JP4521517B2 - 微小対象物放出光検出装置 - Google Patents

微小対象物放出光検出装置 Download PDF

Info

Publication number
JP4521517B2
JP4521517B2 JP2005038113A JP2005038113A JP4521517B2 JP 4521517 B2 JP4521517 B2 JP 4521517B2 JP 2005038113 A JP2005038113 A JP 2005038113A JP 2005038113 A JP2005038113 A JP 2005038113A JP 4521517 B2 JP4521517 B2 JP 4521517B2
Authority
JP
Japan
Prior art keywords
light
minute object
semiconductor
excitation light
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005038113A
Other languages
English (en)
Other versions
JP2005283568A (ja
Inventor
利浩 亀井
太郎 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005038113A priority Critical patent/JP4521517B2/ja
Publication of JP2005283568A publication Critical patent/JP2005283568A/ja
Application granted granted Critical
Publication of JP4521517B2 publication Critical patent/JP4521517B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、励起光を照射することで蛍光ないし燐光という形で微小対象物から放出される当該放出光を高感度に検出する装置に関し、特に当該微小対象物がバイオ化学分析における色素や半導体量子ドット、ないしは色素あるいは半導体量子ドットで標識された微小サンプルであるような場合に好適な微小対象物放出光検出装置に関する。
例えば核酸、アミノ酸、蛋白質等、種々なバイオ化学分析において採られる分析手法の一つに、電気泳動法がある。最近では特に、ナノリッタからピコリッタにも及ぶような微小量の溶液サンプルを用いれば足り、これを適当な色素で標識し、コンパクトな電気泳動チップ上で当該サンプルに励起光を照射し、これにより色素の発生する蛍光を分析処理する装置が提案された。本発明者等においても、こうした装置に関し、これまでに下記特許文献1、非特許文献1に開示されているような装置的、方法的工夫を種々、施してきた。
国際公開WO 03/102554公報 T. Kamei他,"Integrated Hydrogenated Amorphous Si Photodiode Detector for Microfluidic Bioanalytical Devices",Anal. Chem., Vol.75, No.20(Oct.15,2003)pp.5300-5305.
図7(A),(B) には、上記特許文献1、非特許文献1により本発明者等が開示した従来装置の一例が示されているので、これに基づき説明を始めると、まず、図7(A) に示すように、分析用サンプルを収容、載持するチップ10があり、このチップ10には互いに平面的に交差する微細幅のチャネル(溝)15,16が設けられている。一方の溝15は注入チャネル15と呼ばれ、その一端に溶液状のサンプルを入れる井戸状の液溜めであるサンプルリザーバ11が、他端には注入チャネル15を介して流れ出てきたサンプルを受け止める液溜めであるウエイスト(waste)リザーバ12が設けられている。この注入チャネルと交差するもう一方の溝16は分離チャネル16と呼ばれ、その一端側には後述のように電圧を印加する関係で陰極リザーバ13と呼ばれる液溜め13が、他端には陽極リザーバ14と呼ばれる液溜め14が設けられている。各リザーバ11〜14には、それぞれ後述のタイミングで予め決められた電圧を印加するために、図示していないが例えば薄膜状の電極が設けられているか、あるいは針状等の電極が挿入される。なお、溝15,16は、一般には図示のように互いに直交し、平面的に見るとそれらの溝15,16により十字形状が形成される。
しかるに、サンプルリザーバ11にサンプルを注入した後、サンプルリザーバ11とウエイストリザーバ12の間に適当な電圧を印加すると、当該サンプルは注入チャンネル15内を泳動して行く。この時、陰極リザーバ13、陽極リザーバ14は電位的にフローティングにするか、それらの間に適当なバイアス電圧を印加しておく。適当な時間が経過した後に(通常は10〜60秒程度)電圧を切り替え、陰極リザーバ13と陽極リザーバ14との間に適当なる電圧を印加すると、丁度その時に分離チャンネル16との交差点に至っていたサンプルの一部分(サンプルプラグと呼ばれる)が切り出され、当該分離チャネル16内において電気泳動を開始する。なお、この際には、注入チャンネル15に残ったサンプルが分離チャンネル16に流入しないように、サンプルリザーバ11とウエイストリザーバ12の間に適当なバイアス電圧を印加する。
最近の半導体微細加工技術を利用すると、各チャネル15,16は精度良く極めて微細な幅に加工でき、従って当該チャネル幅(一般に数十μm)に相当する短いサンプルプラグを生成することができる。チップ10は少なくとも励起光や蛍光の波長に対して極力高い光透過性を有し、かつ、電気泳動に好適な絶縁性も有する必要があるため、実際には二枚のガラス板の貼り合せで作られることが多い。一枚のガラス板10aに各チャネル15,16をリソグラフィ形成(場合により機械的に形成されることもある)した後に、チャネル15,16を上から塞ぎ、かつ、各リザーバ11〜14を形成する縦穴の穿たれたもう一枚のガラス板10b を熱溶着等により接着する。ガラス基板に代えてプラスティック材料が用いられることもあり、熱溶着、超音波接着、接着剤の援用等により二枚の板部材の結合が図られる。予め述べておくと、この部分の構造に関しては本発明は特段の規定を施さない。分析に適当なる構造のものであれば良く、もちろん、既存のもので構わない。
いずれにしても、既存の製造技術でも既に極く短いサンプルプラグを得ることはできるので、最近では短いチャネル長で高い理論段数の電気泳動分離が可能となっているとは言える。分離チャネル16内を泳動するサンプルは、既述したように適当な色素で予め標識されているので、励起光Leにより光照射されると、それとは波長の異なる光、一般的には、蛍光を放出する。そのため、標識されたサンプルプラグが分離チャンネル16中を泳動する中に、大きさや電荷等の違いによって分離されて検出領域Poに到達し、そこで励起光Leの照射を受けた結果として放出した蛍光の強度を、当該サンプルプラグが当該検出領域Poにまで到達するに要した時間に対してプロットすると、各サンプルプラグごとに固有の、いわゆる電気泳動データ(Electropherogram)が得られる。
図7(B)には、こうした蛍光を検出する蛍光検出部40の従来構造例が示されている。説明すると、まず、蛍光を検出する半導体光検出素子20がある。これは図示の断面でみると左右一対あるように見える。しかし、実際には例えば平面的に見るとドーナッツ状をなしており、真ん中の透孔41(一般にピンホール状)を介し、サンプルを照射する励起光Leが通される。この励起光Leが光透過性のチップ10に入射し、図7(A) に示した検出領域Poにおいて分離チャネル16内のサンプルを照射すると、当該サンプルから蛍光Lfが発せられる。そして、この蛍光Lfが、蛍光収集用のマイクロレンズ61により望ましくは略々平行化された後、半導体光検出素子20の入射面側に設けられている光学フィルタ50に入射する。光学フィルタ50は通常、石英ガラス52の一表面側にコーティング形成された光学干渉フィルタとして構成され、散乱されて来る励起光Leをできるだけ除去し、蛍光Lfのみを半導体光検出素子20に入射させるために、蛍光Lfの選択透過性を持つ。蛍光収集用マイクロレンズ61は、鋳型成型等によりチップ10と一体に成型することもできるし、あるいは一部仮想線で示すように、専用の基板61’に形成し、これをチップ10の裏面に貼着することで設けることもできる。
光学干渉フィルタ50や半導体光検出素子20の具体的構造例は既存構造のものであって良く、後に本発明の実施形態に即して説明する所を援用する(換言すれば、本発明はそうした部材50,20の基本的な構造自体には改変を施すものではない)が、半導体光検出素子20は、上記した特許文献1,非特許文献1に開示されているように、望ましくは水素化アモルファスシリコン(a-Si:H)を用いて作製されたフォトダイオードとされる。電気泳動法を援用する場合に限らずとも、a-Si:Hフォトダイオードは下記に列挙するように、種々望ましい特徴を備えているからである。
1)バイオ化学分析に有用な色素(例えばFluorescein、Green Fluorescence Protein、TOTO、Ethidium Bromide)の蛍光帯は可視光領域にあり、この領域でa-Si:Hの吸収係数が高い。
2)暗電流が結晶シリコンに比べて数桁低いため、冷却の必要がなく、小型化に有利である。
3)半導体微細加工技術によるパターン形成が可能であって、容易に検出器アレイが作製できる。
4)要すればプラズマ化学気相成長法により安価なガラスやプラスチック基板上に直接形成できるため、大量生産性に優れ、低コスト化が容易である。
本発明者等は、上記非特許文献1に開示のように、実際に集積型a-Si:Hフォトダイオードを作製し、励起光源としてアルゴンイオンレーザ(488nm)を用いて実験を行った所、その検出限界はFluorescein濃度で17nMであった。これは、これまで報告されていた数例のこの種蛍光検出装置の中で最も優れた検出感度を示すもので、現にマイクロ流体DNA断片解析、アミノ酸鏡像異性体解析等に成功している。
ここで少し一般的な話に戻ると、こうした蛍光検出装置で達成すべき最終目標は、いわゆるラボ・オン・チップ、ないしMicro Total Analysis System (=μTAS)の実現である。すなわち、全ての分析プロセスに必要な素子、装置系を単一のチップ上に搭載させ、しかも、そのチップを小型化することで、“現場(point-of-care)”分析を可能にすることである。上記特許文献1や非特許文献1が開示される以前の実情でも、確かに蛍光検出分析方法の概念は確立したものがあり、実際にもマイクロ流体電気泳動の場合、96から384チャネルを用いた高速遺伝子判別が行われていた。また、マイクロ流体バルブやポンプが提案され、微小流体の大規模な並列操作が可能になってきてもいたし、このようなマイクロ流体バルブやポンプを用いた、マイクロ流体細胞ソータ(Sorter)や大規模集積された微小チャンバの中で、蛋白質結晶化の条件がコンビナトリアル最適化できるようにもなってきていた。
しかし、電気泳動等における分析プロセスやサンプル前処理プロセスがマイクロチップ上に集積化、小型化され、さらに部分的には大規模集化されるようになってきていたにも拘わらず、マイクロ流体ラボ・オン・チップの高感度分析には、光電子増倍管、CCD、光学干渉フィルタ、レーザ等から構成されるレーザ誘起蛍光検出システムが使われることが殆どであって、到底、持ち運びの自由な“現場”分析に適当な装置とは言い難かった。その点、本発明者等が提案した上述の装置系によれば、“現場”で、低サンプル消費、かつ、高速なバイオ化学分析が可能となる礎が築かれた。従って、これを発展させて、ラボ・オン・チップを構築、実現できれば、いわゆるバイオテロを蒙ったときの病原菌の検出や同定、遺伝病の判定、ストレス・モニタ等を即時性を持って行うに十分有用であり、大きな産業的インパクトを見込むことができる。
ところが、ここで一番、問題になってきたのが、励起光源の選択自由度の乏しさや検出感度の不十分さである。例えば既述の通り、上記非特許文献1ではアルゴンイオンレーザを用いていたが、これでは究極的な検出系の一体化、小型化は望めない。ただ、これを例えば、既に市販されているSHG(Second Harmonic Generation)素子を用いた青緑光半導体レーザ(例えばNovalux社Protera488、Coherent社Sapphire等)に置き換えれば、光源まで含めての小型化も可能なため、一応、“現場”マイクロ流体ラボ・オン・チップに必要なコンパクトな蛍光検出システムを実現できるかのように思われる。実際、これで十分なバイオ化学分析も多い。
が、しかし、DNAや蛋白質の分析等、様々な局面で、より高感度な検出技術が求められているのも事実で、実際にはさらに一桁以上、検出限界を下げることが要求されている。集積型a-Si:H光検出素子を用いた場合、上記のようなレーザ光源を用いると、そのレーザ散乱光によるバックグランド光電流が高く、ノイズレベルが検出限界を決めている。これは、集積型蛍光検出装置に共通する課題である。
一方、多重度の高いバイオ分析を実現するには、アレイ化が容易で、生産性に優れた面発光レーザとの集積化が実用的であると考えられる。しかし、この点については、既述した特許文献1、非特許文献1では詳しく考察を施していない。そこで例えば、用い得る面発光レーザとして、あえて候補を挙げてみると、バイオ化学分析に適した発振波長範囲の青緑光面発光レーザとして、ZnSe系材料により構築されたものがある。しかしこれは、極低温77Kでのレーザ発振であり、さらに、ZnSe系材料はイオン性が高いために、一般的に短寿命である。到底、実用的な素子とはなり得ない。
青色LED(発光ダイオード)や青紫色レーザでよく知られたGaN系材料ならば、光励起面発光レーザが報告されてはいる。が、電流注入型はレーザ共振器を構成するために一般的に用いられる分布ブラッグ反射 (Distributed Bragg Reflection:DBR)ミラーやP層の低抵抗化等に技術的な課題があるし、発振波長的にも問題がある。現在、電流注入型で信頼性の高い面発光レーザの中で、最も短波長な光を発振できるのはGaInAlP-GaAs面発光レーザの650nm程度であるが、これでは効率よく励起できる色素が限定されてしまい、ここで述べているようなバイオ化学分析に有用な色素は励起できない。
面発光レーザを用いるという点だけに着目するのであれば、下記非特許文献2に開示されているように、AlGaAs面発光レーザを用い、光学干渉フィルタ、GaAsフォトダイオードをGaAs基板上にモノリシックに集積化した蛍光検出装置もある。ここでは光学干渉フィルタにはGaAs系面発光レーザの分布ブラッグ反射ミラーを用いており、すべてGaAs系材料で構成されている。従って、既に成熟しているGaAs系面発光レーザの製造技術と全く同じ技術で生産できるという利点はある。また、多重度の高いバイオ化学分析にも適しているとは言える。しかし、この非特許文献2に開示されている内容では検出限界がどの程度なのか不明であり、実際、バイオ化学分析を行うには至っていない。また、GaAs系材料であるので、レーザの発振波長はやはり近赤外領域にあり(773nm)、原理的にレイリー散乱が低いという利点があるものの、FluoresceinやGreen Fluorescence Protein、TOTO等のようなバイオ化学分析に有用な色素を励起することはできない波長である。
E. Thrush他,"Integrated bio-fluorescence sensor", J. of Chromatography A, Vol.1013, (Sept.26,2003), pp. 103-110.
本発明はこのような現状に鑑みてなされたもので、励起光源の発する励起光波長上の制約から解放して、すなわち、用い得る励起光源の選択自由度を増すと共に、各種バイオ化学分析で用いる色素を効果的に励起することができ、なおかつ高感度であって、また、最終的にはラボ・オン・チップを実現し得る原理構造をも提案する蛍光検出装置を提供せんとするものである。
なお、上記では色素から放出される蛍光の検出に関して説明してきたが、最近では有機分子である色素に代わるバイオ化学分析の蛍光標識として、吸収スペクトルが波長的にブロードで励起光源の選択自由度がありながら、蛍光スペクトルは波長的にシャープで波長多重分析に好適であり、光劣化(Photobleaching)が小さい等の観点から半導体量子ドットも注目されている。そこで、本書冒頭において述べているように、本発明はこのような新しい蛍光標識にも対応できる装置の提供をも目標とする。さらに蛍光検出だけでなく、一般に蛍光よりも長波長側にピーク波長が位置する燐光の検出にも好適な装置を提供せんとする。従って、励起光照射により微小対象物から放出される蛍光、燐光は、総称して微小対象物からの放出光と概念する。
本発明者は上記目的を達成するため、面発光レーザの発する光に基づいて生成される励起光の照射を受けて微小対象物が蛍光または燐光という形で放出する放出光を放出光収集用マイクロレンズを介して半導体光検出素子に入射させ、この半導体光検出素子により検出させる微小対象物放出光検出装置であって、半導体光検出素子は透孔を有し、上記の励起光はこの透孔内を直線的に通過して微小対象物を照射するように構成されていて、これら半導体光検出素子と面発光レーザとが励起光の光軸に関し同軸関係の配置となって一つのモジュールを構成している構造を基本構造とする。
その上で、上記の励起光の直線的な光路中には、半導体光検出素子とも面発光レーザとも同軸配置関係で、励起光を収束し、その光強度密度を高めて微小対象物を照射させることにより、当該微小対象物から二光子吸収で放出光を放出させるためのマイクロ収束レンズと、面発光レーザからの光照射により短パルスレーザ光を生成し、瞬間的にピーク光強度を高めてから当該短パルスレーザ光を上記の励起光として微小対象物に照射させることで、当該微小対象物から二光子吸収による放出光を発生させるために、利得媒体と可飽和吸収体から構成される受動型のQスイッチレーザとを設ける。
さらに、このQスイッチレーザの利得媒質と可飽和吸収体はGaAs基板上に成長されたInGaAsから成る量子井戸層とし、利得媒質の利得曲線と可飽和吸収体の吸収帯域に重なりが生じるようにInとGaの組成及びInGaAs量子井戸層の厚みを定め、かつ、利得媒質の端面に形成された第一のミラーと可飽和吸収体の端面に形成された第二のミラーとによる一対のミラーが上記短パルスレーザ光に関する共振器を構成するようにし、また、利得媒質と可飽和吸収体の間には上記の短パルスレーザ光は透過させるが面発光レーザからの光は反射する第三のミラーを挿入する。
この基本構成の下で、本発明はまた、それぞれ特定の下位態様として、マイクロ収束レンズが半導体光検出素子の構築基板に一体に設けられることで上記の透孔内に位置しているか、あるいは、放出光収集用マイクロレンズに一体に設けられることで当該透孔の延長線上に位置しているか、または、半導体光検出素子と面発光レーザをモノリシックに形成する構築基板に一体に設けられることで当該透孔内に位置している微小対象物放出光検出装置も提案する。
さらに、望ましい下位態様として、微小対象物の放出する放出光は当該放出光に対して選択透過性を有する光学フィルタを介して半導体光検出素子に入射させるのが良い。その上で、望ましくは、光学フィルタ及び半導体光検出素子の側壁にあって少なくとも励起光の散乱光が入射する可能性のある側壁部分は遮蔽膜により覆う。
構造的には、半導体光検出素子と上記の光学フィルタとを有する放出光検出部が平面的に見て円形またはnを3以上の整数としてn角形形状の立体形状をなし、この立体形状の一部に円形もしくはn角形形状に上記の透孔が開いているように構成するのが望ましいが、やはり最も一般的なのは、放出光検出部を平面的に見て円形、透孔も円形、すなわち全体として見てドーナッツ形状にすることである。
また、上記の半導体光検出素子はa-Si:H材料を用いて作製されたフォトダイオードとすることが有利である。
さらに進めて、上記した半導体光検出素子と面発光レーザとで構成されているモジュールを複数個、一次元または二次元的に並設してモジュールアレイを構成させた装置も有用であり、このモジュールまたはモジュールアレイを一次元方向または二次元方向、あるいは三次元方向に走査する走査機構を設けることも種々の応用を産む。
発明によると、色素や半導体量子ドット、ないしは色素あるいは半導体量子ドットで標識された微小サンプル等、励起光を照射することで蛍光を放出する微小対象物や燐光を放出する微小対象物を二光子吸収により励起するので、既に述べた理由から半導体光検出素子として望ましいa-Si:Hフォトダイオードを用いた場合、微小対象物から可視光領域の放出光を発生させるにも、実際の励起光波長は二光子吸収原理を用いない場合に比して倍の波長であって良いことになる。従って例えば、微小対象物の光吸収ピークが500nm程度の波長である場合、その倍の1000nm程度の波長の光を発生する励起光源を用いることができる。これは励起光源選択の自由度を大幅に高めるもので、種々既存の半導体励起光源の中から安定かつ使い勝手の良いものを使うことができるようになる。上記の波長関係は、より一般的には、本発明の特定の態様における具体的な限定に従い、励起光の波長は半導体光検出素子のバンドギャップに相当する波長より長く、放出光の波長は半導体光検出素子のバンドギャップに相当する波長より短い関係にある、とした場合に対応し、特に励起光の波長は近赤外領域の波長とする限定に従うことで、選択できる半導体励起光源は多くなり、安定なものを用いることができる。
さらに、そもそも、半導体光検出素子には上記のようにa-Si:H系の採用が一番望ましいが、これに限らず、一般的に半導体材料ということだけに展開して考えても、二光子吸収を起こすことは極めて有用である。半導体の吸収係数はエネルギが高くなる程に大きくなるが、通常の一光子吸収の場合、励起光波長は常に放出光波長より短いので、励起光波長での半導体光検出素子の吸収係数は放出光波長での吸収係数より常に大きくなる宿命にある。従って半導体光検出素子への励起光の散乱による漏れ込み等を考えると、そうした励起光ないしその散乱光に対する感度が高く、サンプルからの放出光に対する感度が低いという点で、どうしてもSN比(信号対雑音比)が低下しがちである。ところが、二光子吸収による励起を図ると、望ましいことにこの関係が逆転し、半導体光検出素子の吸収係数は励起光波長で低く、放出光波長で高くなるため、原理的にSN比が高くなる。
換言すれば、二光子吸収を起こさせるために相当、励起光強度密度を高めても、バックグラウンド光電流による半導体光検出素子の感度低下の惧れは大幅に低下させることができる。さらに、本発明の上記構成に認められるように、マイクロ収束レンズ、マイクロ共振器やピーク強度の高いQスイッチ短パルスレーザー光を用いることで、効率的に二光子吸収を起こすことも可能である。マイクロ収束レンズの採用により、焦点近傍のみを選択的に励起することができるため、共焦点蛍光検出システムに近い空間フィルタリングが可能となり、その意味でもバックグランド光を低減させることができる。また、レーザ光散乱のうち、レーリー散乱によるものは、励起光の波長が二倍になれば、(1/2)4=1/16に低下させることができるので、この点でも長波長光を励起光として用い得る効果は高いものがある。
さらに、本発明の特定の態様に従い、微小対象物の発する放出光を、当該放出光に対して選択透過性を有する光学フィルタを介して半導体光検出素子に入射させるようにした場合、この光学フィルタ及び半導体光検出素子の側壁にあって少なくとも励起光の散乱光が入射する可能性のある側壁部分は遮蔽膜により覆うようにすると、さらに低ノイズ化が図れ、これによっても感度を十分に向上させることができる。
本発明によると、以上のように性能的に有利になるだけではなく、実質的に用いる励起光源の選択自由度が増し、かつ材料の相性の組み合わせも解決できて、光検出素子と集積化することも容易にできるようになるということから、ラボ・オン・チップの実現に大いに近づくことができる。特に、本発明の特定の態様に従う面発光レーザ一体型a-Si:H放出光検出モジュールは生産性に優れ、低コスト化が可能であり、多重度の高い並列バイオ化学分析に大きな役割を果たすものと思われる。
本発明はまた、上記のような構造原理であるので、電気泳動法を用いての分析にのみ限ることなく、検出限界が大幅に改善されることから、より広範なバイオ分析に応用可能であって、大概すれば、蛍光検出ベースのあらゆるタイプのマイクロ流体ラボ・オン・チップの実現に極めて有効な手段を与え、DNAチップ(DNA microarray)、プロテイン・チップ等の蛍光検出システムにも有利に適用できる。例えばDNAフラグメント解析、DNAシークエンシング、ポロニー・シークエンシング、RNA解析、たんぱく質分離、アミノ酸解析、細胞ソーティング、ドラッグ・スクーリング等に関しての応用も考えられるし、さらにはPCRと電気泳動を集積・結合したデバイスと組み合わせることで、“現場”病原菌検出、同定、石油分解等の有用菌の検出、同定等にも有効と思われる。
特に、色素に代えて半導体量子ドットを用いた場合、その重量の大きさがあまり障害にならないDNAチップ分析等においては、半導体量子ドットの二光子吸収断面積が桁違いに大きい分、蛍光検出や燐光を検出する場合に格段に効果的である。
さらに、本発明の特定の態様に従い、励起光源と半導体光検出素子のセットをモジュールとして一次元ないしは二次元にアレイ化した場合、さらに応用使途は広がる。また、単一のモジュールまたはモジュールアレイを一次元ないし二次元、あるいはまた、さらに三次元に走査可能とすると、より応用範囲は広がり、例えば単に分析の並列処理化のためだけではなく、前述した二光子吸収の空間選択性(フィルタリング)の効果により、微小対象物のイメージング等も可能となる。
図1には本発明の望ましい実施形態の一つが示されている。なお、既に図7(A),(B)に即して述べた従来例の各構成要素に付した符号を始め、他の図面中にて用いる符号も、同一の符号は同一ないし同様で良い構成要素を示し、従って各構成要素に関しどこかで説明した内容は特に断らない限り、他においても援用でき、繰り返しての説明は避けることがある。
さて、この図1に示す本発明実施形態は、既に述べた電気泳動法を用いてのサンプル分析に適用するように構成されたものであることを想定しており、従って励起光Leの照射を受けることで放出光としてこの場合蛍光を発する微小対象物は、既述のようにガラスないしプラスティック基板から構成されたチップ10内の分離チャネル16を通る色素標識されたサンプルプラグ(これ自体は図示せず)である。
励起光Leはこの実施形態では励起光源30として選ばれた面発光レーザ30により発振された光であるが、便宜上、当該面発光レーザ30についての説明は後に回し、励起光Leの照射を受けて発せられた蛍光Lfが、既に従来例に即して説明した蛍光収集用マイクロレンズ61を介して平行化された後に入射する蛍光(放出光)検出部40の側から説明する。蛍光検出部40内に備えられる半導体光検出素子20として望ましいのは、a-Si:H材料により構成されたa-Si:Hフォトダイオード20である。一般にa-Si:H膜は、SiH4ガスあるいは水素希釈されたSiH4ガスをプラズマで分解し、生成した活性種を基板に導くことで(プラズマ化学気相成長法)、200℃程度の低温でも高品質に作製可能である。不純物ドーピングは、この原料ガスに、不純物ガスB2H6あるいはPH3を添加するだけであり、それぞれP型、N型のa-Si:Hが得られる。このように低温プロセスで済むお陰で、a-Si:Hフォトダイオードはガラスやプラスチックなどの安価な基板に直接形成することができる。図示する実施形態でもそうした場合が想定されている。ただし、本発明ではこのa-Si:Hフォトダイオード20の構造それ自体を特に規定するものではなく、公知既存の構造のものを援用できるが、ここで簡単に図示されているフォトダイオードの作製手順につき述べておく。
まず透明基板28、例えばガラス基板28上にスパッタ等によりクロム等、適当なる導電材料の裏面電極27を形成する。その上にN型a-Si:H膜26、真性a-Si:H膜25、P型a-Si:H膜24を順次積層形成した後、例えばITO等により受光側の透明導電膜23を形成する。電極も含めたa-Siフォトダイオード20のパターン形成はフォトリソグラフィにより適時行い、中心に透孔(ピンホール)41を有するドーナッツ形状とする。こうした構造で裏面電極27に開けられたピンホールは、励起光Leに対してアパーチャとして働く。
上述のように、この場合はPIN型として構成されたフォトダイオード20の側壁は、SiN等による適当な絶縁膜22で覆い、その上にアルミ等、適当な金属21で被覆し、この金属膜21を受光側透明導電膜23と電気的に接触させることで、裏面電極に対向するもう一方の電極としている。このa-Si:Hフォトダイオード20上に、SiNあるいはSiO等による絶縁膜53を形成し、CMP(Chemical Mechanical Polishing)法等を援用してその表面を平坦化した後、その上に光学フィルタ50を形成する。光学フィルタ50は光学干渉フィルタとして構成するのが普通であり、例えばZnS/YF3等の光学干渉フィルタ50を形成する。蛍光Lfに対する選択透過性(励起光Leの遮断性)を有するこうした光学干渉フィルタ50の作製についてはよく知られており、本発明でも任意に適用可能なため、ここではその詳細は記述しない。
ただ、本発明の一形態に従い、特徴的なことに、光学干渉フィルタ50の側壁は遮光膜51により覆われている。この遮光膜51は励起光波長を極力通し難いものであればその材質は任意であって、光遮断性を持つ塗膜等であっても良いが、金属膜でも良いので、フォトダイオード20の電極材質として用いたと同じアルミを選ぶと、製造工程上、便利である。こうした遮光膜51を設けると、フォトダイオード20の側壁を覆う金属電極21と相俟って、特にピンホール41に向いている光フィルタの側壁を介し、散乱して来た励起光がフォトダイオード20に入射するのを妨げることができ、これがSN比を向上する上で大きな効果を発揮する。
フォトダイオード20の構築されている基板28の裏面側(図中、下側)には、望ましいことに面発光レーザ30(Vertical Cavity Surface Emitting Laser Diode:VCSEL)が一体に形成されている。もっとも、用いる面発光レーザ30の構造自体は任意公知のものを採用することができる。図示の場合に即し、一般的な構成例について言えば、構築基板36上における積層構造として、N型分布ブラッグ反射 (Distributed Bragg Reflection:DBR) ミラー34、量子井戸を有する活性層33、P型分布ブラッグ反射ミラー32、そして電流方向両端の電極31、35があり、これらは有機金属気相成長法(MOCVD)や分子線ビームエピタキシ法により作製されている。一対の電極31,35からN型分布ブラッグ反射ミラー34、およびP型分布ブラッグ反射ミラー32を介してキャリアが注入され、活性層33において再結合し、発光する(活性層に直接電極を形成する場合もある)。この時、二つの分布ブラッグ反射ミラーは共振器を形成し、誘導放出を促進する。通常、分布ブラッグ反射ミラーは20〜30周期程度のAlAs/GaAs積層構造により構成することができ、N型分布ブラッグ反射ミラー34にはSe不純物、P型分布ブラッグ反射ミラー32にはZn不純物をドープしておく。
活性層33は、例えば980nm前後の光を出す面発光レーザ光の場合、Ga(1-x)InxAs/GaAs量子井戸構造(x=0.2程度)とすることができ、望ましくは反応性イオンビーム等によってメサ構造を形成した後、湿式AlAs層選択酸化を行うことで電流狭窄領域が形成されたものである。AlO層は低屈折率であるので、GaAs/AlAs領域をコア、GaAs/AlO領域をクラッドとする導波路構造も得ることができ、電流と同時に光の閉じ込め構造も実現されている。こうした構造は低しきい値、高効率レーザ発振の手法として重要であり、既に良く知られている。
しかるに、この実施形態の本発明装置を作製する場合には、GaAs基板等、適当なる基板上に面発光レーザ30を構築する工程とフォトダイオード20、光フィルタ50を含む蛍光受光系を構築する工程を独立とすることができ、上記のような材料組み合わせ例で、励起光源と蛍光受光系の集積化が行える。これはもとより、極めてポータブルなラボ・オン・チップを実現する上で望ましいことは言うまでもない。
さて、光フィルタ50の側壁を覆うように本発明者の工夫で新たに設けられた遮光膜51の存在を除けば、他の個々の要素は既存のものであって良いのに対し、本発明による特徴的な構成は、励起光の光路途中に設けられている励起光収束用のマイクロ収束レンズ62の存在に認められる。このマイクロ集束レンズ62は、その焦点を、励起光Leの照射を受けると蛍光を発する微小対象物(この実施形態では分離チャネル16内のサンプルプラグ)上、もしくは少なくともその近傍に置くようにされている。特にこの実施形態では、当該マイクロ収束レンズ62はフォトダイオード20を支持するガラス基板28に一体に設けられていて、ピンホール41の部分に位置している。これは、基板材質が上記のようにガラスの場合には鋳型形成により簡単に作製できるからである。もっとも、最近ではフォトレジストのリフロー等を利用した半導体微細加工技術により、半導体やガラス材料のマイクロレンズも任意に形成できるので、選択した基板材質の如何により、それぞれに便利な手法で作製すれば良い。もちろん、プラスティック基板を用いる場合にも鋳型成型その他、便利な手法が存在する。
いずれにしても、本発明に従い、こうしたマイクロ収束レンズ62が設けられていると、面発光レーザ30により放出された、例えば近赤外980nm程度の波長であって良い励起光Leも、マイクロ集束レンズ62により集光されて分離チャンネル16内を泳動するサンプルプラグを高い光強度密度を持って照射することができる。そのため、励起レーザ光Leより短波長の吸収ピークを有する色素、あるいは色素により標識されたサンプルであっても、それを二光子吸収により励起するために、実効的に発振波長の半分の波長490nmに相当するエネルギでの励起を可能とすることができ、事実、近赤外光の二光子励起された色素は可視光蛍光を放出する。発生した蛍光は、蛍光収集用マイクロレンズ61により収集してほぼ平行化させ、光学干渉フィルタ50にほぼ垂直に入射させて励起光成分を除去し、a-Si:Hフォトダイオード20に入射させて光電変換させる。なお、一般に、キャリア収集効率を最適化するために、a-Si:Hフォトダイオード20には数ボルト程度の逆バイアス電圧を印加しておくのが普通である。
このような二光子吸収による遷移確率は、光の強度の自乗に比例するので、本実施形態においてガラス基板28上に形成したマイクロレンズ62によりレーザ光を集光することの効果は極めて大きい。比較的、低レーザ・パワーで二光子吸収を実現できること、また、焦点近傍(対象物近傍)のみを選択的に励起することができるため、共焦点蛍光検出システムに近い空間フィルタリングが可能となり、バックグランド光を低減させることができること、等の利点がある。レーザ光散乱の中、レーリー散乱によるものも、励起光Leの波長が倍になることで、(1/2)4=1/16に低下させることができる。
また特に、既に説明もしたが、通常の一光子吸収の場合、励起光波長は常に蛍光波長より短いので、励起光波長での半導体光検出素子の吸収係数は蛍光波長での吸収係数より常に大きくなり、ためにSN比を低下させ得る宿命にある所、二光子吸収ではその関係を実質的に逆転できる。特に、半導体光検出素子のバンドギャップに相当する波長に比べて、励起光の波長が長く、蛍光のピーク波長が短い場合には、蛍光波長での半導体光検出素子の吸収係数が励起光波長の吸収係数より桁違いに大きくなるので、高感度蛍光検出に有利である。a-Si:Hの場合、そのバンドギャップ、すなわち、通常の結晶半導体におけるバンドギャップに相当する光学的エネルギギャップEo(いわゆるTauc gap)は典型的には1.7eV程度であり、波長で言えば730nm程度に対応するので、例えば、励起光を980nmとすると、Eoに相当する波長より十分長く、一方、二光子吸収で励起される色素の蛍光波長は、通常、980nmの半分の波長である490nmより数十nm程度長いだけであり、Eoに相当する波長より十分短く、上記の関係を満たす。
図2として挙げた特性図を見ると、そのことが良く理解される。着目すべきポイントはそれぞれ矢印で示しているが、a-Si:Hの光吸収係数は、光学的エネルギギャップEo以上の可視光域から、Eo以下の近赤外域にかけて(例えば490nmから980nmにかけて)、四桁以上も低下している。つまり、本実施形態では、もし仮に、励起光Leがフォトダイオード20側に漏れ込んだとしても、その感度は蛍光波長に対する感度よりも十分に低いことになる。従って逆に、二光子吸収を実現するために励起光Leの強度を増加させても、レーザ散乱光によるバックグランド光電流は大きく低減させ得ることになり、感度の大幅な向上が見込まれる。
まして、本実施形態におけるように、フォトダイオード20や光学干渉フィルタ50の側壁を遮光膜51や電極21で遮光した構造にすれば、SN比はさらに向上し、実際上、これによってもまた、大きな感度向上が認められる。なお、図示していないが、チップ10、マイクロレンズ61,62、ガラス基板28、面発光レーザ30等の表面に、適宜、反射防止膜を施すことも、レーザ散乱光によるバックグランド光電流を低減する上で効果的である。
遮光のための構造51,21は、実質的には励起光Leの通る光路に向いた面だけであっても良い場合もある。すなわち、一般化して言えば、少なくとも励起光Leの散乱光が入射する可能性のある側壁部分に遮蔽膜51を設けたり電極21で被覆したりすれば良く、例えば、図示の場合、電極21の外周部は外部との電気接触のため必要であるが、遮蔽膜51の外周部は不要であり、ピンホール41に向いた内側壁部分にのみ施しても良い。ただ、制作上はフォトダイオード20や光学干渉フィルタ50の内外両側壁に一連に設けても、手間は同じでありながら、より完全な遮光性が得られる。また、図示実施形態では蛍光検出部が幾何的形状としてはドーナッツ形状に構成され、その中央部分の透孔ないしピンホール41を介して励起光Leが通過する構造になっているが、このドーナッツ形状円形形状に限らない。透孔を囲む立体形状として蛍光検出部40が構成されていれば良くて、平面的に見て四角形その他のn(n≧3)角形形状の蛍光検出部40の一部(一般には中央)に円形もしくはn角形形状の透孔41が開いていて、そこを励起光Leが通過するようになっていても構わない。
ところでa-Si:H薄膜は、既述したようにガラスやプラスチックのような安価な基板に直接形成できるだけでなく、GaAsなどの異種基板にも集積することできる。これは、製膜プロセスが200℃程度の低温であること、及びアモルファス構造であることから、格子整合性が問われないことに由来する。そこで、図3に示すような構造も容易に得ることができる。すなわち、同一の基板36、例えばGaAs基板36上に、励起光源30も半導体光検出素子20もモノリシックに集積形成することができる。図示の場合はドーナッツ形状に形成されている半導体光検出素子の中央の透孔41内の基板36上に面発光レーザ30が形成されている。各素子の内部構造等はこれまで説明した来た所と同様で良いので、再度の説明は控える。他の実施形態における図面中に付したと同一の符号は同一ないし類似の構成要素を示すことは既に述べた通りである。
ただ、本発明の特徴的構成の一つであるマイクロ収束レンズ62について言えば、本図に示すように、半導体微細加工技術を利用し、蛍光収集用のマイクロレンズ61の頂上部に設けることも可能である。なお、予め述べておくと、それは屈折率分型レンズであったり、球面凸レンズであったり、非球面凸レンズであったりする場合もある。製造上、また収束に都合の良いものを選択すれば良い。
GaAs基板36は、例えば980nmのような近赤外光を透過させることもできるので、図4に示すように、GaAs基盤36を挟んで面発光レーザ30をa-Si:Hフォトダイオード20の裏側にモノリシックに集積することもできる。マイクロ収束レンズ62は、この場合、図示の通り、面発光レーザ30の存在している位置部分でGaAs基板36の他面上(a-Si:Hフォトダイオード20の設けられている面上)の透孔41内に形成してもちろん良い。基板上のみならず、図示していないが蛍光収集用マイクロレンズ61の頂上部にもマイクロ収束レンズを形成することもでき、そのようにするとレーザ光集光の開口数を大きくし易いため、励起体積を小さくでき、実効的な光強度を上げることができることになって、より低パワーで二光子吸収を実現することもできる。いずれにしても、図3,図4に示したような、面発光レーザ30とフォトダイオード20のモノリシック集積構造は、より生産性に優れており、低コスト化が可能である。
ところで、連続光よりもピーク光強度の高いパルス光を用いた方が二光子吸収による放出光の発生を効率的に起こすことができることは知られている。そこで、本発明では、図5に示すような実施形態も提案する。すなわち、この実施形態では、面発光レーザ30からの光(波長λ1)照射でQスイッチレーザQSLが励起され、ここから短パルスレーザ光(波長λ2>λ1)が励起光Leとして出射されるようになっており、これが分離チャネル16内のサンプルプラグを照射する。
QスイッチレーザQSLの原理自体は周知ではあるが、本発明においては、特に受動QスイッチレーザQSLの利得媒質GM(例えばNd:YAG、Nd:YVO4、Yb:YAG等)の端面に第一のミラーR3を、また可飽和吸収体SA(例えばCr:YAG等)の端面に第二のミラーR4を形成し、それら第一、第二のミラーR3,R4を所定の透過率,反射率の一対のミラー(望ましくは分布ブラッグ反射ミラー)とすることで、当該一対のミラーR3,R4既述の波長λ2の光に対しての共振器を構成させ、一方で、利得媒質GMと可飽和吸収体SAの間に第三のミラー(これも望ましくは分布ブラッグ反射ミラー)R5を挿入して波長λ2の光は透過させさるが波長λ1の光は反射する構成としているため、利得媒質GMを効率的に励起すると共に面発光レーザ30からの光が分離チャンネル16内に侵入することを効率的に防ぐことができる。実際、こうした構造により、励起光Leとしてのレーザ光強度は瞬間的に桁違いに増すことができ、二光子吸収による蛍光強度も飛躍的に高めることができた。

さらに、利得媒質GMに半導体を用いると、QスイッチレーザQSLの発振波長を容易に制御できる等で有利であり、半導体利得媒質中に量子井戸を形成するとキャリア閉じ込め効果によりレーザ発振効率を上げることもできる。特に、本発明の場合のように、バイオ分析に有効な色素を励起するためには、GaAs基板上のInGaAsから成る量子井戸が適している。また、可飽和吸収体SAについても半導体を用いると(こうした構造は、ミラーと半導体可飽和吸収体SAが一体となったSESAM(SEmiconducotr Saturable Absorber Mirrors)として知られている)、吸収帯域が広いという長所があり、量子井戸構造や製膜温度の工夫により吸収回復時間や吸収が飽和する光強度を制御できる。更には、利得媒質GMの利得曲線と可飽和吸収体SAの吸収帯域に十分な重なりが生じるようにInとGaの組成およびInGaAs量子井戸層の厚みを定めて、同一の半導体基板上に一体として作製した場合は、実装プロセスが不要となり、素子の小型化と信頼性の向上、更には生産コストの低減に大きな役割を果たす。
なお、着目したいのは、図1,3〜5に示された実施形態におけるそれぞれ重要な構成要素の全ては同軸に配置されていることである。すなわち、本発明のいずれの実施形態においても、半導体光検出素子20は透孔41を有し、励起光源30からの励起光Leはこの透孔41内を直線的に通過して分離チャネル16内の微小対象物を照射するように構成されており、従ってまず、半導体光検出素子20と励起光源30とは当該励起光の光軸に関し同軸関係の配置となっている。そして、この励起光の直線光路中に設けられる励起光収束用のマイクロ収束レンズ62もまた、半導体光検出素子20とも励起光源30とも同軸配置関係にある。つまり、図1,図5に示した実施形態では、マイクロ収束レンズ62は半導体光検出素子20の構築基板(ガラス基板28)に一体に設けられることで透孔41内に位置し、図3図示の実施形態では微小対象物の放出する放出光の収集用マイクロレンズ61の頂上部に一体に設けられることで透孔41の延長線上に位置している。さらに、図4図示の実施形態では、半導体光検出素子20と励起光源30をモノリシックに形成する構築基板36に一体に設けられることで透孔41内に位置しており、結局、いずれの場合にもマイクロ収束レンズ62は励起光Leの直線光路中に直接に介在し、その結果、当然、半導体光検出素子20とも励起光源30とも、同軸関係の配置となっているのである。
従って、図1,図3〜5の各図に即して説明してきた本発明による放出光検出装置は、図6に示すように、面発光レーザ30と蛍光検出部40を中心とする一体集積化構造を一つのモジュール70とした場合、このモジュール70を一次元ないしは二次元にアレイ化した構造に展開できる。本図に示されているモジュール70は、マイクロ収束レンズ62が基板36上に設けられていない点では相違するものの、概ね図4に示したものに対応するが、図1、図3〜5に図示した構造に置き換えても構わない。各モジュール70にはそれぞれ対応してマイクロ収束レンズ62と蛍光収集用のマイクロレンズ61とが備えられ、これらは一体のレンズモジュール80として励起光および蛍光の光路途中に設けられている。なお、この実施形態でも、放出光収集用マイクロレンズ61の頂上部ではなく反対側ではあるが、マイクロ収束レンズ62はやはり放出光収集用マイクロレンズ61と一体に設けられ、励起光Leの直線光路中に直接に介在することで半導体光検出素子20とも励起光源30とも同軸関係となっている。
一次元にアレイ化した装置では、例えば複数の電気泳動のチャネルを並列的に分析することができるし、チャネルの長さ方向に沿って配置すれば、ある時間におけるチャネル内のイメージ像を得ることができる。後者は等電点電気泳動(Isoelectric Focusing:IEF)の分析に適している。等電点電気泳動は、下記の非特許文献3に認められるゲル電気泳動(SDS-PAGE)と組み合わせて用いられ、蛋白質分析に中心的な役割を果たしている。最近、マイクロ流体二次元電気泳動(IEF + SDS-PAGE)デバイスのデザインが報告されたが、二組のモジュール70を一次元アレイ化したものを用いれば、こうしたデザインにより簡単に対応できる。本発明に従うこのようなモジュールアレイは、従来のレーザ誘起蛍光検出スキャナと異なり、マイクロ流体ラボ・オン・チップのデザインに全く制約を課さないという大きな利点がある。
Chen他 "A PrototypeTwo-Dimensional Capillary Electrophoresis System Fabricated in Poly(dimethylsiloxane)",Anal.Chem.Vol.74,No.8(Apr.15,2002), pp.1772-1778.
また、既に述べたように、本発明によると二光子吸収による励起は励起光焦点近傍に限定することができるので、実効的な空間フィルタリングの効果を有する。そのため、図6の下半分に模式的に示すように、図1,図3〜5に示した構造に即するモジュール70を用いるならば、その二次元アレイ70’を、やはり二次元配置された対象物収容チップ10’に対し、例えば圧電素子を用いた走査機構90により三次元的に走査できるようにすると、対象物の立体イメージ画像を得ることもできる。例えば、ソフトリソグラフィにより、自己集合化単分子膜(Self-Assembled Monolayer:SAM)のパターン形成を行い、細胞をアレイ上に固定、配置したガラスチップ10’、あるいは酸素透過性があり、バイオ適合性のあるPDMS(Poly Dimethyl Siloxane)とガラス基板を用いて微小容器中で培養される細胞アレイチップ10’を用いることで、当該細胞アレイを並列にイメージングすることができ、この場合、多数の細胞を並列に観測できるので、ドラッグ・スクリーニング等に有用なものとなる。もちろん、必要に応じ、一次元方向のみ、二次元方向のみの走査であって良い場合もあるし、単一のモジュール70をのみ走査可能としての応用使途も考えられる。
以上、本発明の望ましい実施形態に就き説明したが、本発明要旨構成に即する限り、任意の改変、応用は自由である。また、さらなる改変例も種々考えられ、例えばa-Si:Hフォトダイオード20を複数に分割し、その各々に異なる分光特性を持つ光学フィルタを集積化すると、波長多重分析も可能になる。例えば、アデニン、グアニン、チミン、シトシンをそれぞれに異なる波長の蛍光を放出する色素で標識することで、DNAシークエンシングのような分析も可能となる。図6に示したような細胞のイメージングでは、このような波長多重分析により、複数の生体物質を同時に追跡することができる。走査機構との組み合わせは応用範囲を一層広げることは顕かである。既に述べた通り、放出光として蛍光を検出するにしても、それは半導体量子ドットないしそれにより標識された微小対象物からの蛍光である場合にも本発明は全く同様に有利に適用可能であることは顕かであるし、蛍光のみならず、燐光の検出に好適なことも顕かである。
なお、半導体光検出素子としてはこれまで述べてきたフォトダイオードに代えて、いわゆる光伝導体も用いることができる。この光伝導体を用いた素子も、それ自体は極めて周知であるので、これまで説明してきた半導体光検出素子に代えて組み込むことは当業者にとって何の困難性もない。また、フォトダイオードにしても、その材料は上述して来たようにa-Si:Hが望ましいものの、これに限定されるものではない。原料ガスを変えるだけで同様な方法で容易に作製可能な合金材料、例えば、水素化アモルファス・シリコン・ゲルマニウム合金、水素化アモルファス・シリコン・カーバイド合金等も含む。これらの合金はa-Si:Hに比べ、それぞれ長波長、短波長光に対する感度が高い。また、水素希釈率等の作製条件を変えるだけで、同様な方法で容易に作製できる微結晶シリコンやその合金材料も利用可能である。励起光源30として面発光レーザを用いる場合にも、GaInAs/GaAs系の面発光レーザのみならず、より短波長光を発振するGaAlAs/GaAs系等、より長波長光を発振するGaInAsN/GaAs系等も利用可能である。
本発明の一実施形態としての蛍光検出装置の概略構成図である。 フォトダイオード作製に用い得るa-Si:Hの光吸収特性図である。 本発明の第二の実施形態としての蛍光検出装置の概略構成図である。 本発明の第三の実施形態としての蛍光検出装置の概略構成図である。 本発明の第四の実施形態としての蛍光検出装置の概略構成図である。 本発明のさらなる応用例としての蛍光検出装置の概略構成図である。 従来の蛍光検出装置の一例の概略構成図である。
10 光透過性のチップ
11 サンプルリザーバ
12 ウエイストリザーバ
13 陰極リザーバ
14 陽極リザーバ
15 注入チャネル
16 分離チャネル
20 半導体光検出素子
30 励起光源
40 蛍光検出部
41 透孔(ピンホール)
50 光学フィルタ
61 蛍光収集用マイクロレンズ
62 励起光収束用マイクロ収束レンズ
63 凹レンズ
70 励起光源と蛍光検出部とから構成されたモジュール
80 レンズモジュール
90 走査機構
Le 励起光
Lf 蛍光
R3,R4,R5 ミラー
QSL Qスイッチレーザー
GM 利得媒質
SA 可飽和吸収体

Claims (9)

  1. 面発光レーザの発する光に基づいて生成される励起光の照射を受けて微小対象物が蛍光または燐光という形で放出する放出光を該放出光収集用マイクロレンズを介して半導体光検出素子に入射させ、該半導体光検出素子により検出させる微小対象物放出光検出装置であって;
    上記半導体光検出素子は透孔を有し、上記励起光は該透孔内を直線的に通過して上記微小対象物を照射するように構成されていて、該半導体光検出素子と上記面発光レーザとが該励起光の光軸に関し同軸関係の配置となって一つのモジュールを構成していると共に;
    該励起光の上記直線的な光路中には、上記半導体光検出素子とも上記面発光レーザとも同軸配置関係で、該励起光を収束し、その光強度密度を高めて上記微小対象物を照射させることにより、該微小対象物から二光子吸収で上記放出光を放出させるためのマイクロ収束レンズと、上記面発光レーザからの光照射により短パルスレーザ光を生成し、瞬間的にピーク光強度を高めてから該短パルスレーザ光を上記励起光として上記微小対象物に照射させることで、該微小対象物から二光子吸収による放出光を発生させるために、利得媒質と可飽和吸収体から構成される受動型のQスイッチレーザとが設けられており;
    該Qスイッチレーザの上記利得媒質と上記可飽和吸収体はGaAs基板上に成長されたInGaAsから成る量子井戸層であって、該利得媒質の利得曲線と該可飽和吸収体の吸収帯域に重なりが生じるようにInとGaの組成及び該InGaAs量子井戸層の厚みが定められていると共に;
    該利得媒質の端面に形成された第一のミラーと該可飽和吸収体の端面に形成された第二のミラーとによる一対のミラーが上記短パルスレーザ光に関する共振器を構成している一方、該利得媒質と該可飽和吸収体の間にはさらに、上記短パルスレーザ光は透過させるが上記面発光レーザからの光は反射する第三のミラーが挿入されていること;
    を特徴とする微小対象物放出光検出装置。
  2. 請求項1記載の微小対象物放出光検出装置であって;
    上記マイクロ収束レンズは、上記半導体光検出素子の構築基板に一体に設けられることで上記透孔内に位置していること;
    を特徴とする微小対象物放出光検出装置。
  3. 請求項1記載の微小対象物放出光検出装置であって;
    上記マイクロ収束レンズは、上記放出光収集用マイクロレンズに一体に設けられることで上記透孔の延長線上に位置していること;
    を特徴とする微小対象物放出光検出装置。
  4. 請求項1記載の微小対象物放出光検出装置であって;
    上記マイクロ収束レンズは、上記半導体光検出素子と上記面発光レーザをモノリシックに形成する構築基板に一体に設けられることで上記透孔内に位置していること;
    を特徴とする微小対象物放出光検出装置。
  5. 請求項1記載の微小対象物放出光検出装置であって;
    上記微小対象物の放出する放出光は、該放出光に対して選択透過性を有する光学フィルタを介して上記半導体光検出素子に入射すること;
    を特徴とする微小対象物放出光検出装置。
  6. 請求項5記載の微小対象物放出光検出装置であって;
    上記光学フィルタ及び上記半導体光検出素子の側壁にあって少なくとも上記励起光の散乱光が入射する可能性のある側壁部分は遮蔽膜により覆われていること;
    を特徴とする微小対象物放出光検出装置。
  7. 請求項1記載の微小対象物放出光検出装置であって;
    上記半導体光検出素子はa-Si:H材料を用いて作製されたフォトダイオードであること;
    を特徴とする微小対象物放出光検出装置。
  8. 請求項1記載の微小対象物放出光検出装置であって;
    上記モジュールが複数個、一次元または二次元的に並設されてモジュールアレイを構成していること;
    を特徴とする微小対象物放出光検出装置。
  9. 請求項1記載の微小対象物放出光検出装置であって;
    上記モジュールを一次元方向または二次元方向、あるいは三次元方向に走査する走査機構を有すること;
    を特徴とする微小対象物放出光検出装置。
JP2005038113A 2004-03-01 2005-02-15 微小対象物放出光検出装置 Expired - Fee Related JP4521517B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005038113A JP4521517B2 (ja) 2004-03-01 2005-02-15 微小対象物放出光検出装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004056914 2004-03-01
JP2005038113A JP4521517B2 (ja) 2004-03-01 2005-02-15 微小対象物放出光検出装置

Publications (2)

Publication Number Publication Date
JP2005283568A JP2005283568A (ja) 2005-10-13
JP4521517B2 true JP4521517B2 (ja) 2010-08-11

Family

ID=35182084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005038113A Expired - Fee Related JP4521517B2 (ja) 2004-03-01 2005-02-15 微小対象物放出光検出装置

Country Status (1)

Country Link
JP (1) JP4521517B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039655A (ja) * 2006-08-09 2008-02-21 National Institute Of Advanced Industrial & Technology 微小対象物放出光検出装置
JP4963074B2 (ja) * 2007-03-19 2012-06-27 国立大学法人 奈良先端科学技術大学院大学 計測デバイス
JP5093678B2 (ja) * 2008-06-17 2012-12-12 独立行政法人産業技術総合研究所 微小対象物放出光検出装置
JP5605992B2 (ja) * 2009-01-30 2014-10-15 株式会社東芝 顕微鏡および観測方法
JP2011075441A (ja) * 2009-09-30 2011-04-14 Hamamatsu Photonics Kk 半導体デバイス故障解析装置
WO2015066416A1 (en) * 2013-11-01 2015-05-07 Entegris-Jetalon Solutions, Inc. Dissolved oxygen sensor
US10119915B2 (en) 2015-04-09 2018-11-06 Visera Technologies Company Limited Detection device for specimens
JP6439810B2 (ja) * 2017-02-06 2018-12-19 横河電機株式会社 バイオチップ、バイオチップユニット、バイオチップ読取装置、及びバイオチップ製造方法
CN110568601B (zh) * 2019-08-30 2024-06-04 北京临近空间飞行器系统工程研究所 图像扫描系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001506015A (ja) * 1997-12-22 2001-05-08 マックス―プランク―ゲゼルシャフト・ツール・フェルデルング・デア・ヴィッセンシャフテン・エー・ファウ 複数の試料個所で同時に試料を光励起する走査顕微鏡
JP2001311690A (ja) * 2000-04-28 2001-11-09 Yokogawa Electric Corp バイオチップ読取装置及び電気泳動装置
JP2002243641A (ja) * 2001-02-09 2002-08-28 Inst Of Physical & Chemical Res 生体機能測定装置
JP2002542482A (ja) * 1999-04-21 2002-12-10 クロマジェン 高スループット蛍光検出のための新規な走査型分光光度計
JP2003506677A (ja) * 1999-07-29 2003-02-18 カール ツァイス イエナ ゲゼルシャフト ミット ベシュレンクテル ハフツング 蛍光体でマーキングしたdnaおよびrnaの光励起法
WO2003102554A1 (en) * 2002-06-03 2003-12-11 The Regents Of The University Of California Solid-state detector and optical system for microchip analyzers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11119106A (ja) * 1997-10-16 1999-04-30 Olympus Optical Co Ltd レーザ走査型顕微鏡

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001506015A (ja) * 1997-12-22 2001-05-08 マックス―プランク―ゲゼルシャフト・ツール・フェルデルング・デア・ヴィッセンシャフテン・エー・ファウ 複数の試料個所で同時に試料を光励起する走査顕微鏡
JP2002542482A (ja) * 1999-04-21 2002-12-10 クロマジェン 高スループット蛍光検出のための新規な走査型分光光度計
JP2003506677A (ja) * 1999-07-29 2003-02-18 カール ツァイス イエナ ゲゼルシャフト ミット ベシュレンクテル ハフツング 蛍光体でマーキングしたdnaおよびrnaの光励起法
JP2001311690A (ja) * 2000-04-28 2001-11-09 Yokogawa Electric Corp バイオチップ読取装置及び電気泳動装置
JP2002243641A (ja) * 2001-02-09 2002-08-28 Inst Of Physical & Chemical Res 生体機能測定装置
WO2003102554A1 (en) * 2002-06-03 2003-12-11 The Regents Of The University Of California Solid-state detector and optical system for microchip analyzers
JP2005535871A (ja) * 2002-06-03 2005-11-24 独立行政法人産業技術総合研究所 マイクロチップ分析器用の固体検出器及び光学システム

Also Published As

Publication number Publication date
JP2005283568A (ja) 2005-10-13

Similar Documents

Publication Publication Date Title
US7489401B2 (en) Device for detecting emission light of micro-object
JP4521517B2 (ja) 微小対象物放出光検出装置
US6867420B2 (en) Solid-state detector and optical system for microchip analyzers
Thrush et al. Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing
US6867900B2 (en) Support for chromophoric elements
US11384393B2 (en) Integrated illumination of optical analytical devices
Mogensen et al. Recent developments in detection for microfluidic systems
US5608519A (en) Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells
KR102382664B1 (ko) 마이크로 레이저 입자용 시스템 및 방법
US7248361B2 (en) Fluorescence reader based on anti-resonant waveguide excitation
US9176051B2 (en) Micro-optical element, micro-optical array, and optical sensor system
JP2011059095A (ja) 光検出装置
US7604981B1 (en) Excitable target marker detection
JP2008039655A (ja) 微小対象物放出光検出装置
JP2011099848A (ja) フローサイトメータおよびフローサイトメトリ方法
US20120241643A1 (en) Optically integrated microfluidic cytometers for high throughput screening of photophysical properties of cells or particles
US11692938B2 (en) Optical nanostructure rejecter for an integrated device and related methods
US7453916B2 (en) High throughput optical micro-array reader capable of variable pitch and spot size array processing for genomics and proteomics
JP5093678B2 (ja) 微小対象物放出光検出装置
Thrush et al. High-throughput integration of optoelectronics devices for biochip fluorescent detection
CN114632557B (zh) 一种微流控芯片的对置基板及微流控芯片
Porta et al. Vertical-cavity semiconductor devices for fluorescence spectroscopy in biochips and microfluidic platforms
US20240167953A1 (en) Optofluidic antenna device and method for detecting at least one photon emitted or scattered by a sample
Kasten et al. Optofluidic microchip with integrated 780-nm VCSEL arrays for biomedical and chemical sensing
CN113690728A (zh) 基于法布里-珀罗微腔的光微流阵列激光器及其制备方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091112

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees