JP4268559B2 - High strength steel plate with excellent stretch flangeability - Google Patents

High strength steel plate with excellent stretch flangeability Download PDF

Info

Publication number
JP4268559B2
JP4268559B2 JP2004128058A JP2004128058A JP4268559B2 JP 4268559 B2 JP4268559 B2 JP 4268559B2 JP 2004128058 A JP2004128058 A JP 2004128058A JP 2004128058 A JP2004128058 A JP 2004128058A JP 4268559 B2 JP4268559 B2 JP 4268559B2
Authority
JP
Japan
Prior art keywords
mass
less
inclusions
stretch flangeability
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004128058A
Other languages
Japanese (ja)
Other versions
JP2005307301A (en
Inventor
勝浩 笹井
渡 大橋
浩之 棚橋
亘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004128058A priority Critical patent/JP4268559B2/en
Publication of JP2005307301A publication Critical patent/JP2005307301A/en
Application granted granted Critical
Publication of JP4268559B2 publication Critical patent/JP4268559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、建材、家電製品、自動車などに適する、伸びフランジ性に優れた高強度鋼板に関する。本発明における高強度鋼板とは、通常の冷延鋼板のほか、亜鉛めっき鋼板や、Alめっき鋼板を代表とする各種めっきを施したものも含む。亜鉛めっき鋼板については、通常の溶融亜鉛めっきのみならず、合金化溶融亜鉛めっきも含む。めっき層には、純亜鉛の他、Fe、Al、Mg、Cr、Mnなどを含有するものも含む。   The present invention relates to a high-strength steel sheet excellent in stretch flangeability, which is suitable for building materials, home appliances, automobiles, and the like. The high-strength steel plate in the present invention includes not only a normal cold-rolled steel plate but also a galvanized steel plate or a steel plate subjected to various platings such as an Al-plated steel plate. The galvanized steel sheet includes not only normal hot dip galvanizing but also alloyed hot dip galvanizing. The plating layer includes not only pure zinc but also one containing Fe, Al, Mg, Cr, Mn or the like.

近年、特に、自動車車体における燃費向上や耐久性向上を目的とした加工性の良い高強度鋼板の需要が高まっている。加えて、衝突安全性やキャビンスペースの拡大のニーズから、引張強さにして780MPa級以上の鋼板が、一部レインフォースなどの部材に使用されつつある。   In recent years, there has been an increasing demand for high-strength steel sheets with good workability for the purpose of improving fuel consumption and durability especially in automobile bodies. In addition, steel plates with a tensile strength of 780 MPa or higher are being used for some parts such as reinforcement because of the need for collision safety and expansion of cabin space.

このような高強度材を用いて部材を組み上げる時には、延性、曲げ性、伸びフランジ性などが重要となるが、引張強さで780MPa程度までの高強度鋼板において、これらへの対策が講じられている。   When assembling a member using such a high-strength material, ductility, bendability, stretch flangeability, etc. are important. In high-strength steel sheets with a tensile strength of up to about 780 MPa, measures are taken for these. Yes.

例えば、穴広げ性については、非特許文献1にあるように、主相をベイナイトとして穴広げ性を向上させ、さらには、張り出し成形性についても、第2相に残留オーステナイトを生成させることで、現行の残留オーステナイト鋼並の張り出し性を示すことが開示されている。   For example, as described in Non-Patent Document 1, with regard to hole expansibility, the main phase is bainite to improve the hole expansibility, and further, with regard to the stretch formability, by generating residual austenite in the second phase, It is disclosed that it shows the same stretchability as the current retained austenitic steel.

また、高強度材の高延性化を図るために、複合組織を積極的に活用することが、一般的である。しかし、第2相にマルテンサイトや残留オーステナイトを活用した場合、穴広げ性が著しく低下してしまうという問題がある(例えば、非特許文献2)。また、本文献中には、主相をフェライト、第2相をマルテンサイトとし、両者の硬度差を減少させることで穴広げ率が向上することが開示されている。   In order to increase the ductility of a high-strength material, it is common to actively utilize a composite structure. However, when martensite or retained austenite is used for the second phase, there is a problem that the hole expandability is significantly lowered (for example, Non-Patent Document 2). Further, this document discloses that the hole expansion ratio is improved by reducing the difference in hardness between the main phase of ferrite and the second phase of martensite.

また、溶融亜鉛めっきを施したものとして、いくつかの開示例がある。例えば、特許文献1〜4がその代表例である。   In addition, there are some disclosed examples of those subjected to hot dip galvanization. For example, Patent Documents 1 to 4 are representative examples.

特許第2607906号公報Japanese Patent No. 2607906 特許第2862187号公報Japanese Patent No. 2862187 特開2001−355043号公報JP 2001-355043 A 特許第3037767号公報Japanese Patent No. 3037767 CAMP−ISIJ vol.13 (2000) p.395CAMP-ISIJ vol. 13 (2000) p. 395 CAMP−ISIJ vol.13 (2000) p.391CAMP-ISIJ vol. 13 (2000) p. 391

上述したように、穴広げ性によって代表される伸びフランジ性に優れた鋼板は、多数開発されている。しかしながら、引張強さ780MPa以上の高強度鋼板では、Cあるいは多量の合金元素を含有するため、製品の組織が温度や冷却速度などの製造条件によって変化しやすく、必ずしも良好な伸びフランジ性が得られていない。   As described above, a large number of steel plates having excellent stretch flangeability represented by hole expandability have been developed. However, a high-strength steel sheet having a tensile strength of 780 MPa or more contains C or a large amount of alloy elements, so that the structure of the product is likely to change depending on manufacturing conditions such as temperature and cooling rate, and good stretch flangeability is not always obtained. Not.

本発明者らの研究によれば、この原因が、温度や冷却速度などの製造条件のばらつきにより生成した第2相(主相より面積率の小さい相)と主相(面積率最大の相)との境界部に存在する介在物にあることが分かった。   According to the study by the present inventors, this is caused by the second phase (phase having a smaller area ratio than the main phase) and the main phase (phase having the largest area ratio) generated due to variations in manufacturing conditions such as temperature and cooling rate. It was found that the inclusions existed at the boundary.

すなわち、第2相は、主相と硬さが異なり、両相の境界は、亀裂が進展し易い環境にあるため、両相の境界に割れ発生の起点となり易い粗大なクラスター状の介在物が存在すると、穴広げ加工時に、粗大なクラスター状の介在物を起点に割れが発生し、その亀裂が、両相の粒界を伝播し、表層まで一挙に拡大することが判明した。   That is, the second phase has a hardness different from that of the main phase, and the boundary between both phases is in an environment where cracks are likely to progress. Therefore, there is a coarse cluster-like inclusion that tends to cause cracks at the boundary between both phases. When present, it was found that cracks occurred starting from coarse cluster-like inclusions during hole expansion, and the cracks propagated through the grain boundaries of both phases and expanded to the surface layer all at once.

したがって、鋼中の介在物をできるだけ微細球状化し、製造条件のばらつきにより第2相が生成しても、その粒界の介在物が割れ発生の起点にならないようにすれば、穴広げ性が改善されることを見いだした。   Therefore, if the inclusions in the steel are made as fine as possible and the second phase is generated due to variations in manufacturing conditions, the inclusions at the grain boundaries do not become the starting point for cracking, improving hole expandability. I found out that

一般には、鋼の脱酸はAlを用いて行われるが、Al脱酸により生成したアルミナ系介在物はクラスター化し易く、粗大な介在物として鋼中に残留する。これが、上記のように、伸びフランジ性(穴広げ値)を低下させていると考えられるが、介在物微細球状化制御の視点にたって伸びフランジ性に優れる高強度鋼板を提案した例は見られない。   Generally, deoxidation of steel is performed using Al, but alumina inclusions generated by Al deoxidation are easily clustered and remain in the steel as coarse inclusions. This is considered to have reduced the stretch flangeability (hole expansion value) as described above, but there have been examples in which high strength steel plates with excellent stretch flangeability were proposed from the viewpoint of inclusion microsphere control. Absent.

このような状況を鑑み、本発明者らは、Cあるいは多量の合金元素を含有する高強度鋼板の溶鋼成分において、(i)粗大化し易いアルミナ系介在物を生成させないために、殆どAl脱酸することなく、(ii)介在物がクラスター化して粗大にならず、且つ、(iii)割れ発生の起点になり難い球状介在物へと改質する脱酸方法について鋭意研究を進め、更に、化学成分や製造方法にも検討を加えて、本発明を完成させた。   In view of such a situation, the inventors of the present invention have almost no Al deoxidation in the molten steel component of the high-strength steel plate containing C or a large amount of alloy elements in order not to generate (i) alumina inclusions that are easily coarsened. Without degrading, (ii) the inclusions are not clustered and coarsened, and (iii) the deoxidation method is modified to form spherical inclusions that do not easily start cracking. The present invention was completed by examining the components and the production method.

その要旨は、以下の通りである。   The summary is as follows.

(1)C:0.03〜0.3質量%、Si:0.1〜2.0質量%、Mn:1.0〜3.5質量%、P:0.05質量%以下、S:0.01質量%以下、N:0.0005〜0.01質量%、酸可溶Al:0.01質量%以下、酸可溶Ti:0.008質量%未満、CeおよびLaの1種または2種の合計:0.0005〜0.04質量%を含有し、残部が鉄および不可避的不純物からなる鋼であり、その鋼中には、平均の介在物組成で、Ce酸化物およびLa酸化物の1種または2種の合計が10〜90質量%、SiO2が5〜60質量%、Al23が50質量%以下の範囲の介在物を含むことを特徴とする伸びフランジ性に優れた高強度鋼板。 (1) C: 0.03-0.3 mass%, Si: 0.1-2.0 mass%, Mn: 1.0-3.5 mass%, P: 0.05 mass% or less, S: 0.01 mass% or less, N: 0.0005 to 0.01 mass%, acid-soluble Al: 0.01 mass% or less, acid-soluble Ti: less than 0.008 mass%, one of Ce and La Total of two types: steel containing 0.0005 to 0.04% by mass, the balance being iron and inevitable impurities, and in the steel, Ce oxide and La oxidation with an average inclusion composition The stretch flangeability is characterized by including inclusions in which the total of one or two of the substances is 10 to 90% by mass, SiO 2 is 5 to 60% by mass, and Al 2 O 3 is 50% by mass or less. Excellent high strength steel plate.

(2)C:0.03〜0.3質量%、Si:0.1〜2.0質量%、Mn:1.0〜3.5質量%、P:0.05質量%以下、S:0.01質量%以下、N:0.0005〜0.01質量%、酸可溶Al:0.01質量%以下、酸可溶Ti:0.008質量%未満(ただし、0.005質量%以上を除く)、CeおよびLaの1種または2種の合計:0.0005〜0.04質量%を含有し、残部が鉄および不可避的不純物からなる鋼であり、その鋼中には、介在物の個数割合で、50%以上が球状と紡錘状の介在物からなることを特徴とする伸びフランジ性に優れた高強度鋼板。 (2) C: 0.03-0.3 mass%, Si: 0.1-2.0 mass%, Mn: 1.0-3.5 mass%, P: 0.05 mass% or less, S: 0.01 mass% or less, N: 0.0005 to 0.01 mass%, acid-soluble Al: 0.01 mass% or less, acid-soluble Ti: less than 0.008 mass% (however, 0.005 mass%) Except for the above) , a total of one or two of Ce and La: 0.0005 to 0.04% by mass, and the balance is iron and inevitable impurities, and the steel has intervening A high-strength steel sheet excellent in stretch flangeability, characterized in that 50% or more of the number of objects is composed of spherical and spindle inclusions.

(3)C:0.03〜0.3質量%、Si:0.1〜2.0質量%、Mn:1.0〜3.5質量%、P:0.05質量%以下、S:0.01質量%以下、N:0.0005〜0.01質量%、酸可溶Al:0.01質量%以下、酸可溶Ti:0.008質量%未満(ただし、0.005質量%以上を除く)、CeおよびLaの1種または2種の合計:0.0005〜0.04質量%を含有し、残部が鉄および不可避的不純物からなる鋼であり、その鋼中には、0.5μm以上10μm以下の介在物が1000個/cm以上、100000個/cm以下存在することを特徴とする伸びフランジ性に優れた高強度鋼板。 (3) C: 0.03-0.3 mass%, Si: 0.1-2.0 mass%, Mn: 1.0-3.5 mass%, P: 0.05 mass% or less, S: 0.01 mass% or less, N: 0.0005 to 0.01 mass%, acid-soluble Al: 0.01 mass% or less, acid-soluble Ti: less than 0.008 mass% (however, 0.005 mass%) Except for the above) , a total of one or two of Ce and La: 0.0005 to 0.04 mass%, the balance being iron and inevitable impurities, and the steel contains 0 A high-strength steel sheet excellent in stretch flangeability, characterized in that inclusions of 5 μm or more and 10 μm or less exist between 1000 pieces / cm 2 and 100,000 pieces / cm 2 .

本発明により、高強度で、製造条件のばらつきに影響され難く、安定して伸びフランジ性に優れた高強度鋼板を得ることができる。   According to the present invention, it is possible to obtain a high-strength steel plate having high strength and being hardly affected by variations in manufacturing conditions, and having excellent stretch flangeability.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明における鋼板の成分範囲の限定理由について述べる。   First, the reason for limiting the component range of the steel sheet in the present invention will be described.

Cは、鋼板の強度を確保するために必須の元素であり、780MPa以上の高強度鋼板を得るためには、少なくとも0.03質量%が必要である。しかし、Cが0.3質量%を超えると、伸びフランジ性が著しく劣化するので、0.3質量%を上限とする。   C is an essential element for securing the strength of the steel plate, and at least 0.03 mass% is necessary to obtain a high strength steel plate of 780 MPa or more. However, if C exceeds 0.3% by mass, stretch flangeability deteriorates remarkably, so 0.3% by mass is made the upper limit.

Siは、本発明のようにAlやTiを極力添加しない溶鋼において、主要な脱酸元素となるため、本発明おいて極めて重要である。溶鋼中の溶存酸素濃度を低下させ、鋳造時にCO気泡が発生しないためには、Siを0.1質量%以上添加する必要がある。   Si is extremely important in the present invention because Si is a major deoxidizing element in molten steel to which Al or Ti is not added as much as possible. In order to reduce the dissolved oxygen concentration in the molten steel and prevent the generation of CO bubbles during casting, it is necessary to add Si by 0.1% by mass or more.

また、Si、伸びフランジ性を低下させることなく強度を確保するのに有効な元素であり、少なくとも0.05質量%が必要であるが、脱酸条件も合わせて考慮すると、Siは0.1質量%を下限とする。過剰に添加すると溶接性や延性に悪影響を及ぼすので、2.0質量%を上限とする。   Further, Si is an element effective for securing the strength without deteriorating stretch flangeability, and at least 0.05% by mass is necessary. However, considering deoxidation conditions together, Si is 0.1%. Mass% is the lower limit. If added in excess, the weldability and ductility are adversely affected, so 2.0 mass% is the upper limit.

Mnは、C、Siとともに鋼板の高強度化に有効な元素であり、1.0質量%以上は含有させる必要があるが、3.5質量%を超えて含有させると、延性が劣化するとともに、MnSが多く析出し、伸びフランジ性を低下させるので、上限を3.5質量%とする。   Mn is an element effective for increasing the strength of the steel sheet together with C and Si, and it is necessary to contain 1.0% by mass or more, but if it exceeds 3.5% by mass, the ductility deteriorates. , MnS precipitates a lot and lowers the stretch flangeability, so the upper limit is made 3.5% by mass.

Pは、固溶強化元素として有効であるが、偏析による加工性の劣化が懸念されるので、0.05質量%以下にする必要がある。Pの下限値は0質量%を含む。   P is effective as a solid solution strengthening element, but since there is a concern about deterioration of workability due to segregation, it is necessary to make it 0.05% by mass or less. The lower limit value of P includes 0% by mass.

Sは、MnSなどの介在物を形成して伸びフランジ性を劣化させる。したがって、できるだけ抑制すべきであるが、0.01質量%以下であれば許容される。Sの下限値は0質量%を含む。   S forms inclusions such as MnS and deteriorates stretch flangeability. Therefore, it should be suppressed as much as possible, but is acceptable if it is 0.01% by mass or less. The lower limit value of S includes 0% by mass.

Nは、機械的強度を高めたり、BH性(焼付き硬化性)を付与したりするのには有効であるが、添加し過ぎると、微量Alや微量Tiであっても粗大な析出物を生成し、伸びフランジ性を劣化させるので、0.01質量%を上限とする。一方、Nを0.0005質量%未満とすることは、現状プロセスでは大変負荷が大きく、コストが高くなるため、下限は0.0005質量%とする。   N is effective in increasing mechanical strength and imparting BH properties (seizure curability), but if added too much, coarse precipitates will be formed even in trace amounts of Al and trace amounts of Ti. Since it produces and deteriorates stretch flangeability, 0.01 mass% is made an upper limit. On the other hand, when N is less than 0.0005% by mass, the current process is very heavy and the cost is high, so the lower limit is made 0.0005% by mass.

酸可溶Alは、その酸化物がクラスター化して粗大になり易いため、極力抑制することが望ましい。しかしながら、予備的な脱酸材として0.01質量%までは用いることが許容される。これは、酸可溶Al濃度が0.01質量%超になると、介在物中のAl23含有率が50質量%を超え、CeやLaを添加しても、介在物のクラスター化を防止することができないため、穴広げ性が低下するからである。 It is desirable to suppress acid-soluble Al as much as possible because the oxide is likely to cluster and become coarse. However, it is permissible to use up to 0.01% by mass as a preliminary deoxidizer. This is because when the acid-soluble Al concentration exceeds 0.01% by mass, the content of Al 2 O 3 in inclusions exceeds 50% by mass, and inclusions can be clustered even if Ce or La is added. This is because it cannot be prevented, and the hole expandability is reduced.

クラスター化防止の観点から、酸可溶Al濃度は低い方がよく、下限値は0質量%を含む。また、酸可溶Al濃度とは、酸に溶解したAl量を測定したもので、溶存Alは、酸に溶解し、Al23は酸に溶解しないことを利用した分析方法で分析した値である。 From the viewpoint of preventing clustering, the acid-soluble Al concentration should be low, and the lower limit includes 0% by mass. The acid-soluble Al concentration is a value obtained by measuring the amount of Al dissolved in an acid. The value analyzed by an analysis method using the fact that dissolved Al is dissolved in an acid and Al 2 O 3 is not dissolved in an acid. It is.

酸可溶Tiも、その酸化物がクラスター化して粗大になり易いこと、鋼中のNと結びついて粗大なTiNの介在物を生成し易いことから、0.008質量%未満とし、下限値は0質量%を含む。また、酸可溶Ti濃度とは、酸に溶解したTi量を測定したもので、溶存Tiは酸に溶解し、Ti酸化物は酸に溶解しないことを利用した分析方法で分析した値である。   The acid-soluble Ti is also less than 0.008% by mass because its oxides are likely to be clustered and become coarse, and it is easy to form coarse TiN inclusions in combination with N in the steel. Contains 0% by weight. The acid-soluble Ti concentration is a value obtained by measuring the amount of Ti dissolved in an acid, and is a value analyzed by an analysis method utilizing that dissolved Ti dissolves in an acid and Ti oxide does not dissolve in an acid. .

Ce、Laは、予備Al脱酸とSi脱酸により生成したAl23−SiO2介在物を、微細球状のCe酸化物(例えば、Ce23、CeO2)−Al23−SiO2複合介在物、La酸化物(例えば、La23、LaO2)−Al23−SiO2複合介在物、もしくは、Ce酸化物−La酸化物−Al23−SiO2複合介在物に改質し、伸びフランジ性を向上させる最も重要な成分である。 Ce and La are Al 2 O 3 —SiO 2 inclusions produced by preliminary Al deoxidation and Si deoxidation, and fine spherical Ce oxides (eg, Ce 2 O 3 , CeO 2 ) —Al 2 O 3 — SiO 2 composite inclusion, La oxide (for example, La 2 O 3 , LaO 2 ) -Al 2 O 3 —SiO 2 composite inclusion, or Ce oxide-La oxide-Al 2 O 3 —SiO 2 composite It is the most important component that improves the inclusion and improves the stretch flangeability.

このような介在物改質効果を得るためには、CeおよびLaの合計濃度を0.0005質量%以上0.04質量%以下にする必要がある。   In order to obtain such an inclusion modification effect, the total concentration of Ce and La needs to be 0.0005 mass% or more and 0.04 mass% or less.

CeおよびLaの合計濃度が0.0005質量%未満では、Al23−SiO2介在物を微細球状に改質できず、0.04質量%超では、介在物中のSiO2分は還元され、殆どCe酸化物−Al23介在物やLa酸化物−Al23介在物となり、介在物がクラスター化し、伸びフランジ性が低下する。 When the total concentration of Ce and La is less than 0.0005 mass%, the Al 2 O 3 —SiO 2 inclusion cannot be modified into a fine sphere, and when it exceeds 0.04 mass%, the SiO 2 content in the inclusion is reduced. Then, almost Ce oxide-Al 2 O 3 inclusions and La oxide-Al 2 O 3 inclusions are formed, the inclusions are clustered, and the stretch flangeability is lowered.

次に、鋼板中における介在物の存在条件について述べる。   Next, conditions for inclusions in the steel sheet will be described.

伸びフランジ性に優れた鋼板を得るためは、鋼板中の介在物は、割れ発生の起点となり難いように、球状で微細に分散していることが重要である。本発明の鋼板における介在物の平均組成、形態および粒径分布を調査した。介在物の平均組成は、ランダムに選んだ複数個(例えば、20個程度)の介在物を組成分析し、平均濃度を算出することにより求めることができる。   In order to obtain a steel sheet excellent in stretch flangeability, it is important that inclusions in the steel sheet are spherically and finely dispersed so that cracks are unlikely to become the starting point of cracking. The average composition, morphology, and particle size distribution of inclusions in the steel sheet of the present invention were investigated. The average composition of inclusions can be obtained by analyzing the composition of a plurality of randomly selected inclusions (for example, about 20) and calculating the average concentration.

その結果、介在物の平均組成でCe酸化物およびLa酸化物の1種または2種の合計が10〜90質量%以上、SiO2が5〜60質量%、Al23が50質量%以下の範囲となるように組成制御された鋼板では、伸びフランジ性が向上することが判明した。 As a result, one or a total 10 to 90 wt% or more of Ce oxide and La oxide with an average composition of inclusions, SiO 2 is 5 to 60 wt%, Al 2 O 3 is less than 50 wt% It was found that the stretch flangeability is improved in the steel sheet whose composition is controlled so as to be in the above range.

平均組成で、Ce酸化物およびLa酸化物の1種または2種の合計が10質量%未満では、CeやLa添加による介在物改質効果が小さく、反対に、Ce酸化物およびLa酸化物の1種または2種の合計が90質量%超では、過改質となり、何れの場合も、介在物は微細球状化しないので、平均組成で、Ce酸化物およびLa酸化物の1種または2種の合計の下限は10質量%とし、上限は90質量%とした。   When the total of one or two of Ce oxide and La oxide is less than 10% by mass with an average composition, the inclusion modification effect due to addition of Ce or La is small. If the total of 1 type or 2 types exceeds 90% by mass, over-reformation occurs, and in any case, inclusions do not spheroidize, so that one or two types of Ce oxide and La oxide are used in average composition. The lower limit of the total was 10% by mass, and the upper limit was 90% by mass.

また、平均組成で、SiO2が60質量%超では、圧延時に非常に長い延伸介在物となり、これが多く鋼板中に存在して伸びフランジ性が低下し、反対に、SiO2が5質量%未満では、介在物が微細球状に分散しないため、平均組成で、SiO2の上限を60質量%、下限を5質量%とした。 On the other hand, if the average composition of SiO 2 exceeds 60% by mass, very long stretched inclusions are formed during rolling, and many of these inclusions are present in the steel sheet, resulting in reduced stretch flangeability. Conversely, SiO 2 is less than 5% by mass. Then, since inclusions do not disperse into fine spheres, the upper limit of SiO 2 is 60% by mass and the lower limit is 5% by mass in the average composition.

さらに、介在物中にはAl23を含有しないことが、微細球状化の点から好ましいが、Al予備脱酸や耐火物溶損の影響により、介在物中のAl23含有率が高くなることがある。この場合、平均組成で、介在物中には50質量%以下に限ってAl23が混入してもよく、下限は0質量%を含む。 Furthermore, it is preferable not to contain Al 2 O 3 in inclusions from the viewpoint of fine spheroidization, but due to the influence of Al preliminary deoxidation and refractory melting, the content of Al 2 O 3 in inclusions is reduced. May be high. In this case, Al 2 O 3 may be mixed in the inclusions only to 50% by mass or less in the average composition, and the lower limit includes 0% by mass.

これは、介在物中のAl23含有率が50質量%を超えると、CeやLaによる改質効果が損なわれ、介在物のクラスター化が進行してしまうためである。なお、本発明において、上記組成の酸化物以外に、スラグや耐火物などから混入する不可避的不純物酸化物は許容される。 This is because when the Al 2 O 3 content in the inclusions exceeds 50% by mass, the reforming effect by Ce or La is impaired, and the inclusions are clustered. In the present invention, inevitable impurity oxides mixed from slag, refractory, etc. are allowed in addition to the oxide having the above composition.

次に、鋼板中の介在物の形態について述べる。介在物の形態は、ランダムに選んだ複数個の介在物を光学顕微鏡で観察することができる。例えば、ランダムに選んだ100個の介在物を、光学顕微鏡の100倍と1000倍で観察し、球状、紡錘状、クラスター状と、その他に分類し、球状と紡錘状の介在物の個数割合を求めることが推奨される。   Next, the form of inclusions in the steel sheet will be described. Regarding the form of inclusions, a plurality of inclusions selected at random can be observed with an optical microscope. For example, 100 inclusions selected at random are observed at 100 times and 1000 times of an optical microscope, and are classified into spherical, spindle, cluster, and others, and the number ratio of spherical and spindle-like inclusions is determined. It is recommended to seek.

その結果、球状と紡錘状の介在物の個数割合が50%以上の鋼板では、伸びフランジ性が向上することが判明した。球状と紡錘状の介在物の個数割合が50%未満では、クラスター状の介在物が相対的に増え、伸びフランジ性が低下するので、その下限を50%とした。上限は100%である。   As a result, it has been found that the stretch flangeability is improved in a steel plate in which the number ratio of spherical and spindle inclusions is 50% or more. When the number ratio of spherical and spindle-shaped inclusions is less than 50%, cluster-like inclusions are relatively increased and stretch flangeability is lowered, so the lower limit was made 50%. The upper limit is 100%.

さらに、鋼板中の介在物の粒径分布について述べる。介在物の粒径分布は、光学顕微鏡(例えば、100倍と1000倍)で介在物を観察して、その粒径を測定することができる。ここで、粒径とは、円相当直径を意味している。   Furthermore, the particle size distribution of inclusions in the steel sheet will be described. The particle size distribution of the inclusions can be measured by observing the inclusions with an optical microscope (for example, 100 times and 1000 times). Here, the particle diameter means an equivalent circle diameter.

また、介在物の粒径については、伸びフランジ性に有害な10μmを超える大型介在物が減少すると、0.5μm以上10μm以下の介在物個数が増加し、このサイズの介在物個数が伸びフランジ性と良く対応するため、0.5μm以上10μm以下に着目した。   In addition, regarding the particle size of inclusions, when the number of large inclusions exceeding 10 μm, which is harmful to stretch flangeability, decreases, the number of inclusions between 0.5 μm and 10 μm increases. In order to correspond well with this, attention was focused on 0.5 μm or more and 10 μm or less.

その結果、0.5μm以上10μm以下の介在物が1000個/cm2以上、100000個/cm2以下存在する鋼板では、伸びフランジ性が向上することが判明した。 As a result, it has been found that the stretch flangeability is improved in the steel sheet in which the inclusions of 0.5 μm or more and 10 μm or less exist at 1000 pieces / cm 2 or more and 100,000 pieces / cm 2 or less.

0.5μm以上10μm以下の介在物が1000個/cm2未満では、10μmを超える伸びフランジ性に有害な大型介在物が、鋼板中に観察され、割れ発生の起点となるので、その個数密度の下限は、1000個/cm2とした。 If the number of inclusions of 0.5 μm or more and 10 μm or less is less than 1000 / cm 2 , large inclusions that are harmful to stretch flangeability exceeding 10 μm are observed in the steel sheet and become the starting point of cracking. The lower limit was 1000 / cm 2 .

また、0.5μm以上10μm以下の介在物が100000個/cm2超存在する場合には、介在物の個数が多過ぎて、伸びフランジ性が低下するので、その上限は100000個/cm2とした。 Further, when there are more than 100,000 inclusions / cm 2 in the range of 0.5 μm or more and 10 μm or less, the number of inclusions is too large and the stretch flangeability deteriorates, so the upper limit is 100,000 / cm 2 . did.

本発明は、TS(引張強度)が780MPa未満の強度クラスの鋼にも当然適用できるが、組織制御だけで伸びフランジ性の課題はほぼ解決されているため、好ましい適用強度は、780MPa以上である。   The present invention can naturally be applied to steel of a strength class having a TS (tensile strength) of less than 780 MPa. However, since the problem of stretch flangeability is almost solved only by the structure control, the preferable applied strength is 780 MPa or more. .

次に、鋼板の組織について説明する。   Next, the structure of the steel plate will be described.

本発明では、伸びフランジ性を介在物制御により向上させるものであり、鋼板のミクロ組織は特に限定するものではないが、優れた伸びフランジ性を得るためには、できるだけ単相組織とすることが適しており、主相の面積率は80%以上とすることが好ましい。   In the present invention, stretch flangeability is improved by inclusion control, and the microstructure of the steel sheet is not particularly limited, but in order to obtain excellent stretch flangeability, a single-phase structure should be used as much as possible. The area ratio of the main phase is preferably 80% or more.

最後に、本発明の高強度鋼板を製造するための条件について述べる。   Finally, conditions for manufacturing the high-strength steel sheet of the present invention will be described.

本発明で設定する成分組成に調整された溶鋼を連続鋳造してスラブを製造し、これを熱間圧延することにより熱延鋼板とする。熱間圧延法は特に限定するものではないが、通常の熱間圧延を施した後、650℃以下で巻き取ることが好ましい。   The molten steel adjusted to the component composition set in the present invention is continuously cast to produce a slab, which is hot-rolled to obtain a hot-rolled steel sheet. The hot rolling method is not particularly limited, but it is preferable to wind at 650 ° C. or lower after performing normal hot rolling.

巻取り温度が650℃超では、粗大な炭化物を初めとする化合物が出現し易く、伸びフランジ性が劣化する。より好ましくは、600℃以下である。巻取り温度の下限は特に定めないが、室温以下とするのは困難であるため、これを下限とすることが好ましい。   If the coiling temperature exceeds 650 ° C., compounds such as coarse carbides are likely to appear, and stretch flangeability deteriorates. More preferably, it is 600 degrees C or less. The lower limit of the coiling temperature is not particularly defined, but it is difficult to set it to room temperature or lower, so this is preferably set as the lower limit.

このようにして製造した熱延鋼板に、必要に応じて、酸洗、スキンパスを施してもよい。スキンパスの圧下率は特に限定しないが、形状矯正、耐常温時効性の改善、強度調整などのため、40%程度までがよい。0.1%未満では効果が小さく、制御も困難なので、0.1%を下限にすることが好ましい。   The hot-rolled steel sheet thus manufactured may be pickled and skin-passed as necessary. The reduction rate of the skin pass is not particularly limited, but is preferably about 40% for shape correction, improvement of normal temperature aging resistance, strength adjustment, and the like. If it is less than 0.1%, the effect is small and control is difficult, so it is preferable to make 0.1% the lower limit.

熱延鋼板を冷間圧延した後、最高到達温度を600〜1100℃とする熱処理をし、その後、室温まで連続的に冷却するか、さらに、100〜550℃の温度で30秒以上保持してもよい。最高到達温度が600℃未満ではα−γ変態が起こりにくく、再結晶もしないことがあり、加工性が低下し易いので、600℃を下限とすることが好ましい。   After cold-rolling the hot-rolled steel sheet, it is heat-treated at a maximum temperature of 600 to 1100 ° C., and then continuously cooled to room temperature, or further maintained at a temperature of 100 to 550 ° C. for 30 seconds or more. Also good. If the maximum temperature is less than 600 ° C., α-γ transformation is unlikely to occur, recrystallization may not occur, and workability is likely to deteriorate, so 600 ° C. is preferably set as the lower limit.

一方、最高到達温度を1100℃超とするには、コストアップが著しく、また、板破断などの操業トラブルを誘発するので、1100℃を上限とすることが好ましい。より好ましくは700〜950℃の範囲である。   On the other hand, in order to make the maximum temperature higher than 1100 ° C., the cost increases remarkably, and operation troubles such as plate breakage are induced. More preferably, it is the range of 700-950 degreeC.

この温度域での熱処理時間は、特に規定しないが、鋼板の温度均一化のために、1秒以上が好ましい。しかし、10分超では、粒界酸化相生成が促進される上、コストの上昇を招く。熱処理後、各種めっきを施しても構わない。また、スキンパスの実施も可能である。   Although the heat treatment time in this temperature range is not particularly defined, it is preferably 1 second or more in order to make the temperature of the steel sheet uniform. However, if it exceeds 10 minutes, the generation of grain boundary oxidized phase is promoted and the cost is increased. Various plating may be performed after the heat treatment. A skin pass can also be implemented.

以下、本発明の実施例を、比較例とともに説明する。   Examples of the present invention will be described below together with comparative examples.

表1に化学成分を示す鋼のスラブを連続鋳造法により製造した。このスラブを、1200℃に加熱し、Ar3変態温度以上である880℃〜910℃で熱延を完了し、580℃で巻き取った。この巻き取った厚さ2.3mmの鋼帯を、酸洗の後、冷延により、板厚を1.2mmとした。 Steel slabs having chemical components shown in Table 1 were produced by a continuous casting method. This slab was heated to 1200 ° C., and the hot rolling was completed at 880 ° C. to 910 ° C., which is higher than the Ar 3 transformation temperature, and wound up at 580 ° C. The rolled steel strip having a thickness of 2.3 mm was pickled and then cold rolled to a plate thickness of 1.2 mm.

引き続き、熱処理を、最高到達温度870℃にて90秒間保持して、740℃まで5℃/秒で冷却して施した。その後、冷却速度80℃/秒で温度350℃まで冷却し、その温度で約300秒間、付加的熱処理を施した。スキンパスは0.5%とした。   Subsequently, the heat treatment was carried out by holding at a maximum attained temperature of 870 ° C. for 90 seconds and cooling to 740 ° C. at 5 ° C./second. Thereafter, the temperature was lowered to 350 ° C. at a cooling rate of 80 ° C./second, and an additional heat treatment was performed at that temperature for about 300 seconds. The skin pass was 0.5%.

このようにして得られた鋼板の強度、延性、伸びフランジ性および介在物の粒径分布、形態、平均組成を調べた。その結果を表2に示す。   The steel sheet thus obtained was examined for strength, ductility, stretch flangeability, inclusion particle size distribution, morphology, and average composition. The results are shown in Table 2.

強度と延性は、圧延方向に対して垂直方向に採取したJIS5号試験片の引張試験により求めた。伸びフランジ性は、150mm×150mmの鋼板の中央に開けた直径10mmの打ち抜き穴を、60°の円錐パンチで押し広げ、板厚貫通亀裂が生じた時点での穴径D(mm)を測定し、穴広げ値λ=(D−10)/10で求めたλで評価した。   Strength and ductility were determined by a tensile test of a JIS No. 5 test piece taken in a direction perpendicular to the rolling direction. Stretch flangeability is measured by measuring the hole diameter D (mm) when a through-thickness crack is generated by punching out a punched hole with a diameter of 10 mm in the center of a 150 mm x 150 mm steel plate with a 60 ° conical punch. The hole expansion value λ = (D−10) / 10.

介在物は光学顕微鏡による100倍と1000倍の観察を行い、ランダムに選んだ100個の介在物について粒径と形態を測定した。さらに、走査型電子顕微鏡の定量分析機能を用いて、ランダムに選んだ20個の介在物について組成分析を実施した。   Inclusions were observed 100 times and 1000 times with an optical microscope, and the particle size and morphology of 100 randomly selected inclusions were measured. Furthermore, using a quantitative analysis function of a scanning electron microscope, composition analysis was performed on 20 inclusions randomly selected.

表2から明らかなように、本発明の要件を満たす本発明鋼は、同強度の比較鋼と比べて穴広げ値が大きくなっており、伸びフランジ性と強度とのバランスに優れていることが分かる。   As is apparent from Table 2, the steel of the present invention that satisfies the requirements of the present invention has a larger hole expansion value than the comparative steel of the same strength, and is excellent in the balance between stretch flangeability and strength. I understand.

Figure 0004268559
Figure 0004268559

Figure 0004268559
Figure 0004268559

前述したように、本発明は、延びフランジ性に優れた高強度鋼板を提供できるので、鋼産業上、利用可能性の高いものである。   As described above, since the present invention can provide a high-strength steel plate having excellent stretch flangeability, it is highly usable in the steel industry.

Claims (3)

C:0.03〜0.3質量%、Si:0.1〜2.0質量%、Mn:1.0〜3.5質量%、P:0.05質量%以下、S:0.01質量%以下、N:0.0005〜0.01質量%、酸可溶Al:0.01質量%以下、酸可溶Ti:0.008質量%未満、CeおよびLaの1種または2種の合計:0.0005〜0.04質量%を含有し、残部が鉄および不可避的不純物からなる鋼であり、その鋼中には、平均の介在物組成で、Ce酸化物およびLa酸化物の1種または2種の合計が10〜90質量%、SiOが5〜60質量%、Alが50質量%以下の範囲の介在物を含むことを特徴とする伸びフランジ性に優れた高強度鋼板。 C: 0.03-0.3 mass%, Si: 0.1-2.0 mass%, Mn: 1.0-3.5 mass%, P: 0.05 mass% or less, S: 0.01 % By mass or less, N: 0.0005 to 0.01% by mass, acid-soluble Al: 0.01% by mass or less, acid-soluble Ti: less than 0.008% by mass, one or two of Ce and La Total: 0.0005 to 0.04% by mass, the balance being steel consisting of iron and inevitable impurities, and the steel contains 1 of Ce oxide and La oxide with an average inclusion composition species or two total 10 to 90 wt%, SiO 2 is 5 to 60 wt%, high Al 2 O 3 is superior in stretch flange formability, which comprises the inclusions in the range of 50 wt% or less Strength steel plate. C:0.03〜0.3質量%、Si:0.1〜2.0質量%、Mn:1.0〜3.5質量%、P:0.05質量%以下、S:0.01質量%以下、N:0.0005〜0.01質量%、酸可溶Al:0.01質量%以下、酸可溶Ti:0.008質量%未満(ただし、0.005質量%以上を除く)、CeおよびLaの1種または2種の合計:0.0005〜0.04質量%を含有し、残部が鉄および不可避的不純物からなる鋼であり、その鋼中には、介在物の個数割合で、50%以上が球状と紡錘状の介在物からなることを特徴とする伸びフランジ性に優れた高強度鋼板。 C: 0.03-0.3 mass%, Si: 0.1-2.0 mass%, Mn: 1.0-3.5 mass%, P: 0.05 mass% or less, S: 0.01 % By mass or less, N: 0.0005 to 0.01% by mass, acid-soluble Al: 0.01% by mass or less, acid-soluble Ti: less than 0.008% by mass (excluding 0.005% by mass or more) ) , A sum of one or two of Ce and La: 0.0005 to 0.04% by mass, the balance being iron and inevitable impurities, and the number of inclusions in the steel A high-strength steel sheet excellent in stretch flangeability, characterized in that 50% or more is composed of spherical and spindle-shaped inclusions. C:0.03〜0.3質量%、Si:0.1〜2.0質量%、Mn:1.0〜3.5質量%、P:0.05質量%以下、S:0.01質量%以下、N:0.0005〜0.01質量%、酸可溶Al:0.01質量%以下、酸可溶Ti:0.008質量%未満(ただし、0.005質量%以上を除く)、CeおよびLaの1種または2種の合計:0.0005〜0.04質量%を含有し、残部が鉄および不可避的不純物からなる鋼であり、その鋼中には、0.5μm以上10μm以下の介在物が1000個/cm以上、100000個/cm以下存在することを特徴とする伸びフランジ性に優れた高強度鋼板。 C: 0.03-0.3 mass%, Si: 0.1-2.0 mass%, Mn: 1.0-3.5 mass%, P: 0.05 mass% or less, S: 0.01 % By mass or less, N: 0.0005 to 0.01% by mass, acid-soluble Al: 0.01% by mass or less, acid-soluble Ti: less than 0.008% by mass (excluding 0.005% by mass or more) ) , A sum of one or two of Ce and La: 0.0005 to 0.04% by mass, the balance being iron and inevitable impurities, and the steel contains 0.5 μm or more A high-strength steel sheet excellent in stretch flangeability, wherein inclusions of 10 μm or less are present in an amount of 1000 pieces / cm 2 or more and 100,000 pieces / cm 2 or less.
JP2004128058A 2004-04-23 2004-04-23 High strength steel plate with excellent stretch flangeability Expired - Lifetime JP4268559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004128058A JP4268559B2 (en) 2004-04-23 2004-04-23 High strength steel plate with excellent stretch flangeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004128058A JP4268559B2 (en) 2004-04-23 2004-04-23 High strength steel plate with excellent stretch flangeability

Publications (2)

Publication Number Publication Date
JP2005307301A JP2005307301A (en) 2005-11-04
JP4268559B2 true JP4268559B2 (en) 2009-05-27

Family

ID=35436395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004128058A Expired - Lifetime JP4268559B2 (en) 2004-04-23 2004-04-23 High strength steel plate with excellent stretch flangeability

Country Status (1)

Country Link
JP (1) JP4268559B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4901346B2 (en) * 2005-11-07 2012-03-21 新日本製鐵株式会社 High-strength steel sheet with excellent stretch flangeability and fatigue characteristics
JP4719067B2 (en) * 2006-04-21 2011-07-06 新日本製鐵株式会社 High strength steel plate with excellent stretch flangeability and method for producing the same
EP2048254B1 (en) * 2006-07-14 2020-08-19 Nippon Steel Corporation High strength steel plate superior in stretch flange formability and fatigue characteristics
JP4431185B2 (en) 2008-06-13 2010-03-10 新日本製鐵株式会社 High-strength steel sheet with excellent stretch flangeability and fatigue characteristics and method for producing the molten steel
JP5058892B2 (en) * 2008-06-16 2012-10-24 新日本製鐵株式会社 DP steel sheet with excellent stretch flangeability and method for producing the same
CN102892910B (en) 2010-05-10 2016-11-16 新日铁住金株式会社 High-strength steel sheet and manufacture method thereof

Also Published As

Publication number Publication date
JP2005307301A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP4445365B2 (en) Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability
JP4927236B1 (en) Steel sheet for hot stamping, manufacturing method thereof, and manufacturing method of high-strength parts
JP4072090B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
JP4324225B1 (en) High strength cold-rolled steel sheet with excellent stretch flangeability
JP4790639B2 (en) High-strength cold-rolled steel sheet excellent in stretch flange formability and impact absorption energy characteristics, and its manufacturing method
JP5487984B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP6597889B2 (en) High strength cold-rolled steel sheet and method for producing high-strength cold-rolled steel sheet
JPWO2011142356A1 (en) High strength steel plate and manufacturing method thereof
JP7280364B2 (en) Plated steel sheet for hot forming with excellent impact properties after hot forming, hot formed member, and manufacturing method thereof
JP6237960B1 (en) Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate
JP7216358B2 (en) Hot press-formed member with excellent resistance to hydrogen embrittlement and method for producing the same
JP4050991B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
JP4528135B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in hole expansibility and method for producing the same
JP2021507985A (en) Cold-rolled heat-treated steel sheet and its manufacturing method
JP4324226B1 (en) High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability
JP2020509190A (en) High-strength steel sheet excellent in high-temperature elongation property, warm press-formed member, and method for producing them
WO2008007477A1 (en) High-strength steel sheet excellent in stretch flangeability and fatigue property
JP2005256115A (en) High strength hot rolled steel sheet having excellent stretch flange formability and fatigue property
JP6037087B1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP4268559B2 (en) High strength steel plate with excellent stretch flangeability
JP2006274378A (en) High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and method for producing them
JP4719067B2 (en) High strength steel plate with excellent stretch flangeability and method for producing the same
JP6056745B2 (en) High formability and high strength cold-rolled steel sheet excellent in chemical conversion treatment and production method thereof
JP2007231352A (en) Precipitation hardening high strength steel sheet and its production method
JP7401826B2 (en) Steel plate and method for manufacturing steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090220

R151 Written notification of patent or utility model registration

Ref document number: 4268559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350