WO2008007477A1 - High-strength steel sheet excellent in stretch flangeability and fatigue property - Google Patents

High-strength steel sheet excellent in stretch flangeability and fatigue property Download PDF

Info

Publication number
WO2008007477A1
WO2008007477A1 PCT/JP2007/054614 JP2007054614W WO2008007477A1 WO 2008007477 A1 WO2008007477 A1 WO 2008007477A1 JP 2007054614 W JP2007054614 W JP 2007054614W WO 2008007477 A1 WO2008007477 A1 WO 2008007477A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
inclusions
acid
steel plate
soluble
Prior art date
Application number
PCT/JP2007/054614
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuhiro Sasai
Wataru Ohashi
Kenichi Yamamoto
Kaoru Kawasaki
Hiroshi Harada
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006193893A external-priority patent/JP4901346B2/en
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to CA2657587A priority Critical patent/CA2657587C/en
Priority to EP07738099.6A priority patent/EP2048254B1/en
Priority to AU2007273767A priority patent/AU2007273767B2/en
Priority to US12/373,570 priority patent/US20090317285A1/en
Priority to CN2007800268244A priority patent/CN101490295B/en
Publication of WO2008007477A1 publication Critical patent/WO2008007477A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Definitions

  • the present invention relates to a high-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics, which is suitable as a material for an automobile underbody member.
  • hole expansibility tends to decrease in the same way as ductility, and when applying high-strength steel sheets to undercarriage systems of automobiles with complex shapes, The hole expansibility is an important consideration. .
  • JP-A-11-199973 proposes a steel sheet (generally called DP steel sheet) in which fine Cu precipitates or solid solution is dispersed in a ferrite steel sheet and martensite phase composite steel sheet.
  • DP steel sheet a steel sheet in which fine Cu precipitates or solid solution is dispersed in a ferrite steel sheet and martensite phase composite steel sheet.
  • solid solution of Cu or simple substance is used. It has been found that Cu precipitates with a particle size of 2 nm or less, which are composed by themselves, are extremely effective in improving fatigue properties and do not impair workability, thus limiting the composition ratio of various components.
  • the DP steel sheet is known to be excellent in the balance between strength and ductility and fatigue properties, but still has poor stretch flangeability as evaluated in the hole expansion test.
  • One reason for this is that DP steel is a composite of a soft ferrite phase and a hard martensite phase, so the boundary between the two phases cannot follow the deformation during hole expansion, making it easy to start fracture. It is thought that.
  • the main phase is made to be a bainitic structure by reducing C as much as possible, and a solid structure strengthened or precipitation strengthened ferrite structure at an appropriate volume ratio.
  • the main point is to reduce the hardness difference between ferrite and bainite and to avoid the formation of coarse carbides. Disclosure of the invention
  • the high-strength hot-rolled steel sheet which is mainly composed of a steel sheet structure and suppresses the formation of coarse carbides, as disclosed in the above-mentioned JP-A-2001-200331, certainly exhibits excellent stretch flangeability. Fatigue properties are not necessarily superior to DP steel containing Cu. In addition, cracking cannot be prevented when severe hole enlargement processing is performed simply by suppressing the formation of coarse carbides. According to the study by the present inventors, it has been found that these causes are the presence of elongated sulfide inclusions mainly composed of MnS in the steel sheet.
  • Mn is an element that contributes to increasing the strength of the material together with C and Si.
  • the Mn concentration is generally set high to ensure strength. If heavy desulfurization is not performed in the next purification process, the S concentration will be more than 50 PPDI. For this reason, MnS is usually present in the piece.
  • the Mn S deforms easily and becomes a stretched Mn S-based inclusion, which causes deterioration in fatigue properties and stretch flangeability (hole expansion workability). .
  • the present invention has been devised in view of the above-described problems, and the object of the present invention is to cause precipitation as fine MnS in the flakes, and further, without being deformed during rolling and cracking. It is an object of the present invention to provide a high-strength steel sheet excellent in stretch flangeability and fatigue properties by improving the stretch flangeability and fatigue properties by dispersing in the steel plate as fine spherical inclusions that are unlikely to be the starting point of occurrence.
  • the present inventor has made steel sheets as fine spherical inclusions which are precipitated as fine Mn S in the flakes and are not deformed during rolling, and are unlikely to start cracking.
  • Research was conducted with a focus on elucidating additive elements that do not degrade fatigue properties and the method of dispersing them.
  • MnS precipitates on high-quality Ce oxides, La oxides, cerium oxide sulfides, and lanthanum sulfides, and deformation of the precipitated MnS hardly occurs during rolling.
  • the stretched coarse MnS is remarkably reduced, and it becomes difficult for these MnS inclusions to become the starting point of cracking and the path of crack propagation during repeated deformation and hole expansion processing. It has been elucidated that this will lead to improvements.
  • the outline of the high-strength steel sheet excellent in stretch flangeability and fatigue characteristics according to the present invention is as follows.
  • the steel sheet is characterized by containing at least 10% of inclusions in which MnS is deposited on one or two kinds of oxides or oxysulfides of Ce or La.
  • Elongation flange property characterized by the inclusion of an inclusion with an equivalent diameter of 1 m or more present in a steel plate and an average equivalent circle diameter of an extension inclusion with a major axis / minor axis of 5 or more of 10 m or less. High strength steel plate with excellent fatigue characteristics.
  • Nb 0.01 to 0.10%
  • V 0.01 to 0.05%
  • Cr 0.01 to 0.6%
  • Mo 0.01 to 0.4%
  • B 0.0003 to 0.03%
  • Nb 0.01 to 0.10%
  • V 0.01 to 0.05%
  • Cr 0.01 to 0.6%
  • Mo 0.01 to 0.4%
  • B 0.0003 to 0.03%
  • One or two or more, the balance being a steel plate made of iron and inevitable impurities, characterized by excellent stretch flangeability and fatigue properties according to any one of (1) to (7) High strength steel plate.
  • Figure 1 shows the relationship between Ce + La (%) and S (). BEST MODE FOR CARRYING OUT THE INVENTION
  • the present inventor made various changes to molten steel containing C: 0.07%, Si: 0.2%, Mn: 1.2%, P: 0.01% or less, S: 0.005%, N: 0.003%, and the balance being Fe.
  • Deoxidation was performed using various elements to produce a steel ingot.
  • the obtained steel ingot was hot rolled into a 3 mm hot rolled steel sheet.
  • These manufactured hot rolled steel sheets In addition to the hole expansion test and fatigue test, the density, morphology and average composition of inclusions in the steel sheet were investigated.
  • Ce oxides, La oxides, why cell Liu Muo carboxymethyl monkey phi Dooyo beauty lanthanum O carboxymethyl sulfates eye de is miniaturized, the first S i 0 2 type inclusions generated by S i deoxidation The Ce and La added later are reduced and decomposed to form fine Ce oxide, La oxide, cerium oxysulfide and lanthanum sulfite, and the generated Ce oxide, This is because, since the interface energy between La oxide, cerium ogi sulfide and lanthanum sulfide itself and molten steel is low, agglomeration after formation is also suppressed.
  • the C is the most basic element that controls the hardenability and strength of steel. Enhances the fatigue strength by increasing the hardness and depth of the hardened hardened layer. In other words, this C is an essential element for securing the strength of the steel sheet, and at least 0.03% is necessary to obtain a high-strength steel sheet.
  • this C is excessively contained, a cementite phase will be generated even if C is fixed by Ti carbide generation as in the past, or even if cooling conditions are used. This cementite phase induces work hardening of the steel sheet and is not preferable for improving stretch flange characteristics. Therefore, in the present invention, from the viewpoint of improving workability, the C concentration is set to 0.20% or less.
  • Si is a major deoxidizing element in molten steel to which A1 and Ti are not added as much as in the present invention, it is extremely important in the present invention.
  • Si also has the function of increasing the number of nucleation sites of austenite during quenching heating, suppressing austenite grain growth, and reducing the grain size of the quenched hardened layer. This Si suppresses the formation of carbides and suppresses the decrease in grain boundary strength due to carbides. In addition, this Si is effective for the generation of the Painai microstructure, and plays an important role in terms of ensuring the strength of the entire material.
  • the lower limit of Si is set to 0.08%.
  • the concentration of Si is too high, liable to generate a large inclusions becomes high Si0 2 concentration in inclusions, also toughness and ductility become extremely poor, the surface decarburization and surface flaws increase Therefore, the fatigue characteristics are worsened.
  • the upper limit of Si is set to 1.5%. Mn: 1. 0 to 3.0%
  • Mn is an element useful for deoxidation in the steelmaking stage, and is an element effective for increasing the strength of steel sheets together with C and Si. In order to obtain such an effect, it is necessary to contain 1.0% or more of this Mn. However, if Mn exceeds 3.0%, the segregation of Mn decreases the ductility due to the increase in solid solution strengthening. Also, since the weldability and base metal toughness deteriorate, the upper limit of Mn is set to 3.0%.
  • P is effective in that it acts as a substitutional solid solution strengthening element smaller than Fe atoms, but it reduces the torsional fatigue strength by praying to the austenite grain boundaries and lowering the grain boundary strength. Since there is a concern about deterioration of workability, the content should be 0.05% or less. If solid solution strengthening is not required, it is not necessary to add P, and the lower limit of P includes 0%.
  • MnS is precipitated on fine and hard Ce oxide, La oxide, cerium oxysulfide, and lanthanum oxysulfide, and deformation hardly occurs during rolling. Since stretching is prevented, the upper limit of the concentration of S is not specified.
  • the lower limit of the S concentration is set to 0.0005%.
  • N 0.0005 to 0.0 1%
  • N is an element that is inevitably mixed into steel because nitrogen in the air is taken in during the treatment of molten steel. N forms nitrides with ⁇ , Ti, etc., and promotes the refinement of the matrix structure. However, if this N is added too much, coarse precipitates are generated even with a trace amount of A1 or a trace amount of Ti, and the stretch flangeability is deteriorated. Therefore, in the present invention, the upper limit of the N concentration is set to 0.01%. On the other hand, if the N concentration is less than 0.0005%, the cost increases, so 0.0005% is the lower limit.
  • Acid soluble A1 0.01% or less
  • Acid-soluble A1 is desirable to be suppressed as much as possible because its oxides are likely to be clustered and become coarse, and the stretch flangeability deteriorates fatigue properties.
  • up to 0.01% is allowed as a preliminary deoxidizer. This is because if the acid soluble A1 concentration of 0.01 percent, A 1 2 0 3 content in the inclusions exceeds 50%, it is because the clustered was place of inclusions. From the viewpoint of preventing clustering, it is better that the acid-soluble A1 concentration is lower, and the lower limit is 0%. Further, the acid soluble A1 concentration, obtained by measuring the concentration of A1 dissolved in acid, dissolved A1 is dissolved in acid, A 1 2 0 3 is the analysis method using not to dissolve the acid .
  • examples of the acid include a mixed acid mixed at a ratio of hydrochloric acid 1, nitric acid 1 and water 2 ('mass ratio).
  • a soluble A1 acid can classified into the A1 2 0 3 which does not dissolve in acid, it can be measured acid soluble M concentration.
  • Acid soluble Ti less than 0.008%
  • the acid-soluble Ti is also likely to become coarse due to its oxides clustering, and it is easy to form coarse TiN inclusions combined with N in the steel, so the acid-soluble Ti is less than 0.008%. Contains 0%.
  • the acid-soluble Ti concentration is a measure of the concentration of Ti dissolved in acid, and is an analytical method that utilizes dissolved Ti dissolved in acid and Ti oxide not dissolved in acid.
  • the acid is, for example, the ratio of hydrochloric acid 1, nitric acid 1, water 2 (mass ratio Examples of the mixed acid mixed in). Using such an acid, it is soluble in acid
  • Ce La is reduced 2 Si0 produced by Si deoxidation, easy precipitation site next to the MnS, and the hard, difficult to deform Ce oxide during rolling fine (eg, Ce 2 0 3, Ce0 2 ), Cerium oxide sulfide (eg Ce 2 0 2 S), La oxide (eg La 2 0 3 , La0 2 ), lanthanum oxide sulfide (eg La 2 0 2 S), Ce oxidation Materials—Has the effect of forming inclusions whose main phase is 50% or more of La oxide or cerium oxysulfide or lanthanum oxysulfide.
  • MnO, Si0 2 by deoxidation conditions, or in some cases to partially containing A 1 2 0 3, main phase as a precipitation site of MnS within the above oxide It functions well, and the effect of the micro-hardening of inclusions is not impaired.
  • the total concentration of one or two of Ce or La must be 0.0005% or more and 0.04% or less.
  • One or two total concentration of Ce or La can not reducing 'the Si0 2 inclusions is less than 0.00 0.05%, Seriyuumuo Kishisarufuai de is 0.04 percent, lanthanum O carboxymethyl monkey sulfide is produced in large quantities, coarse It becomes an inclusion and stretch flangeability deteriorates fatigue characteristics.
  • Nb forms carbides, nitrides, and carbonitrides with C or N and promotes refinement of the base material structure. To obtain this effect, at least 0.01% is required. However, even if it is contained in a large amount exceeding 0.10%, the effect is saturated and the cost becomes high, so 0.10% is made the upper limit.
  • V is a base material that forms carbide, nitride, carbonitride with C or N Promotes tissue refinement. To obtain this effect, at least 0.01% is required. However, even if it is contained in a large amount exceeding 0. Q5%, the effect is saturated and the cost becomes high, so 0.05% is made the upper limit.
  • Cr can be included as necessary to improve the hardenability of the steel and ensure the strength of the steel sheet, and at least 0.01% is necessary to obtain this effect. .
  • the upper limit is 0.6%.
  • Mo can be added as needed to improve the hardenability of the steel and ensure the strength of the steel sheet, and at least 0.01% is necessary to obtain this effect. However, a large amount of content deteriorates the balance of strength ductility. Therefore, the upper limit is 0.4%.
  • B can be included as needed to improve the hardenability of the steel, strengthen the grain boundaries, and improve the workability. To obtain this effect, B is at least 0.0003%. is required. However, if a large amount is contained, the cleanliness of the steel is impaired and the ductility is deteriorated. Therefore, the upper limit is 0.003%.
  • the steel sheet means a rolled sheet obtained through hot rolling or further cold rolling.
  • MnS inclusions with an equivalent circle diameter of less than 1 m are harmless as a starting point of cracking and do not deteriorate fatigue characteristics if stretch flangeability occurs.
  • inclusions with a circle equivalent diameter of 1 or more can be easily observed with a scanning electron microscope (SEM), etc.
  • SEM scanning electron microscope
  • the morphology and composition were investigated, and the distribution of MnS inclusions was evaluated.
  • the equivalent circle diameter is defined as (major axis X minor axis) obtained from the major axis and minor axis of the inclusion observed in the cross section.
  • the upper limit of the circle equivalent diameter of MnS inclusions is not particularly specified, but in reality, about 1 MnS inclusions may be observed.
  • the number of stretched inclusions was determined by analyzing the composition of multiple inclusions (for example, about 50) with a diameter equivalent to a circle l ⁇ m or more randomly selected using SEM, and determining the major axis and minor axis of the inclusions. Measure from SEM image.
  • the elongated inclusion is an inclusion having a major axis Z minor axis (stretching ratio) of 5 or more
  • the number of the detected elongated inclusions is the total number of investigated inclusions (50 in the above example).
  • the ratio of the number of the stretched inclusions can be obtained.
  • the reason why the inclusion stretching ratio was set to 5 or more is that inclusions with a stretching ratio of 5 or more in the comparative steel sheet to which Ce and La were not added were mostly MnS inclusions.
  • the upper limit of the stretching ratio of MnS inclusions is not particularly specified, but in reality, MnS inclusions with a stretching ratio of about 50 may be observed.
  • the stretch flangeability and fatigue characteristics of the steel sheet whose form ratio was controlled to 20% or less in the number ratio of stretch inclusions with a stretch ratio of 5 or more were improved. That is, if the number ratio of stretch inclusions with a stretch ratio of 5 or more exceeds 20%, the number ratio of MnS-based stretch inclusions, which are likely to start cracking, increases too much, and the stretch flangeability and fatigue characteristics deteriorate.
  • the number ratio of stretch inclusions having a stretch ratio of 5 or more is 20%. The following.
  • the lower limit of the number ratio of stretch inclusions with a stretch ratio of .5 or more includes 0%.
  • an inclusion with an equivalent circle diameter of 1 z ⁇ rn or more and a lower limit of the number ratio of the extension inclusions with a drawing ratio of 5 or more means 0%. This is the case when there is no stretch ratio of 5 or more, or when the circular equivalent diameter is less than 1 m even for stretch inclusions with a stretch ratio of 5 or more.
  • the number of stretched inclusions with a stretching ratio of 5 or more is correspondingly reduced by adding MnS to oxides or oxysulfide containing one or two of Ce or La. It is in the form of precipitated. As for the form of this inclusion, it is sufficient that MnS is precipitated in one or two kinds of oxides or oxysulfides of Ce or La, and it is not particularly specified, but one kind of Ce or La is used. In many cases, MnS is deposited around two oxides or oxysulfide as a nucleus.
  • the spherical inclusions judged not to be stretched are not particularly defined, but are inclusions having a stretching ratio of 3 or less, preferably 2 or less, in the steel sheet. This is because, in the flake stage before rolling, the stretching ratio of inclusions in the form of 'MnS precipitated on oxide or oxysulfide consisting of one or two of Ce or La was 3 or less. is there.
  • spherical inclusions that are judged not to be stretched have a stretching ratio of 1 if they are completely spherical, so the lower limit of the stretching ratio is 1.
  • the survey of the number ratio of inclusions was conducted in the same manner as the number ratio survey of stretched inclusions.
  • the number ratio of inclusions in the form of MnS precipitated in one or two types of oxides or oxysulfides of Ce or La was controlled to be 10% or more, elongation flangeability and It was found that the fatigue characteristics were improved.
  • MnS-based stretched inclusions correspond to this.
  • the ratio of the number of steels increases so much that the stretch flangeability and fatigue characteristics deteriorate.
  • the number ratio of inclusions in the form of MnS deposited on one or two kinds of oxides or oxysulfides of Ce or La should be 10% or more.
  • the stretch flangeability and fatigue properties are better when a large amount of MnS is precipitated in one or two oxides or oxysulfides of Ce or La. Contains 1 00%.
  • the inclusion particle size distribution was determined by SEM evaluation of the electrolytic surface by the speed method.
  • the SEM evaluation of the electrolytic surface by the speed method means that the surface of the sample piece is polished.
  • electrolysis is performed by the speed method, and the size and number density of inclusions are evaluated by direct SEM observation of the sample surface.
  • the speed method is a method of electrolyzing the sample surface using 10% acetylacetone and 1% tetramethylammonium diumurium chloride methanol to extract inclusions. The amount of electrolysis is 1 1 C was electrolyzed per cm 2 .
  • the SEM image of the surface electrolyzed in this way was image-processed, and the frequency (number) distribution for the equivalent circle diameter was obtained.
  • the average equivalent circle diameter was calculated from the frequency distribution of the particle size, and the number density per volume of inclusions was calculated by dividing the frequency by the area of the observed field and the depth determined from the amount of electrolysis.
  • the lower limit value of the volume number density of stretched inclusions having an equivalent circle diameter of l ⁇ m or more and a stretching ratio of 5 or more means 0%, as described above.
  • unstretched MnS inclusions are in the form of MnS deposited on one or two oxides or oxysulfides of Ce or La, and the shape is almost spherical inclusions. It was.
  • the form of the inclusion is not particularly limited as long as MnS is precipitated in the oxide or oxysulfide containing one or two kinds of Ce or La as described above. In many cases, MnS is deposited around one or two oxides or oxysulfide as a nucleus.
  • the spherical inclusion is not particularly specified, but is an inclusion having a drawing ratio of 3 or less, preferably 2 or less, in the steel sheet.
  • the stretching ratio is 1, so the lower limit of the stretching ratio is 1.
  • the volume number density of inclusions in the form of MnS deposited on one or two oxides or oxysulfide of Ce or La is less than 1.0 X 10 3 / mm 3
  • the number ratio of MnS-based stretch inclusions increases so much that the stretch flangeability and fatigue properties decrease, so that MnS precipitates in oxides or oxysulfides of one or two of Ce or La.
  • the volume number density of inclusions in this form is specified to be 1.0 X 1 O 3 pieces / mm 3 or more.
  • the fatigue strength of stretch flangeability is better when a large amount of MnS is precipitated with one or two oxides of Ce or La or oxysulfide as the core. The value is not particularly specified.
  • the equivalent circle diameter of inclusions in which MnS is deposited on one or two types of oxides or oxysulfide of Ce or La is not particularly specified, as described above. That's all. However, if this equivalent circle diameter is too large, there is a concern that cracking will start, so the upper limit is preferably about 50 m.
  • the existence condition of the drawn inclusions in the steel sheet of the present invention described above was defined by the upper limit of the equivalent circle diameter.
  • the average equivalent circle diameter of inclusions As a result of evaluating the average equivalent circle diameter of inclusions with a circle equivalent diameter of 1 m or more and an elongation ratio of 5 or more, which is the starting point of crack generation and deteriorates the stretch flangeability and fatigue characteristics, It was found that when the average equivalent circle diameter is 10 m or less, stretch flangeability and fatigue characteristics are improved. This is because the average equivalent circle diameter of the stretched inclusions increases as the number ratio of stretched inclusions with a circle equivalent diameter of 1 / im or more and a stretching ratio of 5 or more increases.
  • the average equivalent circle diameter is defined as an index. This is presumed that as the amount of Mn and S in the molten steel increases, the number of MnS produced increases and the size of MnS produced increases.
  • the elongation inclusion with a circle equivalent diameter of 1 m or more and a stretching ratio of 5 or more exceeds 10 m
  • the number ratio of the stretching inclusions exceeds 20%.
  • the ratio of the number of coarse MnS-based stretch inclusions that are likely to be the starting point of the steel increases too much, and the stretch flangeability and fatigue characteristics decrease.
  • the equivalent diameter shall be 10 m or less.
  • the provision that the average equivalent circle diameter of stretched inclusions with a circle equivalent diameter of 1 / im or more and a stretch ratio of 5 or more is lOm or less is equivalent to 1m This means that the inclusions exist in the steel sheet, so the lower limit of the equivalent circle diameter is 1 m.
  • MnS is deposited on the oxide or oxysulfide of Ce or Mo, which is one or two kinds of La, and MnS is stretched. It is important to prevent this.
  • the form of the inclusion is not particularly limited as long as MnS is precipitated in the oxide or oxysulfide of one or two kinds of Ce or La, as described above. In many cases, MnS is deposited around an oxide or oxysulfide consisting of one or two kinds of La as a nucleus.
  • the spherical inclusion is not particularly specified, but is an inclusion having a drawing ratio of 3 or less, preferably 2 or less, in the steel sheet.
  • the stretching ratio is 1 if it is completely spherical, the lower limit of the stretching ratio is 1.
  • the composition of inclusions in the form of MnS deposited on oxides or oxysulfide consisting of one or two of Ce or La Analysis was performed.
  • this inclusion has an equivalent circle diameter of 1 // m or more, it is easy to observe. Therefore, for the sake of convenience, the equivalent circle diameter of 1 m or more was used. However, if observation is possible, inclusions with a circle equivalent diameter of less than 1 m may be included.
  • the chemical composition of the steel sheet (Ce + La) ZS ratio is the presence condition of inclusions in the form of MnS precipitated in one or two kinds of oxides or oxysulfide of Ce or La. Stipulated in
  • MnS is deposited on one or two kinds of oxides or oxysulfide of Ce or La to prevent the extension of MnS.
  • the chemical component ratio for Therefore in order to clarify the effective chemical composition ratio for suppressing the elongation of MnS inclusions, the (Ce + La) ZS ratio of the steel sheet was changed to evaluate the inclusion morphology, stretch flangeability and fatigue properties ( Figure 1 ) . As a result, it was found that stretch flangeability and fatigue characteristics were improved when the (Ce + La) ratio was 0.1 to 70.
  • the microstructure of the steel sheet is not particularly limited.
  • the effect of the present invention can be obtained with any steel sheet of a composite structure comprising a low temperature transformation phase (martensite or bainite), but in order to obtain excellent stretch flangeability, It is preferable that the structure has a main phase as a main phase. Desirably, it is necessary that the pay- ferrite or the vinyl phase is the largest phase ratio.
  • the area ratio of the vane-ferrite phase in the steel sheet is preferably 50% or more, more preferably 80% or more, and even more preferably 100%.
  • the balance is the bain phase or polygo It can contain 20% or more of the null-ferrite phase.
  • decarburization is performed by blowing in a converter, or decarburization is further performed using a vacuum degassing apparatus, and Si, Mn are contained in a molten steel having a C concentration of 0.03 to 0.1%.
  • P and other alloys are added for deoxidation and component adjustment, and if A 1 or T i is not added or oxygen adjustment is required, acid soluble A 1 or acid soluble T i Add a small amount of A 1 or Ti so that a slight amount remains, and then add one or two of Ce or La to adjust the ingredients.
  • a piece is produced by continuously forging the molten steel thus produced.
  • Continuous forging is not only applied to normal continuous slabs with a thickness of about 250nim, but is also used for bloom pallets and slab continuous forgings. It is fully applicable to subsequent fabrication.
  • the hot rolling conditions for producing a high strength hot rolled steel sheet will be described.
  • the heating temperature of the slab before hot rolling is preferably 1 150 ° C or higher so as to dissolve carbonitrides in the steel. By dissolving these in solid solution, the formation of polygonal ferrite is suppressed in the cooling process after rolling, and a structure mainly composed of a plastic ferrite phase that is favorable for stretch flangeability can be obtained.
  • the heating temperature of the slab before hot rolling exceeds 1250 ° C, the slab surface is significantly oxidized. In particular, wedge-shaped surface defects caused by selective oxidation of the grain boundaries are observed after descaling.
  • the upper limit is preferably set to 1 250 ° C because the remaining quality deteriorates the surface quality after rolling.
  • the finish rolling completion temperature is important for controlling the structure of the steel sheet. If the finish rolling completion temperature is less than Ar 3 points + 30 ° C, the crystal grain size of the surface layer portion tends to be coarse, which is not preferable in terms of fatigue characteristics. Meanwhile, Ar 3 Detrimental to stretch flangeability than a point + 200 P C than polygonal • ferrite phase is generated easily Runode, it is preferable that the upper limit 'and Ar 3. Point + 200 ° C.
  • the average cooling rate of the steel sheet after finish rolling should be 40 ° C nosec or more, and cooling to the range of 300-500 ° C will suppress the formation of polygonal 'ferrite phase, and the ⁇ It is effective for obtaining an organization mainly composed of ferrite phase.
  • the average cooling rate is less than 40 ° C / second, a polygonal ferri phase is likely to be formed, which is not preferable.
  • the upper limit of the cooling rate is preferably 100 ° C / sec.
  • the coiling temperature of the hot-rolled coil is preferably set to 300 ° C. or higher in order to suppress the formation of a martensite phase that extremely deteriorates the stretch flangeability.
  • the winding temperature is preferably 500 ° C or lower. Therefore, by winding at 500 ° C or less, carbonitride precipitates during the subsequent cooling process, reducing the amount of dissolved C and N in the ferritic phase and improving stretch flangeability.
  • Table 1 shows the chemical composition of the slab, which was hot-rolled under the conditions shown in Table 2 to obtain a hot rolled sheet having a thickness of 3.2 mni.
  • steel numbers (hereinafter referred to as steel numbers) 1, 3, 5, 7, 9, 11, 13 are composed of compositions within the range of the high-strength steel sheet according to the present invention.
  • 2, 4, 6, 8, 8, 10, 12, and 14 are configured as comparative steels that deviate from the range of high-strength steel sheets according to the present invention.
  • Steel numbers 2, 4, and 6 are slabs containing more than 0.01% acid-soluble A1
  • steel numbers 8, 10, 12, and 14 are the sum of one or two of Ce or La. It is constructed as a slab with a reduced to less than 0.0005.
  • steel number 1 and steel number 2, steel number 3 and steel number 4, steel number 5 and steel number 6, steel number 7 and steel number 8 can be compared respectively.
  • the acid-soluble A1 and the like are made different from each other after having the same composition.
  • steel number 9 and steel number 10 steel number 11 and steel number 12, steel number 13 and steel number 14, respectively, Ce + La etc. are different from each other.
  • Condition A the heating temperature is 1250 ° C
  • the finish rolling completion temperature is 845 ° C
  • the cooling rate after finish rolling is 75 ° C / sec
  • the winding temperature is 450 ° C
  • condition B the heating temperature is 1200 ° C
  • the finish rolling completion temperature is 825
  • the cooling rate after finish rolling is 45 Zsec
  • the winding temperature is 450.
  • the basic properties of the steel sheet thus obtained were examined for strength, ductility, stretch flangeability, and fatigue limit ratio.
  • inclusions of 1 / xm or more are targeted because they are easy to observe, and inclusions of less than 1 ⁇ m do not affect the fatigue characteristics of stretch flangeability.
  • the test piece is a No. 1 test piece specified in the same standard, with a parallel part of 25 mm, a radius of curvature R of 100 mm, and a thickness of 3. Omm with both sides of the original plate (hot rolled plate) ground equally. .
  • the inclusions were subjected to SEM observation, and the major axis and minor axis were measured for 50 inclusions with a circle-equivalent diameter of 1 m or more selected at random. Furthermore, using the quantitative analysis function of SEM, composition analysis was performed on 50 inclusions with a circle-equivalent diameter of 1 m or more selected at random. Using these results, the number ratio of inclusions with a stretching ratio of 5 or more, the average equivalent circle diameter of inclusions with a stretching ratio of 5 or more, MnS in oxides or oxysulfide consisting of one or two of Ce or La The ratio of the number of inclusions deposited, and the average value of the total of one or two of Ce or La in inclusions with a stretching ratio of 3 or less were determined. The volume density of inclusions by shape was calculated by SEM evaluation of the electrolytic surface by the speed method.
  • MnS was added to the oxide or oxysulfide containing one or two of Ce or La. It was possible to reduce the stretched MnS inclusions in the steel sheet. That is, the ratio of the number of inclusions in which MnS is precipitated in one or two oxides or oxysulfide of Ce or La in the steel plate is 10% or more, The volume number density of inclusions is 1.0X 10 3 mm 3 or more, and the average content of 0.5% or more of Ce or La in inclusions with an elongation ratio of 3 or less is 3 or less.
  • the number ratio of stretch inclusions with a circle equivalent diameter of 1 m or more and a stretch ratio of 5 or more is 20% or less, and the volume number density of the inclusions is 1.0 ⁇ 10 4 pieces 3 or less,
  • the average equivalent circle diameter of the inclusions was less than lO trn.
  • steel plates 1, 3, 5, 7, 9, 11 and 13 as the steels of the present invention were able to obtain steel sheets with excellent stretch flangeability and fatigue characteristics.
  • MnS is added to the stretched MnS inclusions and one or two oxides or oxysulfide of Ce or La. Since the distribution of the inclusions precipitated was different from the distribution specified in the present invention, the MnS inclusions that were stretched during the processing of the steel sheet were the starting points for cracking, and the stretch flangeability and fatigue characteristics were reduced.
  • the fine MnS precipitates in the flakes, and is not deformed during rolling and is dispersed in the steel sheet as fine spherical inclusions that are unlikely to start cracking.
  • a high-strength hot-rolled steel sheet with excellent flangeability and fatigue characteristics can be obtained.

Abstract

A high-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue properties. The steel sheet contains 0.03-0.20% C, 0.08-1.5% Si, 1.0-3.0% Mn, up to 0.05% P, at least 0.0005% S, 0.0005-0.01% N, up to 0.01% acid-soluble Al, less than 0.008% acid-soluble Ti, and 0.0005-0.04% at least either of Ce and La, the remainder being iron and unavoidable impurities. The steel sheet contains stretched inclusions which have a diameter, in terms of equivalent-circle diameter, of 1 µm or larger and in which the ratio of the major-axis length to the minor-axis length is 5 or higher, in a proportion of 20% or higher by number.

Description

明 細 書 伸びフランジ性と疲労特性に優れた高強度鋼板 技術分野  Description High-strength steel sheet with excellent stretch flangeability and fatigue characteristics
本発明は、 自動車用足回り部材の素材として好適な、 伸びフラン ジ性と疲労特性に優れ'た高強度熱延鋼板に関するものである。 背景技術  The present invention relates to a high-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics, which is suitable as a material for an automobile underbody member. Background art
自動車の安全性向上と環境保全につながる燃費向上の観点から自 動車用熱延鋼板の高強度軽量化に対する要求が高まっている。 自動 車用部品の中でも特に足回り系と呼ばれるフレーム類やアーム類等 の重量は、 車体全体の重量に占める割合が高いため、 こう した部位 に用いられる素材を高強度化することによって薄肉化することによ り、 その軽量化を実現することが可能となる。 また、 この足回り系 に使用される材料は、 走行中の振動に対する耐久性の観点から高い 疲労特性が要求される。  There is an increasing demand for high strength and light weight hot-rolled steel sheets for automobiles from the viewpoint of improving automobile safety and improving fuel efficiency leading to environmental conservation. Among the parts for automobiles, the weight of frames and arms, especially the underbody system, is high in the weight of the entire vehicle body, so the material used for these parts is made thinner by increasing the strength. This makes it possible to reduce the weight. In addition, the materials used for the undercarriage system are required to have high fatigue characteristics from the viewpoint of durability against vibration during running.
しかし、 高強度化、 耐疲労性に伴って穴拡げ性は延性と同様に低 下する傾向を示し、 複雑な形状をしている自動車の足回り系等への 高強度鋼板の適用にあたっては、 その穴拡げ性が重要な検討課題と なる。 .  However, with increasing strength and fatigue resistance, hole expansibility tends to decrease in the same way as ductility, and when applying high-strength steel sheets to undercarriage systems of automobiles with complex shapes, The hole expansibility is an important consideration. .
このため、 機械的強度特性と、 疲労特性と穴拡げ性 (加工性) を 両立させることを目的とした幾つかの鋼板が提案されている。 例え ば、 特開平 1 1一 199973号公報にはフェライ ト相とマルテンサイ ト相 の複合組織鋼板中に微細な Cuの析出または固溶体を分散させた鋼板 (一般に DP鋼板という。 ) が提案されている。 この特開平 1 1— 1999 73号公報に示す開示技術においては、 固溶している Cuもしくは 単 独で構成される粒子サイズが 2 nm以下の Cu析出物が疲労特性向上に 非常に有効であり、 かつ加工性も損なわない'ことを見出して、 各種 成分の組成比を限定している。 For this reason, several steel sheets have been proposed with the aim of achieving both mechanical strength characteristics, fatigue characteristics, and hole expandability (workability). For example, JP-A-11-199973 proposes a steel sheet (generally called DP steel sheet) in which fine Cu precipitates or solid solution is dispersed in a ferrite steel sheet and martensite phase composite steel sheet. . In the disclosed technique disclosed in Japanese Patent Laid-Open No. 11-199973, solid solution of Cu or simple substance is used. It has been found that Cu precipitates with a particle size of 2 nm or less, which are composed by themselves, are extremely effective in improving fatigue properties and do not impair workability, thus limiting the composition ratio of various components.
こした DP鋼板は、 強度と延性のバランスや疲労特性には優れるも のの、 穴拡げ試験で評価される伸びフランジ性は依然として劣るこ とが知られている。 その理由の一つは、 DP鋼板は軟質なフェライ ト 相と硬質なマルテンサイ 卜相の複合体であるため、 穴拡げ加工時に 両相の境界部が変形に追随できず破断の起点になり易いからである と考えられる。  The DP steel sheet is known to be excellent in the balance between strength and ductility and fatigue properties, but still has poor stretch flangeability as evaluated in the hole expansion test. One reason for this is that DP steel is a composite of a soft ferrite phase and a hard martensite phase, so the boundary between the two phases cannot follow the deformation during hole expansion, making it easy to start fracture. It is thought that.
これに対して疲労特性のみなちず、 最近のホイールや足廻り部材 の材料に要求される厳しい伸びフランジ性の要求を満たした高強度 熱延鋼板が提案されている (例え.ば、 特開 2001— 20033 1号公報参照 。 ) 。 この特開 2001— 20033 1号公報の開示技術においては、 できる だけ低 C化することにより主相をべイナィ ト組織とするとともに、 固溶強化または析出強化したフェライ ト組織を適切な体積比率で含 有させ、 これらフェライ トとベイナイ トの硬度差を小さく し、 更に 粗大な炭化物の生成を回避すること等を要旨としている。 発明の開示  On the other hand, high strength hot-rolled steel sheets have been proposed that satisfy not only fatigue characteristics but also severe stretch flangeability requirements of recent materials for wheels and suspension members (for example, JP 2001 — See 20033 No. 1). In the disclosed technology disclosed in Japanese Patent Laid-Open No. 2001-200331, the main phase is made to be a bainitic structure by reducing C as much as possible, and a solid structure strengthened or precipitation strengthened ferrite structure at an appropriate volume ratio. The main point is to reduce the hardness difference between ferrite and bainite and to avoid the formation of coarse carbides. Disclosure of the invention
上記特開 2001— 200331号公報に開示されている様な、 鋼板組織を ペイナイ ト相主体とし、 粗大な炭化物の生成を抑制した高強度熱延 鋼板は、 確かに優れた伸びフランジ性を示すものの、 Cuを含有した DP鋼板に比べてその疲労特性は必ずしも優れているとは言えない。 また、 粗大な炭化物の生成を抑制しただけでは厳しい穴拡げ加工を 行った場合に亀裂の発生を防止することができない。 本発明者らの 研究によれば、 これらの原因は、 鋼板中の MnSを主体とする延伸し た硫化物系介在物の存在にあることが分かった。 繰り返し変形を受 けると表層またはその近傍に存在する延伸した粗大な Mn S系介在物 の周辺に内部欠陥が発生し、 亀裂として伝播する.ことによって疲労 特性を劣化させると共に、 やはり延伸した粗大な Mn S系介在物は穴 拡げ加工時の割れ発生の起点となり易いためである。 このため、 鋼 中の Mn S系介在物をできる限り延伸させず微細球状化することが望 ましい。 The high-strength hot-rolled steel sheet, which is mainly composed of a steel sheet structure and suppresses the formation of coarse carbides, as disclosed in the above-mentioned JP-A-2001-200331, certainly exhibits excellent stretch flangeability. Fatigue properties are not necessarily superior to DP steel containing Cu. In addition, cracking cannot be prevented when severe hole enlargement processing is performed simply by suppressing the formation of coarse carbides. According to the study by the present inventors, it has been found that these causes are the presence of elongated sulfide inclusions mainly composed of MnS in the steel sheet. Repeated deformation As a result, internal defects are generated around the extended coarse Mn S inclusions on or near the surface layer and propagate as cracks, thereby deteriorating fatigue characteristics and also extending coarse Mn S inclusions. This is because the object tends to be the starting point of cracking during hole expansion. For this reason, it is desirable to make the Mn S inclusions in steel as fine as possible without stretching them.
しかしながら、 Mnは、 Cや S iとともに材料の高強度化に有効に寄 与する元素であるところ、 高強度鋼板では強度確保のため Mnの濃度 を高く設定するのが一般的であり、 さらに二次精鍊工程で脱 Sの重 処理を実施しなければ S濃度も 5 0 PPDI以上は含まれてしまう。 こ のため、 铸片中には MnSが存在するのが通常である。 铸片が熱間圧 延および冷間圧延されると、 Mn S 変形し易いため、 延伸した Mn S系 介在物となり、 これが疲労特性と伸びフランジ性 (穴拡げ加工性) を低下させる原因となる。 しかし、 Mn Sの析出 · 変形制御の視点に たって伸びフランジ性と疲労特性に優れる熱延鋼板を提案した例は 見られない。  However, Mn is an element that contributes to increasing the strength of the material together with C and Si. However, in high-strength steel sheets, the Mn concentration is generally set high to ensure strength. If heavy desulfurization is not performed in the next purification process, the S concentration will be more than 50 PPDI. For this reason, MnS is usually present in the piece. When hot-rolled and cold-rolled, the Mn S deforms easily and becomes a stretched Mn S-based inclusion, which causes deterioration in fatigue properties and stretch flangeability (hole expansion workability). . However, there is no example of proposing a hot-rolled steel sheet with excellent stretch flangeability and fatigue properties from the viewpoint of Mn S precipitation / deformation control.
そこで、 本発明は、 上述した問題点に鑑みて案出されたものであ り、 その目的とするところは、 '铸片中に微細な MnSとして析出させ 、 さらに圧延時に変形を受けず、 割れ発生の起点となり難い微細球 状介在物として鋼板中に分散させることにより、 伸びフランジ性と 疲労特性を向上させた伸びフランジ性と疲労特性に優れた高強度鋼 板を提供することにある。  Therefore, the present invention has been devised in view of the above-described problems, and the object of the present invention is to cause precipitation as fine MnS in the flakes, and further, without being deformed during rolling and cracking. It is an object of the present invention to provide a high-strength steel sheet excellent in stretch flangeability and fatigue properties by improving the stretch flangeability and fatigue properties by dispersing in the steel plate as fine spherical inclusions that are unlikely to be the starting point of occurrence.
上述の如き問題点を解決するために、 本発明者は、 铸片中に微細 な Mn Sとして析出させ、 さらに圧延時に変形を受けず、 割.れ発生の 起点となり難い微細球状介在物として鋼板中に分散させる方法、 お よび疲労特性を劣化させない添加元素の解明を中心に鋭意研究を進 めた。 その結果、 C e, L aの添加による脱酸により生成した微細で硬 質な Ce酸化物、 La酸化物、 セリュウムォキシサルファイ ド、 ランタ ンォキシサルフアイ ド上に MnSが析出し、 圧延時にもこの析出した M nSの変形が起こり難いため、 鋼板中には延伸した粗大な MnSが著し く減少し、 繰り返し変形時や穴拡げ加工時において、 これらの MnS 系介在物が割れ発生の起点や亀裂伝播の経路となり難くなり、 これ が上述の如き耐疲労性等の向上につながることを解明した。 In order to solve the above-mentioned problems, the present inventor has made steel sheets as fine spherical inclusions which are precipitated as fine Mn S in the flakes and are not deformed during rolling, and are unlikely to start cracking. Research was conducted with a focus on elucidating additive elements that do not degrade fatigue properties and the method of dispersing them. As a result, the fine and hard produced by the deoxidation by the addition of Ce and La. MnS precipitates on high-quality Ce oxides, La oxides, cerium oxide sulfides, and lanthanum sulfides, and deformation of the precipitated MnS hardly occurs during rolling. The stretched coarse MnS is remarkably reduced, and it becomes difficult for these MnS inclusions to become the starting point of cracking and the path of crack propagation during repeated deformation and hole expansion processing. It has been elucidated that this will lead to improvements.
本発明に係る伸びフランジ性と疲労特性に優れた高強度鋼板の要 旨は、 以下の通りである。  The outline of the high-strength steel sheet excellent in stretch flangeability and fatigue characteristics according to the present invention is as follows.
( 1 ) 質量%で、 C : 0.03〜0.20%、 Si : 0.08〜 1.5%、 Mn: 1.0 〜3.0%、 P : 0.05%以下、 S : 0.0005 %以上、 N : 0.0005〜0.01 %、 酸可溶 A1 : 0.01%以下、 酸可溶 Ti: 0.008%未満、 Ceもしくは L aの 1種または 2種の合計 : 0.0005〜0.04%を含有し、 残部が鉄お よび不可避的不純物からなる鋼板であり、 その鋼板中に存在する円 相当直径 1 m以上の介在物で、 かつ、 長径 Z短径が 5以上の延伸 介在物の個数割合が 20%以下であることを特徴とする。  (1) By mass%, C: 0.03-0.20%, Si: 0.08-1.5%, Mn: 1.0-3.0%, P: 0.05% or less, S: 0.0005% or more, N: 0.0005-0.01%, acid-soluble A1: 0.01% or less, acid-soluble Ti: less than 0.008%, Ce or La 1 or 2 types in total: 0.0005-0.04% steel, the balance being steel and inevitable impurities, The number ratio of the inclusions having an equivalent circle diameter of 1 m or more present in the steel sheet and having a major axis Z minor axis of 5 or more is 20% or less.
( 2 ) 質量%で、 C : 0.03〜0.20%、 Si : 0.08〜1.5%、 Mn: 1.0 〜3.0%、 P : 0.05%以下、 S : 0.0005 %以上、 N : 0.0005〜0.01 %、 酸可溶 A1 : 0.01%以下、 酸可溶 Ti : 0.008 %未満、 Ceもしくは L aの 1種または 2種の合計 : 0.0005〜0.04%を含有し、 残部が鉄お よび不可避的不純物からなる鋼板であり、 その鋼板中には Ceもしく は Laの 1種または 2種からなる酸化物またはォキシサルフアイ ド上 に MnSが析出した介在物を個数割合で 10%以上含むことを特徴とす る。  (2) By mass%, C: 0.03-0.20%, Si: 0.08-1.5%, Mn: 1.0-3.0%, P: 0.05% or less, S: 0.0005% or more, N: 0.0005-0.01%, acid-soluble A1: 0.01% or less, acid-soluble Ti: less than 0.008%, a total of one or two of Ce or La: 0.0005 to 0.04%, the balance being steel and unavoidable impurities, The steel sheet is characterized by containing at least 10% of inclusions in which MnS is deposited on one or two kinds of oxides or oxysulfides of Ce or La.
( 3 ) 質量%で、 C : 0.03〜0.20%、 Si: 0.08〜 1.5%、 Mn: 1.0 〜3.0%、 P : 0.05%以下、 S : 0.0005 %以上、 N : 0.0005〜0.01 %、 酸可溶 A1: 0.01%以下、 酸可溶 Ti: 0.008 %未満、 Ceもしくは L aの 1種または 2種の合計 : 0.0005〜0.04%を含有し、 残部が鉄お よび不可避的不純物からなる鋼板であり、 その鋼板中に存在する円 相当直径 1 ^ m以上の介在物で、 かつ、 長径 Z短径が 5以上の延伸 介在物の体積個数密度が 1.0X104個 Z匪3以下であることを特徴と する。 (3) By mass%, C: 0.03-0.20%, Si: 0.08-1.5%, Mn: 1.0-3.0%, P: 0.05% or less, S: 0.0005% or more, N: 0.0005-0.01%, acid-soluble A1: 0.01% or less, acid-soluble Ti: less than 0.008%, one or two of Ce or La: Total: 0.0005-0.04%, the balance being iron A steel plate composed of unavoidable impurities, and an inclusion with an equivalent diameter of 1 ^ m or more and an elongated inclusion with a major axis Z minor axis of 5 or more has a volume density of 1.0X10 4 inclusions. It is characterized by Z 匪3 or less.
( 4 ) 質量%で、 C : 0.03〜0.20%、 Si : 0.08〜1.5%、 Mn: 1.0 〜3.0%、 P : 0.05%以下、 S : 0.0005 %以上、 N : 0.0005〜0.01 %、 酸可溶 A1 : 0.01%以下、 酸可溶 Ti: 0.008 %未満、 Ceもしくは L aの 1種または 2種の合計 : 0.0005〜0.04%を含有し、 残部が鉄お よび不可避的不純物からなる鋼板であり、 その鋼板中には Ceもしく は Laの 1種または 2種からなる酸化物またはォキシサルフアイ ド上 に MnSが析出した介在物の体積個数密度が 1. OX 103個 Zmm3以上であ ることを特徴とする。 . (4) By mass%, C: 0.03-0.20%, Si: 0.08-1.5%, Mn: 1.0-3.0%, P: 0.05% or less, S: 0.0005% or more, N: 0.0005-0.01%, acid-soluble A1: 0.01% or less, acid-soluble Ti: less than 0.008%, Ce or La total of one or two: 0.0005 to 0.04%, the balance being steel and unavoidable impurities, The volume number density of inclusions in which MnS is deposited on one or two oxides or oxysulfide of Ce or La in the steel sheet is 1. OX 10 3 pieces Zmm 3 or more Features. .
( 5 ) 質量%で、 C : 0.03〜0.20%、 Si: 0.08〜 1.5%、 Mn: 1.0 〜3.0%、 P : 0.05%以下、 S : 0.0005 %以上、 N : 0.0005〜0.01 %、 酸可溶 A1: 0.01%以下、 酸可溶 Ti: 0.008%未満、 Ceもしくは aの 1種または 2種の合計 : 0.0005〜0.04%を含有し、 残部が鉄お よび不可避的不純物からなる鋼板であり、 その鋼板中に存在する円 相当直径 1 m以上の介在物で、 かつ、 長径/短径 5以上の延伸介 在物の平均円相当直径が 10 m以下であることを特徴とする伸びフ ランジ性と疲労特性に優れた高強度鋼板。  (5) By mass%, C: 0.03-0.20%, Si: 0.08-1.5%, Mn: 1.0-3.0%, P: 0.05% or less, S: 0.0005% or more, N: 0.0005-0.01%, acid-soluble A1: 0.01% or less, acid-soluble Ti: less than 0.008%, Ce or a total of one or two: 0.0005 to 0.04%, the balance being steel and unavoidable impurities. Elongation flange property, characterized by the inclusion of an inclusion with an equivalent diameter of 1 m or more present in a steel plate and an average equivalent circle diameter of an extension inclusion with a major axis / minor axis of 5 or more of 10 m or less. High strength steel plate with excellent fatigue characteristics.
( 6 ) 質量%で、 C : 0.03〜0.20%、 Si: 0.08〜1.5%、 Mn: 1.0 〜3.0%、 P : 0.05%以下、 S : 0.0005 %以上、 N : 0.0005〜0.01 %、 酸可溶 A1 : 0.01%以下、 酸可溶 Ti: 0.008%未満、 Ceもしくは L aの 1種または 2種の合計 : 0.0005〜0.04%を含有し、 残部が鉄お よび不可避的不純物からなる鋼板であり、 その鋼板中には Ceもしく は Laの 1種または 2種からなる酸化物またはォキシサルフアイ ド上 に MnSが析出した介在物が存在し、 該介在物中に平均組成で Ceもし くは Laの 1種または 2種の合計を 0.5〜50質量%含有することを特 徴とする伸びフランジ性と疲^特性に優れた'高強度鋼板。 (6) By mass%, C: 0.03-0.20%, Si: 0.08-1.5%, Mn: 1.0-3.0%, P: 0.05% or less, S: 0.0005% or more, N: 0.0005-0.01%, acid-soluble A1: 0.01% or less, acid-soluble Ti: less than 0.008%, Ce or La 1 or 2 types in total: 0.0005-0.04% steel, the balance being steel and inevitable impurities, In the steel sheet, there is an inclusion in which MnS is precipitated on an oxide or oxysulfide containing one or two kinds of Ce or La, and Ce has an average composition in the inclusion. A high-strength steel sheet with excellent stretch flangeability and fatigue characteristics, characterized by containing 0.5 to 50% by mass of one or two of La.
( 7 ) 質量%で、 C : 0.03〜0.20%、 Si: 0.08〜 1.5%、 Mil: 1.0 〜3.0%、 P : 0.05%以下、 S : 0.0005 %以上、 N : 0.0005〜0.01 %、 酸可溶 A1: 0.01%以下、 酸可溶 Ti: 0.008%未満、 Ceもしくは L aの 1種または 2種の合計 : 0.0005〜0.04%を含有し、 残部が鉄お よび不可避的不純物からなる鋼板であり、 (Ce + La) ZS比が 0.1 〜70であることを特徴とする伸びフランジ性と疲労特性に優れた高 強度鋼板。  (7) By mass%, C: 0.03-0.20%, Si: 0.08-1.5%, Mil: 1.0-3.0%, P: 0.05% or less, S: 0.0005% or more, N: 0.0005-0.01%, acid-soluble A1: 0.01% or less, Acid-soluble Ti: Less than 0.008%, Ce or La Total of one or two: 0.0005 to 0.04%, the balance being steel and unavoidable impurities, (Ce + La) A high-strength steel sheet with excellent stretch flangeability and fatigue characteristics characterized by a ZS ratio of 0.1 to 70.
( 8 ) 質量%で、 Nb: 0· 01〜0.10%、 V : 0.01〜0.05%、 Cr: 0. 01〜0.6%、 Mo: 0.01〜0.4%、 B : 0.0003〜 0.03 %、 のいずれか一 つまたは二つ以上を含有し、 残部.が鉄および不可避的不純物からな る鋼板であることを特徴とする、 ( 1 ) 〜 ( 7 ) のいずれかに記載 の伸びフランジ性と疲労特性に優れた高強度鋼板。 図面の簡単な説明  (8) Any one of the following: Nb: 0.01 to 0.10%, V: 0.01 to 0.05%, Cr: 0.01 to 0.6%, Mo: 0.01 to 0.4%, B: 0.0003 to 0.03% One or two or more, the balance being a steel plate made of iron and inevitable impurities, characterized by excellent stretch flangeability and fatigue properties according to any one of (1) to (7) High strength steel plate. Brief Description of Drawings
図 1は、 Ce + La (%) と S ( ) の関係を示す図である。 発明を実施するための最良の形態  Figure 1 shows the relationship between Ce + La (%) and S (). BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施するための最良の形態として、 伸びフランジ 性と疲労特性に優れた高強度鋼板について、 詳細に説明をする。 以 下、 組成における質量%は、 単に%と記載する。  Hereinafter, as the best mode for carrying out the present invention, a high-strength steel sheet excellent in stretch flangeability and fatigue characteristics will be described in detail. Hereinafter, the mass% in the composition is simply described as%.
先ず、 本発明を完成するに至った実験について説明する。  First, the experiment that led to the completion of the present invention will be described.
本発明者は、 C : 0.07%、 Si: 0.2%, Mn: 1.2%, P :.0.01%以 下、 S : 0.005 %、 N : 0.003%を含有し残部が Feである溶鋼に対し て様々な元素を用いて脱酸を行い、 鋼塊を製造した。 得られた鋼塊 を熱間圧延して 3 mmの熱延鋼板とした。 これら製造した熱延鋼板を 穴拡げ試験および疲労試験に供すると共に、 鋼板中の介在物個数密 度、 形態および平均組成を調査した。 The present inventor made various changes to molten steel containing C: 0.07%, Si: 0.2%, Mn: 1.2%, P: 0.01% or less, S: 0.005%, N: 0.003%, and the balance being Fe. Deoxidation was performed using various elements to produce a steel ingot. The obtained steel ingot was hot rolled into a 3 mm hot rolled steel sheet. These manufactured hot rolled steel sheets In addition to the hole expansion test and fatigue test, the density, morphology and average composition of inclusions in the steel sheet were investigated.
その結果、 A 1で殆ど脱酸することなく、 S iを添加した後、 少なく とも Ce, Laを添加して脱酸した鋼板が最も伸びフランジ性と疲労特 性に優れることが分かった。 その理由は、 Ce , Laの添加による脱酸 により生成した微細で硬質な Ce酸化物、 La酸化物、 セリュウムォキ シサルファイ ド、 ランタンォキシサルフアイ ド上に MnSが析出し、 圧延時にもこの析出した MnSの変形が起こり難いため、 鋼板中には 延伸した粗大な MnSが著しく減少する。 その結果、 繰り返し変形時 や穴拡げ加工時において、 これちの MnS系介在物が割れ発生の起点 や亀裂伝播の経路となり難くなり、 これが上述の如き耐疲労性等の 向上につながるためである。  As a result, it was found that the steel sheet that had been deoxidized with addition of at least Ce and La after adding Si with almost no deoxidation with A 1 had the best stretch flangeability and fatigue characteristics. The reason is that MnS was deposited on fine and hard Ce oxide, La oxide, cerium oxide sulfide, and lanthanum sulfide produced by deoxidation by addition of Ce and La, and this precipitation was also observed during rolling. Since deformation of MnS hardly occurs, the stretched coarse MnS is remarkably reduced in the steel sheet. As a result, during repeated deformation or hole expansion, these MnS inclusions are less likely to become crack initiation points and crack propagation paths, leading to improvements in fatigue resistance as described above.
なお、 Ce酸化物、 La酸化物、 セリュウムォキシサルファイ ドおよ びランタンォキシサルフアイ ドが微細化する理由は、 最初に S i脱酸 で生成した S i 02系介在物を後から添加した Ce, Laが還元分解して微 細な Ce酸化物、 La酸化物、 セリュウムォキシサルファイ ドおよびラ ンタンォキシサルファイ ドを形成すること、 さらに生成した Ce酸化 物、 La酸化物、 セリュウムオギシサルファイ ドおよびランタンォキ シサルファイ ド自体と溶鋼との界面エネルギーが低いため生成後の 凝集合体も抑制されるためである。 Incidentally, Ce oxides, La oxides, why cell Liu Muo carboxymethyl monkey phi Dooyo beauty lanthanum O carboxymethyl sulfates eye de is miniaturized, the first S i 0 2 type inclusions generated by S i deoxidation The Ce and La added later are reduced and decomposed to form fine Ce oxide, La oxide, cerium oxysulfide and lanthanum sulfite, and the generated Ce oxide, This is because, since the interface energy between La oxide, cerium ogi sulfide and lanthanum sulfide itself and molten steel is low, agglomeration after formation is also suppressed.
これら実験的検討から得られた知見に基づいて、 本発明者は、 以 下に説明するように、 鋼板の化学成分条件の検討を行い、 本発明を 完成させるに至った。  Based on the knowledge obtained from these experimental studies, the present inventor studied the chemical composition conditions of the steel sheet and completed the present invention as will be described below.
以下、 本発明において化学成分を限定した理由について説明をす る。 '  The reason why the chemical components are limited in the present invention will be described below. '
C : 0. 03〜0. 20 %  C: 0.03 to 0.20%
Cは、 鋼の焼き入れ性と強度を制御する最も基本的な元素であり 、 焼入れ硬化層の硬さおよび深さを高めて疲労強度の向上に対して 有効に寄与する。 即ち、 この Cは、 鋼板の強度を確保するために必 須の元素であり、 高強度鋼板を得るためには少なく とも 0.03%が必 要である。 しかし、 この Cが過剰に含まれると、 従来のように Ti炭 化物生成により Cを固定したり、 冷却条件を駆使しても、 セメン夕 イ ト相が生成されてしまう。 このセメンタイ ト相は、 鋼板の加工硬 化を誘起し、 伸びフランジ特性の向上に好ましくない。 このため、 本発明においては、 加工性を向上させる観点から、 Cの濃度を 0.20 %以下とする。 C is the most basic element that controls the hardenability and strength of steel. Enhances the fatigue strength by increasing the hardness and depth of the hardened hardened layer. In other words, this C is an essential element for securing the strength of the steel sheet, and at least 0.03% is necessary to obtain a high-strength steel sheet. However, if this C is excessively contained, a cementite phase will be generated even if C is fixed by Ti carbide generation as in the past, or even if cooling conditions are used. This cementite phase induces work hardening of the steel sheet and is not preferable for improving stretch flange characteristics. Therefore, in the present invention, from the viewpoint of improving workability, the C concentration is set to 0.20% or less.
Si : 0.08〜1.5%  Si: 0.08 to 1.5%
Siは本発明のように A1や Tiを極力添加しない溶鋼において主要な 脱酸元素となるため、 本発明において極めて重要である。 また、 Si は、 焼入れ加熱時にオーステナイ トの核生成サイ ト数を増加させ、 オーステナイ トの粒成長を抑制するとともに、 焼入れ硬化層の粒径 を微細化させる機能を担う。 この Siは、 炭化物生成を抑制し、 炭化 物による粒界強度の低下を抑制する。 さらに、 この Siは、 ペイナイ 卜組織の生成に対しても有効であり、 材料全体の強度確保の観点に おいて重要な役割を担う。 溶鋼中の溶存酸素濃度を低下させ、 一旦 Si02系介在物を生成させるためには (この Si02系介在物を後から添 加する Ce, Laで還元することにより介在物を微細化させるため) 、 Siを 0.08%以上添加する必要がある。 このため、 本発明においては 、 Siの下限を 0.08%とした。 これに対して、 Siの濃度が高すぎると 、 介在物中の Si02濃度が高くなって大型介在物が生成し易くなり、 また靭延性が極端に悪くなり、 表面脱炭や表面疵が増加するため疲 労特性が却って悪くなる。 これに加えて、 Siを過剰に添加すると溶 接性や延性に悪影響を及ぼす。 このため、 本発明においては、 Siの 上限を 1.5%とした。 Mn: 1. 0〜3. 0 % Since Si is a major deoxidizing element in molten steel to which A1 and Ti are not added as much as in the present invention, it is extremely important in the present invention. Si also has the function of increasing the number of nucleation sites of austenite during quenching heating, suppressing austenite grain growth, and reducing the grain size of the quenched hardened layer. This Si suppresses the formation of carbides and suppresses the decrease in grain boundary strength due to carbides. In addition, this Si is effective for the generation of the Painai microstructure, and plays an important role in terms of ensuring the strength of the entire material. Reducing the dissolved oxygen concentration in the molten steel, once Si0 in order to produce a 2-based inclusions (Ce to added pressure after the Si0 2 -based inclusions, in order to fine inclusions by reduction with La ) It is necessary to add 0.08% or more of Si. Therefore, in the present invention, the lower limit of Si is set to 0.08%. In contrast, when the concentration of Si is too high, liable to generate a large inclusions becomes high Si0 2 concentration in inclusions, also toughness and ductility become extremely poor, the surface decarburization and surface flaws increase Therefore, the fatigue characteristics are worsened. In addition, excessive addition of Si adversely affects weldability and ductility. Therefore, in the present invention, the upper limit of Si is set to 1.5%. Mn: 1. 0 to 3.0%
Mnは、 製鋼段階での脱酸に有用な元素であり、 C, S iとともに鋼 板の高強度化に有効な元素である。 このような効果を得るためには 、 この Mnを 1. 0 %以上は含有させる必要がある。 しかしながら、 Mn を、 3. 0 %を超えて含有させると Mnの偏析ゃ固溶強化の増大により 延性が低下する。 また、 溶接性や母材靭性も劣化するのでこの Mnの 上限を 3. 0 %とする。  Mn is an element useful for deoxidation in the steelmaking stage, and is an element effective for increasing the strength of steel sheets together with C and Si. In order to obtain such an effect, it is necessary to contain 1.0% or more of this Mn. However, if Mn exceeds 3.0%, the segregation of Mn decreases the ductility due to the increase in solid solution strengthening. Also, since the weldability and base metal toughness deteriorate, the upper limit of Mn is set to 3.0%.
P : 0. 05 %以下  P: 0.05% or less
Pは Fe原子より も小さな置換型固溶強化元素として作用する点に おいて有効であるが、 オーステナイ トの粒界に偏祈し、 粒界強度を 低下させることにより、 ねじり疲労強度を低下させ、 加工性の劣化 が懸念されるので 0. 05 %以下とする。 また固溶強化の必要がなけれ ば Pを添加する必要はなく、 Pの下限値は 0 %を含むものとする。  P is effective in that it acts as a substitutional solid solution strengthening element smaller than Fe atoms, but it reduces the torsional fatigue strength by praying to the austenite grain boundaries and lowering the grain boundary strength. Since there is a concern about deterioration of workability, the content should be 0.05% or less. If solid solution strengthening is not required, it is not necessary to add P, and the lower limit of P includes 0%.
S : 0. 0005 %以上  S: 0.0005% or more
Sは、 不純物として偏祈して、 Sは MnSの粗大な延伸介在物を形 成して伸びフランジ性を劣化させるため、 極力低濃度であることが 望ましい。 従来は、 伸びフランジ性を確保すべく、 Sの濃度を 0. 00 05 %未満まで極低硫化させる必要があった。 しかし、 本発明では微 細で硬質な Ce酸化物、 La酸化物、 セリュウムォキシサルファイ ド、 ランタンォキシサルフアイ ド上に MnSを析出させ、 圧延時にも変形 が起こり難く、 介在物の延伸を防止しているため、 Sの濃度の上限 値は特に規定しない。  S is prayed as an impurity, and S forms coarse inclusions of MnS and deteriorates stretch flangeability. Therefore, it is desirable that the concentration be as low as possible. Conventionally, in order to ensure stretch flangeability, it was necessary to extremely low sulfurize the S concentration to less than 0.005%. However, in the present invention, MnS is precipitated on fine and hard Ce oxide, La oxide, cerium oxysulfide, and lanthanum oxysulfide, and deformation hardly occurs during rolling. Since stretching is prevented, the upper limit of the concentration of S is not specified.
また、 S濃度を従来並の 0. 0005 %未満に低減するためには、 二次 精練で脱硫処理を相当強化する必要があり、 その濃度を実現させる ための脱硫処理コス トが高くなり過ぎること、 且つ MnSを形態制御 した効果が発現し難くなるため S濃度の下限値は 0. 0005 %とする。  In addition, in order to reduce the S concentration to less than 0.0005%, it is necessary to considerably strengthen the desulfurization treatment by secondary scouring, and the desulfurization treatment cost for realizing the concentration becomes too high. In addition, since the effect of controlling the morphology of MnS is difficult to develop, the lower limit of the S concentration is set to 0.0005%.
N : 0. 0005〜0. 0 1 % Nは、 溶鋼処理中に空気中の窒素が取り込まれることから、 鋼中 に不可避的に混入する元素である。 Nは、 ΑΓ, Ti等と窒化物を形成 して母材組織の細粒化を促進する。 しかしながら、 この Nを添加し 過ぎると、 微量 A1や微量 Tiであっても粗大な析出物を生成し、 伸び フランジ性を劣化させる。 このため、 本発明においては、 Nの濃度 の上限を 0.01%とする。 一方、 Nの濃度を 0.0005 %未満とするには コス トが高くなるので 0.0005 %を下限とする。 N: 0.0005 to 0.0 1% N is an element that is inevitably mixed into steel because nitrogen in the air is taken in during the treatment of molten steel. N forms nitrides with ΑΓ, Ti, etc., and promotes the refinement of the matrix structure. However, if this N is added too much, coarse precipitates are generated even with a trace amount of A1 or a trace amount of Ti, and the stretch flangeability is deteriorated. Therefore, in the present invention, the upper limit of the N concentration is set to 0.01%. On the other hand, if the N concentration is less than 0.0005%, the cost increases, so 0.0005% is the lower limit.
酸可溶 A1 : 0.01%以下  Acid soluble A1: 0.01% or less
酸可溶 A1はその酸化物がクラスター化して粗大になり易く、 伸び フランジ性ゃ疲労特性を劣化させるため極力抑制することが望まし い。 しかしながら、 予備的な脱酸材として 0.01%までは用いること が許容される。 これは、 酸可溶 A1濃度が 0.01%超になると、 介在物 中の A 1203含有率が 50%を超え、 介在物のクラスター化が起こるた めである。 クラスター化防止の観点から酸可溶 A1濃度は低い方が良 く、 下限値は 0 %を含む。 また、 酸可溶 A1濃度とは、 酸に溶解した A1の濃度を測定したもので、 溶存 A1は酸に溶解し、 A 1203は酸に溶 解しないことを利用した分析方法である。 ここで、 酸とは、 例えば 塩酸 1、 硝酸 1、 水 2の割合 ('質量比) で混合した混酸が例示でき る。 この様な酸を用いて、 酸に可溶な A1と、 酸に溶解しない A1203 とに分別でき、 酸可溶 M濃度が測定できる。 Acid-soluble A1 is desirable to be suppressed as much as possible because its oxides are likely to be clustered and become coarse, and the stretch flangeability deteriorates fatigue properties. However, up to 0.01% is allowed as a preliminary deoxidizer. This is because if the acid soluble A1 concentration of 0.01 percent, A 1 2 0 3 content in the inclusions exceeds 50%, it is because the clustered was place of inclusions. From the viewpoint of preventing clustering, it is better that the acid-soluble A1 concentration is lower, and the lower limit is 0%. Further, the acid soluble A1 concentration, obtained by measuring the concentration of A1 dissolved in acid, dissolved A1 is dissolved in acid, A 1 2 0 3 is the analysis method using not to dissolve the acid . Here, examples of the acid include a mixed acid mixed at a ratio of hydrochloric acid 1, nitric acid 1 and water 2 ('mass ratio). Using such a acid, a soluble A1 acid, can classified into the A1 2 0 3 which does not dissolve in acid, it can be measured acid soluble M concentration.
酸可溶 Ti : 0.008%未満  Acid soluble Ti: less than 0.008%
酸可溶 Tiもその酸化物がクラスター化して粗大になり易いこと、 鋼中の Nと結びついて粗大な TiNの介在物を生成し易いことから、 酸可溶 Tiは 0.008%未満とし、 下限値は 0 %を含む。 また、 酸可溶 T i濃^とは、 酸に溶解した Tiの濃度を測定したもので、 溶存 Tiは酸 に溶解し、 Ti酸化物は酸に溶解しないことを利用した分析方法であ る。 ここで、 酸とは、 例えば塩酸 1、 硝酸 1、 水 2の割合 (質量比 ) で混合した混酸が例示できる。 この様な酸を用いて、 酸に可溶なThe acid-soluble Ti is also likely to become coarse due to its oxides clustering, and it is easy to form coarse TiN inclusions combined with N in the steel, so the acid-soluble Ti is less than 0.008%. Contains 0%. The acid-soluble Ti concentration is a measure of the concentration of Ti dissolved in acid, and is an analytical method that utilizes dissolved Ti dissolved in acid and Ti oxide not dissolved in acid. . Here, the acid is, for example, the ratio of hydrochloric acid 1, nitric acid 1, water 2 (mass ratio Examples of the mixed acid mixed in). Using such an acid, it is soluble in acid
Tiと、 酸に溶解しない Ti酸化物とに分別でき'、 酸可溶 Ti濃度が測定 できる。 It can be separated into Ti and Ti oxide that does not dissolve in acid ', and acid-soluble Ti concentration can be measured.
Ceもしくは Laの 1種または 2種の合計 : 0.0005〜0.04%  Total of one or two of Ce or La: 0.0005-0.04%
Ce, Laは Si脱酸により生成した Si02を還元し、 MnSの析出サイ ト となり易く、 且つ硬質、 微細で圧延時に変形し難い Ce酸化物 (例え ば、 Ce203, Ce02) 、 セリュウムォキシサルファイ ド (例えば、 Ce2 02S) 、 La酸化物 (例えば、 La203, La02) 、 ランタンォキシサルフ アイ ド (例えば、 La202 S) 、 Ce酸化物— La酸化物、 或いはセリュウ ムォキシサルフアイ ド一ランタンォキシサルフアイ ドを主相 (50% 以上を目安とする。 ) とする介在物を形成する効果を有している。 Ce, La is reduced 2 Si0 produced by Si deoxidation, easy precipitation site next to the MnS, and the hard, difficult to deform Ce oxide during rolling fine (eg, Ce 2 0 3, Ce0 2 ), Cerium oxide sulfide (eg Ce 2 0 2 S), La oxide (eg La 2 0 3 , La0 2 ), lanthanum oxide sulfide (eg La 2 0 2 S), Ce oxidation Materials—Has the effect of forming inclusions whose main phase is 50% or more of La oxide or cerium oxysulfide or lanthanum oxysulfide.
ここで、 上記介在物中には、 脱酸条件により MnO, Si02、 或いは A 1203を一部含有する場合もあるが、 主相が上記酸化物であれば MnS の析出サイ トとして十分機能し、 且つ介在物の微細 ' 硬質化の効果 も損なわれることはない。 このような介在物を得るためには、 Ceも しくは Laの 1種または 2種の合計濃度を 0.0005 %以上 0.04%以下に する必要がある。 Ceもしくは Laの 1種または 2種の合計濃度が 0.00 05%未満では Si02介在物を還元'できず、 0.04%超ではセリユウムォ キシサルフアイ ド、 ランタンォキシサルファイ ドが多量に生成し、 粗大な介在物となり伸びフランジ性ゃ疲労特性を劣化させる。 Here, in the above inclusions, MnO, Si0 2 by deoxidation conditions, or in some cases to partially containing A 1 2 0 3, main phase as a precipitation site of MnS within the above oxide It functions well, and the effect of the micro-hardening of inclusions is not impaired. In order to obtain such inclusions, the total concentration of one or two of Ce or La must be 0.0005% or more and 0.04% or less. One or two total concentration of Ce or La can not reducing 'the Si0 2 inclusions is less than 0.00 0.05%, Seriyuumuo Kishisarufuai de is 0.04 percent, lanthanum O carboxymethyl monkey sulfide is produced in large quantities, coarse It becomes an inclusion and stretch flangeability deteriorates fatigue characteristics.
Nb: 0.01〜0.10%  Nb: 0.01-0.10%
Nbは、 Cもしくは Nと炭化物、 窒化物、 炭窒化物を形成して母材 組織の細粒化を促進する。 この効果を得るためには少なく とも 0.01 %が必要である。 しかし、 0.10%を超えて多量に含有しても効果が 飽和し、 コス トが高くなるので 0.10%を上限とする。  Nb forms carbides, nitrides, and carbonitrides with C or N and promotes refinement of the base material structure. To obtain this effect, at least 0.01% is required. However, even if it is contained in a large amount exceeding 0.10%, the effect is saturated and the cost becomes high, so 0.10% is made the upper limit.
V : 0.01〜0.05%  V: 0.01 to 0.05%
Vは、 Cもしくは Nと炭化物、 窒化物、 炭窒化物を形成して母材 組織の細粒化を促進する。 この効果を得るためには少なく とも 0. 01 %が必要である。 しかし、 0. Q5 %を超えて多量に含有しても効果が 飽和し、 コス トが高くなるので 0. 05 %を上限とする。 V is a base material that forms carbide, nitride, carbonitride with C or N Promotes tissue refinement. To obtain this effect, at least 0.01% is required. However, even if it is contained in a large amount exceeding 0. Q5%, the effect is saturated and the cost becomes high, so 0.05% is made the upper limit.
C r: 0. 01〜0. 6 %  C r: 0.01 to 0.6%
C rは鋼の焼き入れ性を向上し、 鋼板の強度を確保するために、 必 要に応じて含有することができ、 この効果を得るためには少なく と も 0. 01 %が必要である。 しかし、 多量の含有はかえつて強度—延性 のバランスを劣化させる。 そのため、 0. 6 %を上限とする。  Cr can be included as necessary to improve the hardenability of the steel and ensure the strength of the steel sheet, and at least 0.01% is necessary to obtain this effect. . However, a large amount of content deteriorates the balance between strength and ductility. Therefore, the upper limit is 0.6%.
Mo : 0. 01〜0. 4 %  Mo: 0.01-0.4%
Moは鋼の焼き入れ性を向上し、 鋼板の強度を確保するために、 必 要に応じて含有することができ、 この効果を得るためには少なく と も 0. 01 %が必要である。 しかし、 .多量の含有はかえつて強度一延性 のバランスを劣化させる。 そのため、 0. 4 %を上限とする。  Mo can be added as needed to improve the hardenability of the steel and ensure the strength of the steel sheet, and at least 0.01% is necessary to obtain this effect. However, a large amount of content deteriorates the balance of strength ductility. Therefore, the upper limit is 0.4%.
B : 0. 0003〜0. 003 %  B: 0.0003 to 0.003%
Bは、 鋼の焼き入れ性を向上し、 粒界を強化し、 加工性を向上す るために、 必要に応じて含有することができ、 この効果を得るため には少なく とも 0. 0003 %が必要である。 しかし、 多量の含有はかえ つて鋼の清浄性を損ない、 延性を劣化させる。 そのため、 0. 003 % を上限とする。  B can be included as needed to improve the hardenability of the steel, strengthen the grain boundaries, and improve the workability. To obtain this effect, B is at least 0.0003%. is required. However, if a large amount is contained, the cleanliness of the steel is impaired and the ductility is deteriorated. Therefore, the upper limit is 0.003%.
次に、 本発明の鋼板中における介在物の存在条件について説明す る。 尚、 鋼板とは、 熱間圧延、 或いはさらに冷間圧延を経て得られ た圧延後の板を意味している。  Next, the presence conditions of inclusions in the steel sheet of the present invention will be described. Incidentally, the steel sheet means a rolled sheet obtained through hot rolling or further cold rolling.
伸びフランジ性と疲労特性に優れた鋼板を得るためには、 割れ発 生の起点や割れ伝播の経路となり易い延伸した粗大な MnS系介在物 を鋼板中でできるだけ低減することが重要である。 本発明者は、 円 相当径 1 m未満の MnS系介在物は割れ発生起点としては無害であ り、 伸びフランジ性ゃ疲労特性を劣化させないことを実験的に知見 しており、 また、 円相当直径 1 以上の介在物は走査型電子顕微 鏡 (SEM) 等による観察も容易.であることから、 鋼板における円相 当直径が 1 以上の介在物を対象として、 その形態および組成を 調査し、 MnS系介在物の分布状態を評価した。 ここで、 円相当直径 とは、 断面観察した介在物の長径と短径から、 (長径 X短径) として求めたものと定義する。 In order to obtain a steel sheet with excellent stretch flangeability and fatigue properties, it is important to reduce as much as possible the stretched and coarse MnS inclusions in the steel sheet, which are likely to be the origin of crack initiation and the path of crack propagation. The inventor has experimentally found that MnS inclusions with an equivalent circle diameter of less than 1 m are harmless as a starting point of cracking and do not deteriorate fatigue characteristics if stretch flangeability occurs. In addition, inclusions with a circle equivalent diameter of 1 or more can be easily observed with a scanning electron microscope (SEM), etc. The morphology and composition were investigated, and the distribution of MnS inclusions was evaluated. Here, the equivalent circle diameter is defined as (major axis X minor axis) obtained from the major axis and minor axis of the inclusion observed in the cross section.
なお、 MnS系介在物の円相当直径の上限は特に規定するものでは ないが、 現実的には 1 程度の MnS系介在物が観察される場合があ る。  The upper limit of the circle equivalent diameter of MnS inclusions is not particularly specified, but in reality, about 1 MnS inclusions may be observed.
延伸介在物の個数割合は、 SEMを用いてランダムに選んだ円相当 直径 l ^ m以上の複数個 (例えば 50個程度) の介在物を組成分析す ると共に、 介在物の長径と短径を SEM像から測定する。 ここで延伸 介在物を、 長径 Z短径 (延伸割合) が 5以上の介在物とするとき、 検出した上記延伸介在物の個数を、 調査した全介在物個数 (上述の 例でいうと 50個程度) で除すことにより、 上記延伸介在物の個数割 合を求めることができる。  The number of stretched inclusions was determined by analyzing the composition of multiple inclusions (for example, about 50) with a diameter equivalent to a circle l ^ m or more randomly selected using SEM, and determining the major axis and minor axis of the inclusions. Measure from SEM image. Here, when the elongated inclusion is an inclusion having a major axis Z minor axis (stretching ratio) of 5 or more, the number of the detected elongated inclusions is the total number of investigated inclusions (50 in the above example). The ratio of the number of the stretched inclusions can be obtained.
なお、 介在物の延伸割合を 5以上とした理由は、 Ce , Laを添加し ない比較鋼板中の延伸割合 5以上の介在物は、 殆ど MnS系介在物で あつたためである。 尚、 MnS系介在物の延伸割合の上限は特に規定 するものではないが、 現実的には延伸割合 50程度の MnS系介在物が 観察される場合もある。  The reason why the inclusion stretching ratio was set to 5 or more is that inclusions with a stretching ratio of 5 or more in the comparative steel sheet to which Ce and La were not added were mostly MnS inclusions. The upper limit of the stretching ratio of MnS inclusions is not particularly specified, but in reality, MnS inclusions with a stretching ratio of about 50 may be observed.
その結果、 延伸割合 5以上の延伸介在物の個数割合が 20 %以下に 形態制御された鋼板では、 伸びフランジ性と疲労特性が向上するこ とが判明した。 即ち、 延伸割合 5以上の延伸介在物の個数割合が 20 %を超えると、 割れ発生の起点となり易い MnS系延伸介在物の個数 割合が多くなり過ぎ、 伸びフランジ性と疲労特性が低下するため、 本発明においては、 延伸割合 5以上の延伸介在物の個数割合は 20 % 以下とする。 また、 伸びフランジ性ゃ疲労特性は延伸した MnS系介 在物が少ないほど良好であるため、 その延伸割合.5以上の延伸介在 物の個数割合の下限値は 0 %を含む。 As a result, it was found that the stretch flangeability and fatigue characteristics of the steel sheet whose form ratio was controlled to 20% or less in the number ratio of stretch inclusions with a stretch ratio of 5 or more were improved. That is, if the number ratio of stretch inclusions with a stretch ratio of 5 or more exceeds 20%, the number ratio of MnS-based stretch inclusions, which are likely to start cracking, increases too much, and the stretch flangeability and fatigue characteristics deteriorate. In the present invention, the number ratio of stretch inclusions having a stretch ratio of 5 or more is 20%. The following. In addition, since the stretch flangeability and fatigue properties are better as the number of stretched MnS inclusions is smaller, the lower limit of the number ratio of stretch inclusions with a stretch ratio of .5 or more includes 0%.
ここで、 円相当直径 1 z^ rn以上の介在物で、 かつ、 延伸割合 5以 上の延伸介在物の個数割合の下限値が 0 %の意味するところは、 円 相当直径が 1 以上の介在物であるが延伸割合 5以上のものが存 在しない場合、 又は延伸割合 5以上の延伸介在物であっても、 円相 当直径がすべて 1 m未満という場合である。  Here, an inclusion with an equivalent circle diameter of 1 z ^ rn or more and a lower limit of the number ratio of the extension inclusions with a drawing ratio of 5 or more means 0%. This is the case when there is no stretch ratio of 5 or more, or when the circular equivalent diameter is less than 1 m even for stretch inclusions with a stretch ratio of 5 or more.
また、 延伸割合 5以上の延伸介在物の個数割合が 20 %以下に形態 制御された鋼板では、 これに対応して、 C eもしくは Laの 1種または 2種からなる酸化物またはォキシサルフアイ ドに MnSが析出した形 態となつている。 この介在物の形態としては、 Ceもしくは L aの 1種 または 2種からなる酸化物またはォキシサルフアイ ドに MnSが析出 していれば良く、 特に規定するものではないが、 Ceもしくは L aの 1 種または 2種からなる酸化物またはォキシサルフアイ ドを核として その周囲に MnSが析出している場合が多い。  In addition, in steel sheets whose shape ratio is 20% or less, the number of stretched inclusions with a stretching ratio of 5 or more is correspondingly reduced by adding MnS to oxides or oxysulfide containing one or two of Ce or La. It is in the form of precipitated. As for the form of this inclusion, it is sufficient that MnS is precipitated in one or two kinds of oxides or oxysulfides of Ce or La, and it is not particularly specified, but one kind of Ce or La is used. In many cases, MnS is deposited around two oxides or oxysulfide as a nucleus.
また、 Ceもしくは L aの 1種または 2種からなる酸化物またはォキ シサルフアイ ドに MnSが析出しだ介在物は、 圧延時にも変形が起こ り難いため、 鋼板中でも延伸していない形状、 すなわち、 ほぼ球状 介在物となっている。  In addition, inclusions in which MnS is precipitated in one or two oxides or oxysulfide of Ce or La are not easily deformed during rolling. It is almost spherical inclusion.
ここで、 延伸していないと判断される球状介在物とは、 特に規定 するものではないが、 鋼板中の延伸割合 3以下の介在物、 好ましく は 2以下の介在物である。 これは、 圧延前の铸片段階において C eも しくは L aの 1種または 2種からなる酸化物またはォキシサルフアイ ドに' MnSが析出した形態の介在物における延伸割合が 3以下であつ たためである。 また、 延伸していないと判断される球状介在物は、 完全に球状であれば、 延伸割合が 1になるため、 延伸割合の下限は 1である。 Here, the spherical inclusions judged not to be stretched are not particularly defined, but are inclusions having a stretching ratio of 3 or less, preferably 2 or less, in the steel sheet. This is because, in the flake stage before rolling, the stretching ratio of inclusions in the form of 'MnS precipitated on oxide or oxysulfide consisting of one or two of Ce or La was 3 or less. is there. In addition, spherical inclusions that are judged not to be stretched have a stretching ratio of 1 if they are completely spherical, so the lower limit of the stretching ratio is 1.
このような介在物の個数割合の調査を延伸介在物の個数割合調査 と同様の方法で実施した。 その結果、 C eもしくは L aの 1種または 2 種からなる酸化物またはォキシサルフアイ ドに MnSが析出した形態 の介在物の個数割合が 10 %以上に析出制御された鋼板では、 伸びフ ランジ性と疲労特性が向上することが判明した。 C eもしくは Laの 1 種または 2種からなる酸化物またはォキシサルフアイ ドに MnSが析 出した形態の介在物の個数割合が 1 0 %未満になると、 これに対応し て、 MnS系の延伸介在物の個数割合が多くなり過ぎ、 伸びフランジ 性と疲労特性が低下する。 このため、 Ceもしくは L aの 1種または 2 種からなる酸化物またはォキシサルフアイ ドに MnSが析出した形態 の介在物の個数割合は 1 0 %以上と.する。 また、 伸びフランジ性ゃ疲 労特性は、 C eもしくは Laの 1種または 2種からなる酸化物またはォ キシサルファイ ドに MnSを多数析出させた方が良好であるため、 そ の個数割合の上限値は 1 00 %を含む。  The survey of the number ratio of inclusions was conducted in the same manner as the number ratio survey of stretched inclusions. As a result, in steel sheets in which the number ratio of inclusions in the form of MnS precipitated in one or two types of oxides or oxysulfides of Ce or La was controlled to be 10% or more, elongation flangeability and It was found that the fatigue characteristics were improved. When the number of inclusions in the form of MnS deposited on one or two types of oxides or oxysulfides of Ce or La becomes less than 10%, MnS-based stretched inclusions correspond to this. The ratio of the number of steels increases so much that the stretch flangeability and fatigue characteristics deteriorate. For this reason, the number ratio of inclusions in the form of MnS deposited on one or two kinds of oxides or oxysulfides of Ce or La should be 10% or more. In addition, the stretch flangeability and fatigue properties are better when a large amount of MnS is precipitated in one or two oxides or oxysulfides of Ce or La. Contains 1 00%.
なお、 Ceもしくは L aの 1種または 2種からなる酸化物またはォキ シサルフアイ ドに MnSが析出した形態の介在物は、 圧延時にも変形 が起こり難いため、 その円相当 It径は特に規定するものではなく、 l ^ m以上でも良い。 但し、 あまり大きすぎると割れ発生起点とな ることが懸念されるため、 上限は 50 m程度が好ましい。  It should be noted that inclusions in the form of one or two oxides of Ce or La, or inclusions in which MnS is precipitated on oxysulfide are unlikely to deform during rolling, so the circle equivalent It diameter is specified in particular. It is not a thing, l ^ m or more may be sufficient. However, if it is too large, there is a concern that cracking will start, so the upper limit is preferably about 50 m.
一方、 この介在物は、 圧延時にも変形が起こり難い上に、 円相当 直径が 1 m未満の場合は、 割れ発生起点とならないことから、 円 相当直径の下限は特に規定するものではない。  On the other hand, this inclusion is not easily deformed during rolling, and when the equivalent circle diameter is less than 1 m, it does not become a starting point for cracking, so the lower limit of the equivalent circle diameter is not particularly specified.
次に、 上記で述べた本発明の鋼板中における介在物の存在条件と して、 介在物の単位体積当たりの個数密度で規定することとした。 介在物の粒径分布は、 スピ一ド法による電解面の SEM評価で実施 した。 スピード法による電解面の SEM評価とは、 試料片の表面を研 磨後、 スピード法による電解を行い、 試料面を直接 SEM観察するこ とにより介在物の大きさや個数密度を評価するものである。 なお、 スピード法とは、 10%ァセチルアセトン一 1 %テ卜ラメチルアンモ 二ユウムクロライ ドーメタノールを用いて試料表面を電解し、 介在 物を抽出する方法であるが、 電解量としては試料表面の面積 1 cm2 当たり 1 Cを電解した。 このようにして電解した表面の SEM像を画 像処理して、 円相当直径に対する頻度 (個数) 分布を求めた。 この 粒径の頻度分布から平均円相当直径を算出すると共に、 観察した視 野の面積と、 電解量から求めた深さで頻度を除すことにより介在物 の体積当たりの個数密度も算出した。 Next, the existence condition of inclusions in the steel sheet of the present invention described above is defined by the number density of inclusions per unit volume. The inclusion particle size distribution was determined by SEM evaluation of the electrolytic surface by the speed method. The SEM evaluation of the electrolytic surface by the speed method means that the surface of the sample piece is polished. After polishing, electrolysis is performed by the speed method, and the size and number density of inclusions are evaluated by direct SEM observation of the sample surface. The speed method is a method of electrolyzing the sample surface using 10% acetylacetone and 1% tetramethylammonium diumurium chloride methanol to extract inclusions. The amount of electrolysis is 1 1 C was electrolyzed per cm 2 . The SEM image of the surface electrolyzed in this way was image-processed, and the frequency (number) distribution for the equivalent circle diameter was obtained. The average equivalent circle diameter was calculated from the frequency distribution of the particle size, and the number density per volume of inclusions was calculated by dividing the frequency by the area of the observed field and the depth determined from the amount of electrolysis.
割れ発生の起点となり伸びフランジ性ゃ疲労特性を劣化させる円 相当直径 1 m以上、 延伸割合 5以上の介在物の体積個数密度を評 価した結果、 1. OX 104個 Zmin3以下であると伸びフランジ性と疲労 特性が向上することが判明した。 円相当直径 1 m以上、 かつ、 延 伸割合 5以上の延伸介在物の体積個数密度が 1. OX 104個 Zmm3を超 えると、 割れ発生の起点となり易い MnS系延伸介在物の個数密度が 多くなり過ぎ、 伸びフランジ性と疲労特性が低下するため、 円相当 直径 1 /xm以上、 かつ、 延伸割合 5以上の延伸介在物の体積個数密 度を 1.0X 104個/ mm3以下とする。 また、 伸びフランジ性ゃ疲労特 性は延伸した MnS系介在物が少ないほど良好であるため、 円相当直 径 l ^m以上、 かつ、 延伸割合 5以上の延伸介在物の体積個数密度 の下限値は 0 %を含む。 As a result of evaluating the volume number density of inclusions with an equivalent diameter of 1 m or more and an elongation ratio of 5 or more as a starting point of crack generation and stretch flangeability and fatigue characteristics are reduced, 1. OX 10 4 pieces Zmin 3 or less It has been found that stretch flangeability and fatigue properties are improved. If the volume number density of stretched inclusions with an equivalent circle diameter of 1 m or more and an elongation ratio of 5 or more exceeds 1. OX 10 4 pieces Zmm 3 , the number density of MnS-type stretch inclusions that are likely to start cracking. becomes too large, to lower the fatigue characteristics stretch flange formability, an equivalent circle diameter of 1 / xm or more, and a volume number density of the stretch ratio of 5 or more stretched inclusions 1.0X 10 4 cells / mm 3 or less To do. In addition, since the stretch flangeability and fatigue properties are better as the number of stretched MnS inclusions is smaller, the lower limit of the volume number density of stretched inclusions with a circle equivalent diameter of l ^ m or more and a stretch ratio of 5 or more Contains 0%.
ここで、 円相当直径 l ^m以上、 かつ、 延伸割合 5以上の延伸介 在物の体積個数密度の下限値が 0 %の意味するところは、.上記と同 様である。  Here, the lower limit value of the volume number density of stretched inclusions having an equivalent circle diameter of l ^ m or more and a stretching ratio of 5 or more means 0%, as described above.
また、 直径 l ^m以上、 かつ、 延伸率 5以上の延伸介在物の体積 個数密度を 1.0X 104個/ mm3以下に形態制御された鋼板では、 これ に対応して、 延伸していない MnS系介在物は Ceもしくは Laの 1種ま たは 2種からなる酸化物またはォキシサルファイ ドに MnSが析出し た形態となり、 その形状はほぼ球状介在物となっていた。 In addition, in the case of a steel sheet whose shape is controlled to be 1.0 × 10 4 pieces / mm 3 or less in the volume number density of drawn inclusions having a diameter of l ^ m or more and a draw ratio of 5 or more Corresponding to the above, unstretched MnS inclusions are in the form of MnS deposited on one or two oxides or oxysulfides of Ce or La, and the shape is almost spherical inclusions. It was.
この介在物の形態としては、 上記と同様に、 Ceもしくは Laの 1種 または 2種からなる酸化物またはォキシサルフアイ ドに MnSが析出 していれば良く、 特に規定するものではないが、 Ceもしくは Laの 1 種または 2種からなる酸化物またはォキシサルフアイ ドを核として その周囲に MnSが析出している場合が多い。  The form of the inclusion is not particularly limited as long as MnS is precipitated in the oxide or oxysulfide containing one or two kinds of Ce or La as described above. In many cases, MnS is deposited around one or two oxides or oxysulfide as a nucleus.
また、 球状介在物とは、 特に規定するものではないが、 鋼板中の 延伸割合 3以下の介在物、 好ましくは 2以下の介在物とする。 ここ で、 完全に球状であれば、 延伸割合が 1 になるため、 延伸割合の下 限は 1である。  In addition, the spherical inclusion is not particularly specified, but is an inclusion having a drawing ratio of 3 or less, preferably 2 or less, in the steel sheet. Here, if it is perfectly spherical, the stretching ratio is 1, so the lower limit of the stretching ratio is 1.
このような介在物の体積個数密度を調査した結果、 Ceもしくは La の 1種または 2種からなる酸化物またはォキシサルフアイ ドを核と してその周囲に MnSが析出した形態の介在物の体積個数密度が 1. 0 X 1 03個 Z mm3以上に析出制御された鋼板では、 伸びフランジ性と疲労 特性が向上することが判明した。 Ceもしくは Laの 1種または 2種か らなる酸化物またはォキシサルフアイ ドに MnSが析出した形態の介 在物の体積個数密度が 1. 0 X 1 03個/ mm3未満になると、 これに対応 して、 MnS系の延伸介在物の個数割合が多くなり過ぎ、 伸びフラン ジ性と疲労特性が低下するため、 Ceもしくは Laの 1種または 2種か らなる酸化物またはォキシサルフアイ ドに MnSが析出した形態の介 在物の体積個数密度は 1. 0 X 1 O3個/ mm3以上に規定する。 また、 伸 びフランジ性ゃ疲労強度は、 Ceもしくは Laの 1種または 2種からな る酸化物またはォキシサルフアイ ドを核として MnSを多数析出させ た方が良好であるため、 その体積個数密度の上限値は特に規定する ものではない。 なお、 Ceもしくは Laの 1種または 2種からなる酸化物またはォキ シサルフアイ ドに MnSが析出した形態の介在物の円相当直径は、 上 記と同様に、 特に規定するものではなく、 1 m以上でも良い。 伹 し、 この円相当直径があまり大きすぎると割れ発生起点となること が懸念されるため、 上限は 50 m程度が好ましい。 As a result of investigating the volume number density of such inclusions, the volume number density of inclusions in the form of MnS precipitated around one or two oxides or oxysulfide of Ce or La as the core. However, it was found that the stretch flangeability and fatigue properties of steel sheets with a controlled precipitation of 1.0 x 10 3 Z mm 3 or more improved. When the volume number density of inclusions in the form of MnS deposited on one or two oxides or oxysulfide of Ce or La is less than 1.0 X 10 3 / mm 3 As a result, the number ratio of MnS-based stretch inclusions increases so much that the stretch flangeability and fatigue properties decrease, so that MnS precipitates in oxides or oxysulfides of one or two of Ce or La. The volume number density of inclusions in this form is specified to be 1.0 X 1 O 3 pieces / mm 3 or more. In addition, the fatigue strength of stretch flangeability is better when a large amount of MnS is precipitated with one or two oxides of Ce or La or oxysulfide as the core. The value is not particularly specified. In addition, the equivalent circle diameter of inclusions in which MnS is deposited on one or two types of oxides or oxysulfide of Ce or La is not particularly specified, as described above. That's all. However, if this equivalent circle diameter is too large, there is a concern that cracking will start, so the upper limit is preferably about 50 m.
一方、 この介在物の円相当直径が 1 m未満の場合は、 全く問題 はないため、 下限は特に規定するものではない。  On the other hand, if the equivalent circle diameter of this inclusion is less than 1 m, there is no problem, so the lower limit is not specified.
次に、 上記で述べた本発明の鋼板中における延伸介在物の存在条 件として、 円相当直径の上限値で規定した。 具体的には、 割れ発生 の起点となり伸びフランジ性ゃ疲労特性を劣化させる円相当直径 1 m以上、 かつ、 延伸割合 5以上の介在物の平均円相当直径を評価 した結果、 この延伸介在物の平均円相当直径が 10 m以下であると 、 伸びフランジ性と疲労特性が向上することが分かった。 これは、 円相当直径 1 /i m以上、 かつ、 延伸割合 5以上の延伸介在物の個数 割合が増加するにつれて、 この延伸介在物の平均円相当直径が大き くなることに着目し、 延伸介在物の平均円相当直径を指標として規 定したものである。 これは、 溶鋼中の Mnや Sの量が増加するにつれ て、 生成する MnSの個数が増加するとともに、 生成する MnSの大きさ も粗大化するものと推定される。  Next, the existence condition of the drawn inclusions in the steel sheet of the present invention described above was defined by the upper limit of the equivalent circle diameter. Specifically, as a result of evaluating the average equivalent circle diameter of inclusions with a circle equivalent diameter of 1 m or more and an elongation ratio of 5 or more, which is the starting point of crack generation and deteriorates the stretch flangeability and fatigue characteristics, It was found that when the average equivalent circle diameter is 10 m or less, stretch flangeability and fatigue characteristics are improved. This is because the average equivalent circle diameter of the stretched inclusions increases as the number ratio of stretched inclusions with a circle equivalent diameter of 1 / im or more and a stretching ratio of 5 or more increases. The average equivalent circle diameter is defined as an index. This is presumed that as the amount of Mn and S in the molten steel increases, the number of MnS produced increases and the size of MnS produced increases.
そこで、 円相当直径 1 m以上、 かつ、 延伸割合 5以上の延伸介 在物が 10 mを超えて大きくなると、 これに応じて、 この延伸介在 物の個数割合が 20 %を超えるため、 割れ発生の起点となり易い粗大 な MnS系延伸介在物の個数割合が多くなり過ぎ、 伸ぴフランジ性と 疲労特性が低下するため、 円相当直径 以上、 かつ、 .延伸割合 5以上の延伸介在物の平均円相当直径を 10 m以下とする。  Therefore, if the elongation inclusion with a circle equivalent diameter of 1 m or more and a stretching ratio of 5 or more exceeds 10 m, the number ratio of the stretching inclusions exceeds 20%. The ratio of the number of coarse MnS-based stretch inclusions that are likely to be the starting point of the steel increases too much, and the stretch flangeability and fatigue characteristics decrease. The equivalent diameter shall be 10 m or less.
なお、 円相当直径 1 /i m以上、 かつ、 延伸割合 5以上の延伸介在 物の平均円相当直径を l O m以下という規定は、 円相当直径 1 m 以上の介在物が鋼板中に存在する場合であることを意味しているた め、 円相当直径の下限値は 1 mとなる。 In addition, the provision that the average equivalent circle diameter of stretched inclusions with a circle equivalent diameter of 1 / im or more and a stretch ratio of 5 or more is lOm or less is equivalent to 1m This means that the inclusions exist in the steel sheet, so the lower limit of the equivalent circle diameter is 1 m.
一方で、 上記で述べた本発明の鋼板中における、 Ceもしくは Laの 1種または 2種からなる酸化物またはォキシサルフアイ ドに MnSが 析出した形態の介在物の存在条件として、 MnSが析出した介在物中 の Ceもしくは L aの平均組成の含有量で規定した。  On the other hand, in the steel sheet of the present invention described above, as an existence condition of inclusions in the form of MnS precipitated on one or two kinds of oxides or oxysulfide of Ce or La, inclusions with MnS precipitated It was defined by the content of the average composition of Ce or La.
具体的には、 上述したように、 伸びフランジ性と疲労特性を向上 させる上で、 C eもしぐは Laの 1種または 2種からなる酸化物または ォキシサルフアイ ドに MnSを析出させ、 MnSの延伸を防止することが 重要である。  Specifically, as described above, in order to improve stretch flangeability and fatigue characteristics, MnS is deposited on the oxide or oxysulfide of Ce or Mo, which is one or two kinds of La, and MnS is stretched. It is important to prevent this.
この介在物の形態としては、 上記と同様に、 Ceもしくは Laの 1種 または 2種からなる酸化物またはォキシサルフアイ ドに MnSが析出 していれば良く、 特に規定するものではないが、 C eもしくは Laの 1 種または 2種からなる酸化物またはォキシサルフアイ ドを核として その周囲に MnSが析出している場合が多い。  The form of the inclusion is not particularly limited as long as MnS is precipitated in the oxide or oxysulfide of one or two kinds of Ce or La, as described above. In many cases, MnS is deposited around an oxide or oxysulfide consisting of one or two kinds of La as a nucleus.
また、 球状介在物とは、 特に規定するものではないが、 鋼板中の 延伸割合 3以下の介在物、 好ましくは 2以下の介在物である。 ここ で、 完全に球状であれば、 延伸割合が 1であるため、 延伸割合の下 限は 1である。  The spherical inclusion is not particularly specified, but is an inclusion having a drawing ratio of 3 or less, preferably 2 or less, in the steel sheet. Here, since the stretching ratio is 1 if it is completely spherical, the lower limit of the stretching ratio is 1.
そこで、 Mn S系介在物の延伸抑制に有効な組成を明らかにするた め、 C eもしくは Laの 1種または 2種からなる酸化物またはォキシサ ルフアイ ドに MnSが析出した形態の介在物の組成分析を実施した。 但し、 この介在物の円相当直径が 1 // m以上であれば観察が容易 なことから、 便宜的に、 円相当直径 1 m以上を対象とした。 但し 、 観察が可能であれば、 円相当直径が 1 m未満の介在物も含めて も良い。  Therefore, in order to clarify the effective composition for suppressing the stretching of Mn S inclusions, the composition of inclusions in the form of MnS deposited on oxides or oxysulfide consisting of one or two of Ce or La Analysis was performed. However, if this inclusion has an equivalent circle diameter of 1 // m or more, it is easy to observe. Therefore, for the sake of convenience, the equivalent circle diameter of 1 m or more was used. However, if observation is possible, inclusions with a circle equivalent diameter of less than 1 m may be included.
また、 Ceもしくは L aの 1種または 2種からなる酸化物またはォキ シサルフアイ ドに MnSが析出した形態の介在物は、 延伸していない ため、 延伸割合はすべて 3以下の介在物となつていることが確認さ れた。 従って、 円相当直径 l ^ m以上、 かつ、 延伸割合 3以下の介 在物を対象に組成分析を実施した。 Also, oxides or oxides of one or two of Ce or La The inclusions in the form of MnS deposited on the sisalide were not stretched, so it was confirmed that all the stretch ratios were inclusions of 3 or less. Therefore, a composition analysis was performed for inclusions with an equivalent circle diameter of l ^ m or more and a stretching ratio of 3 or less.
その結果、 円相当直径 l ^ m以上、 かつ、 延伸割合 3以下の介在 物中に平均組成で Ceもしくは Laの 1種または 2種の合計を 0. 5〜 50 %含有させると、 伸びフランジ性と疲労特性が向上することが判明 した。 円相当直径 l ^ m以上、 かつ、 延伸割合 3以下の介在物中に おける Ceもしくは Laの 1種または 2種の合計の平均含有率が 0. 5質 量%未満になると、 Ceもしくは Laの 1種または 2種からなる酸化物 またはォキシサルフアイ ドに MnSが析出した形態の介在物個数割合 が大きく減少するため、 これに対.応して、 割れ発生の起点となり易 い MnS系延伸介在物の個数割合が多くなり過ぎ、 伸びフランジ性と 疲労特性が低下する。  As a result, when inclusions of one or two of Ce or La with an average composition in an inclusion with an equivalent circle diameter of l ^ m or more and an elongation ratio of 3 or less are contained in an amount of 0.5 to 50%, stretch flangeability It was found that the fatigue characteristics improved. When the average content of one or two of Ce or La in inclusions with an equivalent circle diameter of l ^ m or more and a stretch ratio of 3 or less is less than 0.5 mass%, Corresponding to this, the ratio of inclusions in the form of MnS deposited on one or two oxides or oxysulfide is greatly reduced. The number ratio increases too much, and the stretch flangeability and fatigue characteristics decrease.
一方、 円相当直径 l m以上、 かつ、 延伸割合 3以下の介在物中 における Ceもしくは Laの 1種または 2種の合計の平均含有率が 50 % 超になると、 セリュウムォキシサルフアイ ド、 ランタンォキシサル フアイ ドが多量に生成し、 円相当直径が 50 x m程度以上の粗大な介 在物となるため、 伸びフランジ性ゃ疲労特性を劣化させる。  On the other hand, when the average content of one or two of Ce or La in inclusions with an equivalent circle diameter of lm or more and an extension ratio of 3 or less exceeds 50%, cerium oxysulfide, lanthanum A large amount of oxysulfide is generated and becomes a coarse inclusion with an equivalent circle diameter of about 50 xm or more. Therefore, stretch flangeability deteriorates fatigue characteristics.
また、 本発明の鋼板中における、 Ceもしくは Laの 1種または 2種 からなる酸化物またはォキシサルフアイ ドに MnSが析出した形態の 介在物の存在条件として、 鋼板の化学成分 (Ce + La) Z S比で規定 した。  Further, in the steel sheet of the present invention, the chemical composition of the steel sheet (Ce + La) ZS ratio is the presence condition of inclusions in the form of MnS precipitated in one or two kinds of oxides or oxysulfide of Ce or La. Stipulated in
具体的には、 上述したように、 伸びフランジ性と疲労特性を向上 させる上で、 Ceもしくは Laの 1種または 2種からなる酸化物または ォキシサルフアイ ドに MnSを析出させ、 MnSの延伸を防止するための 化学成分比である。 そこで、 MnS系介在物の延伸抑制に有効な化学成分比を明らかに するため、 鋼板の (Ce + La) Z S比を変化させて、 介在物の形態、 伸びフランジ性と疲労特性を評価した (図 1 ) 。 その結果、 (Ce + La) 比が 0. 1〜70であると、 伸びフランジ性と疲労特性が向上 することが判明した。 (Ce + La) ノ S比が 0. 1未満になると、 Ceも しくは Laの 1種または 2種からなる酸化物またはォキシサルフアイ ドに MnSが析出した形態の介在物個数割合が大きく減少するため、 これに対応して、 割れ発生の起点となり易い MnS系延伸介在物の個 数割合が多くなり過ぎ、 伸びフランジ性と疲労特性が低下する。 一方、 (Ce + La) / S比が 70超になると、 セリュウムォキシサル ファイ ド、 ランタンォキシサルファイ ドが多量に生成し、 円相当直 径が 50 m程度以上の粗大な介在.物となるため、 伸びフランジ.性や 疲労特性を劣化させる。 Specifically, as described above, in order to improve stretch flangeability and fatigue characteristics, MnS is deposited on one or two kinds of oxides or oxysulfide of Ce or La to prevent the extension of MnS. The chemical component ratio for Therefore, in order to clarify the effective chemical composition ratio for suppressing the elongation of MnS inclusions, the (Ce + La) ZS ratio of the steel sheet was changed to evaluate the inclusion morphology, stretch flangeability and fatigue properties ( Figure 1 ) . As a result, it was found that stretch flangeability and fatigue characteristics were improved when the (Ce + La) ratio was 0.1 to 70. When the (Ce + La) -no-S ratio is less than 0.1, the ratio of the number of inclusions in the form of MnS deposited on one or two oxides or oxysulfide of Ce or La greatly decreases. Correspondingly, the number ratio of MnS-based stretch inclusions, which are likely to be the starting point of cracking, increases too much and stretch flangeability and fatigue characteristics deteriorate. On the other hand, when the (Ce + La) / S ratio exceeds 70, a large amount of cerium oxysulfide and lanthanum oxysulfide are generated, and the coarse equivalent diameter is about 50 m or more. As a result, the stretch flangeability and fatigue characteristics are degraded.
次に、 鋼板の铒織について説明する。  Next, the steel sheet weaving will be described.
本発明では、 伸びフランジ性と疲労特性を MnS系介在物制御によ り向上させるものであり、 鋼板のミクロ組織は特に限定するもので はない。 ペイ二ティ ック · フェライ トを主相とする組織にした鋼板 、 フェライ 卜相を主相とし、 マルテンサイ ト相、 ベイナイ ト相を第 2相とする複合組織鋼板、 そしてフェライ 卜、 残留オーステナイ ト および低温変態相 (マルテンサイ トもしくはべイナイ ト) からなる 複合組織鋼板の、 いずれの鋼板においても本発明の効果が得られる が、 優れた伸びフランジ性を得るためにはべィニティ ック · フェラ イ トを主相とする組織にすることが好ましい。 望ましくは、 ペイ二 ティ ック · フェライ トもしくはべィナイ ト相が面積比で最大の相で あることが必要である。 鋼板中のべィニティ ック · フェライ ト相の 面積率は、 好ましくは 50%以上、 より好ましくは 80%以上、 さらに 好ましくは 100%である。 また、 残部はべイナイ ト相またはポリゴ ナル · フェライ ト相を 20 %以上含有することがでぎる。 In the present invention, stretch flangeability and fatigue properties are improved by controlling MnS inclusions, and the microstructure of the steel sheet is not particularly limited. Steel sheet with a structure composed mainly of patient ferrite, steel sheet with a complex structure composed mainly of the ferri phase, martensite phase and bainite phase, and ferritic phase, residual austenite The effect of the present invention can be obtained with any steel sheet of a composite structure comprising a low temperature transformation phase (martensite or bainite), but in order to obtain excellent stretch flangeability, It is preferable that the structure has a main phase as a main phase. Desirably, it is necessary that the pay- ferrite or the vinyl phase is the largest phase ratio. The area ratio of the vane-ferrite phase in the steel sheet is preferably 50% or more, more preferably 80% or more, and even more preferably 100%. The balance is the bain phase or polygo It can contain 20% or more of the null-ferrite phase.
次に製造条件を説明する。 本発明では転炉で吹鍊して脱炭し、 或 いは更に真空脱ガス装置を用いて脱炭し、 C濃度を 0. 03〜0. 1 %に した溶鋼中に、 S i, Mn , P等の合金を添加して、 脱酸と成分調整を 行うと共に、 A 1や T iは添加しないか、 或いは酸素調整を必要とする 場合には酸可溶 A 1や酸可溶 T iが僅かに残る程度の少量の A 1や T iを添 加し、 その後 Ceもしくは Laの 1種または 2種を添加して成分調整を 行う。 このようにして溶製された溶鋼を連続铸造して铸片を製造す る。  Next, manufacturing conditions will be described. In the present invention, decarburization is performed by blowing in a converter, or decarburization is further performed using a vacuum degassing apparatus, and Si, Mn are contained in a molten steel having a C concentration of 0.03 to 0.1%. , P and other alloys are added for deoxidation and component adjustment, and if A 1 or T i is not added or oxygen adjustment is required, acid soluble A 1 or acid soluble T i Add a small amount of A 1 or Ti so that a slight amount remains, and then add one or two of Ce or La to adjust the ingredients. A piece is produced by continuously forging the molten steel thus produced.
連続铸造については、 通常の 250nim厚み程度のスラプ連続铸造に 適用されるだけでなく、 ブルームゃピレッ ト、 さらにはスラブ連続 铸造機の铸型厚みが通常より薄い、 例えば 1 50mm以下の薄スラブ連 続铸造に対して十分に適用可能である。  Continuous forging is not only applied to normal continuous slabs with a thickness of about 250nim, but is also used for bloom pallets and slab continuous forgings. It is fully applicable to subsequent fabrication.
高強度熱延鋼板を製造するための熱延条件について述べる。 熱延 前のスラブの加熱温度は鋼中の炭窒化物などを固溶させるため 1 1 50 °C以上とすることが好ましい。 これらを固溶させておく ことにより 、 圧延後の冷却過程でポリゴナル · フェライ トの生成が抑制され、 伸びフランジ性にとって好ましいペイ二ティ ック · フェライ ト相を 主体とする組織が得られる。 一方、 熱延前のスラブの加熱温度が 1 2 50°Cを超えるとスラブ表面の酸化が著しくなり、 特に粒界が選択的 に酸化されることに起因する楔状の表面欠陥がデスケ一リング後に 残り、 それが圧延後の表面品位を損ねるので上限を 1 250°Cとするこ とが好ましい。  The hot rolling conditions for producing a high strength hot rolled steel sheet will be described. The heating temperature of the slab before hot rolling is preferably 1 150 ° C or higher so as to dissolve carbonitrides in the steel. By dissolving these in solid solution, the formation of polygonal ferrite is suppressed in the cooling process after rolling, and a structure mainly composed of a plastic ferrite phase that is favorable for stretch flangeability can be obtained. On the other hand, when the heating temperature of the slab before hot rolling exceeds 1250 ° C, the slab surface is significantly oxidized. In particular, wedge-shaped surface defects caused by selective oxidation of the grain boundaries are observed after descaling. The upper limit is preferably set to 1 250 ° C because the remaining quality deteriorates the surface quality after rolling.
上記の温度範囲に加熱された後に、 通常の熱間圧延を行うが、 そ の工程の中で仕上げ圧延完了温度は鋼板の組織制御を行う場合に重 要である。 仕上げ圧延完了温度が、 A r3点 + 30°C未満では表層部の 結晶粒径が粗大になり易く、 疲労特性上好ましくない。 一方、 Ar3 点 + 200PC超では伸びフランジ性にとって好ましくないポリゴナル • フェライ ト相が生成し易く るので、 上限'を Ar3.点 + 200°Cとする ことが好ましい。 After being heated to the above temperature range, normal hot rolling is performed. In this process, the finish rolling completion temperature is important for controlling the structure of the steel sheet. If the finish rolling completion temperature is less than Ar 3 points + 30 ° C, the crystal grain size of the surface layer portion tends to be coarse, which is not preferable in terms of fatigue characteristics. Meanwhile, Ar 3 Detrimental to stretch flangeability than a point + 200 P C than polygonal • ferrite phase is generated easily Runode, it is preferable that the upper limit 'and Ar 3. Point + 200 ° C.
また、 仕上げ圧延後の鋼板の平均の冷却速度を 40°Cノ秒以上とし 、 300〜 500°Cの範囲まで冷却することが、 ポリゴナル ' フェライ ト 相の生成を抑制し、 ペイ二ティ ック · フェライ ト相を主体とする組 織を得るために有効である。  In addition, the average cooling rate of the steel sheet after finish rolling should be 40 ° C nosec or more, and cooling to the range of 300-500 ° C will suppress the formation of polygonal 'ferrite phase, and the · It is effective for obtaining an organization mainly composed of ferrite phase.
上記の平均の冷却速度が 40°C/秒未満ではポリゴナル · フェライ 卜相が生成しやすくなり好ましくない。 一方、 組織制御の上では冷 却速度に上限を設ける必要はないが、 余りに速い冷却速度は鋼板の 冷却を不均一にするおそれがあり、 またそうした冷却を可能にする ような設備の製造には多額の費用が必要となり、 そのことで鋼板の 価格上昇を招く と考えられる。 このような観点から、 冷却速度の上 限は 100°C/秒とするのが好ましい。  If the average cooling rate is less than 40 ° C / second, a polygonal ferri phase is likely to be formed, which is not preferable. On the other hand, there is no need to set an upper limit on the cooling rate in terms of microstructure control, but too high a cooling rate may cause uneven cooling of the steel sheet, and for the production of equipment that enables such cooling. A large amount of money is required, which is thought to increase the price of steel sheets. From this point of view, the upper limit of the cooling rate is preferably 100 ° C / sec.
また、 冷却停止温度が 300°Cより低くなると伸びフランジ性に好 ましくないマルテンサイ ト相が生成するので、 下限を 300°Cとする 。 従って、 熱延コイルの巻き取り温度は伸びフランジ性を極端に悪 化させるマルテンサイ ト相の生成を抑制するため 300 °C以上とする ことが好ましい。  In addition, when the cooling stop temperature is lower than 300 ° C, a martensite phase that is unfavorable for stretch flangeability is generated, so the lower limit is set to 300 ° C. Accordingly, the coiling temperature of the hot-rolled coil is preferably set to 300 ° C. or higher in order to suppress the formation of a martensite phase that extremely deteriorates the stretch flangeability.
一方、 500°C超ではポリゴナル · フェライ ト相の生成が抑制でき ず、 また Cuを含有している鋼ではフェライ ト相中に Cuが局材的に析 出して疲労特性向上効果を低下させるおそれがあるので巻き取り温 度を 500°C以下とすることが好ましい。 従って、 500°C以下で巻き取 ることにより、 その後の冷却過程で炭窒化物が析出し、 フェライ ト 相中の固溶 C , N量を減少させ、 伸びフランジ性の向上をもたらす 実施例 On the other hand, when the temperature exceeds 500 ° C, the formation of polygonal ferrite phase cannot be suppressed, and in steels containing Cu, Cu may be deposited locally in the ferrite phase and reduce the fatigue property improvement effect. Therefore, the winding temperature is preferably 500 ° C or lower. Therefore, by winding at 500 ° C or less, carbonitride precipitates during the subsequent cooling process, reducing the amount of dissolved C and N in the ferritic phase and improving stretch flangeability. Example
以下、 本発明の実施例を比較例とともに説明する。  Examples of the present invention will be described below together with comparative examples.
表 1 に化学成分を示すスラブを表 2に示す条件にて熱間圧延し、 厚さ 3. 2mniの熱延板を得た。 Table 1 shows the chemical composition of the slab, which was hot-rolled under the conditions shown in Table 2 to obtain a hot rolled sheet having a thickness of 3.2 mni.
表 1 table 1
Figure imgf000027_0001
Figure imgf000027_0001
表 2 Table 2
Figure imgf000028_0001
この表 1 においては、 鋼番号 (以下、 鋼番という。 ) 1 , 3 , 5 , 7 , 9 , 11, 13については、 本発明に係る高強度鋼板の範囲内の 組成で構成し、 鋼番 2 , 4 , 6 , 8 , 10, 12, 14については、 本発 明に係る高強度鋼板の範囲から逸脱させた比較鋼として構成してい る。 鋼番 2 , 4, 6においては、 酸可溶 A1を 0.01%超含有させたス ラブとし、 また、 鋼番 8 , 10, 12, 14においては、 Ceもしくは Laの 1種または 2種の合計を 0.0005未満まで低減させたスラブとして構 成したものである。
Figure imgf000028_0001
In Table 1, steel numbers (hereinafter referred to as steel numbers) 1, 3, 5, 7, 9, 11, 13 are composed of compositions within the range of the high-strength steel sheet according to the present invention. 2, 4, 6, 8, 8, 10, 12, and 14 are configured as comparative steels that deviate from the range of high-strength steel sheets according to the present invention. Steel numbers 2, 4, and 6 are slabs containing more than 0.01% acid-soluble A1, and steel numbers 8, 10, 12, and 14 are the sum of one or two of Ce or La. It is constructed as a slab with a reduced to less than 0.0005.
ちなみに、 この表 1において、 鋼番 1 と鋼番 2、 鋼番 3 と鋼番 4 、 鋼番 5 と鋼番 6、 鋼番 7 と鋼番 8、 との間でそれぞれ比較をする ことができるように、 互いにほぼ同一組成で構成した上で、 酸可溶 A1等を互いに異ならせている。 また、 鋼番 9 と鋼番 10、 鋼番 11と鋼 番 12、 鋼番 13と鋼番 14、 との間でそれぞれ比較をすることができる ように、 互いにほぼ同一組成で構成した上で、 Ce + La等を互いに異 ならせている。  By the way, in this table 1, steel number 1 and steel number 2, steel number 3 and steel number 4, steel number 5 and steel number 6, steel number 7 and steel number 8 can be compared respectively. In this way, the acid-soluble A1 and the like are made different from each other after having the same composition. In addition, in order to be able to compare steel number 9 and steel number 10, steel number 11 and steel number 12, steel number 13 and steel number 14, respectively, Ce + La etc. are different from each other.
また、 この表 2においては、 条件 Aとして、 加熱温度を 1250°C、 仕上圧延完了温度を 845°C、 仕上げ圧延後の冷却速度を 75°C/秒、 巻き取り温度を 450°Cとし、 条件 Bとして、 加熱温度を 1200°C、 仕 上圧延完了温度を 825 、 仕上げ圧延後の冷却速度を 45 Z秒、 巻 き取り温度を 450でとしている。 鋼番 1 と鋼番 2に対しては、 条件 Aを、 また、 鋼番 3 と鋼番 4に 対しては、 条件 Bを、 鋼番 5と鋼番 6 に対じては、 条件 Aを、 更に 鋼番 7 と鋼番 8、 鋼番 9 と鋼番 10、 鋼番 1 1と鋼番 12、 鋼番 13と鋼番 14に対しては、 条件 Bを適用するようにすることで、 同一製造条件 下で化学組成の影響を比較できるようにしている。 In Table 2, as Condition A, the heating temperature is 1250 ° C, the finish rolling completion temperature is 845 ° C, the cooling rate after finish rolling is 75 ° C / sec, the winding temperature is 450 ° C, As condition B, the heating temperature is 1200 ° C, the finish rolling completion temperature is 825, the cooling rate after finish rolling is 45 Zsec, and the winding temperature is 450. For Steel No. 1 and Steel No. 2, Condition A, for Steel No. 3 and Steel No. 4, Condition B, for Steel No. 5 and Steel No. 6, Condition A Furthermore, by applying condition B to steel number 7 and steel number 8, steel number 9 and steel number 10, steel number 1 1 and steel number 12, steel number 13 and steel number 14, The effect of chemical composition can be compared under the same manufacturing conditions.
このようにして得られた鋼板の基本特性として、 強度、 延性、 伸 びフランジ性、 疲労限度比を調べた。  The basic properties of the steel sheet thus obtained were examined for strength, ductility, stretch flangeability, and fatigue limit ratio.
また、 鋼板中の延伸介在物の存在状態として、 すべて 1 m以上 の介在物を対象として、 延伸割合 5以上の介在物については個数割 合、 体積個数密度、 平均円相当直径を調べた。  In addition, as for the presence of stretched inclusions in the steel sheet, all inclusions of 1 m or more were examined, and for inclusions with a draw ratio of 5 or more, the number ratio, volume number density, and average equivalent circle diameter were examined.
さらに、 鋼板中の延伸していない介在物の存在状態として、 すべ て 1 m以上の介在物を対象として、 Ceもしくは Laの 1種または 2 種からなる酸化物またはォキシサルフアイ ドに MnSが析出した介在 物の個数割合および体積個数密度と、 延伸割合 3以下の介在物中に おける Ceもしくは Laの 1種または 2種の合計の含有量の平均値を調 ベた。  Furthermore, as for the presence of unstretched inclusions in the steel sheet, all inclusions with a length of 1 m or more were used, and inclusions in which MnS precipitated on oxides or oxysulfides of one or two types of Ce or La The average value of the total content of one kind or two kinds of Ce or La in inclusions having an object number ratio and volume number density and an elongation ratio of 3 or less was examined.
なお、 1 /x m以上の介在物を対象としたのは、 観察が容易である ことに加えて、 1 β m未満の介在物は伸びフランジ性ゃ疲労特性の 劣化に影響しないためである。  The inclusions of 1 / xm or more are targeted because they are easy to observe, and inclusions of less than 1βm do not affect the fatigue characteristics of stretch flangeability.
その結果を鋼と圧延条件の組み合わせ毎に表 3に示す。 The results are shown in Table 3 for each combination of steel and rolling conditions.
表 3 Table 3
Figure imgf000030_0001
Figure imgf000030_0001
強度と圧延は、 圧延方向と平行に採取した JIS 5号試験片の引張 試験により求めた。 伸びフランジ性は、 150mmX 150MIの鋼板の中央 に開けた直径 lOmmの打ち抜き穴を 60° の円錐パンチで押し広げ、 板 厚貫通亀裂が生じた時点での穴径 D (mm) を測定し、 穴拡げ値 λ = (D— 10) Z10で求めた λで評価した。 また、 疲労特性を表す指標 として用いた疲労限度比は、 JIS Ζ 2275に準拠した方法で求めた 2 X106回時間強さ ( o W) を鋼板の強度 ( σ Β) で除した値 ( o W / σ B) で評価した。 Strength and rolling were obtained by a tensile test of JIS No. 5 specimens taken in parallel with the rolling direction. Stretch flangeability is measured by measuring the hole diameter D (mm) when a through-thickness crack is generated by pushing a lOmm diameter punched hole in the center of a 150mm x 150MI steel plate with a 60 ° conical punch. Expansion value λ = (D− 10) Evaluation was performed using λ obtained from Z10. The fatigue limit ratio used as an indicator of fatigue characteristics is the value obtained by dividing the 2 × 10 6 time strength (o W) obtained by the method based on JIS Ζ 2275 by the strength of the steel sheet (σ Β) (o W / σ B).
なお、 試験片は同規格に規定の 1号試験片であり、 平行部が 25mm 、 曲率半径 Rが 100mm、 原板 (熱延板) の両面を等しく研削した厚 さ 3. Ommのものを用いた。  The test piece is a No. 1 test piece specified in the same standard, with a parallel part of 25 mm, a radius of curvature R of 100 mm, and a thickness of 3. Omm with both sides of the original plate (hot rolled plate) ground equally. .
さらに、 介在物は SEM観察を行 、 ランダムに選んだ円相当直径 1 m以上の介在物 50個について長径と短径を測定した。 さらに、 SEMの定量分析機能を用いて、 ランダムに選んだ円相当直径 1 m 以上の介在物 50個について組成分析を実施した。 それらの結果を用 いて、 延伸割合 5以上の介在物の個数割合、 延伸割合 5以上の介在 物の平均円相当直径、 Ceもしくは Laの 1種または 2種からなる酸化 物またはォキシサルフアイ ドに MnSが析出した介在物の個数割合、 さらに延伸割合 3以下の介在物中における Ceもしくは Laの 1種また は 2種の合計の平均値を求めた。 また、 介在物の形態別体積個数密 度は、 スピード法により電解面の SEM評価により算出した。  Furthermore, the inclusions were subjected to SEM observation, and the major axis and minor axis were measured for 50 inclusions with a circle-equivalent diameter of 1 m or more selected at random. Furthermore, using the quantitative analysis function of SEM, composition analysis was performed on 50 inclusions with a circle-equivalent diameter of 1 m or more selected at random. Using these results, the number ratio of inclusions with a stretching ratio of 5 or more, the average equivalent circle diameter of inclusions with a stretching ratio of 5 or more, MnS in oxides or oxysulfide consisting of one or two of Ce or La The ratio of the number of inclusions deposited, and the average value of the total of one or two of Ce or La in inclusions with a stretching ratio of 3 or less were determined. The volume density of inclusions by shape was calculated by SEM evaluation of the electrolytic surface by the speed method.
表 3から明らかなように、 本発明の方法を適用した鋼番 1 , 3, 5 , 7 , 9 , 11, 13では、 Ceもしくは Laの 1種または 2種からなる 酸化物またはォキシサルフアイ ドに MnSを析出させること.により、 延伸した MnS系介在物を鋼板中で低減することができた。 即ち、 鋼 板中に Ceもしくは Laの 1種または 2種からなる酸化物またはォキシ サルフアイ ドに MnSが析出した介在物の個数割合を 10%以上、 その 介在物の体積個数密度を 1.0X 103個ノ mm3以上、 鋼板中に存在する 延伸割合 3以下の介在物中の Ceもしくは Laの' 1種または 2種の合計 の平均含有率を 0.5%〜 50%とすることにより、 円相当直径 1 m 以上で延伸割合 5以上の延伸介在物の個数割合を 20%以下、 その介 在物の体積個数密度を 1.0X 104個ノ匪3以下、 その介在物の平均円 相当直径を lO trn以下とすることができた。 その結果、 比較鋼と比 ベて、 本発明鋼としての鋼番 1, 3 , 5, 7 , 9, 11, 13では、 伸 びフランジ性と疲労特性に優れた鋼板を得ることができた。 しかし 、 比較鋼 (鋼番 2, 4, 6, 8, 10, 12, 14) では、 延伸した MnS 系介在物と Ceもしくは Laの 1種または 2種からなる酸化物またはォ キシサルフアイ ドに MnSを析出させた介在物の分布状態が本発明で 規定する分布状態と異なるため、 鋼板加工時に延伸した MnS系介在 物が割れ発生の起点となり、 伸びフランジ性と疲労特性が低下して いた。 産業上の利用可能性 As is apparent from Table 3, in steel Nos. 1, 3, 5, 7, 9, 11, and 13 to which the method of the present invention was applied, MnS was added to the oxide or oxysulfide containing one or two of Ce or La. It was possible to reduce the stretched MnS inclusions in the steel sheet. That is, the ratio of the number of inclusions in which MnS is precipitated in one or two oxides or oxysulfide of Ce or La in the steel plate is 10% or more, The volume number density of inclusions is 1.0X 10 3 mm 3 or more, and the average content of 0.5% or more of Ce or La in inclusions with an elongation ratio of 3 or less is 3 or less. -50%, the number ratio of stretch inclusions with a circle equivalent diameter of 1 m or more and a stretch ratio of 5 or more is 20% or less, and the volume number density of the inclusions is 1.0 × 10 4 pieces 3 or less, The average equivalent circle diameter of the inclusions was less than lO trn. As a result, compared with the comparative steel, steel plates 1, 3, 5, 7, 9, 11 and 13 as the steels of the present invention were able to obtain steel sheets with excellent stretch flangeability and fatigue characteristics. However, in the comparative steels (steel numbers 2, 4, 6, 8, 10, 12, 14), MnS is added to the stretched MnS inclusions and one or two oxides or oxysulfide of Ce or La. Since the distribution of the inclusions precipitated was different from the distribution specified in the present invention, the MnS inclusions that were stretched during the processing of the steel sheet were the starting points for cracking, and the stretch flangeability and fatigue characteristics were reduced. Industrial applicability
本発明の方法によれば、 铸片中に微細な MnSとして析出させ、 さ らに圧延時に変形を受けず、 割れ発生の起点となり難い微細球状介 在物として鋼板中に分散させることにより、 伸びフランジ性と疲労 特性に優れた高強度熱延鋼板を得ることができる。  According to the method of the present invention, the fine MnS precipitates in the flakes, and is not deformed during rolling and is dispersed in the steel sheet as fine spherical inclusions that are unlikely to start cracking. A high-strength hot-rolled steel sheet with excellent flangeability and fatigue characteristics can be obtained.

Claims

1. 質量%で、 1. By mass%
C : 0.03〜0.20%、  C: 0.03-0.20%,
Si: 0.08〜し 5%  Si: 0.08 ~ 5%
Mn: 1.0〜3.0%、  Mn: 1.0-3.0%,
P : 0.05%以下、 請  P: 0.05% or less
S : 0.0005 %以上、  S: 0.0005% or more,
N : 0.0005〜0.01%、  N: 0.0005-0.01%,
酸可溶 A1: 0.01%以下、  Acid soluble A1: 0.01% or less,
酸可溶 Ti: 0.008%未満、  Acid soluble Ti: less than 0.008%,
 Surrounding
Ceもしくは Laの 1種または 2種の合計 : 0.0005〜0.04%を含有し 、 残部が鉄および不可避的不純物からなる鋼板であり、 その鋼板中 に存在する円相当直径 1 m以上の介在物で、 かつ、 長径/短径が 5以上の延伸介在物の個数割合が 20%以下であることを特徴とする 伸びフランジ性と疲労特性に優れた高強度鋼板。  Ce or La 1 type or 2 types in total: 0.0005 to 0.04% contained, the balance is a steel plate made of iron and inevitable impurities, with inclusions with an equivalent circle diameter of 1 m or more present in the steel plate, A high-strength steel sheet with excellent stretch flangeability and fatigue characteristics, wherein the number ratio of elongated inclusions having a major axis / minor axis of 5 or more is 20% or less.
2. 量%で、  2. In quantity%
C 0. 03〜0.20%、  C 0.03 ~ 0.20%,
Si 0. 08〜 1.5%、  Si 0.08-1.5%,
Mn 1. 0〜3.0%、  Mn 1.0-3.0%,
P 0. 05%以下、  P 0.05% or less,
S 0. 0005 %以上、  S 0. 0005% or more,
N 0. 0005〜0.01%、  N 0. 0005-0.01%,
酸可溶 Al: 0.01%以下、 .  Acid soluble Al: 0.01% or less,.
酸'可溶 Ti: 0.008 %未満、  Acid 'soluble Ti: less than 0.008%,
Ceもしくは Laの 1種または 2種の合計 : 0.0005〜0.04%を含有し 、 残部が鉄および不可避的不純物からなる鋼板であり、 その鋼板中 には Ceもしくは Laの 1種または 2種からなる酸化物またはォキシサ ルフアイ ド上に MnSが析出した介在物を個数割合で 10%以上含むこ とを特徴とする伸びフランジ性と疲労特性に優れた高強度鋼板。 Ce or La 1 type or 2 types in total: 0.0005 to 0.04% containing, the balance is a steel plate made of iron and inevitable impurities, in the steel plate Is excellent in stretch flangeability and fatigue characteristics, characterized by containing 10% or more of inclusions with MnS precipitated on one or two kinds of oxides of Ce or La or oxysulfide High strength steel plate.
3. 質量%で、  3. By mass%
C : 0.03〜0.20%、  C: 0.03-0.20%,
Si: 0.08〜 1.5%、  Si: 0.08 to 1.5%,
Mn: 1.0〜3.0%、  Mn: 1.0-3.0%,
P : 0.05%以下、  P: 0.05% or less,
S : 0.0005 %以上、  S: 0.0005% or more,
N : 0.0005〜0.01%、  N: 0.0005-0.01%,
酸可溶 A1: 0.01%以下、  Acid soluble A1: 0.01% or less,
酸可溶 Ti: 0.008%未満、  Acid soluble Ti: less than 0.008%,
Ceもしくは Laの 1種または 2種の合計 : 0.0005〜 0.04%を含有し 、 残部が鉄および不可避的不純物からなる鋼板であり、 その鋼板中 に存在する円相当直径 1 m以上の介在物で、 かつ、 長径 Z短径が 5以上の延伸介在物の体積個数密度が 1.0X104個ノ mm3以下である ことを特徴とする伸びフランジ性と疲労特性に優れた高強度鋼板。 Ce or La 1 type or 2 types in total: 0.0005-0.04% containing, the balance is a steel plate made of iron and inevitable impurities, with inclusions with an equivalent circle diameter of 1 m or more present in the steel plate, A high-strength steel sheet with excellent stretch flangeability and fatigue properties, characterized in that the volume number density of stretched inclusions having a major axis Z minor axis of 5 or more is 1.0 × 10 4 kn mm 3 or less.
4. 質量%で、  4. Mass%
C : 0.03〜0.20%、  C: 0.03-0.20%,
Si: 0.08〜1.5%、  Si: 0.08 to 1.5%
Mn: 1.0〜3.0%、  Mn: 1.0-3.0%,
P : 0.05%以下、  P: 0.05% or less,
5 : 0.0005 %以上、  5: 0.0005% or more,
N : 0.0005〜0.01%、 .  N: 0.0005 to 0.01%,.
酸'可溶 A1: 0.01%以下、  Acid 'soluble A1: 0.01% or less,
酸可溶 Ti: 0.008 %未満、  Acid soluble Ti: less than 0.008%,
Ceもしくは Laの 1種または 2種の合計 : 0.0005〜0.04%を含有し 、 残部が鉄および不可避的不純物からなる鋼板であり、 その鋼板中 には Ceもしくは Laの 1種または 2種からなる'酸化物またはォキシサ ルフアイ ド上に MnSが析出した介在物の体積個数密度が 1. OX 103個 /蘭3以上であることを特徴とする伸びフランジ性と疲労特性に優 れた高強度鋼板。 Total of one or two of Ce or La: Contains 0.0005-0.04% The balance is a steel plate made of iron and unavoidable impurities, and the volume number density of inclusions in which MnS is deposited on the oxide or oxysulfide consisting of one or two of Ce or La is contained in the steel plate. 1. OX 10 3 cells / Ran 3 or more in high-strength steel sheets were excellent in stretch flange formability and fatigue properties, characterized in that.
5. 質量%で、 .  5. By mass%,
C : 0.03〜0.20%、  C: 0.03-0.20%,
Si : 0.08〜 1.5% >  Si: 0.08 to 1.5%>
Mn: 1.0〜3.0%、  Mn: 1.0-3.0%,
P : 0.05%以下、  P: 0.05% or less,
5 : 0.0005 %以上、  5: 0.0005% or more,
N : 0.0005〜0.01%、  N: 0.0005-0.01%,
酸可溶 A1 : 0.01%以下、  Acid-soluble A1: 0.01% or less,
酸可溶 Ti : 0.008 %未満、  Acid soluble Ti: less than 0.008%,
Ceもしくは Laの 1種または 2種の合計 : 0.0005〜0.04%を含有し 、 残部が鉄および不可避的不純物からなる鋼板であり、 その鋼板中 に存在する円相当直径 1 m以上の介在物で、 かつ、 長径/短径 5 以上の延伸介在物の平均円相当'直径が 10' m以下であることを特徴 とする伸びフランジ性と疲労特性に優れた高強度鋼板。  Ce or La 1 type or 2 types in total: 0.0005 to 0.04% contained, the balance is a steel plate made of iron and inevitable impurities. A high-strength steel sheet excellent in stretch flangeability and fatigue characteristics, characterized in that the average equivalent circle diameter of elongated inclusions having a major axis / minor axis of 5 or more is 10 'm or less.
6. 質量%で、  6. By mass%
C : 0.03〜0.20%、  C: 0.03-0.20%,
Si : 0.08〜 1.5%、  Si: 0.08 to 1.5%,
Mn: 1.0〜3.0%、  Mn: 1.0-3.0%,
P : 0.05%以下、  P: 0.05% or less,
S ': 0.0005 %以上、  S ': 0.0005% or more,
N : 0.0005〜0.01%、  N: 0.0005-0.01%,
酸可溶 A1 : 0.01%以下、 酸可溶 Ti : 0.008 %未満、 Acid-soluble A1: 0.01% or less, Acid soluble Ti: less than 0.008%,
Ceもしくは Laの 1種または 2.種の合計 : 0.0005〜0.04%を含有し 、 残部が鉄および不可避的不純物からなる鋼板であり、 その鋼板中 には Ceもしくは Laの 1種または 2種からなる酸化物またはォキシサ ルフアイ ド上に MnSが析出した介在物が存在し、 該介在物中に平均 組成で Ceもしくは Laの 1種または 2種の合計を 0.5〜50質量%含有 することを特徴とする伸びフランジ性と疲労特性に優れた高強度鋼 板。  Ce or La 1 type or 2. Total of species: 0.0005-0.04% containing, the balance is a steel plate made of iron and inevitable impurities, and the steel plate consists of 1 or 2 types of Ce or La Inclusions in which MnS is precipitated are present on oxide or oxysulfide, and the inclusions contain an average composition of one or two of Ce or La in an amount of 0.5 to 50% by mass. High-strength steel plate with excellent stretch flangeability and fatigue characteristics.
7. 質量%で、  7. By mass%
C : 0.03〜0.20%、  C: 0.03-0.20%,
Si : 0.08〜1· 5%、  Si: 0.08 to 1.5%,
Μη: 1.0〜3.0%、  Μη: 1.0-3.0%,
Ρ : 0.05%以下、  :: 0.05% or less,
S : 0.0005 %以上、  S: 0.0005% or more,
Ν : 0.0005〜0.01%、  Ν: 0.0005-0.01%,
酸可溶 A1 : 0.01%以下、  Acid-soluble A1: 0.01% or less,
酸可溶 Ti : 0.008%未満、  Acid soluble Ti: less than 0.008%,
Ceもしくは Laの 1種または 2種の合計 : 0.0005〜0.04%を含有し 、 残部が鉄および不可避的不純物からなる鋼板であり、 (Ce + La) / S比が 0.ト 70であることを特徴とする伸びフランジ性と疲労特 性に優れた高強度鋼板。  Ce or La 1 type or 2 types in total: 0.0005-0.04% containing, the balance is iron and inevitable impurities steel plate, (Ce + La) / S ratio is 0.0 to 70 A high-strength steel sheet with excellent stretch flangeability and fatigue characteristics.
8. 質量%で、  8. By mass%
Nb: 0.01〜0· 10%、  Nb: 0.01 ~ 0 · 10%,
V : 0.0ト 0.05%、 .  V: 0.0 to 0.05%,.
Cr: 0.01〜0.6%、  Cr: 0.01-0.6%
Mo: 0.01〜0.4%、  Mo: 0.01-0.4%
B : 0.0003〜0.03% のいずれか一つまたは二つ以上を含有し、 残部が鉄および不可避 的不純物からなる鋼板であることを特徴とする、 請求項 1 ~ 7 のい ずれかに記載の伸びフランジ性と疲労特性に優れた高強度鋼板。 B: 0.0003-0.03% The stretch flangeability and fatigue characteristics according to any one of claims 1 to 7, characterized in that it is a steel plate containing any one or more of the following, with the balance being iron and inevitable impurities. Excellent high strength steel plate.
PCT/JP2007/054614 2006-07-14 2007-03-02 High-strength steel sheet excellent in stretch flangeability and fatigue property WO2008007477A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2657587A CA2657587C (en) 2006-07-14 2007-03-02 High strength steel plate superior in stretch flange formability and fatigue characteristics
EP07738099.6A EP2048254B1 (en) 2006-07-14 2007-03-02 High strength steel plate superior in stretch flange formability and fatigue characteristics
AU2007273767A AU2007273767B2 (en) 2006-07-14 2007-03-02 High-strength steel sheet excellent in stretch flangeability and fatigue property
US12/373,570 US20090317285A1 (en) 2006-07-14 2007-03-02 High strength steel plate superior in stretch flange formability and fatigue characteristics
CN2007800268244A CN101490295B (en) 2006-07-14 2007-03-02 High-strength steel sheet excellent in stretch flangeability and fatigue property

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-193893 2006-07-14
JP2006193893A JP4901346B2 (en) 2005-11-07 2006-07-14 High-strength steel sheet with excellent stretch flangeability and fatigue characteristics

Publications (1)

Publication Number Publication Date
WO2008007477A1 true WO2008007477A1 (en) 2008-01-17

Family

ID=38923047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054614 WO2008007477A1 (en) 2006-07-14 2007-03-02 High-strength steel sheet excellent in stretch flangeability and fatigue property

Country Status (8)

Country Link
US (1) US20090317285A1 (en)
EP (1) EP2048254B1 (en)
KR (1) KR20090018167A (en)
CN (1) CN101490295B (en)
AU (1) AU2007273767B2 (en)
CA (1) CA2657587C (en)
TW (1) TWI424069B (en)
WO (1) WO2008007477A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149839A (en) * 2009-03-27 2011-08-10 新日本制铁株式会社 Carbon steel sheet having excellent carburization properties, and method for producing same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4431185B2 (en) 2008-06-13 2010-03-10 新日本製鐵株式会社 High-strength steel sheet with excellent stretch flangeability and fatigue characteristics and method for producing the molten steel
JP5093422B2 (en) * 2010-05-10 2012-12-12 新日本製鐵株式会社 High strength steel plate and manufacturing method thereof
JP5765080B2 (en) * 2010-06-25 2015-08-19 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
KR101518654B1 (en) 2011-02-24 2015-05-07 신닛테츠스미킨 카부시키카이샤 High-strength steel sheet exhibiting superior stretch-flange formability and bendability, and method of preparing ingot steel
RU2556253C1 (en) * 2011-07-29 2015-07-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн High strength steel plate and high strength galvanised steel plate with good formability and methods of their manufacturing
WO2017050790A1 (en) * 2015-09-22 2017-03-30 Tata Steel Ijmuiden B.V. A hot-rolled high-strength roll-formable steel sheet with excellent stretch-flange formability and a method of producing said steel
CN107400824A (en) * 2016-05-18 2017-11-28 鞍钢股份有限公司 A kind of high-strength vehicle wheel-use steel material having excellent stretch flangeability and its production method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199973A (en) 1998-01-19 1999-07-27 Nippon Steel Corp High strength cold rolled steel sheet with composite structure excellent in fatigue characteristic and its production
JP2001200331A (en) 2000-01-17 2001-07-24 Nkk Corp High strength hot rolled steel sheet excellent in workability and fatigue characteristic and producing method therefor
JP2003171734A (en) * 2001-12-07 2003-06-20 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch-flanging property and fatigue property, and production method therefor
JP2004256906A (en) * 2003-02-28 2004-09-16 Nippon Steel Corp High strength steel sheet with excellent stretch-flange formability and its manufacturing method
JP2004315902A (en) * 2003-04-16 2004-11-11 Nippon Steel Corp High strength hot rolled steel sheet excellent in fatigue property of blanking edge face and stretch-flanging property, and its production method
JP2005256115A (en) * 2004-03-12 2005-09-22 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch flange formability and fatigue property
JP2005307301A (en) * 2004-04-23 2005-11-04 Nippon Steel Corp High-strength steel sheet having excellent stretch flange property
JP2006070302A (en) * 2004-08-31 2006-03-16 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch flange formability and fatigue property

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2287519A1 (en) * 1974-10-07 1976-05-07 Kobe Steel Ltd Weldable structural steel - which is resistant to embrittlement in the heat affected zone
JP4430284B2 (en) * 2002-07-23 2010-03-10 新日本製鐵株式会社 Steel material with few alumina clusters
JP4862266B2 (en) * 2004-03-25 2012-01-25 Jfeスチール株式会社 Manufacturing method of thick-walled low yield ratio high-tensile steel sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199973A (en) 1998-01-19 1999-07-27 Nippon Steel Corp High strength cold rolled steel sheet with composite structure excellent in fatigue characteristic and its production
JP2001200331A (en) 2000-01-17 2001-07-24 Nkk Corp High strength hot rolled steel sheet excellent in workability and fatigue characteristic and producing method therefor
JP2003171734A (en) * 2001-12-07 2003-06-20 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch-flanging property and fatigue property, and production method therefor
JP2004256906A (en) * 2003-02-28 2004-09-16 Nippon Steel Corp High strength steel sheet with excellent stretch-flange formability and its manufacturing method
JP2004315902A (en) * 2003-04-16 2004-11-11 Nippon Steel Corp High strength hot rolled steel sheet excellent in fatigue property of blanking edge face and stretch-flanging property, and its production method
JP2005256115A (en) * 2004-03-12 2005-09-22 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch flange formability and fatigue property
JP2005307301A (en) * 2004-04-23 2005-11-04 Nippon Steel Corp High-strength steel sheet having excellent stretch flange property
JP2006070302A (en) * 2004-08-31 2006-03-16 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch flange formability and fatigue property

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149839A (en) * 2009-03-27 2011-08-10 新日本制铁株式会社 Carbon steel sheet having excellent carburization properties, and method for producing same

Also Published As

Publication number Publication date
TWI424069B (en) 2014-01-21
CA2657587A1 (en) 2008-01-17
EP2048254B1 (en) 2020-08-19
CN101490295A (en) 2009-07-22
TW200804607A (en) 2008-01-16
AU2007273767A1 (en) 2008-01-17
CA2657587C (en) 2013-11-26
CN101490295B (en) 2012-09-19
KR20090018167A (en) 2009-02-19
AU2007273767B2 (en) 2010-08-12
EP2048254A1 (en) 2009-04-15
US20090317285A1 (en) 2009-12-24
EP2048254A4 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5093422B2 (en) High strength steel plate and manufacturing method thereof
KR101424859B1 (en) High-strength steel sheet and manufacturing method therefor
JP3889768B2 (en) High-strength cold-rolled steel sheets and automotive steel parts with excellent coating film adhesion and ductility
JP4431185B2 (en) High-strength steel sheet with excellent stretch flangeability and fatigue characteristics and method for producing the molten steel
JP6293997B2 (en) High-strength steel sheet with excellent stretch flangeability and bending workability, and method for producing molten steel for the steel sheet
WO2017115748A1 (en) High-strength steel sheet, high-strength galvanized steel sheet, and method for manufacturing same
JP5053186B2 (en) High-strength steel sheet with excellent stretch flangeability and fatigue characteristics and method for producing the molten steel
WO2008007477A1 (en) High-strength steel sheet excellent in stretch flangeability and fatigue property
TW201619410A (en) A hot-rolled steel sheet
JP5696359B2 (en) High-strength steel sheet and method for melting the molten steel
JP5158271B2 (en) High-strength steel sheet with excellent stretch flangeability and bending workability and method for producing the molten steel
JP4901346B2 (en) High-strength steel sheet with excellent stretch flangeability and fatigue characteristics
JP5205795B2 (en) High-strength steel sheet with excellent stretch flangeability and fatigue characteristics and method for producing the molten steel
JP7192819B2 (en) High-strength steel plate and its manufacturing method
JP5058892B2 (en) DP steel sheet with excellent stretch flangeability and method for producing the same
JP5157235B2 (en) High-strength steel sheet with excellent stretch flangeability and fatigue characteristics and method for producing the molten steel
JP3887159B2 (en) Highly ductile hot-rolled steel sheet excellent in low cycle fatigue strength and method for producing the same
KR20240028459A (en) hot rolled steel plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780026824.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738099

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087031704

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2657587

Country of ref document: CA

Ref document number: 12373570

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007738099

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007273767

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: RU

ENP Entry into the national phase

Ref document number: 2007273767

Country of ref document: AU

Date of ref document: 20070302

Kind code of ref document: A