JP4523899B2 - High-strength hot-rolled steel sheet with excellent stretch flangeability and fatigue characteristics - Google Patents

High-strength hot-rolled steel sheet with excellent stretch flangeability and fatigue characteristics Download PDF

Info

Publication number
JP4523899B2
JP4523899B2 JP2005262731A JP2005262731A JP4523899B2 JP 4523899 B2 JP4523899 B2 JP 4523899B2 JP 2005262731 A JP2005262731 A JP 2005262731A JP 2005262731 A JP2005262731 A JP 2005262731A JP 4523899 B2 JP4523899 B2 JP 4523899B2
Authority
JP
Japan
Prior art keywords
mass
inclusions
less
steel sheet
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005262731A
Other languages
Japanese (ja)
Other versions
JP2007077412A (en
Inventor
勝浩 笹井
渡 大橋
研一 山本
浩之 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005262731A priority Critical patent/JP4523899B2/en
Publication of JP2007077412A publication Critical patent/JP2007077412A/en
Application granted granted Critical
Publication of JP4523899B2 publication Critical patent/JP4523899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、伸びフランジ性と疲労特性に優れた高強度熱延鋼板に関するものである。   The present invention relates to a high-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics.

自動車部品の内、特に足回り系と呼ばれるフレーム類やアーム類などには、高強度熱延鋼板が広く用いられている。これらの部品には、走行中の振動に対する耐久性の観点から高い疲労特性が要求される。こうした要求に対しては、幾つかの鋼板が提案されている。   High-strength hot-rolled steel sheets are widely used for automobile parts, especially frames and arms called suspension systems. These parts are required to have high fatigue characteristics from the viewpoint of durability against vibration during traveling. Several steel plates have been proposed for such a requirement.

例えば、(特許文献1)には、フェライト相とマルテンサイト相の複合組織鋼板中に微細なCuの析出または固溶体を分散させた鋼板(一般にDP鋼板と呼称される)が提案されている。   For example, (Patent Document 1) proposes a steel plate (generally called a DP steel plate) in which fine Cu precipitates or solid solutions are dispersed in a ferrite-structure and martensite-phase composite structure steel sheet.

こうしたDP鋼板は、強度と延性のバランスや疲労特性には優れるものの、穴広げ試験で評価される伸びフランジ性には劣ることが知られている。その理由の一つは、DP鋼板は、軟質なフェライト相と硬質なマルテンサイト相の複合体であるため、穴広げ加工時に両相の境界部が変形に追随できず、破断の起点になり易いからであると考えられる。   Such DP steel sheet is known to be inferior in stretch flangeability evaluated by a hole expansion test, although it is excellent in the balance between strength and ductility and fatigue characteristics. One of the reasons is that DP steel sheet is a composite of a soft ferrite phase and a hard martensite phase, so the boundary between both phases cannot follow deformation during hole expansion processing, and it tends to be the starting point of fracture. It is thought that it is from.

これに対して伸びフランジ性にも疲労特性にも優れた熱延鋼板の提案がなされている。(特許文献2)がその一例で、鋼板の組織をベイナイト相主体とし、構成するその他の相との硬度差を小さくし、更に、粗大な炭化物の生成を回避することなどを要旨とする。   In contrast, hot-rolled steel sheets having excellent stretch flangeability and fatigue characteristics have been proposed. One example is (Patent Document 2), in which the structure of the steel sheet is mainly composed of a bainite phase, the difference in hardness from other constituent phases is reduced, and the formation of coarse carbides is avoided.

特開平11−199973号公報Japanese Patent Laid-Open No. 11-199973 特開2001−200331号公報Japanese Patent Laid-Open No. 2001-200331

(特許文献2)に開示されている様な、鋼板組織をベイナイト相主体とし、粗大な炭化物の生成を抑制した熱延鋼板は、確かに優れた伸びフランジ性を示すものの、Cuを含有したDP鋼板に比べて、その疲労特性は必ずしも優れているとは言えない。また、粗大な炭化物を抑制しただけでは、厳しい穴広げ加工を行った場合に亀裂の発生を抑制できない。   Although the hot-rolled steel sheet having a steel sheet structure mainly composed of bainite phase and suppressing the formation of coarse carbides as disclosed in (Patent Document 2) certainly exhibits excellent stretch flangeability, DP containing Cu It cannot be said that the fatigue properties are necessarily superior to those of steel plates. Moreover, if only coarse carbides are suppressed, generation of cracks cannot be suppressed when severe hole expansion processing is performed.

本発明者らの研究によれば、これらの原因は、鋼板中の酸化物を主体とする介在物の存在にあることが分かった。   According to the studies by the present inventors, it has been found that these causes are the inclusions mainly composed of oxides in the steel sheet.

繰り返し変形を受けると鋼板の表層またはその近傍に存在する粗大なクラスター状介在物の周辺に内部欠陥が発生し、亀裂として伝播することによって疲労特性を劣化させると共に、やはり、粗大なクラスター状介在物は、穴広げ加工時の割れ発生の起点となり易いためである。したがって、鋼中の介在物をできる限り微細球状化することが望ましい。   When subjected to repeated deformation, internal defects are generated around the coarse cluster inclusions on or near the surface of the steel sheet, and the fatigue properties are deteriorated by propagating as cracks. This is because it is easy to become a starting point of crack generation during hole expansion processing. Therefore, it is desirable to make the inclusions in the steel as fine as possible.

一般に、鋼の脱酸はAlを用いて行われるが、Al脱酸により生成したアルミナ系介在物はクラスター化し易く、粗大な介在物として鋼中に残留する。これが、上記のように疲労特性と伸びフランジ性(穴広げ加工性)を低下させていると考えられるが、介在物微細球状化制御の視点にたって伸びフランジ性と疲労特性に優れる熱延鋼板を提案した例は見られない。   Generally, deoxidation of steel is performed using Al, but alumina inclusions generated by Al deoxidation are easily clustered and remain in the steel as coarse inclusions. This is considered to reduce the fatigue characteristics and stretch flangeability (hole expanding workability) as described above, but hot rolled steel sheets with excellent stretch flangeability and fatigue characteristics from the viewpoint of inclusion spheroidization control. The proposed example is not seen.

このような状況を鑑み、本発明者らは、(a)粗大化し易いアルミナ系介在物を生成させないために、殆どAl脱酸することなく、(b)介在物がクラスター化して粗大にならず、且つ、(c)割れ発生の起点になり難い球状介在物へと改質する脱酸方法、および、(d)疲労特性を劣化させない添加元素の解明を中心に鋭意研究を進め、更に、化学成分や製造方法にも検討を加えて本発明を完成させた。   In view of such a situation, the present inventors do not produce (a) alumina inclusions that are likely to be coarsened, so that Al is hardly deoxidized, and (b) inclusions are not clustered and coarsened. In addition, (c) deoxidation method that modifies into spherical inclusions that do not easily start cracking, and (d) elucidation of additive elements that do not degrade fatigue properties The present invention was completed by examining the components and the production method.

その要旨は、以下の通りである。   The summary is as follows.

(1)C:0.03〜0.10質量%、Si:0.05〜1.5質量%、Mn:1.0〜3.0質量%、P:0.05質量%以下、S:0.01質量%以下、N:0.0005〜0.01質量%、酸可溶Al:0.005質量%以下、Ti:0.005質量%以上、NdもしくはPrの1種または2種の合計:0.0002〜0.04質量%含有し、更に、下記式を満足し、
−0.05≦{Ti−(48/12)×C−(48/14)×N−(48/32)×S}≦0.2
残部が鉄および不可避的不純物からなる鋼であり、その鋼中には、平均の介在物組成で、Nd酸化物もしくはPr酸化物の1種または2種の合計が3〜90質量%、Ti酸化物が10〜97質量%、Alが50質量%以下の範囲の介在物を含み、かつ、介在物の個数割合で、50%以上が少なくとも球状、紡錘状の介在物を含み、かつ、0.5μm以上10μm以下の介在物が1000個/cm 以上、100000個/cm 以下存在することを特徴とする伸びフランジ性と疲労特性に優れた高強度熱延鋼板。
(1) C: 0.03-0.10 mass%, Si: 0.05-1.5 mass%, Mn: 1.0-3.0 mass%, P: 0.05 mass% or less, S: 0.01% by mass or less, N: 0.0005 to 0.01% by mass, acid-soluble Al: 0.005% by mass or less, Ti: 0.005% by mass or more, one or two of Nd or Pr total: 0.0002 to 0.04 wt% has free and further, satisfies the following expression,
−0.05 ≦ {Ti− (48/12) × C− (48/14) × N− (48/32) × S} ≦ 0.2
The balance is steel composed of iron and unavoidable impurities. In the steel, the total inclusion composition of one or two of Nd oxide or Pr oxide is 3 to 90% by mass, Ti oxide things 10-97 mass%, see containing inclusions ranging Al 2 O 3 is less 50 mass%, and, in the number ratio of inclusions comprises at least spherical, fusiform inclusions than 50%, A high-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics, characterized in that inclusions of 0.5 μm or more and 10 μm or less are present at 1000 / cm 2 or more and 100,000 / cm 2 or less .

(2)C:0.03〜0.10質量%、Si:0.05〜1.5質量%、Mn:1.0〜3.0質量%、P:0.05質量%以下、S:0.01質量%以下、N:0.0005〜0.01質量%、酸可溶Al:0.005質量%以下、Ti:0.005質量%以上、NdもしくはPrの1種または2種の合計:0.0002〜0.04質量%、および、Nbを含有し、更に、下記式を満足し、
−0.05≦{Ti+(48/93)×Nb−(48/12)×C−(48/14)×N−(48/32)×S}≦0.2
残部が鉄および不可避的不純物からなる鋼であり、その鋼中には、平均の介在物組成で、Nd酸化物もしくはPr酸化物の1種または2種の合計が3〜90質量%、Ti酸化物が10〜97質量%、Alが50質量%以下の範囲の介在物を含み、かつ、介在物の個数割合で、50%以上が少なくとも球状、紡錘状の介在物を含み、かつ、0.5μm以上10μm以下の介在物が1000個/cm 以上、100000個/cm 以下存在することを特徴とする伸びフランジ性と疲労特性に優れた高強度熱延鋼板。
(2) C: 0.03-0.10 mass%, Si: 0.05-1.5 mass%, Mn: 1.0-3.0 mass%, P: 0.05 mass% or less, S: 0.01% by mass or less, N: 0.0005 to 0.01% by mass, acid-soluble Al: 0.005% by mass or less, Ti: 0.005% by mass or more, one or two of Nd or Pr Total: 0.0002 to 0.04 % by mass and Nb, further satisfying the following formula,
−0.05 ≦ {Ti + (48/93) × Nb− (48/12) × C− (48/14) × N− (48/32) × S} ≦ 0.2
The balance is steel composed of iron and unavoidable impurities. In the steel, the total inclusion composition of one or two of Nd oxide or Pr oxide is 3 to 90% by mass, Ti oxide things 10-97 mass%, see containing inclusions ranging Al 2 O 3 is less 50 mass%, and, in the number ratio of inclusions comprises at least spherical, fusiform inclusions than 50%, A high-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics, characterized in that inclusions of 0.5 μm or more and 10 μm or less are present at 1000 / cm 2 or more and 100,000 / cm 2 or less .

)Cu:0.2〜2.0質量%、Ni:0.1〜1.0質量%を含有することを特徴とする前記(1)または(2)に記載の伸びフランジ性と疲労特性に優れた高強度熱延鋼板。 ( 3 ) Stretch flangeability and fatigue as described in (1) or (2) above, containing Cu: 0.2-2.0 mass%, Ni: 0.1-1.0 mass% High-strength hot-rolled steel sheet with excellent characteristics.

)鋼板中のベイニティック・フェライト相の面積率が80〜100%であることを特徴とする前記(1)〜(3)のいずれかに記載の伸びフランジ性と疲労特性に優れた高強度熱延鋼板。 ( 4 ) The area ratio of the bainitic ferrite phase in the steel sheet is 80 to 100%, which is excellent in stretch flangeability and fatigue characteristics according to any one of the above (1) to (3) High strength hot rolled steel sheet.

本発明の方法によれば、伸びフランジ性と疲労特性に優れた高強度熱延鋼板を得ることができる。   According to the method of the present invention, a high-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics can be obtained.

まず、本発明を完成するに至った実験について説明する。   First, the experiment that led to the completion of the present invention will be described.

本発明者らは、C:0.05質量%、Si:0.05質量%、Mn:1.5質量%、P:0.02質量%以下、S:0.001質量%を含有し残部がFeである溶鋼に対して様々な元素を用いて脱酸を行い、更に、TiやNbの添加を経て鋼塊を製造した。   The present inventors contain C: 0.05% by mass, Si: 0.05% by mass, Mn: 1.5% by mass, P: 0.02% by mass or less, S: 0.001% by mass, and the balance The molten steel in which Fe is Fe was deoxidized using various elements, and a steel ingot was manufactured through addition of Ti and Nb.

得られた鋼塊を熱間圧延して4mmの熱延鋼板とした。これらの鋼板を、穴広げ試験および疲労試験に供すると共に、鋼板中の介在物粒径分布、形態および平均組成を調査した。   The obtained steel ingot was hot-rolled to obtain a 4 mm hot-rolled steel sheet. These steel plates were subjected to a hole expansion test and a fatigue test, and the inclusion particle size distribution, morphology and average composition in the steel plates were investigated.

その結果、Alで殆ど脱酸することなく、少なくともNd、Prを添加して脱酸した鋼板が最も伸びフランジ性と疲労特性に優れること、その理由は、上記脱酸により生成した球状介在物が鋼板中に微細分散するため、繰り返し変形時や穴広げ加工時に介在物が割れ発生の起点や亀裂伝播の経路となり難いためであることを見いだした。   As a result, the steel sheet deoxidized by adding at least Nd and Pr with almost no deoxidation with Al is most excellent in stretch flangeability and fatigue characteristics, because the spherical inclusions produced by the deoxidation are It was found that the inclusions are difficult to become the starting point of crack generation and the path of crack propagation during repetitive deformation and hole expansion because of fine dispersion in the steel sheet.

これを基に、熱延条件の検討を行って、本発明を完成させるに至った。   Based on this, the hot rolling conditions were studied and the present invention was completed.

以下に、本発明の限定理由を述べる。まず、化学成分の限定理由について述べる。   The reasons for limiting the present invention will be described below. First, the reasons for limiting chemical components will be described.

Cは、鋼板の強度を確保するために必須の元素であり、高強度鋼板を得るためには、少なくとも0.03質量%が必要である。しかし、過剰に含まれると、後述するように、加工性の向上を目的としてTiやNbによる炭化物を生成させたり、冷却条件を駆使しても、伸びフランジ特性に好ましくないセメンタイト相の生成が避けられないので、0.10質量%以下とする。   C is an essential element for securing the strength of the steel sheet, and at least 0.03 mass% is necessary to obtain a high-strength steel sheet. However, if excessively contained, the formation of cementite phase, which is undesirable for stretch flange characteristics, is avoided even if carbides are formed by Ti or Nb for the purpose of improving workability or cooling conditions are used as described later. Therefore, the content is 0.10% by mass or less.

Siは、伸びフランジ性を劣化させることなく強度を確保するのに有効な元素であり、少なくとも0.05質量%が必要であるが、過剰に含まれると、伸びフランジ性に好ましくないポリゴナル・フェライト相を生成しやすくなるので、その上限は1.5質量%とする。   Si is an element effective for securing the strength without deteriorating the stretch flangeability. At least 0.05% by mass is necessary, but if it is excessively contained, it is not preferable for the stretch ferrite property. Since it becomes easy to produce | generate a phase, the upper limit shall be 1.5 mass%.

Mnは、C、Siとともに鋼板の高強度化に有効な元素であり、1.0質量%以上は含有させる必要があるが、3.0質量%を超えて含有させると延性が劣化するため、上限を3.0質量%とする。   Mn is an element effective for increasing the strength of a steel sheet together with C and Si, and it is necessary to contain 1.0% by mass or more, but if it exceeds 3.0% by mass, ductility deteriorates. The upper limit is 3.0% by mass.

Pは、固溶強化元素として有効であるが、偏析による加工性の劣化が懸念されるので、0.05質量%以下にする必要がある。Pの下限値は0質量%を含む。   P is effective as a solid solution strengthening element, but since there is a concern about deterioration of workability due to segregation, it is necessary to make it 0.05% by mass or less. The lower limit value of P includes 0% by mass.

Sは、MnSなどの介在物を形成して伸びフランジ性を劣化させる他、Cを炭化物とする目的で含有させるTiと結合してその歩留まりを低下させるなどの有害な作用をする。したがって、できるだけ抑制すべきであるが、0.01質量%以下であれば許容される。Sの下限値は0質量%を含む。   In addition to forming inclusions such as MnS and deteriorating stretch flangeability, S has a harmful effect such as combining with Ti contained for the purpose of making C a carbide and reducing its yield. Therefore, it should be suppressed as much as possible, but is acceptable if it is 0.01% by mass or less. The lower limit value of S includes 0% by mass.

Nは、Cを炭化物とする目的で含有させるTiと結合してその歩留まりを低下させる。よって、できるだけ抑制すべきであるが0.01質量%以下であれば許容される。一方、0.0005質量%未満とするにはコストがかかるので、0.0005質量%を下限とする。   N combines with Ti to be contained for the purpose of converting C into carbide and lowers the yield. Therefore, it should be suppressed as much as possible, but is acceptable if it is 0.01% by mass or less. On the other hand, since it costs to make it less than 0.0005 mass%, 0.0005 mass% is made the lower limit.

酸可溶Alは、その酸化物がクラスター化して粗大になり易いため、極力抑制することが望ましい。しかしながら、予備的な脱酸材として0.005質量%までは用いることが許容される。これは、酸可溶Al濃度が0.005質量%超になると、介在物中のAl含有率が50質量%を超え介在物のクラスター化が起こるためである。 It is desirable to suppress acid-soluble Al as much as possible because the oxide is likely to cluster and become coarse. However, it is allowed to use up to 0.005% by mass as a preliminary deoxidizer. This is because when the acid-soluble Al concentration exceeds 0.005% by mass, the content of Al 2 O 3 in the inclusions exceeds 50% by mass and inclusions are clustered.

クラスター化防止の観点から、酸可溶Al濃度は低い方が良く、下限値は0質量%を含む。また、酸可溶Al濃度とは、酸に溶解したAl量を測定したもので、溶存Alは酸に溶解し、Alは酸に溶解しないことを利用した分析方法である。 From the viewpoint of preventing clustering, the acid-soluble Al concentration should be low, and the lower limit value includes 0% by mass. The acid-soluble Al concentration is an analytical method that measures the amount of Al dissolved in an acid, and utilizes the fact that dissolved Al dissolves in an acid and Al 2 O 3 does not dissolve in an acid.

Tiは(本発明ではAlで殆ど脱酸しないため)、脱酸材として0.005質量%以上必要である。Ti濃度が0.005質量%未満では、介在物中のTi酸化物含有率が10質量%未満となり、疲労特性や伸びフランジ性に良い介在物組成、形態および粒径に制御できないためである。   Since Ti is hardly deoxidized with Al in the present invention, 0.005% by mass or more is necessary as a deoxidizing material. This is because when the Ti concentration is less than 0.005 mass%, the Ti oxide content in the inclusions is less than 10 mass%, and the inclusion composition, form, and particle size that are good in fatigue characteristics and stretch flangeability cannot be controlled.

また、TiやNbは、C、SおよびNを析出物として固定することによって、鋼板の加工性を向上させる働きをする。一方、TiやNbが必要以上に添加された場合には、それらは、フリーのTiやフリーのNbとして鋼中に存在し、再結晶温度を上昇させ、熱間加工組織が存在し易くなり延性を損ねる。   Ti and Nb function to improve the workability of the steel sheet by fixing C, S and N as precipitates. On the other hand, when Ti or Nb is added more than necessary, they are present in the steel as free Ti or free Nb, which raises the recrystallization temperature and facilitates the presence of a hot-worked structure. Damage.

そして、その最適なTiやNbの添加量の範囲は、各元素の化学当量を用いて記述される以下の中辺を指標として用いると、適切に表すことができる。   And the range of the optimal addition amount of Ti and Nb can be appropriately expressed by using the following middle side described using the chemical equivalent of each element as an index.

ここで、以下の中辺は、C、NやSと結合して炭化物、窒化物、硫化物となっていない、フリーのTi量とNb量の合計を意味しており、ここでは、その合計を、相当Ti量(Nbは上記のTiと同様の性質を有するため、Nb量はTi量に換算している。)で表している。   Here, the following middle side means the total of the free Ti amount and Nb amount that are not combined with C, N or S to form carbides, nitrides or sulfides. Is represented by the equivalent Ti amount (Nb amount is converted to Ti amount because Nb has the same properties as Ti).

すなわち、この中辺の値が−0.05未満では、延性、伸びフランジ性が劣り、また、0.2を超えると、延性が劣化する。以上の理由から、
−0.05≦{Ti+(48/93)×Nb−(48/12)×C−(48/14)×N−(48/32)×S}≦0.2
の関係を満たすように限定する。
That is, if the value of the middle side is less than −0.05, the ductility and stretch flangeability are inferior, and if it exceeds 0.2, the ductility deteriorates. For the above reasons,
−0.05 ≦ {Ti + (48/93) × Nb− (48/12) × C− (48/14) × N− (48/32) × S} ≦ 0.2
It is limited to satisfy the relationship.

尚、Nbを添加しない場合は、Nb量を0とおいた以下の関係を満たすように限定する。
−0.05≦{Ti−(48/12)×C−(48/14)×N−(48/32)×S}≦0.2
When Nb is not added, the Nb content is limited to 0 so that the following relationship is satisfied.
−0.05 ≦ {Ti− (48/12) × C− (48/14) × N− (48/32) × S} ≦ 0.2

Nd、Prは、Ti脱酸により生成したクラスター状のTi酸化物(例えば、Ti,Ti)を改質し、微細球状で疲労特性や穴広げ性に良好なNd酸化物(例えば、Nd、NdO)−Pr酸化物(例えば、Pr、PrO)−Ti酸化物系介在物、Nd酸化物−Ti酸化物系介在物、あるいは、Pr酸化物−Ti酸化物系介在物にする効果を有している(上記介在物の中にはAl予備脱酸や耐火物溶損の影響によりAlを一部含有する場合もある。)。 Nd and Pr modify cluster-like Ti oxides (eg, Ti 2 O 3 , Ti 3 O 5 ) produced by Ti deoxidation, and are fine spherical and have good fatigue characteristics and hole expansion properties. (e.g., Nd 2 O 3, NdO 2 ) -Pr oxide (e.g., Pr 2 O 3, PrO 2 ) -Ti oxide inclusions, Nd oxide -Ti oxide inclusions, or, Pr oxide -It has the effect of making a Ti oxide inclusion (some of the inclusions may contain a part of Al 2 O 3 due to the effect of Al preliminary deoxidation or refractory melting).

このような介在物改質効果を得るためには、NdもしくはPrの1種または2種の合計濃度を、0.0002質量%以上0.04質量%以下にする必要がある。NdもしくはPrの1種または2種の合計濃度が0.0002質量%未満では、Ti酸化物を改質できず、0.04質量%超ではTi酸化物が還元され、殆ど、Nd酸化物やPr酸化物になり、制御したい複合介在物となり難い。   In order to obtain such an inclusion modification effect, the total concentration of one or two of Nd and Pr needs to be 0.0002 mass% or more and 0.04 mass% or less. If the total concentration of one or two of Nd or Pr is less than 0.0002% by mass, the Ti oxide cannot be modified, and if it exceeds 0.04% by mass, the Ti oxide is reduced. It becomes Pr oxide and is difficult to become a composite inclusion to be controlled.

また、選択元素として、Cu、Niが挙げられる。   Moreover, Cu and Ni are mentioned as a selective element.

Cuは、固溶強化元素または析出強化元素として鋼板の高強度化に利用できるため、上記の元素に加えて、更に添加することで疲労強度を一層向上させることができるため、好ましい。   Since Cu can be used as a solid solution strengthening element or a precipitation strengthening element to increase the strength of the steel sheet, it is preferable because the fatigue strength can be further improved by further adding to the above elements.

しかし、0.2質量%以上を添加しないと、その効果は少なく、コスト上昇を招くのみであるので、添加する場合には、0.2質量%を下限値とすることが好ましい。一方、2.0質量%を超えて含有させると、熱延後の鋼板表面性状を悪化させるので、2.0質量%を上限とすることが好ましい。   However, if 0.2% by mass or more is not added, the effect is small and only the cost is increased. Therefore, in the case of adding 0.2% by mass, the lower limit is preferably set. On the other hand, if the content exceeds 2.0% by mass, the surface property of the steel sheet after hot rolling is deteriorated, so it is preferable that the upper limit is 2.0% by mass.

Niは、上記Cuによる熱延表面性状悪化を緩和する効果があり、Cuの半分程度を目安に添加することが望ましい。したがって、その下限値は0.1質量%である。一方、1.0質量%を超えて添加しても、その効果は飽和し、コストの上昇につながるので、1.0質量%を上限とすることが好ましい。   Ni has an effect of relieving the deterioration of hot rolled surface properties caused by Cu, and it is desirable to add about half of Cu as a guide. Therefore, the lower limit is 0.1% by mass. On the other hand, even if added over 1.0% by mass, the effect is saturated and leads to an increase in cost. Therefore, it is preferable to set the upper limit to 1.0% by mass.

次に、鋼板中における介在物の存在条件について述べる。   Next, conditions for inclusions in the steel sheet will be described.

伸びフランジ性と疲労特性に優れた鋼板を得るためは、鋼板中の介在物は、割れ発生の起点や割れ伝播の経路となり難いように、球状で微細に分散していることが重要である。 本発明の鋼板における介在物の平均組成、形態および粒径分布を調査した。   In order to obtain a steel sheet excellent in stretch flangeability and fatigue characteristics, it is important that inclusions in the steel sheet are spherically and finely dispersed so that cracks are unlikely to become a starting point of crack generation or a path of crack propagation. The average composition, morphology, and particle size distribution of inclusions in the steel sheet of the present invention were investigated.

介在物の平均組成は、ランダムに選んだ複数個(例えば、20個程度)の介在物を組成分析し、平均濃度を算出することにより求めることができる。   The average composition of inclusions can be obtained by analyzing the composition of a plurality of randomly selected inclusions (for example, about 20) and calculating the average concentration.

その結果、介在物の平均組成で、Nd酸化物もしくはPr酸化物の1種または2種の合計が3〜90質量%以上、Ti酸化物が10〜97質量%、Alが50質量%以下の範囲となるように組成制御された鋼板では、伸びフランジ性と疲労特性が向上することが判明した。 As a result, with the average composition of inclusions, the total of one or two of Nd oxide or Pr oxide is 3 to 90% by mass, Ti oxide is 10 to 97% by mass, and Al 2 O 3 is 50% by mass. It has been found that the stretch flangeability and fatigue characteristics are improved in the steel sheet whose composition is controlled to be in the range of% or less.

平均組成で、Nd酸化物もしくはPr酸化物の1種または2種の合計が3質量%未満では、NdやPr添加による介在物改質効果が小さく、反対に、Nd酸化物もしくはPr酸化物の1種または2種の合計が90質量%超では、過改質となり、何れの場合も、介在物は微細球状化しないため、平均組成でNd酸化物もしくはPr酸化物の1種または2種の合計の下限値は3質量%、上限値は90質量%とした。   When the total of one or two of Nd oxide or Pr oxide is less than 3% by mass with an average composition, the inclusion modification effect due to the addition of Nd or Pr is small. If the total of one or two types exceeds 90% by mass, over-reformation occurs, and in any case, inclusions do not become fine spheroidized, so that one or two types of Nd oxide or Pr oxide are used in the average composition. The total lower limit was 3% by mass, and the upper limit was 90% by mass.

また、平均組成で、Ti酸化物が97質量%超では、Nd酸化物やPr酸化物による改質が不十分であり、反対に、Ti酸化物が10質量%未満でも、介在物の微細化球状化が困難となるため、平均組成でTi酸化物の上限値を97質量%、下限値を10質量%とした。   In addition, when the Ti oxide is more than 97% by mass in average composition, the modification with Nd oxide or Pr oxide is insufficient, and conversely, even if the Ti oxide is less than 10% by mass, the inclusions are refined. Since spheroidization becomes difficult, the upper limit value of the Ti oxide was 97% by mass and the lower limit value was 10% by mass in the average composition.

更に、介在物中にAlを含有しないことが微細球状化の点から好ましいが、Al予備脱酸や耐火物溶損の影響により、介在物中のAl含有率が高くなることがある。この場合、平均組成で介在物中には50質量%以下に限ってAlの混入が許容できる。 Furthermore, it is preferable not to contain Al 2 O 3 in the inclusions from the viewpoint of fine spheroidization, but the Al 2 O 3 content in the inclusions is increased due to the influence of Al preliminary deoxidation and refractory melting. Sometimes. In this case, the inclusion of Al 2 O 3 is allowed in the inclusions with an average composition limited to 50% by mass or less.

下限値は0質量%を含む。これは、介在物中のAl含有率が50質量%を超えると、NdやPrによる改質効果が損なわれ、介在物のクラスター化が進行してしまうためである。 The lower limit value includes 0% by mass. This is because when the Al 2 O 3 content in the inclusions exceeds 50% by mass, the modification effect by Nd and Pr is impaired, and the inclusions are clustered.

なお、本発明において、上記組成の酸化物以外にスラグや耐火物などから混入する不可避的不純物酸化物は許容される。   In the present invention, inevitable impurity oxides mixed from slag, refractory, etc. are allowed in addition to the oxides having the above composition.

介在物の形態は、ランダムに選んだ複数個の介在物を光学顕微鏡で観察することができる。例えば、ランダムに選んだ100個の介在物を光学顕微鏡の100倍と1000倍で観察し、球状、紡錘状、クラスター状とその他に分類し、球状と紡錘状の介在物の個数割合を求めることが推奨される。   Regarding the form of inclusions, a plurality of inclusions selected at random can be observed with an optical microscope. For example, 100 randomly selected inclusions are observed at 100 times and 1000 times of an optical microscope, and are classified into spherical, spindle, cluster and others, and the number ratio of spherical and spindle inclusions is obtained. Is recommended.

なお、球状とは、介在物の長径と短径がほぼ等しく円形として観察されるもの、紡錘状とは、介在物の長径/短径が3以下で楕円形に観察されるもの、クラスター状とは、介在物粒子が2個以上密集したもの、その他としては、例えば、角張った単体状のものとして、それぞれ定義される。   In addition, the spherical shape means that the major axis and minor axis of the inclusions are observed as being substantially circular, and the spindle shape means that the major axis / minor axis of the inclusion is 3 or less and is observed in an elliptical shape. Is defined as one in which two or more inclusion particles are densely packed, and the other as, for example, an angular single piece.

その結果、球状と紡錘状の介在物の個数割合が50%以上の鋼板では、伸びフランジ性と疲労特性が向上することが判明した。球状と紡錘状の介在物の個数割合が50%未満では、クラスター状の介在物が相対的に増え、伸びフランジ性と疲労特性が低下するため、その下限値を50%とした。   As a result, it was found that stretch flangeability and fatigue characteristics are improved in a steel sheet in which the number ratio of spherical and spindle inclusions is 50% or more. When the number ratio of spherical and spindle-shaped inclusions is less than 50%, cluster-like inclusions are relatively increased, and the stretch flangeability and fatigue characteristics are deteriorated. Therefore, the lower limit is set to 50%.

介在物の粒径分布は、光学顕微鏡(例えば100倍と1000倍)で介在物を観察して、その粒径を測定することにより得ることができる。ここで粒径とは、円相当直径を意味している。   The particle size distribution of the inclusion can be obtained by observing the inclusion with an optical microscope (for example, 100 times and 1000 times) and measuring the particle size. Here, the particle size means the equivalent circle diameter.

介在物の粒径については、伸びフランジ性に有害な10μmを超える大型介在物が減少すると、0.5μm以上10μm以下の微細な介在物個数が増加し、このサイズの介在物個数が伸びフランジ性と良く対応するため、0.5μm以上10μm以下に着目した。   Regarding the particle size of inclusions, when the number of large inclusions exceeding 10 μm harmful to stretch flangeability decreases, the number of fine inclusions of 0.5 μm to 10 μm increases, and the number of inclusions of this size increases the stretch flangeability. In order to correspond well with the above, attention was focused on 0.5 μm or more and 10 μm or less.

その結果、0.5μm以上10μm以下の介在物が1000個/cm以上、100000個/cm以下存在する鋼板では、伸びフランジ性と疲労特性が向上することが判明した。 As a result, it has been found that stretch flangeability and fatigue characteristics are improved in a steel sheet in which inclusions of 0.5 μm or more and 10 μm or less are present at 1000 / cm 2 or more and 100,000 / cm 2 or less.

0.5μm以上10μm以下の介在物が1000個/cm未満では、10μmを超える伸びフランジ性に有害な大型介在物が鋼板中に観察され、割れ発生の起点となるため、その個数密度の下限値は1000個/cmとした。また、0.5μm以上10μm以下の介在物が100000個/cm超存在する場合には、介在物の個数が多過ぎて伸びフランジ性と疲労特性が低下するため、その上限値は100000個/cmとした。 If the number of inclusions of 0.5 μm or more and 10 μm or less is less than 1000 / cm 2 , large inclusions that are harmful to stretch flangeability exceeding 10 μm are observed in the steel sheet and become the starting point of cracking. The value was 1000 pieces / cm 2 . Further, when the 10μm following inclusions than 0.5μm is 100,000 / cm 2 ultra present, the flange formability and fatigue properties extends the number is too large inclusions decreases, the upper limit value is 100,000 / It was cm 2.

最後に、鋼板の組織について説明する。   Finally, the structure of the steel plate will be described.

優れた伸びフランジ性を得るためにはベイニティック・フェライトを主相とする組織にすることが好ましい。   In order to obtain excellent stretch flangeability, it is preferable to use a structure having bainitic ferrite as the main phase.

鋼板中のベイニティック・フェライト相の面積率は、好ましくは80%以上、より好ましくは90%以上、更により好ましくは100%である。また、残部はベイナイト相またはポリゴナル・フェライト相を20%以下含有することができ、マルテンサイト相が含まれることは極力避けることが望ましい。こうした、鋼板組織制御に加えて介在物を微細球状化して分散させることにより、同時に優れた疲労特性も得られる。   The area ratio of the bainitic ferrite phase in the steel sheet is preferably 80% or more, more preferably 90% or more, and even more preferably 100%. Further, the balance may contain 20% or less of bainite phase or polygonal ferrite phase, and it is desirable to avoid the martensite phase as much as possible. In addition to the steel sheet structure control, the inclusions are made into fine spheroids and dispersed, whereby excellent fatigue characteristics can be obtained at the same time.

本発明の鋼板の製造方法については、以下の通りである。   About the manufacturing method of the steel plate of this invention, it is as follows.

まず、溶鋼の溶製については、常法により転炉で吹錬した溶鋼、あるいは転炉で吹錬し、続いて真空脱ガス処理した溶鋼に、合金を添加して、本発明の成分範囲に調整することによって行うことができる。   First, for the melting of molten steel, an alloy is added to the molten steel blown in the converter by a conventional method, or the molten steel blown in the converter and subsequently vacuum degassed, so that it falls within the component range of the present invention. This can be done by adjusting.

なお、合金の添加順序は特に規定しないが、NdもしくはPrの1種または2種の添加は、Ti添加の後に実施することが好ましい。これは、Ti添加で一旦Ti酸化物を生成した後、NdやPrを添加してTi酸化物を改質する方が、改質制御性が良いためである。このようにして溶製した溶鋼を、常法により連続鋳造してスラブが得られる。   The order of addition of the alloy is not particularly defined, but it is preferable to add one or two of Nd or Pr after Ti addition. This is because the modification controllability is better when the Ti oxide is once generated by adding Ti and then the N oxide or Pr is added to modify the Ti oxide. The slab is obtained by continuously casting the molten steel produced in this manner by a conventional method.

次に、高強度熱延鋼板を製造するための熱延条件について述べる。   Next, hot rolling conditions for producing a high strength hot rolled steel sheet will be described.

熱延前のスラブの加熱温度は、鋼中のTiCやNbCなどを固溶させるため、1150℃以上とすることが好ましい。これらを固溶させておくことにより、圧延後の冷却過程で、ポリゴナル・フェライトの生成が抑制され、伸びフランジ性にとって好ましいベイニティック・フェライト相を主体とする組織が得られる。   The heating temperature of the slab before hot rolling is preferably 1150 ° C. or higher in order to dissolve TiC, NbC, etc. in the steel. By solid-dissolving these, formation of polygonal ferrite is suppressed in the cooling process after rolling, and a structure mainly composed of bainitic ferrite phase which is preferable for stretch flangeability can be obtained.

一方、熱延前の加熱温度が1250℃を超えると、スラブ表面の酸化が著しくなり、特に、粒界が選択的に酸化されることに起因する楔状の表面欠陥がデスケーリング後に残り、それが圧延後の表面品位を損ねるので、上限を1250℃とすることが好ましい。   On the other hand, when the heating temperature before hot rolling exceeds 1250 ° C., oxidation of the slab surface becomes significant, and in particular, wedge-shaped surface defects resulting from selective oxidation of grain boundaries remain after descaling, Since the surface quality after rolling is impaired, the upper limit is preferably set to 1250 ° C.

上記の温度範囲に加熱された後に、圧延を行うが、その工程の中で、仕上げ圧延完了温度は鋼板の組織制御上重要である。仕上げ圧延完了温度が、Ar点+50℃未満では、表層部の結晶粒径が粗大となって疲労特性上好ましくない。一方、Ar点+150℃超では、伸びフランジ性にとって好ましくないポリゴナル・フェライト相が生成し易くなるので、上限をAr点+150℃とすることが好ましい。 Rolling is performed after heating to the above temperature range, and the finish rolling completion temperature is important in the structure control of the steel sheet in the process. When the finish rolling completion temperature is less than Ar 3 point + 50 ° C., the crystal grain size of the surface layer portion is coarse, which is not preferable in terms of fatigue characteristics. On the other hand, when Ar 3 point + 150 ° C. is exceeded, a polygonal ferrite phase which is not preferable for stretch flangeability is likely to be generated. Therefore, the upper limit is preferably Ar 3 point + 150 ° C.

また、仕上げ圧延後の鋼板の平均の冷却速度を40℃/秒以上とし、300〜500℃の範囲まで冷却することが、ポリゴナル・フェライト相の生成を抑制し、ベイニティック・フェライト相を主体とする組織を得るために重要である。   Moreover, the average cooling rate of the steel sheet after finish rolling is set to 40 ° C./second or more, and cooling to the range of 300 to 500 ° C. suppresses the formation of polygonal ferrite phase, and mainly bainitic ferrite phase. It is important to obtain an organization.

上記の平均の冷却速度が40℃/秒未満では、ポリゴナル・フェライト相が生成しやすくなり好ましくない。一方、組織制御の上では、冷却速度に上限を設ける必要はないが、余りに速い冷却速度は鋼板の冷却を不均一にするおそれがあり、また、そうした冷却を可能にするような設備の製造には多額の費用が必要となり、そのことで、鋼板の価格上昇を招くと考えられる。このような観点から、冷却速度の上限は100℃/秒とするのが好ましい。   When the average cooling rate is less than 40 ° C./second, a polygonal ferrite phase is easily generated, which is not preferable. On the other hand, there is no need to set an upper limit on the cooling rate in terms of structure control, but too high a cooling rate may cause uneven cooling of the steel sheet, and it may be necessary to manufacture equipment that enables such cooling. Would require a large amount of money, which would lead to an increase in the price of the steel sheet. From such a viewpoint, the upper limit of the cooling rate is preferably set to 100 ° C./second.

また、冷却停止温度が300℃より低くなると、伸びフランジ性に好ましくないマルテンサイト相が生成するので、下限を300℃とする。したがって、熱延コイルの巻き取り温度は、伸びフランジ性を極端に悪化させるマルテンサイト相の生成を抑制するため、300℃以上とすることが好ましい。   On the other hand, when the cooling stop temperature is lower than 300 ° C., a martensite phase that is not preferable for stretch flangeability is generated, so the lower limit is set to 300 ° C. Therefore, the winding temperature of the hot-rolled coil is preferably set to 300 ° C. or higher in order to suppress generation of a martensite phase that extremely deteriorates stretch flangeability.

一方、冷却停止温度が500℃超では、ポリゴナル・フェライト相の生成を抑制できず、また、Cuを含有している鋼では、フェライト相中に、Cuが局在的に析出して疲労特性向上効果を低下させるおそれがあるので、500℃以下とすることが好ましい。したがって、500℃以下で熱延コイルを巻き取ることにより、その後の冷却過程でTiCやNbCが析出し、フェライト相中の固溶C量を大幅に減少させ、伸びフランジ性の向上をもたらす。   On the other hand, when the cooling stop temperature exceeds 500 ° C., the formation of polygonal ferrite phase cannot be suppressed, and in steels containing Cu, Cu is locally precipitated in the ferrite phase to improve fatigue characteristics. Since there exists a possibility that an effect may be reduced, it is preferable to set it as 500 degrees C or less. Therefore, by winding the hot-rolled coil at 500 ° C. or lower, TiC and NbC are precipitated in the subsequent cooling process, thereby greatly reducing the amount of solute C in the ferrite phase and improving stretch flangeability.

以下、本発明の実施例を比較例とともに説明する。   Examples of the present invention will be described below together with comparative examples.

表1に化学成分を示す鋼のスラブを表2に示す条件にて熱間圧延し、厚さ3.2mmの熱延板を得た。このようにして得られた鋼板の強度、延性、伸びフランジ性、断面組織、疲労限度比、および介在物の粒径分布、形態、平均組成を調べた。   A steel slab having chemical components shown in Table 1 was hot-rolled under the conditions shown in Table 2 to obtain a hot-rolled sheet having a thickness of 3.2 mm. The steel sheet thus obtained was examined for strength, ductility, stretch flangeability, cross-sectional structure, fatigue limit ratio, and inclusion particle size distribution, morphology, and average composition.

その結果を鋼と条件の組み合わせ毎に表3に示す。強度と延性は、圧延方向と平行に採取したJIS5号試験片の引張試験により求めた。   The results are shown in Table 3 for each combination of steel and conditions. The strength and ductility were obtained by a tensile test of a JIS No. 5 specimen taken in parallel with the rolling direction.

伸びフランジ性は、150mm×150mmの鋼板の中央に開けた直径10mmの打ち抜き穴を60°の円錐パンチで押し広げ、板厚貫通亀裂が生じた時点での穴径D(mm)を測定し、穴広げ値λ=(D−10)/10で求めたλで評価した。   Stretch flangeability is measured by measuring the hole diameter D (mm) at the time when a through-thickness crack is generated by expanding a punched hole with a diameter of 10 mm with a 60 ° conical punch in the center of a 150 mm × 150 mm steel plate. The hole expansion value λ = (D−10) / 10.

また、疲労特性を表す指標として用いた疲労限度比は、JIS Z 2275に準拠した方法で求めた2×10回時間強さ(σW)を、鋼板の強度(σB)で除した値(σW/σB)で評価した。 Further, the fatigue limit ratio used as an index representing fatigue characteristics is a value (σW) obtained by dividing 2 × 10 6 times strength (σW) obtained by a method based on JIS Z 2275 by the strength (σB) of the steel sheet. / ΣB).

なお、試験片は同規格に規定の1号試験片であり、平行部が25mm、曲率半径Rが100mm、原板(熱延板)の両面を等しく研削した厚さ3.0mmのものを用いた。   Note that the test piece is a No. 1 test piece defined in the same standard, with a parallel part of 25 mm, a radius of curvature R of 100 mm, and a thickness of 3.0 mm obtained by equally grinding both surfaces of the original plate (hot rolled plate). .

更に、介在物については、光学顕微鏡による100倍と1000倍の観察を行い、ランダムに選んだ100個の介在物について粒径と形態を測定した。更に、走査型電子顕微鏡の定量分析機能を用いて、ランダムに選んだ20個の介在物について組成分析を実施した。   Furthermore, the inclusions were observed 100 times and 1000 times with an optical microscope, and the particle size and morphology of 100 randomly selected inclusions were measured. Furthermore, using a quantitative analysis function of a scanning electron microscope, composition analysis was performed on 20 inclusions randomly selected.

表3から明らかなように、本発明の鋼板では、鋼板中に球状および紡錘状介在物が微細分散し、その結果強度、延性、伸びフランジ性および疲労特性に優れた鋼板を得ることができる。しかし、比較例では、介在物組成が本発明に規定する組成ではないため、鋼板中の微細介在物が減少した量だけ粗大介在物が増加し、そのため強度、延性、伸びフランジ性および疲労特性が低下している。   As is apparent from Table 3, in the steel sheet of the present invention, spherical and spindle inclusions are finely dispersed in the steel sheet, and as a result, a steel sheet having excellent strength, ductility, stretch flangeability and fatigue characteristics can be obtained. However, in the comparative example, since the inclusion composition is not the composition defined in the present invention, the coarse inclusions are increased by the reduced amount of fine inclusions in the steel sheet, so that the strength, ductility, stretch flangeability and fatigue characteristics are increased. It is falling.

Figure 0004523899
Figure 0004523899

Figure 0004523899
Figure 0004523899

Figure 0004523899
Figure 0004523899

Claims (4)

C:0.03〜0.10質量%、Si:0.05〜1.5質量%、Mn:1.0〜3.0質量%、P:0.05質量%以下、S:0.01質量%以下、N:0.0005〜0.01質量%、酸可溶Al:0.005質量%以下、Ti:0.005質量%以上、NdもしくはPrの1種または2種の合計:0.0002〜0.04質量%含有し、更に、下記式を満足し、
−0.05≦{Ti−(48/12)×C−(48/14)×N−(48/32)×S}≦0.2
残部が鉄および不可避的不純物からなる鋼であり、その鋼中には、平均の介在物組成で、Nd酸化物もしくはPr酸化物の1種または2種の合計が3〜90質量%、Ti酸化物が10〜97質量%、Alが50質量%以下の範囲の介在物を含み、かつ、介在物の個数割合で、50%以上が少なくとも球状、紡錘状の介在物を含み、かつ、0.5μm以上10μm以下の介在物が1000個/cm 以上、100000個/cm 以下存在することを特徴とする伸びフランジ性と疲労特性に優れた高強度熱延鋼板。
C: 0.03-0.10 mass%, Si: 0.05-1.5 mass%, Mn: 1.0-3.0 mass%, P: 0.05 mass% or less, S: 0.01 % By mass or less, N: 0.0005 to 0.01% by mass, acid-soluble Al: 0.005% by mass or less, Ti: 0.005% by mass or more, one or both of Nd or Pr: 0 It has .0002~0.04 mass% containing, further, satisfies the following expression,
−0.05 ≦ {Ti− (48/12) × C− (48/14) × N− (48/32) × S} ≦ 0.2
The balance is steel composed of iron and unavoidable impurities. In the steel, the total inclusion composition of one or two of Nd oxide or Pr oxide is 3 to 90% by mass, Ti oxide things 10-97 mass%, see containing inclusions ranging Al 2 O 3 is less 50 mass%, and, in the number ratio of inclusions comprises at least spherical, fusiform inclusions than 50%, A high-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics, characterized in that inclusions of 0.5 μm or more and 10 μm or less are present at 1000 / cm 2 or more and 100,000 / cm 2 or less .
C:0.03〜0.10質量%、Si:0.05〜1.5質量%、Mn:1.0〜3.0質量%、P:0.05質量%以下、S:0.01質量%以下、N:0.0005〜0.01質量%、酸可溶Al:0.005質量%以下、Ti:0.005質量%以上、NdもしくはPrの1種または2種の合計:0.0002〜0.04質量%、および、Nbを含有し、更に、下記式を満足し、
−0.05≦{Ti+(48/93)×Nb−(48/12)×C−(48/14)×N−(48/32)×S}≦0.2
残部が鉄および不可避的不純物からなる鋼であり、その鋼中には、平均の介在物組成で、Nd酸化物もしくはPr酸化物の1種または2種の合計が3〜90質量%、Ti酸化物が10〜97質量%、Alが50質量%以下の範囲の介在物を含み、かつ、介在物の個数割合で、50%以上が少なくとも球状、紡錘状の介在物を含み、かつ、0.5μm以上10μm以下の介在物が1000個/cm 以上、100000個/cm 以下存在することを特徴とする伸びフランジ性と疲労特性に優れた高強度熱延鋼板。
C: 0.03-0.10 mass%, Si: 0.05-1.5 mass%, Mn: 1.0-3.0 mass%, P: 0.05 mass% or less, S: 0.01 % By mass or less, N: 0.0005 to 0.01% by mass, acid-soluble Al: 0.005% by mass or less, Ti: 0.005% by mass or more, one or both of Nd or Pr: 0 .0002 to 0.04 % by mass and Nb, further satisfying the following formula,
−0.05 ≦ {Ti + (48/93) × Nb− (48/12) × C− (48/14) × N− (48/32) × S} ≦ 0.2
The balance is steel composed of iron and unavoidable impurities. In the steel, the total inclusion composition of one or two of Nd oxide or Pr oxide is 3 to 90% by mass, Ti oxide things 10-97 mass%, see containing inclusions ranging Al 2 O 3 is less 50 mass%, and, in the number ratio of inclusions comprises at least spherical, fusiform inclusions than 50%, A high-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics, characterized in that inclusions of 0.5 μm or more and 10 μm or less are present at 1000 / cm 2 or more and 100,000 / cm 2 or less .
Cu:0.2〜2.0質量%、Ni:0.1〜1.0質量%を含有することを特徴とする請求項1または2に記載の伸びフランジ性と疲労特性に優れた高強度熱延鋼板。 Cu: 0.2-2.0 mass%, Ni: 0.1-1.0 mass% is contained, The high intensity | strength excellent in the stretch flangeability and fatigue characteristic of Claim 1 or 2 characterized by the above-mentioned Hot rolled steel sheet. 鋼板中のベイニティック・フェライト相の面積率が80〜100%であることを特徴とする請求項1〜3のいずれかに記載の伸びフランジ性と疲労特性に優れた高強度熱延鋼板。 The high-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics according to any one of claims 1 to 3 , wherein the area ratio of the bainitic ferrite phase in the steel sheet is 80 to 100%.
JP2005262731A 2005-09-09 2005-09-09 High-strength hot-rolled steel sheet with excellent stretch flangeability and fatigue characteristics Active JP4523899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005262731A JP4523899B2 (en) 2005-09-09 2005-09-09 High-strength hot-rolled steel sheet with excellent stretch flangeability and fatigue characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005262731A JP4523899B2 (en) 2005-09-09 2005-09-09 High-strength hot-rolled steel sheet with excellent stretch flangeability and fatigue characteristics

Publications (2)

Publication Number Publication Date
JP2007077412A JP2007077412A (en) 2007-03-29
JP4523899B2 true JP4523899B2 (en) 2010-08-11

Family

ID=37938018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005262731A Active JP4523899B2 (en) 2005-09-09 2005-09-09 High-strength hot-rolled steel sheet with excellent stretch flangeability and fatigue characteristics

Country Status (1)

Country Link
JP (1) JP4523899B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145064A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000008136A (en) * 1998-06-19 2000-01-11 Kawasaki Steel Corp High strength steel plate excellent in stretch-flanging property and delayed fracture resistance
JP2003171734A (en) * 2001-12-07 2003-06-20 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch-flanging property and fatigue property, and production method therefor
JP2004143510A (en) * 2002-10-23 2004-05-20 Nippon Steel Corp Method for melting steel sheet for extra low carbon or low carbon thin sheet having excellent surface quality, and continuously cast slab
JP2004315900A (en) * 2003-04-16 2004-11-11 Nippon Steel Corp High strength steel sheet having excellent stretch-flanging property and its production method
JP2005256115A (en) * 2004-03-12 2005-09-22 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch flange formability and fatigue property

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000008136A (en) * 1998-06-19 2000-01-11 Kawasaki Steel Corp High strength steel plate excellent in stretch-flanging property and delayed fracture resistance
JP2003171734A (en) * 2001-12-07 2003-06-20 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch-flanging property and fatigue property, and production method therefor
JP2004143510A (en) * 2002-10-23 2004-05-20 Nippon Steel Corp Method for melting steel sheet for extra low carbon or low carbon thin sheet having excellent surface quality, and continuously cast slab
JP2004315900A (en) * 2003-04-16 2004-11-11 Nippon Steel Corp High strength steel sheet having excellent stretch-flanging property and its production method
JP2005256115A (en) * 2004-03-12 2005-09-22 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch flange formability and fatigue property

Also Published As

Publication number Publication date
JP2007077412A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP5093422B2 (en) High strength steel plate and manufacturing method thereof
JP6293997B2 (en) High-strength steel sheet with excellent stretch flangeability and bending workability, and method for producing molten steel for the steel sheet
JP4431185B2 (en) High-strength steel sheet with excellent stretch flangeability and fatigue characteristics and method for producing the molten steel
JP5053186B2 (en) High-strength steel sheet with excellent stretch flangeability and fatigue characteristics and method for producing the molten steel
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
JP5158272B2 (en) High-strength steel sheet with excellent stretch flangeability and bending workability and method for producing the molten steel
WO2015060311A1 (en) Hot-rolled steel sheet having excellent surface hardness after carburizing heat treatment and excellent drawability
JP2005256115A (en) High strength hot rolled steel sheet having excellent stretch flange formability and fatigue property
KR102386788B1 (en) Hot rolled steel sheet and its manufacturing method
WO2012115181A1 (en) High-strength steel sheet exhibiting superior stretch-flange formability and bendability, and method of preparing ingot steel
JP6222041B2 (en) Ultra-thick steel plate with excellent HIC resistance and manufacturing method thereof
WO2008007477A1 (en) High-strength steel sheet excellent in stretch flangeability and fatigue property
JP5158271B2 (en) High-strength steel sheet with excellent stretch flangeability and bending workability and method for producing the molten steel
JP6447426B2 (en) Extra-thick steel plate and manufacturing method thereof
JP5510024B2 (en) High-strength steel sheet excellent in hole expansibility and local ductility and method for producing the same
JP5696359B2 (en) High-strength steel sheet and method for melting the molten steel
JP5205795B2 (en) High-strength steel sheet with excellent stretch flangeability and fatigue characteristics and method for producing the molten steel
JP2002363694A (en) Superhigh strength cold rolled steel sheet having excellent bending workability
JP4901346B2 (en) High-strength steel sheet with excellent stretch flangeability and fatigue characteristics
JP2017066516A (en) Ferrite-martensite two-phase stainless steel and manufacturing method therefor
JP4523899B2 (en) High-strength hot-rolled steel sheet with excellent stretch flangeability and fatigue characteristics
JP4291761B2 (en) High-strength hot-rolled steel sheet with excellent stretch flangeability and fatigue characteristics
JP4268559B2 (en) High strength steel plate with excellent stretch flangeability
JP4719067B2 (en) High strength steel plate with excellent stretch flangeability and method for producing the same
JP5058892B2 (en) DP steel sheet with excellent stretch flangeability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100528

R151 Written notification of patent or utility model registration

Ref document number: 4523899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350