JP2004315902A - High strength hot rolled steel sheet excellent in fatigue property of blanking edge face and stretch-flanging property, and its production method - Google Patents

High strength hot rolled steel sheet excellent in fatigue property of blanking edge face and stretch-flanging property, and its production method Download PDF

Info

Publication number
JP2004315902A
JP2004315902A JP2003112080A JP2003112080A JP2004315902A JP 2004315902 A JP2004315902 A JP 2004315902A JP 2003112080 A JP2003112080 A JP 2003112080A JP 2003112080 A JP2003112080 A JP 2003112080A JP 2004315902 A JP2004315902 A JP 2004315902A
Authority
JP
Japan
Prior art keywords
steel sheet
rolled steel
fatigue
strength hot
stretch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003112080A
Other languages
Japanese (ja)
Other versions
JP4105974B2 (en
Inventor
Hiroyuki Tanahashi
浩之 棚橋
Katsuhiro Sasai
勝浩 笹井
Manabu Takahashi
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003112080A priority Critical patent/JP4105974B2/en
Publication of JP2004315902A publication Critical patent/JP2004315902A/en
Application granted granted Critical
Publication of JP4105974B2 publication Critical patent/JP4105974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength hot rolled steel sheet which is excellent in the fatigue properties of blanking edge faces and stretch-flanging properties. <P>SOLUTION: The high strength hot rolled steel sheet excellent in the fatigue properties of blanking edge faces and stretch-flanging properties has a composition comprising, by mass, 0.03 to 0.10% C, 0.05 to 1.5% Si, 1.0 to 2.2% Mn, ≤0.05% P, ≤0.01% S, 0.001 to 0.006% N, 0.06 to 0.24% Ti, 0.002 to 0.009% Ce and 0.001 to 0.006% O, and the balance Fe with inevitable impurities, and in which the concentration product of Ce and O also satisfies the inequality (1) of [Ce][O]≤3.8×10<SP>-9</SP>, and a bainitic ferrite phase is the structure with the maximum area ratio. If required, Cu, Ni, Nb, Mo and V can further be incorporated therein. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、打ち抜き端面の疲労特性と伸びフランジ性に優れた高強度熱延鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
自動車用のフレーム類やアーム類など、いわゆる足周り部品やホイールには熱延鋼板が広く用いられている。これらの部品には走行中の振動に対する耐久性の観点から高い疲労強度が要求されるため、鋼材の高強度化による板厚の低減を通しての軽量化は必ずしも容易ではない。しかし、こうしたいわゆる母材疲労特性の向上要求に対してはいくつかの鋼板が提案されている。例えば、特開平11−199973号公報(特許文献1)にはフェライトとマルテンサイトの複合組織鋼板中に微細なCuの析出物および/または固溶体を分散させた鋼板が提案されている。
【0003】
一方、この分野に用いられる鋼板に求められる疲労特性は母材疲労特性のみではなく、打ち抜き端面に発生する疲労破壊に対する耐性も求められるようになって来た。この性質を本書面では打ち抜き端面疲労特性と称することとするが、これは、従来、打ち抜き加工後に行われていた端面の仕上げ加工などが製造費用抑制のために省略されるようになって来た結果問題として顕在化したものである。
打ち抜き加工したままの端面に一般に見られる「バリ」や「微小割れ」は疲労破壊の起点になることが広く知られており、それらの存在によって部品の疲労寿命が母材の疲労特性から予想されるものよりも低下し、その低下しろは鋼板の強度が高ければ高いほど大きいことも良く知られた事実である。従って、打ち抜き端面に発生する疲労破壊を抑制するには、やはり「バリ」や「微小割れ」を除去することが最も確実な方法であるが、鋼板側からこうした問題の解決に取り組んだ例が最近報告されるようになって来た。
【0004】
特開平9−202940号公報(特許文献2)には、構成元素のうち、Mn、Ti、Nb、およびCrを所定の重み付けで合計した濃度を所定の範囲内にすることを主たる要件とすることによって切り欠き疲労特性に優れた鋼板を得る方法が開示されている。また、特開2001−40450号公報(特許文献3)には、マルテンサイトの体積率を3%以上、パーライトの体積率を5%以下にすることを主たる要件とすることによってせん断端面の疲労特性に優れた鋼板を得る方法が示されている。
【0005】
【引用文献】
(1)特許文献1(特開平11−199973号公報)
(2)特許文献2(特開平9−202940号公報)
(3)特許文献3(特開2001−40450号公報)
(4)特許文献4(特開平6−172924号公報)
(5)非特許文献1{「鋼のベイナイト写真集−1」(平成4年6月29日、(社)日本鉄鋼協会発行、21頁・Fig.2.9−d)}
【0006】
【発明が解決しようとする課題】
この分野に用いられる鋼板に求められる特性には、母材疲労特性および打ち抜き端面疲労特性に加えて加工性、中でも穴広げ試験値(λ)などで代表される伸びフランジ性がある。高強度鋼板において伸びフランジ性を向上させるには、介在物の微細化、球状化のほかに鉄炭化物(セメンタイト)などの硬質相の生成抑制が常套手段であるとされている。特に後者はベイニティック・フェライトを主たる構成組織とすることで達成出来ることが特開平6−172924号公報(特許文献4)などに述べられている。
【0007】
これに対して、特許文献2で開示されている技術ではセメンタイト含有相であるパーライトやMnSの生成抑制、Ca添加によるMnSの球状化への言及はなされているものの、鋼板を構成する組織はフェライトを主とし、これに少量のベイナイトとマルテンサイトを含有させたものであり、確かに高い切り欠き疲労特性は得られるものの優れた伸びフランジ性を得る手段としては必ずしも十分とは言えない。
【0008】
また、特許文献3に述べられている技術では、鋼板を構成する相についての具体的な記載はないものも、マルテンサイトやパーライトを含むものであることから、優れたせん断端面の疲労特性を得るために伸びフランジ性を犠牲にしていることが推定される。このように、打ち抜き端面の疲労特性を向上させ、かつ、高い伸びフランジ性を得る上で有利なベイニティック・フェライトを主たる組織とする鋼板について提案した例は見当たらない。
本発明はこうした状況に鑑み、伸びフランジ性に優れたベイニティック・フェライトを主たる組織とし、かつ打ち抜き端面の疲労特性に優れた鋼板を得ることを目的になされたものである。
【0009】
【課題を解決するための手段】
本発明者らは各種鋼板の打ち抜き疲労試験を行って破壊に至る過程を観察した。まず、疲労亀裂の発生位置について整理した。その結果、鋼板を構成する相に依らず、打ち抜き加工時のクリアランスが大きい場合(例えば25%以上)には亀裂はバリ部分から発生するが、クリアランスが小さい場合や、バリをつぶす加工、いわゆるコイニングが施された場合には亀裂がバリ部分から発生する頻度は大幅に減少し、代わって打ち抜き断面の内部から発生するようになることがわかった。疲労試験途中や終了後に亀裂およびその近傍を、電子顕微鏡を用いて観察したところ、パーライトやマルテンサイトを含む鋼板の場合にはそれらの硬質相の近傍が亀裂の発生位置であることが推定されることがほとんどであったが、ベイニティック・フェライトを主相とする鋼板の場合には、そもそも均一組織であることもあってパーライトやマルテンサイトを含む鋼板の場合に用いたような表現での発生場所の特定は出来なかった。
【0010】
それに代わってベイニティック・フェライトを主相とする鋼板の場合には、亀裂発生位置が酸化物や窒化物の存在場所と関わっていることを推測させる観察結果が多く得られた。具体的には表面近傍ではアルミナ系の酸化物であり、鋼板内部になると窒化チタンが関与していると思われる場合が多かった。
こうした観察に基づいて検討した結果、アルミナ系酸化物や窒化チタンを出来るだけ削減した上でベイニティック・フェライトを主相とする組織を有する鋼板とすれば目的が達成出来るものと考えて研究を進め、本発明を完成させた。
【0011】
その要旨は以下の通りである。すなわち、
(1)質量%にて、C:0.03〜0.10%、Si:0.05〜1.5%、Mn:1.0〜2.2%、P:0.05%以下、S:0.01%以下、N:0.001〜0.006%、Ti:0.06〜0.24%、Ce:0.002〜0.009%、O:0.001〜0.006%を含有し、残部がFeおよび不可避不純物からなり、かつCeとOの濃度積が式(1)を満たし、ベイニティック・フェライト相を面積率最大の組織とすることを特徴とする打ち抜き端面の疲労特性と伸びフランジ性に優れた高強度熱延鋼板。
[Ce][O]≦3.8×10−9 … (1)
【0012】
(2)更に質量%で、Cu:0.6〜2.0%、Ni:0.3〜1.0%を含有することを特徴とする前記(1)記載の打ち抜き端面の疲労特性と伸びフランジ性に優れた高強度熱延鋼板。
(3)更に質量%で、Nb:0.1〜0.6%、Mo:0.05〜0.3%、V:0.025〜0.15%のうちの1種以上を含有することを特徴とする前記(1)または(2)記載の打ち抜き端面の疲労特性と伸びフランジ性に優れた高強度熱延鋼板。
【0013】
(4)前記(1)〜(3)の何れか1項に記載の鋼板を製造する方法であって、前記(1)〜(3)の何れか1項に記載の化学成分を有する鋼材を1150〜1250℃に加熱して粗圧延した後、Ar点〜Ar点+100℃で仕上圧延を完了し、更に20℃/秒以上の平均冷却速度で450〜550℃まで冷却し、450〜550℃で巻き取ることを特徴とする打ち抜き端面の疲労特性と伸びフランジ性に優れた高強度熱延鋼板の製造方法である。
【0014】
【発明の実施の形態】
本発明者らは、まずアルミナ系酸化物の抑制方法について検討した。
鋼の脱酸はフェロシリコンやアルミニウムを用いてなされることが一般的であり、中でも効率やコストの点で優れるアルミニウムがより汎用的である。アルミニウム脱酸の結果生成したアルミナ系の酸化物は、凝集しやすく粗大な介在物として鋼中に残留する。これが先に述べたような表面近傍での疲労亀裂の起点となっていると思われる。
【0015】
そこで、▲1▼アルミニウム以外の元素による脱酸、▲2▼代替する元素の酸化物はアルミナ系酸化物のように凝集して粗大化しないこと、の2点を基本条件として幾つかの元素について実験した。その際、▲3▼Tiなど鋼中Cを炭化物として固定することを目的とする元素の歩留りを大きく悪化させない酸素濃度の上限の解明、を進めるとともに、▲4▼鋼板内部で疲労亀裂の開始点に影響を及ぼす窒化チタンの微細化にも効果を有する元素であること、も同時に考慮すべき事柄として研究を行った。
【0016】
その結果、Ceを利用する方法が最も優れており、その適切な濃度範囲をOの濃度範囲とともに満足すれば、λに加え、打ち抜き端面疲労にも優れた鋼板が得られることを見出した。なお、窒化チタンも皆無に出来れば最も理想的であるが、後述するように、Tiは炭化物の形成を通じてCを固定しセメンタイトの生成を抑制する上で必須の元素であり、また、Nの削減は製鋼技術の制約で限界があることから微細化を次善の目標とすることとしたものである。また、Ceは比較的容易に溶鋼中に歩留らせることが出来ることも選択した理由のひとつである。
【0017】
以下に、本発明の限定理由を述べる。まず、化学成分の限定理由について述べる。成分の表記は全て質量%である。
Cは、鋼板の強度を確保するために必須の元素であり、高強度鋼板を得るためには少なくとも0.03%が必要である。しかし、過剰に含まれると、Tiなどによる炭化物生成や、冷却条件を駆使しても、伸びフランジ性に好ましくないセメンタイト相の生成が避けられなくなるので0.10%以下とする。
【0018】
Siは、伸びフランジ性を劣化させることなく強度を確保するのに有効な元素であり、少なくとも0.05%が必要であるが、過剰に含まれるとスケールキズの原因となったり化成処理などの表面処理性を劣化させたりするのでその上限は1.5%とする。
Mnは、C、Siとともに鋼板の高強度化に有効な元素であり、1.0%以上は含有させる必要があるが、2.2%を越えて含有させると溶接性に悪影響を及ぼすようになるため上限を2.2%とする。
【0019】
Pは、固溶強化元素として有効であるが、偏析による加工性の劣化が懸念されるので0.05%以下にする必要がある。
Sは、MnSなどの介在物を形成して伸びフランジ性を劣化させる他、Cを炭化物とする目的で含有させるTiと結合してその歩留りを低下させるなどの有害な作用をする。従って出来るだけ抑制すべきであるが0.01%以下であれば許容される。
【0020】
Nは、窒化チタンを形成し、打ち抜き端面の疲労特性を劣化させる。そのため出来るだけ低くすることが好ましく、0.006%以下、望ましくは0.004%以下とすることが必要である。一方、低くしようとするほど製造コストの上昇を招くので0.001%を下限値とすれば十分である。
Tiは、Cと炭化物を形成してセメンタイトの生成を抑制しλの向上に寄与する。一方、必要以上に添加された場合には、固溶状態で鋼中に存在し、再結晶温度を上昇させ熱間加工組織が残存し易くなり延性を損ねる。前者の効果は0.06%以上で発現され、また、後者は0.24%以下であれば回避できるので0.06〜0.24%に制限する必要がある。
【0021】
CeとOは、結合して鋼の清浄度を高める効果を持ち(脱酸剤として機能する)、生成した酸化物の一部は溶湯中でアルミナ系の介在物のように凝集粗大化しにくい性質を有するので鋼板中に存在しても疲労亀裂の起点になったり、伸びフランジ性に悪影響を及ぼしたりしない。また、微細に分散するので、それを核として形成される窒化チタンを微細化する効果もあり、このことで、打ち抜き端面の疲労特性を向上させる効果を有するものと思われる。このような効果は、Ce濃度が0.002%以上で発現するのでこの濃度を下限とする。一方、0.009%を越えて添加すると存在形態が微細分散から凝集へと変化し、λを劣化させるような粗大な介在物を形成するようになるので0.009%を上限とする。
【0022】
Oは、上記のCe(酸化物)の働きを発現させるために0.001〜0.006%にする必要がある。0.001%未満では、恐らく、窒化チタンの形成核数が不足するため窒化チタンの微細化が十分に達成出来ないからであり、一方、0.006%超では清浄度の低下に起因する打ち抜き端面疲労特性の劣化が避けられないからである。
CeとOは、上記の濃度限定に加えて、次式で示される濃度積の条件を満たす必要がある。すなわち、[Ce][O]≦3.8×10−9、である。この条件式は実施例として後述する実験結果に基づいて決定したものである。
【0023】
Cuは、固溶強化元素または析出強化元素として鋼板の高強度化に利用できる。また、その添加によって母材の疲労強度を向上させることができる。しかし、0.6%以上を添加しないとその効果はなく、一方、2.0%を越えて含有させてもその効果は飽和するばかりか、熱延後の鋼板表面性状を悪化させるので2.0%を上限とする。
Niは、上記Cuによる熱延表面性状悪化を緩和する効果があり、Cuの半分程度を目安に添加することが望ましい。従って、その下限は0.3%である。一方、1.0%を超えて添加してもその効果は飽和し、コストの上昇につながるだけなので、1.0%を上限とする。
【0024】
Nb、MoおよびVは、Tiと同様にCと結合することによってセメンタイトの生成を抑制しλの向上に寄与する。その効果はそれぞれ、0.1%、0.05%および0.025%以上で発現し、それぞれ0.6%、0.3%および0.15%で飽和するので、その範囲内で1種以上を用いることが出来る。
なお、本発明において上記以外の成分はFeとなるが、スクラップなどの溶解原料や他の鋼板と共用する製造設備から混入する不可避的不純物は許容される。
Alは、脱酸剤としては使用しないことが最も望ましいが、0.003%までであれば特性に影響を及ぼさないので予備脱酸剤としての使用もこの範囲で許容される。
【0025】
次に加熱、圧延、冷却および巻取りの各条件について述べる。
加熱温度は鋼中のTiCやNbCなどを一旦固溶させるため1150℃以上とすることが必要である。これらを固溶させておくことにより、圧延後の冷却過程でポリゴナルなフェライトの生成が抑制され、λの向上にとって好ましいベイニティック・フェライト相を主体とする組織が得られる。
一方、加熱温度が1250℃を超えるとスラブ表面の酸化が著しくなり、特に、粒界が選択的に酸化されたことに起因すると思われる楔状の表面欠陥がデスケーリング後に残り、それが圧延後の表面品位を損ねるので上限を1250℃とする。
【0026】
仕上圧延完了温度は鋼板の組織制御上重要である。Ar点未満では未変態組織が残存して鋼板の延性が劣化するので好ましくない。一方、Ar点+100℃超では伸びフランジ性にとって好ましくないポリゴナル・フェライト相が生成し易くなるので、上限をAr点+100℃とする。
平均の冷却速度を20℃/秒以上とし、450〜550℃まで冷却するのは、ポリゴナル・フェライト相の生成を抑制し、ベイニティック・フェライト相を主体とする組織を得るためである。冷却速度が20℃/秒未満ではポリゴナル・フェライト相が生成しやすくなり好ましくない。一方、組織制御の上では冷却速度に上限を設ける必要はないが、余りに速い冷却速度は鋼板の冷却を不均一にする恐れがあり、また、冷却停止温度の制御が難しくなるので70℃/秒を目安とするのが好ましい。また、冷却停止温度が450℃より低くなると伸びフランジ性に好ましくないマルテンサイト相が生成されるので、下限を450℃とする。
【0027】
巻取り温度は伸びフランジ性を極端に悪化させるマルテンサイト相の生成を抑制するため450℃以上とする必要がある。一方、550℃超ではポリゴナル・フェライト相の生成が抑制できず、また、Cuを含有している鋼では析出したCuが粗大化して強度を固める効果が得られなくなるので550℃以下とする必要がある。更に550℃以下で巻き取ることにより、その後の冷却過程でTiCなどの非鉄炭化物が析出し、フェライト相中の固溶C量を大幅に減少させ、伸びフランジ性の向上をもたらす。
【0028】
最後に鋼板の組織について説明する。
優れた伸びフランジ性を得るにはベイニティック・フェライトを主相とする組織にすることが必要である。ここで言うベイニティック・フェライトとは、非特許文献1{「鋼のベイナイト写真集−1」(平成4年6月29日、(社)日本鉄鋼協会発行、21頁・Fig.2.9−d)}に例示されているような光学顕微鏡組織を有するものであり、ラス状で転位密度の高い組織であり、理想的にはセメンタイトを含有しない。ただし、当該組織形成と、Tiなどによる非鉄炭化物の生成は競合・並列関係にあるため、Tiなどと炭化物を形成しなかったCが固溶していたり、極まれにセメンタイトを形成していたりすることもあり得るが、こうしたものを含めてベイニティック・フェライトと定義する。
【0029】
ベイニティック・フェライトの面積率は最も好ましくは100%である。しかし、10%までのポリゴナル・フェライトは許容出来る。一方、マルテンサイトやパーライトは極力避けることが望ましい。
組織の面積率は光学顕微鏡観察によって決定した。まず、圧延方向と平行な断面を研磨、ナイタール液にて腐食し、表面から板厚の1/4に相当する部分を200倍で観察した。次に視野内を縦横20本の格子で切り、各格子点の位置がどの相によって占められているかを決定した。総格子点数(400)に対する各相の占有数の比で面積率を求めた。
【0030】
【実施例】
以下、本発明の実施例を比較例とともに説明する。
(実施例1)
表1に化学成分を示す鋼のスラブを表2に示す条件にて熱間圧延し、厚さ2.6mmの熱延板を得た。このようにして得られた鋼板の強度、延性、穴広げ性、打ち抜き疲労端面特性および断面組織を調べた。その結果を鋼と条件の組み合わせ毎に表3に示す。強度と延性は、圧延方向と90°をなす方向に採取したJIS5号試験片の引張試験により求めた。穴広げ性は、150×150mmの鋼板の中央に開けた直径10mmの打ち抜き穴を60°の円錐パンチで押し広げ、板厚貫通亀裂が生じた時点での穴径D(mm)を測定し、λ=(D−10)/10で求めたλで評価した。また、打ち抜き端面疲労特性は、JIS Z 2275に準拠した方法で求めた1×10回時間強さ(σ)を鋼板の引張強さ(σ)で除した値(σ/σ、以下、打ち抜き疲労限度比と記す)で評価した。なお、試験片は同規格に規定の1号試験片(最小断面部の幅が30mm、曲率半径が30mm)の中央に直径10mmの打ち抜き穴を設けたものを用いた。
【0031】
【表1】

Figure 2004315902
【0032】
【表2】
Figure 2004315902
【0033】
【表3】
Figure 2004315902
【0034】
表3から明らかなように、本発明の方法を用いれば、強度、延性、穴広げ性優れ、かつ打ち抜き疲労限度比に優れた鋼板を得ることができる。具体的には、強度と延性の積≧16500(MPa・%)、λ≧1.0、σ/σ≧0.3を満足する鋼板が得られた。
これに対して、Alで脱酸した鋼7、8、9、11および12は伸びフランジ性と打ち抜き疲労限度比に劣り、非鉄炭化物生成元素が不足する鋼10では伸びフランジ性が不足することが明らかとなった。また、圧延条件が不適切な鋼板(No.3、6、9、10、13および16)ではパーライトやマルテンサイトの生成を回避できなかったため高いλが得られなかった。
【0035】
(実施例2)
質量%にて、C:0.035%、Si:1.0%、Mn:1.5%、P:0.01%、S:0.001%、Cu:1.2%、Ni:0.6%、Al:0.0006%、Ti:0.15%、Nb:0.03%を含有し、CeとOの含有量が異なり、残部がFeである鋼片を製造した。これらを加熱温度1250℃、仕上圧延終了温度880℃、平均冷却速度45℃/秒、巻取り温度450℃の条件で3.5mmの熱延鋼板とした。このようにして得られた鋼板の強度、延性、断面組織、穴広げ性、および打ち抜き穴付き試験片の(σ/σ)を調べた。評価方法は実施例1と同じである。
【0036】
その結果、何れの鋼も強度800MPa以上、延性20%以上を示し、ベイニティック・フェライトの面積率が94%以上の鋼板となったが、λと打ち抜き疲労限度比はCe濃度とO濃度の影響を強く受けた。図1にCe濃度、およびO濃度を座標軸として示すように、本発明の範囲内であれば、優れた打ち抜き端面疲労特性(σ/σ≧0.3)と優れた伸びフランジ性(λ≧0.95)を兼ね備えた高強度熱延鋼板の得られることが明らかである。
【0037】
【発明の効果】
本発明の方法によれば、打ち抜き端面の疲労特性と伸びフランジ性に優れた高強度熱延鋼板を得ることが出来る。
【図面の簡単な説明】
【図1】鋼板の打ち抜き端面疲労特性と伸びフランジ性をCe濃度およびO濃度を座標軸として示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a high-strength hot-rolled steel sheet excellent in fatigue characteristics and stretch flangeability of a punched end face, and a method for producing the same.
[0002]
[Prior art]
Hot-rolled steel sheets are widely used for so-called underbody parts and wheels such as frames and arms for automobiles. Since high fatigue strength is required for these components from the viewpoint of durability against vibration during traveling, it is not always easy to reduce the weight through reducing the thickness of the steel material by increasing the strength. However, several steel plates have been proposed to meet such demands for improving the so-called base metal fatigue characteristics. For example, Japanese Patent Application Laid-Open No. 11-199973 (Patent Document 1) proposes a steel sheet in which fine Cu precipitates and / or solid solutions are dispersed in a composite structure steel sheet of ferrite and martensite.
[0003]
On the other hand, steel sheets used in this field require not only the fatigue properties of the base metal but also the resistance to fatigue fracture generated on the punched end face. In this document, this property will be referred to as punched end face fatigue property. In the past, finishing of the end face, which had been performed after the punching process, has been omitted in order to reduce manufacturing costs. This has become apparent as a result problem.
It is widely known that "burrs" and "small cracks" commonly found on stamped end faces are the starting points of fatigue failure, and the existence of these causes the fatigue life of parts to be predicted from the fatigue characteristics of the base metal. It is a well-known fact that the strength of the steel sheet is higher than the strength of the steel sheet. Therefore, the most reliable way to control the fatigue fracture that occurs on the punched end face is to remove "burrs" and "small cracks." It has come to be reported.
[0004]
Japanese Patent Application Laid-Open No. 9-202940 (Patent Document 2) has a main requirement that, among constituent elements, the concentration of Mn, Ti, Nb, and Cr with a predetermined weight added is within a predetermined range. Discloses a method for obtaining a steel sheet having excellent notch fatigue characteristics. Further, Japanese Patent Application Laid-Open No. 2001-40450 (Patent Document 3) discloses that the main requirement is to set the volume ratio of martensite to 3% or more and the volume ratio of pearlite to 5% or less, so that the fatigue properties of the sheared end face are reduced. A method for obtaining an excellent steel plate is described.
[0005]
[References]
(1) Patent Document 1 (Japanese Patent Application Laid-Open No. 11-199973)
(2) Patent Document 2 (Japanese Patent Laid-Open No. 9-202940)
(3) Patent Document 3 (JP-A-2001-40450)
(4) Patent Document 4 (JP-A-6-172924)
(5) Non-Patent Document 1 {"Steel Bainite Photo Book-1" (June 29, 1992, published by The Iron and Steel Institute of Japan, page 21, Fig. 2.9-d)}
[0006]
[Problems to be solved by the invention]
The properties required for a steel sheet used in this field include workability, particularly stretch flangeability represented by a hole expansion test value (λ), in addition to base metal fatigue properties and punched end face fatigue properties. In order to improve the stretch flangeability of a high-strength steel sheet, it has been considered that, in addition to miniaturization and spheroidization of inclusions, suppression of generation of a hard phase such as iron carbide (cementite) is a common means. It is described in JP-A-6-172924 (Patent Document 4) and the like that the latter can be achieved by using bainitic ferrite as a main constituent structure.
[0007]
On the other hand, in the technology disclosed in Patent Document 2, although the production of pearlite or MnS, which is a cementite-containing phase, is suppressed, and the spheroidization of MnS by addition of Ca is mentioned, the structure constituting the steel sheet is ferrite. It mainly contains a small amount of bainite and martensite, and although high notch fatigue properties can be obtained, it is not necessarily sufficient as a means for obtaining excellent stretch flangeability.
[0008]
Further, in the technology described in Patent Document 3, even though there is no specific description about the phase constituting the steel sheet, since it includes martensite and pearlite, in order to obtain excellent shear end face fatigue properties, It is presumed that the stretch flangeability is sacrificed. As described above, there is no example proposed for a steel sheet mainly composed of bainitic ferrite, which is advantageous in improving the fatigue characteristics of the punched end face and obtaining high stretch flangeability.
In view of such circumstances, the present invention has been made to obtain a steel sheet having a bainitic ferrite excellent in stretch flangeability as a main structure and excellent in fatigue characteristics of a punched end face.
[0009]
[Means for Solving the Problems]
The present inventors performed a punching fatigue test of various steel sheets and observed a process leading to fracture. First, the locations of occurrence of fatigue cracks were arranged. As a result, irrespective of the phase constituting the steel sheet, when the clearance at the time of punching is large (for example, 25% or more), cracks are generated from the burrs, but when the clearance is small or the burrs are crushed, so-called coining. It was found that the frequency of crack generation from the burr portion was greatly reduced when the surface was subjected to the heat treatment, and instead, the crack began to be generated from the inside of the punched section. When the crack and its vicinity were observed during and after the fatigue test using an electron microscope, in the case of a steel sheet containing pearlite and martensite, it is estimated that the vicinity of those hard phases is the crack initiation position. However, in the case of a steel sheet containing bainitic ferrite as a main phase, the steel sheet containing pearlite and martensite may have a uniform structure in the first place. The place of occurrence could not be identified.
[0010]
On the other hand, in the case of a steel plate containing bainitic ferrite as the main phase, many observations were obtained which suggest that the crack initiation position is related to the presence of oxides and nitrides. Specifically, the oxide was an alumina-based oxide in the vicinity of the surface, and it was often thought that titanium nitride was involved inside the steel sheet.
As a result of investigations based on these observations, research was conducted on the assumption that the purpose could be achieved if a steel sheet having a structure containing bainitic ferrite as the main phase after reducing alumina-based oxides and titanium nitride as much as possible. The present invention has been completed.
[0011]
The summary is as follows. That is,
(1) In mass%, C: 0.03 to 0.10%, Si: 0.05 to 1.5%, Mn: 1.0 to 2.2%, P: 0.05% or less, S : 0.01% or less, N: 0.001 to 0.006%, Ti: 0.06 to 0.24%, Ce: 0.002 to 0.009%, O: 0.001 to 0.006% Wherein the balance consists of Fe and unavoidable impurities, the concentration product of Ce and O satisfies the formula (1), and the bainitic ferrite phase has a structure having a maximum area ratio. High strength hot rolled steel sheet with excellent fatigue properties and stretch flangeability.
[Ce] [O] ≦ 3.8 × 10 −9 (1)
[0012]
(2) The fatigue characteristics and elongation of the punched end face according to the above (1), further containing 0.6 to 2.0% of Cu and 0.3 to 1.0% of Ni in mass%. High strength hot rolled steel sheet with excellent flangeability.
(3) In addition, one or more of Nb: 0.1 to 0.6%, Mo: 0.05 to 0.3%, and V: 0.025 to 0.15% by mass%. The high-strength hot-rolled steel sheet according to the above (1) or (2), which is excellent in fatigue characteristics and stretch flangeability of the punched end face.
[0013]
(4) The method for producing a steel sheet according to any one of (1) to (3), wherein the steel material having the chemical component according to any one of (1) to (3) is used. After heating to 1150 to 1250 ° C and rough rolling, finish rolling is completed at 3 points of Ar to 3 points of Ar + 100 ° C, and further cooled to 450 to 550 ° C at an average cooling rate of 20 ° C / sec or more. This is a method for producing a high-strength hot-rolled steel sheet having excellent fatigue characteristics and stretch flangeability of a punched end face, which is characterized by winding at 550 ° C.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors first studied a method for suppressing an alumina-based oxide.
Generally, steel is deoxidized using ferrosilicon or aluminum, and among them, aluminum, which is excellent in efficiency and cost, is more general. Alumina-based oxides generated as a result of aluminum deoxidation easily aggregate and remain in the steel as coarse inclusions. This seems to be the starting point of the fatigue crack near the surface as described above.
[0015]
Therefore, (1) deoxidation by elements other than aluminum, and (2) oxides of alternative elements are not aggregated and coarsened like alumina-based oxides. Experimented. At this time, (3) the upper limit of the oxygen concentration that does not greatly deteriorate the yield of elements such as Ti, which is intended to fix C in steel as carbides, and (4) the starting point of fatigue cracks inside the steel sheet Research has been conducted on the fact that it is an element that also has an effect on the miniaturization of titanium nitride, which affects titanium.
[0016]
As a result, it has been found that the method using Ce is the most excellent, and that if the appropriate concentration range is satisfied together with the O concentration range, a steel sheet excellent not only in λ but also in punched end face fatigue can be obtained. It is most ideal if titanium nitride can be completely eliminated. However, as described later, Ti is an essential element in fixing C through formation of carbides and suppressing generation of cementite, and also in reducing N. Is the next best target for miniaturization due to the limitations of steelmaking technology. In addition, it is one of the reasons for selecting that Ce can be relatively easily produced in molten steel.
[0017]
Hereinafter, the reasons for limitation of the present invention will be described. First, the reasons for limiting the chemical components will be described. All component designations are in weight percent.
C is an essential element for ensuring the strength of the steel sheet, and at least 0.03% is necessary to obtain a high-strength steel sheet. However, if it is excessively contained, it is unavoidable to generate carbide due to Ti or the like and a cementite phase which is not preferable for stretch flangeability even if cooling conditions are used.
[0018]
Si is an element effective for securing strength without deteriorating the stretch flangeability, and at least 0.05% is necessary. However, if it is contained excessively, it causes scale flaws or chemical conversion treatment. The upper limit is set to 1.5% because the surface treatment property is deteriorated.
Mn is an element effective for increasing the strength of a steel sheet together with C and Si, and must be contained in an amount of 1.0% or more. However, if it exceeds 2.2%, the weldability is adversely affected. Therefore, the upper limit is set to 2.2%.
[0019]
P is effective as a solid solution strengthening element, but it is necessary to be 0.05% or less because there is a concern about deterioration of workability due to segregation.
S forms harmful effects such as forming inclusions such as MnS to deteriorate the stretch flangeability and bonding with Ti contained for the purpose of turning C into a carbide to lower the yield. Therefore, it should be suppressed as much as possible, but 0.01% or less is acceptable.
[0020]
N forms titanium nitride and deteriorates the fatigue characteristics of the punched end face. For this reason, it is preferable that the content be as low as possible, that is, 0.006% or less, and desirably 0.004% or less. On the other hand, the lower the value, the higher the production cost. Therefore, it is sufficient to set the lower limit to 0.001%.
Ti forms carbides with C to suppress the generation of cementite and contribute to the improvement of λ. On the other hand, if it is added more than necessary, it exists in the steel in a solid solution state, raises the recrystallization temperature, and the hot-worked structure tends to remain, thus impairing the ductility. The former effect is exhibited at 0.06% or more, and the latter can be avoided if it is 0.24% or less. Therefore, it is necessary to limit the effect to 0.06 to 0.24%.
[0021]
Ce and O combine to have the effect of increasing the cleanliness of the steel (function as a deoxidizing agent), and a part of the generated oxide is unlikely to coagulate and coarsen in the molten metal like alumina-based inclusions Therefore, even if it is present in the steel sheet, it does not act as a starting point of a fatigue crack or adversely affect the stretch flangeability. Further, since the fine particles are finely dispersed, they also have an effect of miniaturizing titanium nitride formed using the nuclei as a nucleus, and this is considered to have an effect of improving the fatigue characteristics of the punched end face. Such an effect is manifested when the Ce concentration is 0.002% or more, so this concentration is made the lower limit. On the other hand, if it is added in excess of 0.009%, the existing form changes from fine dispersion to agglomeration, and coarse inclusions that deteriorate λ are formed. Therefore, the upper limit is 0.009%.
[0022]
O needs to be 0.001 to 0.006% in order to exhibit the function of Ce (oxide) described above. If the content is less than 0.001%, the number of nuclei formed of titanium nitride is probably insufficient, so that the refinement of titanium nitride cannot be sufficiently achieved. On the other hand, if the content exceeds 0.006%, punching due to a decrease in cleanliness is caused. This is because deterioration of the end-face fatigue characteristics cannot be avoided.
Ce and O need to satisfy the condition of the concentration product shown by the following equation in addition to the above concentration limitation. That is, [Ce] [O] ≦ 3.8 × 10 −9 . This conditional expression is determined based on experimental results described later as examples.
[0023]
Cu can be used as a solid solution strengthening element or a precipitation strengthening element for increasing the strength of a steel sheet. Further, the fatigue strength of the base material can be improved by the addition. However, the effect is not obtained unless 0.6% or more is added. On the other hand, if the content exceeds 2.0%, the effect is not only saturated, but also deteriorates the surface properties of the steel sheet after hot rolling. 0% is the upper limit.
Ni has an effect of mitigating the deterioration of the hot rolled surface properties due to Cu, and it is desirable to add about half of Cu as a guide. Therefore, the lower limit is 0.3%. On the other hand, even if added in excess of 1.0%, the effect is saturated and only leads to an increase in cost, so the upper limit is 1.0%.
[0024]
Nb, Mo and V combine with C similarly to Ti, thereby suppressing the generation of cementite and contributing to the improvement of λ. The effect is expressed at 0.1%, 0.05% and 0.025% or more, respectively, and saturates at 0.6%, 0.3% and 0.15%, respectively. The above can be used.
In the present invention, the component other than the above is Fe, but inevitable impurities mixed from a melting raw material such as scrap or manufacturing equipment shared with other steel sheets are allowed.
Most preferably, Al is not used as a deoxidizer, but up to 0.003% does not affect the properties, so use as a preliminary deoxidizer is acceptable within this range.
[0025]
Next, each condition of heating, rolling, cooling and winding will be described.
The heating temperature needs to be 1150 ° C. or higher to temporarily dissolve TiC, NbC, and the like in steel. By dissolving them, the formation of polygonal ferrite in the cooling process after rolling is suppressed, and a structure mainly composed of a bainitic ferrite phase preferable for improving λ can be obtained.
On the other hand, when the heating temperature exceeds 1250 ° C., the oxidation of the slab surface becomes remarkable, and in particular, wedge-shaped surface defects considered to be caused by selective oxidation of the grain boundaries remain after descaling, which are caused by rolling after rolling. Since the surface quality is impaired, the upper limit is set to 1250 ° C.
[0026]
The finish rolling completion temperature is important for controlling the structure of the steel sheet. When the Ar is less than 3 points, the untransformed structure remains and the ductility of the steel sheet deteriorates, which is not preferable. On the other hand, if the temperature is higher than the Ar 3 point + 100 ° C., a polygonal ferrite phase unfavorable for stretch flangeability is likely to be generated, so the upper limit is set to the Ar 3 point + 100 ° C.
The reason for setting the average cooling rate to 20 ° C./sec or more and cooling to 450 to 550 ° C. is to suppress the formation of the polygonal ferrite phase and to obtain a structure mainly composed of the bainitic ferrite phase. If the cooling rate is less than 20 ° C./sec, a polygonal ferrite phase is easily formed, which is not preferable. On the other hand, it is not necessary to set an upper limit on the cooling rate in controlling the structure. However, an excessively high cooling rate may make the cooling of the steel sheet non-uniform, and it becomes difficult to control the cooling stop temperature. Is preferably used as a guide. When the cooling stop temperature is lower than 450 ° C., a martensite phase that is not favorable for stretch flangeability is generated.
[0027]
The winding temperature needs to be 450 ° C. or higher in order to suppress the formation of a martensite phase that extremely deteriorates stretch flangeability. On the other hand, if the temperature exceeds 550 ° C., the formation of the polygonal ferrite phase cannot be suppressed, and in the case of steel containing Cu, the precipitated Cu becomes coarse and the effect of solidifying the strength cannot be obtained. is there. Further, by winding at a temperature of 550 ° C. or lower, non-ferrous carbides such as TiC precipitate in the subsequent cooling process, so that the amount of solute C in the ferrite phase is significantly reduced, and the stretch flangeability is improved.
[0028]
Finally, the structure of the steel sheet will be described.
In order to obtain excellent stretch flangeability, it is necessary to form a structure having bainitic ferrite as a main phase. The term "bainitic ferrite" as used herein refers to Non-Patent Document 1 "Bainite Photograph of Steel-1" (published by the Iron and Steel Institute of Japan on June 29, 1992, page 21, FIG. 2.9). -D) It has an optical microscope structure as exemplified in}, is a lath-like structure having a high dislocation density, and ideally does not contain cementite. However, since the formation of the structure and the formation of non-ferrous carbides by Ti and the like are in a competing and parallel relationship, C, which did not form carbides with Ti and the like, forms a solid solution or rarely forms cementite. Although it is possible, these are defined as bainitic ferrite.
[0029]
The area ratio of bainitic ferrite is most preferably 100%. However, up to 10% polygonal ferrite is acceptable. On the other hand, it is desirable to avoid martensite and pearlite as much as possible.
The area ratio of the tissue was determined by light microscopy. First, a cross section parallel to the rolling direction was polished and corroded with a nital solution, and a portion corresponding to 1 / of the plate thickness from the surface was observed at a magnification of 200 times. Next, the field of view was cut by 20 grids vertically and horizontally, and it was determined which phase occupied the position of each grid point. The area ratio was determined by the ratio of the number of occupied phases to the total number of lattice points (400).
[0030]
【Example】
Hereinafter, examples of the present invention will be described together with comparative examples.
(Example 1)
A steel slab having the chemical composition shown in Table 1 was hot-rolled under the conditions shown in Table 2 to obtain a hot-rolled sheet having a thickness of 2.6 mm. The steel sheet thus obtained was examined for strength, ductility, hole expandability, punching fatigue end face characteristics, and cross-sectional structure. Table 3 shows the results for each combination of steel and conditions. The strength and ductility were determined by a tensile test of a JIS No. 5 test piece taken in a direction at 90 ° to the rolling direction. The hole-expandability was measured by measuring the hole diameter D (mm) at the time when a through-thickness crack was generated by pushing a 10 mm diameter punched hole opened in the center of a 150 × 150 mm steel plate with a 60 ° conical punch, λ = (D−10) / 10. The fatigue property of the punched end face is a value (σ W / σ B ) obtained by dividing the 1 × 10 7 time strength (σ W ) obtained by the method based on JIS Z 2275 by the tensile strength (σ B ) of the steel sheet. , Hereinafter referred to as punching fatigue limit ratio). The test piece used was a No. 1 test piece (the minimum cross-section width was 30 mm and the radius of curvature was 30 mm) provided with a punched hole having a diameter of 10 mm at the center of the test piece specified in the same standard.
[0031]
[Table 1]
Figure 2004315902
[0032]
[Table 2]
Figure 2004315902
[0033]
[Table 3]
Figure 2004315902
[0034]
As is clear from Table 3, the use of the method of the present invention makes it possible to obtain a steel sheet that is excellent in strength, ductility, hole-expandability and punching fatigue limit ratio. Specifically, a steel sheet satisfying the product of strength and ductility ≧ 16500 (MPa ·%), λ ≧ 1.0, and σ W / σ B ≧ 0.3 was obtained.
On the other hand, steels 7, 8, 9, 11, and 12 deoxidized with Al are inferior in stretch flangeability and punching fatigue limit ratio, and steel 10 in which non-ferrous carbide forming elements are insufficient lacks stretch flangeability. It became clear. In addition, in steel sheets with inappropriate rolling conditions (Nos. 3, 6, 9, 10, 13, and 16), generation of pearlite and martensite could not be avoided, and thus high λ could not be obtained.
[0035]
(Example 2)
In mass%, C: 0.035%, Si: 1.0%, Mn: 1.5%, P: 0.01%, S: 0.001%, Cu: 1.2%, Ni: 0 A slab containing 0.6%, Al: 0.0006%, Ti: 0.15%, and Nb: 0.03%, having different contents of Ce and O, and the balance being Fe was produced. These were formed into a 3.5 mm hot-rolled steel sheet under the conditions of a heating temperature of 1250 ° C., a finish rolling end temperature of 880 ° C., an average cooling rate of 45 ° C./sec, and a winding temperature of 450 ° C. Strength of the steel sheet obtained in this manner was examined ductility, the cross-sectional structure, hole expansion, and perforations with the test piece (σ W / σ B). The evaluation method is the same as in the first embodiment.
[0036]
As a result, all the steels showed a strength of 800 MPa or more and a ductility of 20% or more, and a steel sheet having an area ratio of bainitic ferrite of 94% or more. Affected strongly. As shown in FIG. 1 as the coordinate axes of the Ce concentration and the O concentration, within the range of the present invention, excellent punched end face fatigue characteristics (σ W / σ B ≧ 0.3) and excellent stretch flangeability (λ) It is clear that a high-strength hot-rolled steel sheet having (≧ 0.95) can be obtained.
[0037]
【The invention's effect】
According to the method of the present invention, it is possible to obtain a high-strength hot-rolled steel sheet having excellent punching end face fatigue properties and stretch flangeability.
[Brief description of the drawings]
FIG. 1 is a graph showing punch end face fatigue characteristics and stretch flangeability of a steel sheet using Ce concentration and O concentration as coordinate axes.

Claims (4)

質量%にて、
C:0.03〜0.10%、
Si:0.05〜1.5%、
Mn:1.0〜2.2%、
P:0.05%以下、
S:0.01%以下、
N:0.001〜0.006%、
Ti:0.06〜0.24%、
Ce:0.002〜0.009%、
O:0.001〜0.006%を含有し、
残部がFeおよび不可避不純物からなり、かつCeとOの濃度積が式(1)を満たし、ベイニティック・フェライト相を面積率最大の組織とすることを特徴とする打ち抜き端面の疲労特性と伸びフランジ性に優れた高強度熱延鋼板。
[Ce][O]≦3.8×10−9 … (1)
In mass%,
C: 0.03 to 0.10%,
Si: 0.05 to 1.5%,
Mn: 1.0 to 2.2%,
P: 0.05% or less,
S: 0.01% or less,
N: 0.001 to 0.006%,
Ti: 0.06 to 0.24%,
Ce: 0.002 to 0.009%,
O: contains 0.001 to 0.006%,
Fatigue characteristics and elongation of the punched end face, characterized in that the balance consists of Fe and unavoidable impurities, the concentration product of Ce and O satisfies the formula (1), and the bainitic ferrite phase has a structure with the maximum area ratio. High strength hot rolled steel sheet with excellent flangeability.
[Ce] [O] ≦ 3.8 × 10 −9 (1)
更に質量%で、
Cu:0.6〜2.0%、
Ni:0.3〜1.0%
を含有することを特徴とする請求項1記載の打ち抜き端面の疲労特性と伸びフランジ性に優れた高強度熱延鋼板。
In further mass%,
Cu: 0.6-2.0%,
Ni: 0.3 to 1.0%
The high-strength hot-rolled steel sheet according to claim 1, which is excellent in fatigue characteristics and stretch flangeability of a punched end face.
更に質量%で、
Nb:0.1〜0.6%、
Mo:0.05〜0.3%、
V:0.025〜0.15%
のうちの1種以上を含有することを特徴とする請求項1または2記載の打ち抜き端面の疲労特性と伸びフランジ性に優れた高強度熱延鋼板。
In further mass%,
Nb: 0.1 to 0.6%,
Mo: 0.05-0.3%,
V: 0.025 to 0.15%
The high-strength hot-rolled steel sheet according to claim 1, wherein the hot-rolled steel sheet has excellent fatigue characteristics and stretch flangeability.
請求項1〜3の何れか1項に記載の鋼板を製造する方法であって、請求項1〜3の何れか1項に記載の化学成分を有する鋼材を1150〜1250℃に加熱して粗圧延した後、Ar点〜Ar点+100℃で仕上圧延を完了し、更に20℃/秒以上の平均冷却速度で450〜550℃まで冷却し、450〜550℃で巻き取ることを特徴とする打ち抜き端面の疲労特性と伸びフランジ性に優れた高強度熱延鋼板の製造方法。A method for producing a steel sheet according to any one of claims 1 to 3, wherein the steel material having the chemical component according to any one of claims 1 to 3 is heated to 1150 to 1250 ° C to obtain a steel sheet. After rolling, finish rolling is completed at Ar 3 points to Ar 3 points + 100 ° C., further cooled to 450 to 550 ° C. at an average cooling rate of 20 ° C./sec or more, and wound at 450 to 550 ° C. For producing high-strength hot-rolled steel sheets with excellent fatigue properties and stretch flangeability at the punched end faces.
JP2003112080A 2003-04-16 2003-04-16 High-strength hot-rolled steel sheet excellent in fatigue characteristics and stretch flangeability of punched end face, and method for producing the same Expired - Fee Related JP4105974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003112080A JP4105974B2 (en) 2003-04-16 2003-04-16 High-strength hot-rolled steel sheet excellent in fatigue characteristics and stretch flangeability of punched end face, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003112080A JP4105974B2 (en) 2003-04-16 2003-04-16 High-strength hot-rolled steel sheet excellent in fatigue characteristics and stretch flangeability of punched end face, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004315902A true JP2004315902A (en) 2004-11-11
JP4105974B2 JP4105974B2 (en) 2008-06-25

Family

ID=33472444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112080A Expired - Fee Related JP4105974B2 (en) 2003-04-16 2003-04-16 High-strength hot-rolled steel sheet excellent in fatigue characteristics and stretch flangeability of punched end face, and method for producing the same

Country Status (1)

Country Link
JP (1) JP4105974B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316313A (en) * 2005-05-12 2006-11-24 Nippon Steel Corp Thin steel sheet having extremely reduced variation in material, and method for smelting molten steel for thin steel sheet
JP2007146280A (en) * 2005-11-07 2007-06-14 Nippon Steel Corp High-strength steel sheet superior in formability for extension flange and fatigue characteristics
WO2008007477A1 (en) * 2006-07-14 2008-01-17 Nippon Steel Corporation High-strength steel sheet excellent in stretch flangeability and fatigue property
JP2009167460A (en) * 2008-01-15 2009-07-30 Nippon Steel Corp High-strength hot-rolled steel plate having excellent strength-ductility balance and blanking property, and producing method therefor
WO2012043863A1 (en) 2010-09-30 2012-04-05 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet having excellent fatigue characteristics and manufacturing method therefor
CN114574771A (en) * 2022-03-04 2022-06-03 武安市裕华钢铁有限公司 High-elongation-flange-performance and fatigue-resistant special steel for wheels and production process

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316313A (en) * 2005-05-12 2006-11-24 Nippon Steel Corp Thin steel sheet having extremely reduced variation in material, and method for smelting molten steel for thin steel sheet
JP4516887B2 (en) * 2005-05-12 2010-08-04 新日本製鐵株式会社 Hot-rolled sheet with extremely small material variation and method for producing molten steel for hot-rolled sheet
JP2007146280A (en) * 2005-11-07 2007-06-14 Nippon Steel Corp High-strength steel sheet superior in formability for extension flange and fatigue characteristics
WO2008007477A1 (en) * 2006-07-14 2008-01-17 Nippon Steel Corporation High-strength steel sheet excellent in stretch flangeability and fatigue property
JP2009167460A (en) * 2008-01-15 2009-07-30 Nippon Steel Corp High-strength hot-rolled steel plate having excellent strength-ductility balance and blanking property, and producing method therefor
WO2012043863A1 (en) 2010-09-30 2012-04-05 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet having excellent fatigue characteristics and manufacturing method therefor
JP2012077317A (en) * 2010-09-30 2012-04-19 Jfe Steel Corp High-strength hot-dip galvanized steel sheet having excellent fatigue characteristic and manufacturing method of the same
US9044920B2 (en) 2010-09-30 2015-06-02 Jfe Steel Corporation High strength galvanized steel sheet exhibiting excellent fatigue property
CN114574771A (en) * 2022-03-04 2022-06-03 武安市裕华钢铁有限公司 High-elongation-flange-performance and fatigue-resistant special steel for wheels and production process

Also Published As

Publication number Publication date
JP4105974B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP4410741B2 (en) High strength thin steel sheet with excellent formability and method for producing the same
JP4161935B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP4460343B2 (en) High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof
JP4306076B2 (en) Highly ductile hot-rolled steel sheet with excellent stretch flangeability and method for producing the same
JP2006118000A (en) Lightweight high strength steel having excellent ductility and its production method
JP2005015909A (en) High-strength low-specific-gravity steel sheet and method for manufacturing the same
JP2004002969A (en) High tension hot-rolled steel plate excellent in stretch characteristics and stretch flange formability, and its producing method
JP2008174776A (en) High-strength cold-rolled steel sheet excellent in stretch-flange formability and impact energy absorption characteristic and its production method
JP5042694B2 (en) High strength low specific gravity steel plate excellent in ductility and workability and method for producing the same
JP3231204B2 (en) Composite structure steel sheet excellent in fatigue characteristics and method for producing the same
JP2005264328A (en) High-strength steel plate having excellent workability and method for manufacturing the same
JP2004315857A (en) High-strength hot-rolled steel sheet superior in stampability, and manufacturing method therefor
JP2002161340A (en) Hot rolled steel sheet superior in burring workability and fatigue characteristics, and manufacturing method therefor
JP5483562B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP4652952B2 (en) High-tensile steel plate with excellent toughness of heat affected zone
JP2006274378A (en) High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and method for producing them
JP2002317249A (en) Low yield ratio type high strength steel sheet having excellent ductility and production method therefor
JP2006176844A (en) High-strength and low-density steel sheet superior in ductility and fatigue characteristic, and manufacturing method therefor
JP2010024497A (en) High strength cold rolled steel sheet having excellent elongation and stretch-flangeability
JP2008266792A (en) Hot-rolled steel sheet
JP4105974B2 (en) High-strength hot-rolled steel sheet excellent in fatigue characteristics and stretch flangeability of punched end face, and method for producing the same
JP2005206943A (en) High-tension hot-rolled sheet steel excellent in bake hardenability and resistance to room-temperature aging and its production method
JP2006241510A (en) Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method
JP2016211047A (en) Hot rolled steel sheet and production method therefor
JP3650601B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080328

R151 Written notification of patent or utility model registration

Ref document number: 4105974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees