるか否かを判断する。もし、インピーダンス値が、放電(着火)しにくいような値であった場合には、高周波電源12の出力を調整して、放電(着火)し易い状態とする。
次いで、上記のようにして調整された出力で高周波電源12が作動し、高周波電力を印加電極14に供給する。これにより、印加電極14は処理空間24に高周波電力を印加して高周波電界Eを形成する。そして、処理ガスを含む混合ガスが処理ガス供給口18から印加電極14の長手方向に沿って一様に噴出する。これにより、処理ガス供給口18から噴出された混合ガスのうち処理ガスは、処理空間24に形成された高周波電界Eに流入し、放電によって活性化されてプラズマとなる。
次いで、第2のコンベア4がワーク2を第1のコンベア3に向けて比較的遅い速度で搬送する。ワーク2は、第1のコンベア3に向けて搬送される間に処理空間24を通過するので、被処理面21全体が高周波電界Eによって走査される。上述したように高周波電界Eにはプラズマが発生しているので、被処理面21の全域にプラズマ処理が施される。
ワーク2が処理空間24を通過する間、制御部25は、被処理面21の高さデータに基づいて電極間ギャップ長可変機構9を作動させ、電極間ギャップ長Lを逐次調整する。すなわち、本実施形態では、制御部25は、電極間ギャップ長調整手段としての機能を有している。
制御部25は、被処理面21のうちの、プラズマが照射されている部位(処理空間24を通過している部分)の高さに応じて、電極間ギャップ長可変機構9を作動させ、被処理面21と上部電極部10との間に形成される放電ギャップの長さである放電ギャップ長(図4中のLで示す長さ)が可及的に一定となるように電極間ギャップ長Lを逐次調整しながら、ワーク2を搬送していき、被処理面21をプラズマ処理する。
本発明では、ワーク2に反りやうねり等の変形が生じていたり厚さの不均一があったりして被処理面21の高さが一定でなかった場合であっても、上記のような制御を行うことにより、放電ギャップ長Lをほぼ一定に保つことができるので、プラズマの発生態様が変化することなく安定するとともに、被処理面21に対するプラズマの当たり具合も一定に保たれるので、被処理面21の全体を、ムラを生じることなく均一にプラズマ処理することができる。
なお、ワーク2が処理空間24を通過する際、ガス回収部19a、19bは、処理空間24に存在するプラズマやキャリアガスを回収する。
処理空間24を通過したワーク2は、第1のコンベア3のローラーコンベア8まで搬送され、作業者は該搬送されたワーク2を取り出す。これにより、ワーク2に対するプラズマ処理が終了する。
本実施形態のプラズマ処理装置1では、ワーク2を載置するステージが必要ないので、プラズマ処理装置1を小型化することができ、大型のワーク2に対して処理を行う場合であっても、プラズマ処理装置1のレイアウトを容易にすることができる。
また、上述したプラズマ処理装置1では、第1のコンベア3および第2のコンベア4はローラーコンベア8を有し、該ローラーコンベア8によってワーク2を搬送するので、ワーク2を処理空間24に安定して搬送することができ、もってプラズマ処理の均一化をより充分に達成することができる。
また、上述したプラズマ処理装置1では、処理ガス供給口18が印加電極14および誘電体15を貫通して開口するので、混合ガスを処理空間24に発生する高周波電界に確実に供給することができ、安定したプラズマを形成することができる。
さらに、上述したプラズマ処理装置1では、ガス回収部19a、19bを設けたことにより、プラズマが拡散するのを確実に防止することができ、プラズマ処理領域の制御を容易に行うことができる。
以上、本発明のプラズマ処理装置について、図示の実施形態に基づいて説明したが、本発明は、これに限定されるものではなく、プラズマ処理装置を構成する各部は、同様の機能を発揮し得る任意の構成と置換することができる。
例えば、上記実施形態のプラズマ処理装置1における高さ計測手段61は、ワーク2を停止させた状態で被処理面21の高さを計測するが、このような構成に限らず、例えば、処理空間24の入口付近に高さ計測手段61を設け、ワーク2を搬送してこの高さ計測手段61の下を通過させながら被処理面21の高さを連続的に計測するようにしてもよい。
また、高さ計測手段61の構成数も本実施例のように5つである必要はない。例えば高さ計測手段61をワーク2の流れ方向に対して平行に3つ配置し、それらの直下を通過する際に計測するようにしても構わない。
また、上記実施形態のプラズマ処理装置1は、被処理面21の高さを計測する高さ計測手段61を備えていたが、本発明では、高さ計測手段61を備えないものでもよい。その場合には、別個の高さ計測装置を用い、予め別の工程(外段取り)として被処理面21の高さを計測しておき、その計測結果をプラズマ処理装置に入力するようにすればよい。
また、電極間ギャップ可変機構9の構成は、図2に示すような送りねじ93を用いたものに限らず、例えばカム機構、リンク機構などいかなる機構を利用するものでもよい。また、上部電極部10の両端にそれぞれ高さ調整機構を設け、上部電極部10の両端の高さを独立して制御可能とし、上部電極部10を下部電極11に対して傾斜させることができるように構成してもよい。
印加電極14に印加される電力は、高周波によるものに限られず、パルス波やマイクロ波によるものであってもよい。
印加電極14および下部電極11の材料としては、銅の他に、アルミニウムなどの金属単体、ステンレス、真鍮などの合金、金属間化合物などが挙げられる。
また、誘電体15の材料としては、SiOに限られず、例えば、ポリテトラフルオロエチレン、ポリエチレンテレフタレートなどのプラスチック、ガラス、Al、ZrO、TiOなどの金属酸化物、BaTiO(チタン酸バリウム)などの複酸化物などを用いることができる。ここで、25℃における比誘電率が10以上のものである誘電体15を用いれば、高周波電界Eにおいて、低電圧で高密度のプラズマを発生させることができ、処理効率が向上する。
使用可能な誘電体15の比誘電率の上限は特に限定されるものではないが、比誘電率が10〜100のものが好ましい。比誘電率が10以上である誘電体15には、ZrO、TiOなどの金属酸化物、BaTiOなどの複酸化物が該当する。
また、本発明のプラズマ処理装置が施すプラズマ処理の種類は、親水処理、撥水処理、アッシング処理、成膜処理、ダイシング処理またはエッチング処理などのいずれであってもよい。
本発明のプラズマ処理装置で用いられる処理ガスとしては、電界を印加することによってプラズマを発生するガスであれば、OガスやCFガスに限定されず、処理目的により種々のガスを用いることができる。
例えば、ワーク2の表面を撥水化する撥水処理では、処理ガスとして、C、C、CClF、SFなどのフッ素含有化合物ガスが用いられる。また、ワーク2の表面を親水化する親水処理では、処理ガスとして、O、HO、空気などの酸素元素含有化合物、N、NHなどの窒素元素含有化合物、SO、SOなどの硫黄元素含有化合物が用いられる。これにより、ワーク2の表面にカルボニル基、水酸基、アミノ基などの親水性官能基を形成させて表面エネルギーを高くし、親水性表面を得ることができる。また、アクリル酸、メタクリル酸などの親水基を有する重合性モノマーを用いて親水性重合膜を堆積することもできる。
ワーク2の表面に電気的、光学的機能を付加する成膜処理では、SiO、TiO、SnOなどの金属酸化物薄膜をワーク2の表面に形成するために、Si、Ti、Snなどの金属の金属−水素化合物、金属−ハロゲン化合物、金属アルコラートなどの処理ガスが用いられる。
エッチング処理やダイシング処理では、ハロゲン系ガスが用いられ、レジスト処理や有機物汚染の除去では、酸素系ガスが用いられる。表面クリーニングや表面改質では、Ar、Nなどの不活性ガスが処理ガスとして用いられ、不活性ガスのプラズマで表面クリーニングや表面改質が行われる。
キャリアガスとしても、Heガスに限られず、Ne、Ar、Xeなどの希ガス、Nガスなどが用いることができ、これらは単独でも2種以上を混合した形態でも用いられる。
また、本発明における被処理体としては、表示装置用のガラス基板に限られず、シリコンウエハなどの半導体基板、ポリエチレン、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリイミド、液晶ポリマー、エポキシ樹脂、アクリル樹脂などのプラスチック、セラミックなどから成る基板が挙げられる。
本発明のプラズマ処理装置の実施形態を示す斜視図。 図1に示すプラズマ処理装置におけるプラズマ処理部の内部構成を示す斜視図。 図2中から、上部電極部の外装のカバーと、電極間ギャップ長可変機構とを取り去った状態を示す斜視図。 図2中のI−I線での断面図。 図1に示すプラズマ処理装置のワーク計測部の内部構成を示す斜視図。 図1に示すプラズマ処理装置1の電気的接続関係を示すブロック図。
符号の説明
E……高周波電界 1……プラズマ処理装置 2……ワーク 21……被処理面 3……第1のコンベア 4……第2のコンベア 5……プラズマ処理部 6……ワーク計測部 61……高さ計測手段 7……ローラー 8……ローラーコンベア 9……電極間ギャップ長可変機構 91……リニアガイド 92……サーボモータ 93……送りねじ 94……可動片 95……固定部 10……上部電極部 11……下部電極 111……後端 112……前端 12……高周波電源 13……整合器 14……印加電極 141……後端 142……前端 15……誘電体 16……電極接続部 17……カバー 18……処理ガス供給口 19a、19b……ガス回収部 191a、191b……ガス回収口 20……処理ガス供給流路 22……同軸ケーブル 23……処理ガス供給部 24……処理空間 25……制御部 26……ガス流量コントローラー 27……排気流路

Claims (6)

  1. 電圧を印加した一対の電極間に供給した処理ガスを活性化させてプラズマを発生させ、該プラズマにより、被処理体における被処理面をプラズマ処理するプラズマ処理装置であって、
    前記被処理体を搬送する搬送手段で構成され、前記プラズマが前記被処理面に沿って相対的に移動するように前記電極と前記被処理体とを相対移動させる相対移動機構と、
    前記一対の電極間に形成される電極間ギャップの長さである電極間ギャップ長を変化させる電極間ギャップ長可変機構と、
    前記電極に対する前記被処理面の高さを計測する高さ計測手段と、
    前記電極に対する前記被処理面の高さに関する情報に基づいて前記電極間ギャップ長可変機構を作動させ、前記電極間ギャップ長を調整する電極間ギャップ長調整手段と
    前記処理ガスを供給する処理ガス供給口を有する処理ガス供給部とを備え、
    前記一対の電極は、前記被処理体の搬送経路を挟んで互いに対向して配置されているとともに、前記被処理体の搬送方向と直交する方向に沿って細長い形状をなし、
    前記処理ガス供給口は、一方の前記電極を貫通するとともに、前記搬送方向と直交する方向に沿って細長く開口し、
    前記高さ計測手段は、前記被処理面の四隅付近および中央部における高さを同時に計測可能なように、5個以上設けられており、
    前記被処理面のうちの、前記プラズマが照射される部位の前記電極に対する高さに応じて、前記電極間ギャップ長調整手段により前記電極間ギャップ長を調整しつつ、前記プラズマを前記被処理面に沿って相対的に移動させて前記被処理面をプラズマ処理することを特徴とするプラズマ処理装置。
  2. 前記電極間ギャップ長調整手段は、前記被処理面と前記被処理面に対向する電極との間に形成される放電ギャップの長さである放電ギャップ長が可及的に一定となるように、前記電極間ギャップ長を調整する請求項1に記載のプラズマ処理装置。
  3. 前記一対の電極のうち、前記被処理面側に位置する電極は、前記電極間ギャップ長可変機構の作動によって移動し、前記被処理面と反対側に位置する電極は、固定的に設置されている請求項1または2に記載のプラズマ処理装置。
  4. 前記相対移動機構は、前記被処理体を搬送する搬送手段で構成され、
    前記一対の電極は、前記被処理体の搬送経路を挟んで互いに対向して配置されているとともに、前記被処理体の搬送方向と直交する方向に沿って細長い形状をなしている請求項1ないし3のいずれかに記載のプラズマ処理装置。
  5. 一方の電極と前記被処理体との間の空間に供給された処理ガスを回収するガス回収部をさらに備える請求項1ないし4のいずれかに記載のプラズマ処理装置。
  6. 前記搬送手段は、ローラーコンベアである請求項1ないし5のいずれかに記載のプラズマ処理装置。
JP2004325551A 2004-11-09 2004-11-09 プラズマ処理装置 Expired - Fee Related JP4529647B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004325551A JP4529647B2 (ja) 2004-11-09 2004-11-09 プラズマ処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004325551A JP4529647B2 (ja) 2004-11-09 2004-11-09 プラズマ処理装置

Publications (2)

Publication Number Publication Date
JP2006134830A JP2006134830A (ja) 2006-05-25
JP4529647B2 true JP4529647B2 (ja) 2010-08-25

Family

ID=36728163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004325551A Expired - Fee Related JP4529647B2 (ja) 2004-11-09 2004-11-09 プラズマ処理装置

Country Status (1)

Country Link
JP (1) JP4529647B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576983B2 (ja) * 2004-11-09 2010-11-10 セイコーエプソン株式会社 プラズマ処理装置
JP4898413B2 (ja) * 2006-12-15 2012-03-14 三菱重工業株式会社 真空処理装置
JP2010212427A (ja) * 2009-03-10 2010-09-24 Sharp Corp プラズマ処理装置
JP5184431B2 (ja) * 2009-04-28 2013-04-17 シャープ株式会社 Mocvd装置
US10049859B2 (en) 2009-07-08 2018-08-14 Aixtron Se Plasma generating units for processing a substrate
JP5823338B2 (ja) * 2012-04-10 2015-11-25 小島プレス工業株式会社 プラズマcvd装置
JP6941531B2 (ja) * 2017-10-05 2021-09-29 積水化学工業株式会社 表面処理装置
JPWO2020250787A1 (ja) * 2019-06-13 2020-12-17

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003199A1 (fr) * 1994-07-26 1996-02-08 Ceca S.A. Agents zeolitiques de desulfuration et leur application au traitement des gaz contenant du co¿2?
JP2003231969A (ja) * 2002-02-08 2003-08-19 Konica Corp 製膜装置
JP2004172243A (ja) * 2002-11-19 2004-06-17 Nec Kansai Ltd ドライエッチング装置
JP2004311256A (ja) * 2003-04-08 2004-11-04 Sekisui Chem Co Ltd 常圧プラズマ処理装置
JP2006032800A (ja) * 2004-07-20 2006-02-02 Mitsubishi Heavy Ind Ltd プラズマ処理装置、太陽電池及び太陽電池の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227875A (ja) * 1995-02-17 1996-09-03 Seiko Epson Corp プラズマ状態検出方法及びその装置、プラズマ制御方法及びその装置並びにエッチング終点検出方法及びその装置
JP3455610B2 (ja) * 1995-06-09 2003-10-14 森 勇蔵 多孔体の改質処理方法およびその装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003199A1 (fr) * 1994-07-26 1996-02-08 Ceca S.A. Agents zeolitiques de desulfuration et leur application au traitement des gaz contenant du co¿2?
JP2003231969A (ja) * 2002-02-08 2003-08-19 Konica Corp 製膜装置
JP2004172243A (ja) * 2002-11-19 2004-06-17 Nec Kansai Ltd ドライエッチング装置
JP2004311256A (ja) * 2003-04-08 2004-11-04 Sekisui Chem Co Ltd 常圧プラズマ処理装置
JP2006032800A (ja) * 2004-07-20 2006-02-02 Mitsubishi Heavy Ind Ltd プラズマ処理装置、太陽電池及び太陽電池の製造方法

Also Published As

Publication number Publication date
JP2006134830A (ja) 2006-05-25

Similar Documents

Publication Publication Date Title
KR100530821B1 (ko) 플라즈마 처리 장치
JP3823037B2 (ja) 放電プラズマ処理装置
WO2013088677A1 (ja) プラズマ処理装置
JP4529647B2 (ja) プラズマ処理装置
JP5103956B2 (ja) プラズマ処理装置
KR101297711B1 (ko) 플라즈마 처리장치 및 플라즈마 처리방법
KR100523473B1 (ko) 기판처리장치 및 슬릿노즐
JP4576983B2 (ja) プラズマ処理装置
JP5115466B2 (ja) プラズマ処理装置
US20050040145A1 (en) Plasma processing method and apparatus
JP5239178B2 (ja) プラズマ処理装置
JP5263202B2 (ja) プラズマ処理装置
JP3722733B2 (ja) 放電プラズマ処理装置
JP2009099361A (ja) プラズマプロセス装置及びプラズマ処理方法
JP2007184163A (ja) プラズマ処理装置
JP2008084693A (ja) プラズマ処理装置
JP2006134829A (ja) プラズマ処理装置
JP2003142298A (ja) グロー放電プラズマ処理装置
JP2007177258A (ja) プラズマ処理装置
JP2006318762A (ja) プラズマプロセス装置
KR100725785B1 (ko) 플라스마 에칭 장치
JP4504723B2 (ja) 放電プラズマ処理装置及び放電プラズマ処理方法
KR102196274B1 (ko) 성막 장치 및 성막 방법
US20130213798A1 (en) Magnetron sputtering device, method for controlling magnetron sputtering device, and film forming method
JP2008066136A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees