JP2003171734A - High strength hot rolled steel sheet having excellent stretch-flanging property and fatigue property, and production method therefor - Google Patents
High strength hot rolled steel sheet having excellent stretch-flanging property and fatigue property, and production method thereforInfo
- Publication number
- JP2003171734A JP2003171734A JP2001373702A JP2001373702A JP2003171734A JP 2003171734 A JP2003171734 A JP 2003171734A JP 2001373702 A JP2001373702 A JP 2001373702A JP 2001373702 A JP2001373702 A JP 2001373702A JP 2003171734 A JP2003171734 A JP 2003171734A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- rolled steel
- fatigue
- strength hot
- hot rolled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、伸びフランジ性と
疲労特性に優れた高強度熱延鋼板およびその製造方法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength hot-rolled steel sheet excellent in stretch-flangeability and fatigue characteristics and a method for producing the same.
【0002】[0002]
【従来の技術】自動車部品の内、特に足回り系と呼ばれ
るフレーム類やアーム類などには高強度熱延鋼板が広く
用いられている。これらの部品には走行中の振動に対す
る耐久性の観点から高い疲労特性が要求される。こうし
た要求に対してはいくつかの鋼板が提案されている。例
えば特開平11−199973号公報にはフェライト相
とマルテンサイト相の複合組織鋼板中に微細なCuの析
出物および/または固溶体を分散させた鋼板が提案され
ている。2. Description of the Related Art Among automobile parts, high-strength hot-rolled steel sheets are widely used especially for frames and arms called suspension systems. These parts are required to have high fatigue characteristics from the viewpoint of durability against vibration during running. Several steel sheets have been proposed to meet these requirements. For example, Japanese Patent Application Laid-Open No. 11-199973 proposes a steel sheet in which fine Cu precipitates and / or solid solution are dispersed in a steel sheet having a composite structure of a ferrite phase and a martensite phase.
【0003】こうした、一般にDP鋼板と呼ばれる鋼板
は、強度と延性のバランスや疲労特性には優れるもの
の、穴広げ試験で評価される伸びフランジ性には劣るこ
とが知られている。その理由の一つは、DP鋼板は軟質
なフェライト相と硬質なマルテンサイト相の複合体であ
るため、穴広げ加工時に両相の境界部が変形に追随でき
ず破断の起点になり易いからであると考えられている。
これに対して伸びフランジ性にも疲労特性にも優れた熱
延鋼板の提案がなされている。特開2001−2003
31号公報がその一例で、鋼板の組織をベイナイト相主
体とし、構成するその他の相との硬度差を小さくし、更
に粗大な炭化物の生成を回避することなどを要旨として
いる。また、特開平5−209253号公報には、Al
脱酸の代わりにCeによる酸化物を利用した非時効性冷
間圧延用鋼が開示されているが、伸びフランジ性と疲労
特性に優れる熱延鋼板については何も記載されていな
い。It is known that such a steel sheet generally called a DP steel sheet is excellent in the balance between strength and ductility and fatigue characteristics, but is inferior in stretch flangeability evaluated in a hole expanding test. One of the reasons for this is that the DP steel sheet is a composite of a soft ferrite phase and a hard martensite phase, so that the boundary part between both phases cannot follow the deformation during the hole expanding process and is likely to be the starting point of fracture. Is believed to be.
On the other hand, a hot rolled steel sheet having excellent stretch flangeability and fatigue properties has been proposed. JP 2001-2003
JP-A-31-31 is one example, and the gist is that the structure of the steel sheet is mainly composed of a bainite phase, the difference in hardness from other phases constituting the steel sheet is made small, and further formation of coarse carbides is avoided. Further, in Japanese Patent Laid-Open No. 5-209253, Al
A non-aging steel for cold rolling using an oxide of Ce instead of deoxidation is disclosed, but nothing is described about a hot rolled steel sheet having excellent stretch flange formability and fatigue properties.
【0004】[0004]
【発明が解決しようとする課題】鋼板組織をベイナイト
相主体とし、粗大な炭化物の生成を抑制した熱延鋼板は
確かに優れた伸びフランジ性を示すものの、Cuを含有
したDP鋼板に比べてその疲労特性は必ずしも優れてい
るとは言えない。また、粗大な炭化物を抑制しただけで
はより厳しい穴広げ加工を行った場合には亀裂の発生を
抑制できない。本発明者らの研究によれば、これらの原
因は、鋼板中の酸化物を主体とする介在物の存在にある
ことがわかった。繰り返し変形を受けると表層またはそ
の近傍に存在する粗大な介在物の周辺に内部欠陥が発生
し、亀裂として伝播することによって疲労特性を劣化さ
せるとともに、やはり粗大な介在物は穴広げ加工時の割
れ発生の起点になり易いことがその理由と考えられる。
従って、鋼中の介在物は出来る限り微細化することが望
ましい。The hot-rolled steel sheet having a bainite phase structure as the main constituent of the steel sheet and suppressing the formation of coarse carbides certainly exhibits excellent stretch-flange formability, but it is superior to the DP steel sheet containing Cu. Fatigue properties are not always excellent. Further, the cracking cannot be suppressed when a more severe hole expanding process is performed only by suppressing the coarse carbide. According to the research conducted by the present inventors, it has been found that these causes are due to the presence of inclusions mainly composed of oxides in the steel sheet. When subjected to repeated deformation, internal defects are generated around the coarse inclusions that exist in or near the surface layer and propagate as cracks, which deteriorates fatigue properties and also causes coarse inclusions to crack during hole expansion processing. It is considered that this is because it tends to be the starting point of occurrence.
Therefore, it is desirable that the inclusions in the steel be made as fine as possible.
【0005】一般に、鋼の脱酸はフェロシリコンやアル
ミニウムを用いてなされるが、効率やコストの点で優れ
るアルミニウムがより汎用的である。アルミニウム脱酸
の結果生成したアルミナ系の酸化物は、凝集しやすく粗
大な介在物として鋼中に残留する。これが上記のように
疲労特性と穴広げ加工性(伸びフランジ性)に影響して
いると思われるが、アルミナ系の介在物制御の視点に立
って伸びフランジ性と疲労特性に優れる熱延鋼板を提案
した例は見当たらない。本発明は伸びフランジ性と疲労
特性に優れた高強度熱延鋼板及びその製造方法を提供す
ることを目的とする。Generally, deoxidation of steel is carried out by using ferrosilicon or aluminum, but aluminum, which is excellent in efficiency and cost, is more versatile. Alumina-based oxides formed as a result of aluminum deoxidation tend to aggregate and remain in the steel as coarse inclusions. It seems that this influences the fatigue characteristics and hole expanding workability (stretch flangeability) as described above, but from the viewpoint of alumina inclusion control, hot rolled steel sheets with excellent stretch flangeability and fatigue characteristics are selected. I can't find the suggested example. An object of the present invention is to provide a high-strength hot-rolled steel sheet excellent in stretch-flangeability and fatigue characteristics and a method for manufacturing the same.
【0006】[0006]
【課題を解決するための手段】このような状況に鑑み、
本発明者らは、アルミニウムによらない脱酸、その
酸化物が凝集して粗大化しない元素を用いた脱酸、T
iおよびNbの酸化による歩留り低下を抑制し、鋼中C
を炭化物として固定するのに必要なTi量およびNb量
を溶鋼中に効率よく確保できる酸素濃度の上限の解明、
および、疲労特性を劣化させない添加元素の解明、の
4点を中心に鋭意研究を進め、更に化学成分や製造方法
にも検討を加え本発明を完成させた。[Means for Solving the Problems] In view of such a situation,
The present inventors have conducted deoxidation not using aluminum, deoxidation using an element whose oxide does not aggregate and do not coarsen, T
Suppresses the decrease in yield due to the oxidation of i and Nb, and
Elucidation of the upper limit of the oxygen concentration that can efficiently secure the Ti amount and the Nb amount necessary for fixing carbon as carbides,
The present invention was completed by further advancing intensive research centering on the four points of elucidating additive elements that do not deteriorate fatigue properties, and further examining chemical components and manufacturing methods.
【0007】その要旨は以下の通りである。すなわち
(1)質量%にて、C:0.03〜0.10%、Si:
0.05〜1.5%、Mn:1.0〜2.0%、P:
0.05%以下、S:0.01%以下、N:0.000
5〜0.01%、Al:0.004%以下を含有し、更
に、TiおよびNbの一方あるいは双方を、−0.05
≦{Ti+(48/93)×Nb−(48/12)×C
−(48/14)×N−(48/32)×S}≦0.2
となるように含有し、更に、Ce、およびO(酸素)を
Ce:0.0003〜0.012%、O:0.0003
〜0.01%、かつCe/O≧0.25となるように含
有し、残部がFeおよび不可避不純物からなり、ベイニ
ティック・フェライト相の面積率が80〜100%であ
ることを特徴とする伸びフランジ性と疲労特性に優れた
高強度熱延鋼板。The gist is as follows. That is, in (1) mass%, C: 0.03 to 0.10%, Si:
0.05-1.5%, Mn: 1.0-2.0%, P:
0.05% or less, S: 0.01% or less, N: 0.000
5 to 0.01%, Al: 0.004% or less, and one or both of Ti and Nb is -0.05.
≦ {Ti + (48/93) × Nb− (48/12) × C
− (48/14) × N− (48/32) × S} ≦ 0.2
To contain Ce and O (oxygen), Ce: 0.0003 to 0.012%, O: 0.0003.
To 0.01% and Ce / O ≧ 0.25, the balance is Fe and inevitable impurities, and the area ratio of bainitic ferrite phase is 80 to 100%. High strength hot rolled steel sheet with excellent stretch flangeability and fatigue properties.
【0008】(2)更に、質量%で、Cu:0.2〜
2.0%、Ni:0.1〜1.0%、を含有することを
特徴とする上記(1)に記載の伸びフランジ性と疲労特
性に優れた高強度熱延鋼板。
(3)上記(1)または(2)に記載の鋼板を製造する
方法であって、上記(1)または(2)に記載の化学成
分を有する鋼材を1150〜1250℃に加熱して粗圧
延した後、Ar3 点+50℃〜Ar3 点+150℃で仕
上圧延を完了し、更に、40℃/秒以上の平均冷却速度
で300〜500℃まで冷却し、300〜500℃で巻
き取ることを特徴とする伸びフランジ性と疲労特性に優
れた高強度熱延鋼板の製造方法である。(2) Further, in mass%, Cu: 0.2 to
2.0%, Ni: 0.1-1.0%, The high-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics as described in (1) above. (3) A method for producing the steel sheet according to (1) or (2) above, which comprises heating a steel material having the chemical composition according to (1) or (2) above to 1150 to 1250 ° C. and performing rough rolling. After that, finish rolling is completed at Ar 3 points + 50 ° C. to Ar 3 points + 150 ° C., and further, it is cooled to 300 to 500 ° C. at an average cooling rate of 40 ° C./sec or more and wound at 300 to 500 ° C. It is a method for producing a high-strength hot-rolled steel sheet having excellent stretch-flangeability and fatigue characteristics.
【0009】[0009]
【発明の実施の形態】まず、本発明を完成するに至った
実験について説明する。本発明者らは、質量%にて、
C:0.05%、Si:0.05%、Mn:1.5%、
P:0.02%、S:0.001%を含有し、残部がF
eである溶鋼に対して様々な元素を用いて脱酸を行い、
酸素濃度の測定、TiおよびNbの添加を経て鋼塊を製
造した。得られた鋼塊を熱間圧延して4mmの熱延鋼板
とした。該鋼板を穴広げ試験、および疲労試験に供する
とともに、化学成分分析を行ってTiおよびNbの歩留
りを調査した。その結果、様々な元素の内、Ceを用い
た脱酸を行った鋼板が最も穴広げ性と疲労特性に優れ、
かつTiおよびNb添加前のO濃度が0.01%以下で
あれば両元素の歩留りにも問題のないことを見出した。
これを基に、熱延条件の検討を行って本発明を完成させ
るに至った。BEST MODE FOR CARRYING OUT THE INVENTION First, an experiment leading to the completion of the present invention will be described. The present inventors, in mass%,
C: 0.05%, Si: 0.05%, Mn: 1.5%,
P: 0.02%, S: 0.001%, balance F
deoxidizing molten steel which is e using various elements,
A steel ingot was manufactured through measurement of oxygen concentration and addition of Ti and Nb. The obtained steel ingot was hot-rolled to obtain a 4 mm hot rolled steel sheet. The steel sheet was subjected to a hole expanding test and a fatigue test, and chemical composition analysis was performed to investigate the yields of Ti and Nb. As a result, among various elements, the steel sheet deoxidized using Ce has the best hole expandability and fatigue characteristics,
It was also found that the yield of both elements is not problematic if the O concentration before adding Ti and Nb is 0.01% or less.
Based on this, the hot rolling conditions were examined to complete the present invention.
【0010】以下に本発明の限定理由を述べる。まず化
学成分の限定理由について述べる。なお、成分の標記は
全て質量%である。
C:0.03〜0.10%
Cは、鋼板の強度を確保するために必須の元素であり、
高強度鋼板を得るためには少なくとも0.03%が必要
である。しかし、過剰に含まれると、TiやNbによる
炭化物生成や、冷却条件を駆使しても、伸びフランジ性
に好ましくないセメンタイト相の生成が避けられなくな
るので0.10%以下とする。The reasons for limiting the present invention will be described below. First, the reasons for limiting the chemical components will be described. In addition, all the components are shown by mass%. C: 0.03 to 0.10% C is an essential element for ensuring the strength of the steel sheet,
At least 0.03% is required to obtain a high strength steel sheet. However, if it is contained in excess, it becomes unavoidable to generate carbides due to Ti or Nb and to generate a cementite phase which is unfavorable for stretch flangeability, even if the cooling conditions are used, so the content is made 0.10% or less.
【0011】Si:0.05〜1.5%
Siは、伸びフランジ性を劣化させることなく強度を確
保するのに有効な元素であり、少なくとも0.05%が
必要であるが、過剰に含まれると伸びフランジ性に好ま
しくないポリゴナル・フェライト相を生成しやすくなる
ので、その上限は1.5%とする。
Mn:1.0〜2.0%
Mnは、C、Siとともに鋼板の高強度化に有効な元素
であり、1.0%以上は含有させる必要があるが、2.
0%を越えて含有させると延性が劣化するため上限を
2.0%とする。Si: 0.05 to 1.5% Si is an element effective for securing the strength without deteriorating the stretch flangeability, and at least 0.05% is necessary, but it is contained excessively. If so, a polygonal ferrite phase unfavorable for stretch flangeability is likely to be formed, so the upper limit is made 1.5%. Mn: 1.0 to 2.0% Mn is an element effective for increasing the strength of the steel sheet together with C and Si, and it is necessary to contain 1.0% or more, but 1.
If the content exceeds 0%, the ductility deteriorates, so the upper limit is made 2.0%.
【0012】P:0.05%以下
Pは、固溶強化元素として有効であるが、偏析による加
工性の劣化が懸念されるので0.05%以下にする必要
がある。
S:0.01%以下
Sは、MnSなどの介在物を形成して伸びフランジ性を
劣化させる他、Cを炭化物とする目的で含有させるTi
と結合してその歩留りを低下させるなどの有害な作用を
する。従って、出来るだけ抑制すべきであるが0.01
%以下であれば許容される。P: 0.05% or less P is effective as a solid solution strengthening element, but it is necessary to set it to 0.05% or less because there is concern that workability may deteriorate due to segregation. S: 0.01% or less S forms Ti to be contained in order to form inclusions such as MnS to deteriorate stretch flangeability and to make C a carbide.
It has a harmful effect such as binding with and reducing its yield. Therefore, 0.01 should be suppressed as much as possible.
% Or less is acceptable.
【0013】N:0.0005〜0.01%
Nは、Cを炭化物とする目的で含有させるTiと結合し
てその歩留りを低下させる。従って出来るだけ抑制すべ
きであるが0.01%以下であれば許容される。一方、
0.0005%未満とするにはコストがかかるので0.
0005%を下限とする。
Al:0.004%以下
Alは、その酸化物が凝集して粗大化し易いため極力抑
制することが望ましい。しかしながら、予備的な脱酸材
として0.004%までは用いることが許容される。N: 0.0005 to 0.01% N combines with Ti contained for the purpose of converting C into a carbide and reduces the yield thereof. Therefore, the amount should be suppressed as much as possible, but 0.01% or less is acceptable. on the other hand,
Since it takes a cost to make it less than 0.0005%,
The lower limit is 0005%. Al: 0.004% or less Al is desirable to be suppressed as much as possible because its oxide easily aggregates and coarsens. However, up to 0.004% can be used as a preliminary deoxidizer.
【0014】TiおよびNbは、C、SおよびNを析出
物として固定することによって鋼板の加工性を向上させ
る(いわゆる、scavenging効果)働きをす
る。一方、必要以上に添加された場合には、それらは固
溶Tiや固溶Nbとして鋼中に存在し、再結晶温度を上
昇させ熱間加工組織が残存し易くなり延性を損ねる。そ
して、その最適な添加量の範囲は、実施例の中で示すよ
うに、各元素の化学当量を用いて記述される次式の中辺
を指標として用いると適切に表すことができる。すなわ
ち、その値が−0.05未満では延性、穴広げ性が劣
り、また、0.2を超えると延性が劣化する。以上の理
由から、−0.05≦{Ti+(48/93)×Nb−
(48/12)×C−(48/14)×N−(48/3
2)×S}≦0.2の関係を満たすように限定されなけ
ればならない。Ti and Nb serve to improve the workability of the steel sheet by fixing C, S and N as precipitates (so-called scavenging effect). On the other hand, if added more than necessary, they exist in the steel as solid solution Ti and solid solution Nb, raise the recrystallization temperature, and the hot work structure is apt to remain, and the ductility is impaired. Then, the optimum range of the added amount can be appropriately expressed by using the middle side of the following formula described using the chemical equivalent of each element as an index, as shown in the examples. That is, if the value is less than -0.05, the ductility and hole expandability are poor, and if it exceeds 0.2, the ductility is deteriorated. For the above reason, -0.05 ≦ {Ti + (48/93) × Nb−
(48/12) x C- (48/14) x N- (48/3
2) × S} ≦ 0.2 must be satisfied.
【0015】Ce:0.0003〜0.012%
Ceは、Oと結合して鋼の清浄度を高める効果を持ち、
また生成した酸化物はアルミナ系の介在物のように凝集
粗大化しにくい性質を有するので伸びフランジ性に悪影
響を及ぼさない。また介在物が微細化した効果は疲労特
性にも有効である。こうした効果は、Ce濃度が0.0
003%以上で発現するのでこの濃度を下限とする。一
方、0.012%を越えて添加しても効果は飽和し、か
つ鋼板のコストを高めるので0.012%を上限とす
る。また、O濃度の0.25倍未満ではその効果が得ら
れないので、Ce/O≧0.25であるようにする。Ce: 0.0003 to 0.012% Ce has the effect of increasing the cleanliness of steel by combining with O,
Further, the produced oxide does not adversely affect the stretch-flange formability because it has a property such that it does not easily aggregate and coarsen like alumina-based inclusions. Further, the effect of making inclusions finer is also effective for fatigue characteristics. The effect is that the Ce concentration is 0.0
Since it is expressed at 003% or more, this concentration is the lower limit. On the other hand, even if added over 0.012%, the effect is saturated and the cost of the steel sheet is increased, so 0.012% is made the upper limit. If the concentration is less than 0.25 times the O concentration, the effect cannot be obtained. Therefore, Ce / O ≧ 0.25 is set.
【0016】O:0.0003〜0.01%
本発明のCe脱酸を用いてもO濃度が0.01%超では
良好な伸びフランジ性が得られないのでOの上限を0.
01%とする。また、O濃度が0.01%超ではCの固
定に必要なTi、およびNbを確保するために添加する
両元素が多量に必要となり、コスト増につながることも
O濃度の上限を0.01%とする理由である。一方、O
濃度を0.0003%未満とするには長時間の脱酸時間
が必要となって実用上好ましくないのでこの濃度を下限
とする。O: 0.0003 to 0.01% Even if the Ce deoxidation of the present invention is used, if the O concentration exceeds 0.01%, good stretch flangeability cannot be obtained, so the upper limit of O is set to 0.
It is set to 01%. Further, if the O concentration exceeds 0.01%, a large amount of both the elements necessary for securing Ti and Nb necessary for fixing C is required, which leads to an increase in cost. This is the reason for setting%. On the other hand, O
If the concentration is less than 0.0003%, a long deoxidizing time is required, which is not preferable in practice. Therefore, this concentration is set as the lower limit.
【0017】Cu:0.2〜2.0%
Cuは、固溶強化元素または析出強化元素として鋼板の
高強度化に利用できる。また、その添加によって疲労強
度を一層向上させることができる。しかし、0.2%以
上を添加しないとその効果は少なく、コスト上昇を招く
のみであるので0.2%を下限とする。一方、2.0%
を越えて含有されていると熱延後の鋼板表面性状を悪化
させるので2.0%を上限とする。
Ni:0.1〜1.0%
Niは、上記Cuによる熱延表面性状悪化を緩和する効
果があり、Cuの半分程度を目安に添加することが望ま
しい。従って、その下限は0.1%である。一方、1.
0%を超えて添加してもその効果は飽和し、コストの上
昇につながるだけなので、1.0%を上限とする。な
お、本発明において上記以外の成分はFeとなるが、ス
クラップなどの溶解原料から混入する不可避的不純物は
許容される。Cu: 0.2 to 2.0% Cu can be utilized as a solid solution strengthening element or a precipitation strengthening element for increasing the strength of the steel sheet. Further, the addition thereof can further improve the fatigue strength. However, if 0.2% or more is not added, the effect is small and only the cost is increased, so the lower limit is 0.2%. On the other hand, 2.0%
If it is contained in excess of 1.0%, the surface properties of the steel sheet after hot rolling deteriorate, so 2.0% is made the upper limit. Ni: 0.1 to 1.0% Ni has the effect of alleviating the deterioration of the hot rolled surface quality due to the above Cu, and it is desirable to add about half of Cu as a guide. Therefore, the lower limit is 0.1%. On the other hand, 1.
Even if added in excess of 0%, the effect will be saturated and only increase in cost, so 1.0% is made the upper limit. In the present invention, the component other than the above is Fe, but unavoidable impurities mixed from the melting raw material such as scrap are allowed.
【0018】次に加熱、圧延、冷却および巻取りの各条
件について述べる。加熱温度は鋼中のTiCやNbCな
どを固溶させるため1150℃以上とすることが必要で
ある。これらを固溶させておくことにより、圧延後の冷
却過程でポリゴナルなフェライトの生成が抑制され、伸
びフランジ性にとって好ましいベイニティック・フェラ
イト相を主体とする組織が得られる。一方、加熱温度が
1250℃を超えるとスラブ表面の酸化が著しくなり、
特に粒界が選択的に酸化されたことに起因すると思われ
る楔状の表面欠陥がデスケーリング後に残り、それが圧
延後の表面品位を損ねるので上限を1250℃とする。Next, heating, rolling, cooling and winding conditions will be described. The heating temperature is required to be 1150 ° C. or higher in order to form a solid solution of TiC, NbC, etc. in the steel. By forming a solid solution of these, the formation of polygonal ferrite is suppressed in the cooling process after rolling, and a structure mainly composed of a bainitic ferrite phase for stretch flangeability can be obtained. On the other hand, if the heating temperature exceeds 1250 ° C, the slab surface will be significantly oxidized,
In particular, wedge-shaped surface defects that are considered to be caused by selective oxidation of grain boundaries remain after descaling and impair the surface quality after rolling, so the upper limit is set to 1250 ° C.
【0019】仕上圧延完了温度は鋼板の組織制御上重要
である。Ar3 点+50℃未満では表層部の結晶粒径が
粗大となって疲労特性上好ましくない。一方、Ar3 点
+150℃超では伸びフランジ性にとって好ましくない
ポリゴナル・フェライト相が生成し易くなるので、上限
をAr3 点+150℃とする。平均の冷却速度を40℃
/秒以上とし、300〜500℃まで冷却するのは、ポ
リゴナル・フェライト相の生成を抑制し、ベイニティッ
ク・フェライト相を主体とする組織を得るためである。
冷却速度が40℃/秒未満ではポリゴナル・フェライト
相が生成しやすくなり好ましくない。The finish rolling completion temperature is important for controlling the structure of the steel sheet. If the Ar 3 point is less than + 50 ° C., the crystal grain size of the surface layer becomes coarse, which is not preferable in terms of fatigue characteristics. On the other hand, if the Ar 3 point exceeds + 150 ° C., a polygonal ferrite phase unfavorable for stretch flangeability tends to be generated, so the upper limit is set to the Ar 3 point + 150 ° C. Average cooling rate of 40 ° C
/ Sec or more and cooling to 300 to 500 [deg.] C. is for suppressing the formation of polygonal ferrite phase and obtaining a structure mainly composed of bainitic ferrite phase.
If the cooling rate is less than 40 ° C./second, a polygonal ferrite phase is likely to be formed, which is not preferable.
【0020】一方、組織制御の上では冷却速度に上限を
設ける必要はないが、余りに速い冷却速度は鋼板の冷却
を不均一にする恐れがあり、またそうした冷却を可能に
するような設備の製造には多額の費用が必要になり、そ
のことで鋼板の価格の上昇を招くことが考えられる。そ
うした観点から冷却速度の上限は100℃/秒とするの
が好ましい。また、冷却停止温度が300℃より低くな
ると伸びフランジ性に好ましくないマルテンサイト相が
生成されるので、下限を300℃とする。On the other hand, there is no need to set an upper limit on the cooling rate for the purpose of controlling the structure, but an excessively high cooling rate may cause uneven cooling of the steel sheet, and the production of equipment that enables such cooling. Requires a large amount of cost, which may lead to an increase in the price of steel sheets. From such a viewpoint, the upper limit of the cooling rate is preferably 100 ° C./second. Further, when the cooling stop temperature is lower than 300 ° C., a martensite phase which is unfavorable for stretch flangeability is generated, so the lower limit is set to 300 ° C.
【0021】巻取り温度は伸びフランジ性を極端に悪化
させるマルテンサイト相の生成を抑制するため300℃
以上とする必要がある。一方、500℃超ではポリゴナ
ル・フェライト相の生成が抑制できず、また、Cuを含
有している鋼ではフェライト相中にCuが局在的に析出
して疲労特性向上効果減じる恐れがあるので500℃以
下とする必要がある。更に500℃以下で巻き取ること
により、その後の冷却過程でTiCやNbCが析出し、
フェライト相中の固溶C量を大幅に減少させ、伸びフラ
ンジ性の向上をもたらす。The coiling temperature is 300 ° C. in order to suppress the formation of a martensite phase which extremely deteriorates stretch flangeability.
It is necessary to be above. On the other hand, if the temperature exceeds 500 ° C., the formation of polygonal ferrite phase cannot be suppressed, and in the steel containing Cu, Cu may be locally precipitated in the ferrite phase to reduce the fatigue property improving effect. It must be below ℃. By further winding at 500 ° C or lower, TiC and NbC are precipitated in the subsequent cooling process,
It significantly reduces the amount of solute C in the ferrite phase and improves stretch flangeability.
【0022】最後に鋼板の組織について説明する。優れ
た伸びフランジ性を得るにはベイニティック・フェライ
トを主相とする組織にすることが必要であり、その望ま
しい面積率は実施例にて示すように80%以上、好まし
くは90%以上、より好ましくは100%である。また
残部はベイナイト相および/又はポリゴナル・フェライ
ト相を20%以下含有することができ、マルテンサイト
相が含まれることは極力避けることが望ましい。こうし
た鋼板組織構成に加えて介在物が微細化されることによ
り、同時に優れた疲労特性も得られる。Finally, the structure of the steel sheet will be described. In order to obtain excellent stretch flangeability, it is necessary to have a structure having bainitic ferrite as a main phase, and the desirable area ratio thereof is 80% or more, preferably 90% or more, as shown in Examples. It is more preferably 100%. Further, the balance can contain 20% or less of bainite phase and / or polygonal ferrite phase, and it is desirable to avoid inclusion of martensite phase as much as possible. By virtue of the inclusions being refined in addition to such a steel plate structure, excellent fatigue properties can be obtained at the same time.
【0023】[0023]
【実施例】以下、本発明の実施例を比較例とともに説明
する。
(実施例1)表1に化学成分を示す鋼のスラブを表2に
示す条件にて熱間圧延し、厚さ3.2mmの熱延板を得
た。このようにして得られた鋼板の強度、延性、穴広げ
性、断面組織、および疲労限度比を調べた。その結果を
鋼と条件の組み合わせ毎に表3に示す。強度と延性は、
圧延方向と平行に採取したJIS5号試験片の引張試験
により求めた。穴広げ性は、150×150mmの鋼板
の中央に開けた直径10mmの打ち抜き穴を60°の円
錐パンチで押し広げ、板厚貫通亀裂が生じた時点での穴
径D(mm)を測定し、λ=(D−10)/10で求め
たλで評価した。また、疲労限度比は、JIS Z 2
275に準拠した方法で求めた2×106回時間強さ、
σW を鋼板の強度(σB )で除した値(σW /σB )で
評価した。なお、試験片は同規格に規定の1号試験片で
あり、平行部が25mm、曲率半径Rが100mm、原
板(熱延板)の両面を等しく研削した厚さ3.0mmの
ものを用いた。表3から明らかなように、本発明の方法
を用いれば、強度、延性、穴広げ性、および疲労特性に
優れた鋼板を得ることができる。EXAMPLES Examples of the present invention will be described below together with comparative examples. (Example 1) A steel slab having a chemical composition shown in Table 1 was hot-rolled under the conditions shown in Table 2 to obtain a hot-rolled sheet having a thickness of 3.2 mm. The strength, ductility, hole expandability, sectional structure, and fatigue limit ratio of the steel sheet thus obtained were examined. The results are shown in Table 3 for each combination of steel and conditions. Strength and ductility are
It was determined by a tensile test of a JIS No. 5 test piece taken in parallel with the rolling direction. The hole expandability is that a punched hole having a diameter of 10 mm opened in the center of a steel plate of 150 × 150 mm is spread with a conical punch of 60 °, and the hole diameter D (mm) at the time when a plate thickness through crack occurs is measured, It was evaluated by λ obtained by λ = (D-10) / 10. The fatigue limit ratio is JIS Z 2
2 × 10 6 time strength obtained by the method according to 275,
It was evaluated by a value obtained by dividing (σ W / σ B) in the intensity of the sigma W steel (σ B). The test piece was the No. 1 test piece prescribed in the same standard, and the one having a parallel portion of 25 mm, the radius of curvature R of 100 mm, and a thickness of 3.0 mm obtained by equally grinding both surfaces of the original plate (hot rolled plate) was used. . As is clear from Table 3, by using the method of the present invention, it is possible to obtain a steel sheet excellent in strength, ductility, hole expandability, and fatigue characteristics.
【0024】[0024]
【表1】 [Table 1]
【0025】[0025]
【表2】 [Table 2]
【0026】[0026]
【表3】 [Table 3]
【0027】(実施例2)質量%にて、C:0.05
%、Si:0.05%、Mn:1.5%、P:0.02
%、S:0.001%、Cu:1.0%、Ni:0.5
%、Al:0.0004%、Ti:0.3%、Nb:
0.03%を含有し、CeとOの含有量が異なり、残部
がFeである鋼片を製造した。これらを加熱温度125
0℃、仕上圧延終了温度850℃、平均冷却速度50℃
/秒、巻取り温度450℃の条件で3.2mmの熱延鋼
板とした。このようにして得られた鋼板の強度、延性、
断面組織、穴広げ性、および疲労限度比を調べた。評価
方法は実施例1と同じである。その結果、何れの鋼も強
度800MPa以上、延性20%以上、ベイニティック
・フェライト相の面積率80%以上、疲労限度比0.6
5以上を示し、それらの特性はCe含有量、およびO含
有量の影響をほとんど受けなかったが、穴広げ性は強く
影響を受けた。その結果を、Ce含有量、およびO含有
量を座標軸として図1に示す。図1は鋼板の伸びフラン
ジ性をCe濃度およびO濃度を座標軸として示すグラフで
ある。この場合、単位は何れも質量ppmであり、太線
の内部が本発明の範囲を示す。このように、本発明の範
囲内であれば、伸びフランジ性と疲労特性に優れた高強
度熱延鋼板の得られることが明らかである。(Example 2) C: 0.05 in mass%
%, Si: 0.05%, Mn: 1.5%, P: 0.02
%, S: 0.001%, Cu: 1.0%, Ni: 0.5
%, Al: 0.0004%, Ti: 0.3%, Nb:
A steel slab containing 0.03%, different Ce and O contents, and the balance being Fe was produced. Heating these to 125
0 ℃, finish rolling finish temperature 850 ℃, average cooling rate 50 ℃
/ Sec and a winding temperature of 450 ° C, a hot rolled steel sheet of 3.2 mm was prepared. Strength, ductility of the steel sheet thus obtained,
The cross-sectional structure, hole expandability, and fatigue limit ratio were investigated. The evaluation method is the same as in Example 1. As a result, all steels had a strength of 800 MPa or more, a ductility of 20% or more, an area ratio of bainitic / ferrite phase of 80% or more, and a fatigue limit ratio of 0.6.
5 or more, and those properties were hardly affected by the Ce content and the O content, but the hole expandability was strongly affected. The results are shown in FIG. 1 with Ce content and O content as coordinate axes. FIG. 1 is a graph showing the stretch flangeability of a steel sheet with Ce concentration and O concentration as coordinate axes. In this case, all units are ppm by mass, and the inside of the bold line indicates the range of the present invention. As described above, it is apparent that a high-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics can be obtained within the range of the present invention.
【0028】[0028]
【発明の効果】本発明の方法によれば、伸びフランジ性
と疲労特性に優れた高強度熱延鋼板を得ることが出来
る。According to the method of the present invention, it is possible to obtain a high-strength hot-rolled steel sheet having excellent stretch flangeability and fatigue characteristics.
【図面の簡単な説明】[Brief description of drawings]
【図1】鋼板の伸びフランジ性をCe濃度およびO濃度
を座標軸として示すグラフである。FIG. 1 is a graph showing stretch flangeability of a steel sheet with Ce concentration and O concentration as coordinate axes.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 学 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4K037 EA01 EA05 EA13 EA15 EA18 EA19 EA20 EA22 EA23 EA25 EA27 EA28 EA31 EA36 FA02 FA03 FC00 FD04 FE01 HA00 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Manabu Takahashi 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares Company Technology Development Division F-term (reference) 4K037 EA01 EA05 EA13 EA15 EA18 EA19 EA20 EA22 EA23 EA25 EA27 EA28 EA31 EA36 FA02 FA03 FC00 FD04 FE01 HA00
Claims (3)
12)×C−(48/14)×N−(48/32)×
S}≦0.2 となるように含有し、更に、Ce、およびO(酸素)を Ce:0.0003〜0.012%、O:0.0003
〜0.01%、かつCe/O≧0.25 となるように含有し、残部がFeおよび不可避不純物か
らなり、ベイニティック・フェライト相の面積率が80
〜100%であることを特徴とする伸びフランジ性と疲
労特性に優れた高強度熱延鋼板。1. In mass%, C: 0.03 to 0.10%, Si: 0.05 to 1.5%, Mn: 1.0 to 2.0%, P: 0.05% or less , S: 0.01% or less, N: 0.0005 to 0.01%, Al: 0.004% or less, and one or both of Ti and Nb are -0.05 ≦ {Ti + (48 / 93) x Nb- (48 /
12) x C- (48/14) x N- (48/32) x
S and S are contained such that Ce and O (oxygen) are Ce: 0.0003 to 0.012% and O: 0.0003.
To 0.01% and Ce / O ≧ 0.25, the balance is Fe and inevitable impurities, and the area ratio of bainitic ferrite phase is 80.
A high-strength hot-rolled steel sheet excellent in stretch-flangeability and fatigue characteristics, which is characterized by being 100% to 100%.
ンジ性と疲労特性に優れた高強度熱延鋼板。2. The stretch flangeability according to claim 1, further comprising Cu: 0.2 to 2.0% and Ni: 0.1 to 1.0% in mass%. And high strength hot rolled steel sheet with excellent fatigue properties.
る方法であって、請求項1または2に記載の化学成分を
有する鋼材を1150〜1250℃に加熱して粗圧延し
た後、Ar3 点+50℃〜Ar3 点+150℃で仕上圧
延を完了し、更に、40℃/秒以上の平均冷却速度で3
00〜500℃まで冷却し、300〜500℃で巻き取
ることを特徴とする伸びフランジ性と疲労特性に優れた
高強度熱延鋼板の製造方法。3. A method for producing a steel sheet according to claim 1 or 2, wherein the steel material having the chemical composition according to claim 1 or 2 is heated to 1150 to 1250 ° C. and rough-rolled, and then Ar Finish rolling is completed at 3 points + 50 ° C to Ar 3 points + 150 ° C, and further 3 at an average cooling rate of 40 ° C / sec or more.
A method for producing a high-strength hot-rolled steel sheet excellent in stretch-flangeability and fatigue characteristics, which comprises cooling to 00-500 ° C and winding at 300-500 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001373702A JP3650601B2 (en) | 2001-12-07 | 2001-12-07 | High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001373702A JP3650601B2 (en) | 2001-12-07 | 2001-12-07 | High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003171734A true JP2003171734A (en) | 2003-06-20 |
JP3650601B2 JP3650601B2 (en) | 2005-05-25 |
Family
ID=19182376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001373702A Expired - Fee Related JP3650601B2 (en) | 2001-12-07 | 2001-12-07 | High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3650601B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007077412A (en) * | 2005-09-09 | 2007-03-29 | Nippon Steel Corp | High strength hot rolled steel sheet with excellent stretch-flange formability and fatigue characteristic |
JP2007146280A (en) * | 2005-11-07 | 2007-06-14 | Nippon Steel Corp | High-strength steel sheet superior in formability for extension flange and fatigue characteristics |
WO2008007477A1 (en) * | 2006-07-14 | 2008-01-17 | Nippon Steel Corporation | High-strength steel sheet excellent in stretch flangeability and fatigue property |
WO2008136516A1 (en) * | 2007-04-26 | 2008-11-13 | Nippon Steel Corporation | High-strength steel sheet excelling in flange extensibility and fatigue performance and method of smelting for molten steel thereof |
WO2009151140A1 (en) * | 2008-06-13 | 2009-12-17 | 新日本製鐵株式会社 | High-strength steel sheet and process for producing molten steel for high-strength steel sheet |
-
2001
- 2001-12-07 JP JP2001373702A patent/JP3650601B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007077412A (en) * | 2005-09-09 | 2007-03-29 | Nippon Steel Corp | High strength hot rolled steel sheet with excellent stretch-flange formability and fatigue characteristic |
JP4523899B2 (en) * | 2005-09-09 | 2010-08-11 | 新日本製鐵株式会社 | High-strength hot-rolled steel sheet with excellent stretch flangeability and fatigue characteristics |
JP2007146280A (en) * | 2005-11-07 | 2007-06-14 | Nippon Steel Corp | High-strength steel sheet superior in formability for extension flange and fatigue characteristics |
WO2008007477A1 (en) * | 2006-07-14 | 2008-01-17 | Nippon Steel Corporation | High-strength steel sheet excellent in stretch flangeability and fatigue property |
WO2008136516A1 (en) * | 2007-04-26 | 2008-11-13 | Nippon Steel Corporation | High-strength steel sheet excelling in flange extensibility and fatigue performance and method of smelting for molten steel thereof |
WO2009151140A1 (en) * | 2008-06-13 | 2009-12-17 | 新日本製鐵株式会社 | High-strength steel sheet and process for producing molten steel for high-strength steel sheet |
US9650690B2 (en) | 2008-06-13 | 2017-05-16 | Nippon Steel & Sumitomo Metal Corporation | High-strength steel sheet and method of producing molten steel for high-strength steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP3650601B2 (en) | 2005-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5029748B2 (en) | High strength hot rolled steel sheet with excellent toughness and method for producing the same | |
JP5370620B1 (en) | Thin steel plate and manufacturing method thereof | |
JP2007070660A (en) | High strength thin steel sheet having excellent formability, and method for producing the same | |
JP2007211334A (en) | High-tensile hot-rolled steel sheet and its manufacturing method | |
WO2013094130A1 (en) | High-strength steel sheet and process for producing same | |
JP3301348B2 (en) | Manufacturing method of hot-rolled high-tensile steel sheet | |
JP5878829B2 (en) | High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof | |
JP2005256115A (en) | High strength hot rolled steel sheet having excellent stretch flange formability and fatigue property | |
JP4980253B2 (en) | High-strength hot-rolled steel sheet with excellent strength-ductility balance and punchability and method for producing the same | |
JP5845837B2 (en) | High-strength thin steel sheet with excellent rigidity and manufacturing method thereof | |
JP2023543410A (en) | High-strength thick hot-rolled steel sheet with excellent elongation ratio and method for manufacturing the same | |
KR102307928B1 (en) | High strength multiphase steel sheet with excellent durability and manufacturing method thereof | |
JP2008274336A (en) | High strength steel sheet having excellent stretch-flange formability and fatigue property, and method for refining molten steel thereof | |
JP3650601B2 (en) | High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics and method for producing the same | |
JP2007146280A (en) | High-strength steel sheet superior in formability for extension flange and fatigue characteristics | |
JP4105974B2 (en) | High-strength hot-rolled steel sheet excellent in fatigue characteristics and stretch flangeability of punched end face, and method for producing the same | |
JP2023500871A (en) | High-yield-ratio thick high-strength steel with excellent durability and its manufacturing method | |
JP3863803B2 (en) | High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics and method for producing the same | |
JP5058892B2 (en) | DP steel sheet with excellent stretch flangeability and method for producing the same | |
JP2007224408A (en) | Hot-rolled steel sheet having excellent strain aging property and method for producing the same | |
JP4094498B2 (en) | Deep drawing high strength cold-rolled steel sheet and method for producing the same | |
JPH0665685A (en) | Cold rolled sheet of ultrahigh tensile strength steel and its production | |
JP2011179071A (en) | High-tensile cold-rolled steel sheet and method of producing the same | |
KR100833068B1 (en) | Fine-grained hot-rolled steel with low yield ratio | |
JP2640065B2 (en) | High-strength hot-rolled steel sheet having good workability and a strength of 730 N / mm2 or more and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050215 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050218 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3650601 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080225 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090225 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090225 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100225 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100225 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110225 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110225 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120225 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120225 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130225 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130225 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130225 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130225 Year of fee payment: 8 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130225 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140225 Year of fee payment: 9 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |