JP4516884B2 - Periodic defect inspection method and apparatus - Google Patents

Periodic defect inspection method and apparatus Download PDF

Info

Publication number
JP4516884B2
JP4516884B2 JP2005132760A JP2005132760A JP4516884B2 JP 4516884 B2 JP4516884 B2 JP 4516884B2 JP 2005132760 A JP2005132760 A JP 2005132760A JP 2005132760 A JP2005132760 A JP 2005132760A JP 4516884 B2 JP4516884 B2 JP 4516884B2
Authority
JP
Japan
Prior art keywords
defect
periodic
histogram
periodic defect
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005132760A
Other languages
Japanese (ja)
Other versions
JP2006308473A (en
Inventor
雄介 今野
順弘 古家
秀一 福谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005132760A priority Critical patent/JP4516884B2/en
Publication of JP2006308473A publication Critical patent/JP2006308473A/en
Application granted granted Critical
Publication of JP4516884B2 publication Critical patent/JP4516884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/8922Periodic flaws

Description

本発明は,被検査体の表面の周期性欠陥を検査するための周期性欠陥検査方法及び装置に関する。   The present invention relates to a periodic defect inspection method and apparatus for inspecting periodic defects on the surface of an object to be inspected.

従来から,被検査体の表面の周期性欠陥を検査するための技術は種々のものが知られている。例えば,特許文献1には,鋼板の帯状体を製造する圧延ラインにおいて鋼板の全長に渡って発生する連続欠陥を検出するための技術が開示されている。それによれば,鋼板の幅方向において同一の位置に存在する欠陥の個数を長手方向に向かって積算し,その個数が所定の閾値を超えている幅方向の位置を検出し,複数の鋼板について同じ幅方向の位置の欠陥に対する検討を行うことで連続欠陥の判定を行っている。   Conventionally, various techniques for inspecting periodic defects on the surface of an object to be inspected are known. For example, Patent Document 1 discloses a technique for detecting a continuous defect that occurs over the entire length of a steel sheet in a rolling line for producing a strip of the steel sheet. According to this, the number of defects existing at the same position in the width direction of the steel sheet is accumulated in the longitudinal direction, the position in the width direction where the number exceeds a predetermined threshold is detected, and the same is true for a plurality of steel sheets. Continuous defects are determined by examining defects at positions in the width direction.

また,特許文献2では,鋼板の長手方向において同一の位置に存在する欠陥の特徴量を評価し,周期性を有する種類の欠陥の場合にその幅方向位置も記録しておく。そして次に長手方向の別の位置で同一種類の周期性欠陥が検出された際にその幅方向位置と記録しておいた幅方向位置とを比較し,ずれが許容値以内であれば同一要因による周期性欠陥であると認めて両者の長手方向位置から欠陥間隔を求める。最初に得られた周期性欠陥間隔をこの種類の周期性欠陥の基準として記録しておき,次に同一種類の周期性欠陥から欠陥間隔が得られた際に,この基準との比較で周期性欠陥間隔であるか否かを判定する。周期性欠陥間隔が検出される度に,種別毎に定められた評価値を加算していき,累積評価値が閾値を越えると警報を出力すると共に全ての記録をリセットする。   In Patent Document 2, the feature amount of a defect existing at the same position in the longitudinal direction of the steel sheet is evaluated, and the position in the width direction is also recorded in the case of a type of defect having periodicity. Next, when a periodic defect of the same type is detected at another position in the longitudinal direction, the width direction position is compared with the recorded width direction position. Recognizing that the defect is a periodic defect, the defect interval is obtained from the longitudinal position of both. The periodic defect interval obtained first is recorded as a reference for this type of periodic defect, and then when the defect interval is obtained from the same type of periodic defect, the periodicity is compared with this reference. It is determined whether it is a defect interval. Each time a periodic defect interval is detected, an evaluation value determined for each type is added. When the cumulative evaluation value exceeds a threshold value, an alarm is output and all records are reset.

さらに,特許文献3では,同じ幅方向位置に検出された欠陥の欠陥間隔を集計して,欠陥間隔の標準偏差が小さいときに周期性欠陥と判定している。   Further, in Patent Document 3, the defect intervals of the defects detected at the same position in the width direction are totaled and determined as a periodic defect when the standard deviation of the defect interval is small.

特許文献4には,被検査体の表面の画像データを直接解析することで周期性欠陥を抽出する技術が開示されている。   Patent Document 4 discloses a technique for extracting periodic defects by directly analyzing image data on the surface of an object to be inspected.

特開2004−125686号公報JP 2004-125686 A 特開平7−198627号公報JP-A-7-198627 特開平6−294759号公報JP-A-6-294759 特開2001−281154号公報JP 2001-281154 A

しかるに,従来技術による周期性欠陥検査では,被検査体が進行方向と垂直な幅方向に変位してしまう場合に周期性欠陥を低負荷の計算で検出することが容易でなかった。即ち,特許文献1及び3による周期性欠陥検査では,鋼板がロール間を進行する際に進行方向と垂直な幅方向に変位してしまう可能性を考慮していない。例えば,特許文献1の実施例によれば,長手方向の各位置で幅方向の欠陥分布状態のヒストグラムを作成してから,各ヒストグラムを幅方向について50〜60mm程度の画素単位に分割して,その分割単位毎に欠陥データを長手方向に積算して得られた値を閾値と比較することで連続欠陥であるかどうかを判定している(段落0023及び0024参照)。そのため,鋼板が幅方向に変位して連続欠陥が複数の分割単位に分布して広範囲に渡る場合には検出が困難になる。また,特許文献3でも,周期性欠陥を検出する際に鋼板の欠陥の幅方向の位置を画素単位で固定して判定しており,鋼板が幅方向に変位した場合にはカメラで撮像される周期性欠陥の幅方向の画素位置がずれて周期性が検出されなくなってしまう。   However, in the periodic defect inspection according to the conventional technique, it is not easy to detect the periodic defect by low load calculation when the object to be inspected is displaced in the width direction perpendicular to the traveling direction. That is, in the periodic defect inspection according to Patent Documents 1 and 3, the possibility that the steel sheet is displaced in the width direction perpendicular to the traveling direction when traveling between the rolls is not considered. For example, according to the embodiment of Patent Document 1, after creating a histogram of defect distribution states in the width direction at each position in the longitudinal direction, each histogram is divided into pixel units of about 50 to 60 mm in the width direction, Whether or not the defect is a continuous defect is determined by comparing the value obtained by integrating the defect data in the longitudinal direction for each division unit with a threshold value (see paragraphs 0023 and 0024). Therefore, when the steel plate is displaced in the width direction and continuous defects are distributed in a plurality of divided units and spread over a wide range, detection becomes difficult. Also in Patent Document 3, when detecting a periodic defect, the position in the width direction of the defect of the steel plate is determined by fixing it in units of pixels, and when the steel plate is displaced in the width direction, an image is taken with a camera. The pixel position in the width direction of the periodic defect is shifted and the periodicity is not detected.

特許文献2による周期性欠陥検査は,被検査体の幅方向の変位には対応しているが,周期性欠陥の判定の際に周期性欠陥間隔を個別に評価している。即ち,同一種類の周期性欠陥について最初に検出された欠陥間隔を基準として記録し,それ以降に周期性欠陥間隔が検出される都度,この基準と比較して判定を行うので,周期性欠陥及びその周期性の判定が不正確になる。例えば,(1)欠陥と誤認識されるノイズが多く含まれる場合に,ノイズ−欠陥の間隔又はノイズ−ノイズの間隔でほぼ等しいものが存在すると周期性欠陥として過検出してしまう。(2)被検査体の周期性欠陥の一部が欠落して歯抜け状態である場合も,記録した欠陥間隔同士を除算比較して検出が可能である旨の記載がされている(段落0020参照)が,除算比較の場合,誤差が存在するとうまく計算ができないことがある。(3)また,周期性欠陥の検出の際に,1個抜け又は2個抜けが連続する場合,周期を2倍又は3倍の値で検出してしまう。(4)周期性欠陥の警報が出力されるとメモリがリセットされるので,その後に同種類の周期性欠陥が検出されてもすぐに周期性欠陥と判定されない。   The periodic defect inspection according to Patent Document 2 corresponds to the displacement in the width direction of the object to be inspected, but the periodic defect interval is individually evaluated when determining the periodic defect. That is, the defect interval first detected for the same type of periodic defect is recorded as a reference, and each time the periodic defect interval is detected thereafter, a determination is made in comparison with this reference. The determination of the periodicity becomes inaccurate. For example, (1) when there are many noises that are mistakenly recognized as defects, and there is a noise-defect interval or a noise-noise interval that is substantially equal, an over-detection is made as a periodic defect. (2) It is described that even when a part of the periodic defect of the object to be inspected is missing and missing, it can be detected by dividing and comparing the recorded defect intervals (paragraph 0020). However, in the case of division comparison, if there is an error, calculation may not be performed properly. (3) Also, when detecting one periodic defect, if one missing piece or two missing pieces continue, the period is detected as a double or triple value. (4) Since a memory is reset when a periodic defect alarm is output, even if a periodic defect of the same type is subsequently detected, it is not immediately determined as a periodic defect.

さらに,特許文献4に記載されているような従来技術も存在するが,このような周期性欠陥検査では得られた画像データの信号を直接的に処理しているために計算の負荷が大きく,通常の欠陥検査装置の処理の一部として追加することは難しい。   Furthermore, there is a conventional technique as described in Patent Document 4, but in such a periodic defect inspection, since the image data signal obtained is directly processed, the calculation load is large. It is difficult to add as a part of processing of a normal defect inspection apparatus.

本発明は上記課題に鑑みてなされたものであり,被検査体が進行方向と垂直な幅方向に変位してしまう場合に周期性欠陥を低負荷の計算で検出でき,また,周期性欠陥及びその周期性をより正確に検出することが可能な周期性欠陥検査方法及び装置を提供することをその目的とする。   The present invention has been made in view of the above problems, and when the object to be inspected is displaced in the width direction perpendicular to the traveling direction, the periodic defect can be detected by low load calculation. It is an object of the present invention to provide a periodic defect inspection method and apparatus capable of detecting the periodicity more accurately.

上記課題を解決するために,本発明によれば,被検査体を撮像して得た画像データにおいて検出された欠陥を,周期性欠陥の候補と非周期性欠陥とに分類する欠陥分類工程と,前記画像データ全体を網羅するように前記被検査体の幅方向に分割配置された,前記被検査体の長手方向に長辺方向が一致する複数の矩形状の各周期性判定領域に含まれる前記周期性欠陥の候補をそれぞれ計数する欠陥候補計数工程と,前記周期性欠陥の候補の個数が第1の閾値を上回る場合に,当該周期性判定領域について,隣接する前記周期性欠陥の候補同士の前記長手方向の欠陥間隔を横軸,その頻度を縦軸とするヒストグラムを作成するヒストグラム作成工程と,前記ヒストグラムの前記横軸の所定範囲内にある各頻度に,当該頻度に対応する前記横軸の値をK倍(K=2,3,・・・,N(Nは所定の自然数))した値の頻度を重みを付けて加算して,得た加工ヒストグラムにおいて,第2の閾値を上回る頻度が存在する場合に,その横軸の値を周期とする周期性欠陥を含むと判定する周期性欠陥判定工程とを有することを特徴とする周期性欠陥検査方法が提供される。   In order to solve the above problems, according to the present invention, a defect classification step of classifying defects detected in image data obtained by imaging an object to be inspected into periodic defect candidates and aperiodic defects; , And included in each of the plurality of rectangular periodicity determination areas that are arranged in the width direction of the object to be inspected so as to cover the entire image data, and whose long side direction coincides with the longitudinal direction of the object to be inspected. A defect candidate counting step for counting each of the periodic defect candidates, and when the number of the periodic defect candidates exceeds a first threshold, adjacent periodic defect candidates for the periodicity determination region A histogram creation step of creating a histogram having the horizontal defect interval in the longitudinal direction and the frequency in the vertical axis, and each frequency within the predetermined range of the horizontal axis of the histogram corresponding to the frequency Axis value There is a frequency that exceeds the second threshold in the processed histogram obtained by adding weighted values of K times (K = 2, 3,..., N (N is a predetermined natural number)). In this case, there is provided a periodic defect inspection method characterized by including a periodic defect determination step for determining that a periodic defect having a period on the horizontal axis is included.

また,上記周期性欠陥検査方法において,前記周期性判定領域は,前記画像データ全体を網羅するように長辺同士を密接させて配置された第1の層と,前記画像データ全体を網羅するように長辺同士を密接させて配置された第2の層にそれぞれ配置され,且つ前記第1の層の前記周期性判定領域の長辺が,前記第2の層の前記周期性判定領域の長手方向の中心線に一致するように配置してもよい。   Further, in the periodic defect inspection method, the periodicity determination region covers the first layer arranged in close contact with each other so as to cover the entire image data, and the entire image data. The long sides of the periodicity determination region of the first layer are arranged in the second layer, the long sides of which are arranged close to each other, and the long side of the periodicity determination region of the second layer is the length of the periodicity determination region of the second layer. You may arrange | position so that it may correspond to the centerline of a direction.

また,上記課題を解決するために,本発明によれば,複数のロール間を進行する被検査体の表面を撮像する撮像手段と,前記撮像手段により得られる前記被検査体の表面の画像データを記憶する記憶手段と,前記画像データに含まれる欠陥を検出して,検出された欠陥を周期性欠陥の候補と非周期性欠陥とに分類して,前記画像データ全体を網羅するように前記被検査体の幅方向に分割配置された,前記被検査体の長手方向に長辺方向が一致する複数の矩形状の各周期性判定領域に含まれる前記周期性欠陥の候補をそれぞれ計数して,前記周期性欠陥の候補の個数が第1の閾値を上回る場合に,当該周期性判定領域について,隣接する前記周期性欠陥の候補同士の前記長手方向の欠陥間隔を横軸,その頻度を縦軸とするヒストグラムを作成して,当該ヒストグラムの前記横軸の所定範囲内にある各頻度に,当該頻度に対応する前記横軸の値をK倍(K=2,3,・・・,N(Nは所定の自然数))した値の頻度を重みを付けて加算して,得た加工ヒストグラムにおいて,第2の閾値を上回る頻度が存在する場合に,その横軸の値を周期とする周期性欠陥を含むと判定する周期性判定手段とを有することを特徴とする周期性欠陥検査装置が提供される。   In order to solve the above-described problem, according to the present invention, an imaging unit that images the surface of an object to be inspected traveling between a plurality of rolls, and image data of the surface of the object to be inspected obtained by the imaging unit. And a storage means for storing a defect included in the image data, classifying the detected defect into a periodic defect candidate and an aperiodic defect, and covering the entire image data The periodic defect candidates included in each of the plurality of rectangular periodicity determination areas that are arranged in the width direction of the object to be inspected and whose long side direction coincides with the longitudinal direction of the object to be inspected are counted. When the number of periodic defect candidates exceeds the first threshold, the longitudinal defect interval between adjacent periodic defect candidates is plotted on the horizontal axis and the frequency is plotted on the vertical axis. Create a histogram with axes , Each frequency within the predetermined range of the horizontal axis of the histogram is multiplied by K times the horizontal axis corresponding to the frequency (K = 2, 3,..., N (N is a predetermined natural number)) A period for determining that a periodic defect having a value on the horizontal axis as a period is included when there is a frequency that exceeds the second threshold in the obtained processing histogram by adding the weights of the obtained values with weights. There is provided a periodic defect inspection apparatus characterized by having a sex determination means.

また,上記周期性欠陥検査装置において,前記周期性判定領域は,前記画像データ全体を網羅するように長辺同士を密接させて配置された第1の層と,前記画像データ全体を網羅するように長辺同士を密接させて配置された第2の層にそれぞれ配置され,且つ前記第1の層の前記周期性判定領域の長辺が,前記第2の層の前記周期性判定領域の長手方向の中心線に一致するように配置してもよい。   Further, in the periodic defect inspection apparatus, the periodicity determination region covers the first layer arranged in close contact with each other so as to cover the entire image data, and the entire image data. The long sides of the periodicity determination region of the first layer are arranged in the second layer, the long sides of which are arranged close to each other, and the long side of the periodicity determination region of the second layer is the length of the periodicity determination region of the second layer. You may arrange | position so that it may correspond to the centerline of a direction.

本発明によれば,被検査体が進行方向と垂直な幅方向に変位してしまう場合に周期性欠陥を低負荷の計算で検出することが可能になる。また,周期性欠陥及びその周期性をより正確に検出することが可能となる。   According to the present invention, it is possible to detect a periodic defect by low load calculation when the object to be inspected is displaced in the width direction perpendicular to the traveling direction. In addition, the periodic defect and its periodicity can be detected more accurately.

以下で,図面を参照しながら,本発明の好適な実施形態について詳細に説明をしていく。なお,本明細書及び図面において,実質的に同一の機能構成を有する要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

図1は,典型的な鉄鋼圧延ラインに本発明の実施の形態に係る周期性欠陥検査を適用した周期性欠陥検査装置1の構成図である。鉄鋼圧延ラインは,ラインの始点である巻出しリール10,終点である巻取りリール14,それらのリール間で被検査体である鋼板11を進行させる搬送ロール12,及び圧延処理を行う圧延ロール13で構成される。圧延ロール13と巻取りリール14の間には照明15及び撮像手段であるCCDラインカメラ16が配置されており,この照明15から出た光が鋼板で反射してCCDラインカメラ16に入るようにされている。CCDラインカメラ16には,画像データ処理装置18に接続された画像メモリ17が接続されており,画像データ処理装置18はさらにディスプレイ19に接続されている。   FIG. 1 is a configuration diagram of a periodic defect inspection apparatus 1 in which a periodic defect inspection according to an embodiment of the present invention is applied to a typical steel rolling line. The steel rolling line includes an unwinding reel 10 as a starting point of the line, a take-up reel 14 as an end point, a transport roll 12 that advances a steel plate 11 that is an inspection object between those reels, and a rolling roll 13 that performs a rolling process. Consists of. An illumination 15 and a CCD line camera 16 as an imaging means are disposed between the rolling roll 13 and the take-up reel 14 so that light emitted from the illumination 15 is reflected by a steel plate and enters the CCD line camera 16. Has been. An image memory 17 connected to an image data processing device 18 is connected to the CCD line camera 16, and the image data processing device 18 is further connected to a display 19.

次に,本発明の実施の形態に係る周期性欠陥検査方法を,上記周期性欠陥検査装置を用いて具体的に説明する。巻出しリール10から送出された帯状の鋼板11は,搬送ロール12によって矢印方向に進められて圧延ロール13で圧延処理された後に巻取りリール14で巻取られる。鋼板表面の周期性欠陥検査は,圧延処理された鋼板11に照明15の光をあてて,その表面をCCDラインカメラ16で撮像して行われる。   Next, a periodic defect inspection method according to an embodiment of the present invention will be specifically described using the periodic defect inspection apparatus. The strip-shaped steel plate 11 delivered from the unwinding reel 10 is advanced in the direction of the arrow by the transport roll 12, rolled by the rolling roll 13, and then taken up by the take-up reel 14. The periodic defect inspection on the surface of the steel sheet is performed by illuminating the rolled steel sheet 11 with light from the illumination 15 and imaging the surface with the CCD line camera 16.

図2に示すように,固定位置にあるCCDラインカメラ16は,長手方向Yに進行する鋼板11を所定の時間間隔で連続撮像し,鋼板11の幅方向Xのライン画像20を取込んで,記憶手段である画像メモリ17に記憶する。周期性判定装置18は,連続して撮像されたこれらのライン画像20を鋼板11の長手方向Yに所定の結合数だけ結合して,図3に示すような方向Xの長さが鋼板11の幅に等しく,長手方向Yの長さがaの画像データ21を得る。ここで,同一の画像データ21内に,鋼板11の長手方向Yに周期的に連続する周期性欠陥が所定最低数n個(nは2以上の自然数)以上含まれ得るように,画像データ21の長手方向Yの長さaを,鉄鋼圧延ライン上に種々ある圧延ロール13の外周長のうちの最大の値(最大外周長)のn倍よりも大きくするように設定する必要がある。これは,周期性欠陥が圧延ロール13によって発生し,その周期は圧延ロールの外周長になることに起因する。例えば,図2に示すように,外周長Lの圧延ロール13が疵発生原因22を有する場合,この疵発生原因22が鋼板11と接触して周期性欠陥23を生じさせた後,圧延ロール13が一回転して,再度,鋼板11と接触して次の周期性欠陥24を生じさせる。これらの周期性欠陥23,24の欠陥間隔,即ち,周期は,圧延ロール13の外周長Lに等しい。従って,周期Lの周期性欠陥を画像データ21内に最低n個以上含むためには,画像データ21の長手方向Yの長さaを,外周長Lのn倍よりも大きく設定する必要がある。例えば,図1に示すように,外周長Lの圧延ロール13と外周長Mの圧延ロール13が鉄鋼圧延ライン上に配置されていて,L<Mの場合,nを10程度に設定し,画像データ21の長手方向aの長さを最大外周長Mの10倍程度の長さにすれば,外周長Lの圧延ロール13による疵発生と,外周長Mの圧延ロール13による疵発生との両方を漏れなく検出できるようになる。   As shown in FIG. 2, the CCD line camera 16 at a fixed position continuously captures the steel plate 11 traveling in the longitudinal direction Y at a predetermined time interval, captures the line image 20 in the width direction X of the steel plate 11, It memorize | stores in the image memory 17 which is a memory | storage means. The periodicity determination device 18 combines these line images 20 captured continuously in the longitudinal direction Y of the steel plate 11 by a predetermined number of connections, and the length of the direction X as shown in FIG. Image data 21 having the width a and the length Y in the longitudinal direction Y is obtained. Here, in the same image data 21, the image data 21 so that a predetermined minimum number n (n is a natural number of 2 or more) of periodic defects periodically continuing in the longitudinal direction Y of the steel plate 11 can be included. It is necessary to set the length a in the longitudinal direction Y to be larger than n times the maximum value (maximum outer peripheral length) of the outer peripheral lengths of various rolling rolls 13 on the steel rolling line. This is because periodic defects are generated by the rolling roll 13 and the period becomes the outer peripheral length of the rolling roll. For example, as shown in FIG. 2, when the rolling roll 13 having an outer peripheral length L has a flaw occurrence cause 22, after the flaw occurrence cause 22 comes into contact with the steel plate 11 to generate a periodic defect 23, the rolling roll 13 Rotates once again, and comes into contact with the steel plate 11 again to generate the next periodic defect 24. The defect interval between these periodic defects 23, 24, that is, the period is equal to the outer peripheral length L of the rolling roll 13. Therefore, in order to include at least n periodic defects having the period L in the image data 21, it is necessary to set the length a in the longitudinal direction Y of the image data 21 to be larger than n times the outer peripheral length L. . For example, as shown in FIG. 1, when a rolling roll 13 having an outer peripheral length L and a rolling roll 13 having an outer peripheral length M are arranged on a steel rolling line, and L <M, n is set to about 10 and an image If the length of the data 21 in the longitudinal direction a is about 10 times the maximum outer peripheral length M, both the generation of wrinkles by the outer peripheral length L of the rolling roll 13 and the generation of wrinkles by the outer peripheral length M of the rolling roll 13 Can be detected without omission.

次に,図4を用いて周期性判定装置18に画像データ21が取込まれた後の周期性欠陥検査処理の手順を説明する。被検査体表面の画像データ21が取込まれた(SP0)後,取込まれたこの画像データ21は,二値化等によって欠陥及びその特徴が検出される(SP1)。例えば,鋼板11を撮像して取得した画像データ21に対して二値化等の欠陥検出処理を行うことで,図5に示す特徴検出された画像データ25を得る。特徴検出された画像データ25には,例えば,周期性欠陥α,面積の大きい非周期性欠陥β,面積の小さい非周期性欠陥γ及び面積の小さい集団性非周期性欠陥δが含まれる。周期性欠陥αは圧延ロール13が原因で発生した,圧延ロール13の外周長Lを周期とする欠陥であり,その面積は,欠陥γ又はδと同程度若しくはそれよりも小さい。なお,欠陥α,β,γ及びδが検出される際に,欠陥α,β,γ及びδの面積,長さ,形状及び画像データ21上における位置等の特徴の情報も一緒に取得される。   Next, the procedure of the periodic defect inspection process after the image data 21 is taken into the periodicity determination device 18 will be described with reference to FIG. After the image data 21 of the surface of the object to be inspected is captured (SP0), the captured image data 21 is detected for defects and its features by binarization or the like (SP1). For example, by performing defect detection processing such as binarization on the image data 21 obtained by imaging the steel plate 11, the feature-detected image data 25 shown in FIG. 5 is obtained. The feature-detected image data 25 includes, for example, a periodic defect α, a large-area non-periodic defect β, a small-area non-periodic defect γ, and a small-area collective non-periodic defect δ. The periodic defect α is a defect which is caused by the rolling roll 13 and has a period of the outer peripheral length L of the rolling roll 13, and the area thereof is the same as or smaller than the defect γ or δ. When the defects α, β, γ, and δ are detected, information on characteristics such as the area, length, shape, and position on the image data 21 of the defects α, β, γ, and δ is also acquired. .

そして,検出された欠陥は,その特徴によって周期性欠陥の候補と非周期性欠陥とに分類される(SP2)。例えば,面積の大きさが所定値を上回る欠陥を,非周期性欠陥として分類することができる。図5に示す特徴検出された画像データ25の場合には,面積の大きい欠陥βが非周期性欠陥として分類され,面積の小さいα,γ及びδは周期性欠陥の候補として分類される。この分類によって,非周期性欠陥βが除去され,図6に示す分類された画像データ26を得る。なお,分類の際には,欠陥の面積以外にも長さ,形状及び画像データ25上における位置等の種々の特徴を用いてよい。   The detected defects are classified into periodic defect candidates and aperiodic defects according to their characteristics (SP2). For example, a defect whose area size exceeds a predetermined value can be classified as an aperiodic defect. In the case of the feature-detected image data 25 shown in FIG. 5, the defect β having a large area is classified as an aperiodic defect, and α, γ, and δ having a small area are classified as periodic defect candidates. By this classification, the non-periodic defect β is removed, and the classified image data 26 shown in FIG. 6 is obtained. In the classification, in addition to the defect area, various characteristics such as the length, shape, and position on the image data 25 may be used.

また,上述のようにして得られる所定サイズの画像データ26に対して,次のように複数の矩形状の周期性判定領域27が定められる。図7に示すように,複数の周期性判定領域27が,分類された画像データ26全体を網羅するように,鋼板11の幅方向Xに分割配置される。各周期性判定領域27の長辺は,その方向が鋼板11の長手方向Yと一致しており,その長さは,分類された画像データ26の長さaと同じか,わずかに大きく設定されている。また,図7に示すように,鋼板11が圧延ロール13を通過する際に幅方向Xに変位しても周期性欠陥を含むことが可能なように,各周期性判定領域27の幅方向の長さlは,鋼板11の幅方向Xの変位量xよりも大きく設定されている。   In addition, a plurality of rectangular periodicity determination areas 27 are defined as follows for the image data 26 having a predetermined size obtained as described above. As shown in FIG. 7, the plurality of periodicity determination areas 27 are divided and arranged in the width direction X of the steel plate 11 so as to cover the entire classified image data 26. The long side of each periodicity determination area 27 has the direction coincident with the longitudinal direction Y of the steel plate 11, and the length is set to be the same as or slightly larger than the length a of the classified image data 26. ing. In addition, as shown in FIG. 7, the width direction of each periodicity determination region 27 can be included so that a periodic defect can be included even if the steel plate 11 is displaced in the width direction X when passing the rolling roll 13. The length l is set larger than the displacement amount x in the width direction X of the steel plate 11.

また,この実施の形態では,分類された画像データ26全体を網羅するように長辺同士を密接させて周期性判定領域27が配置された第1の層28と,分類された画像データ26全体を網羅するように長辺同士を密接させて周期性判定領域27が配置された第2の層29とが,上下に重ね合わせて構成されている。例えば,分類された画像データ26全体を網羅する第1の層28と,分類された画像データ26全体を網羅する第2の層29とが図7に示されている。この第1の層28には,長辺同士を密接させるようにして周期性判定領域27が配置されており,同様にして,第2の層29にも,長辺同士を密接させるようにして周期性判定領域27が配置されている。また,ここで,第1の層28を構成する周期性判定領域ABCDの長辺AB及びCDは,各々,第2の層29を構成する周期性判定領域EFGH及びHGJIの長手方向の中心線に一致している。即ち,第1の層28の周期性判定領域26は,その長辺が,第2の層29の周期性判定領域27の長手方向の中心線に一致するように配置されている。   Further, in this embodiment, the first layer 28 in which the periodicity determination region 27 is arranged in close contact with each other so as to cover the entire classified image data 26, and the entire classified image data 26. And the second layer 29 in which the periodicity determination region 27 is arranged so that the long sides are in close contact with each other so as to overlap each other. For example, a first layer 28 that covers the entire classified image data 26 and a second layer 29 that covers the entire classified image data 26 are shown in FIG. The first layer 28 is provided with a periodicity determination region 27 so that the long sides are in close contact with each other. Similarly, the long side of the second layer 29 is also in close contact with each other. A periodicity determination area 27 is arranged. Here, the long sides AB and CD of the periodicity determination area ABCD constituting the first layer 28 are respectively aligned with the longitudinal center lines of the periodicity determination areas EFGH and HGJI constituting the second layer 29. Match. That is, the periodicity determination region 26 of the first layer 28 is arranged so that its long side coincides with the longitudinal center line of the periodicity determination region 27 of the second layer 29.

このように,周期性判定領域27は,中心線をずらした2層構成にされているので,いずれかの層の周期性判定領域27の中に,同一の疵発生要因から発生した周期性欠陥をすべて含むことができるようになる。例えば,図7の場合,第1の層28の周期性判定領域ABCDは,周期性欠陥30,31及び32のうち32のみしか含むことができないが,第2の層HGJIは,30,31及び32の全部を含むことができる。   As described above, since the periodicity determination region 27 has a two-layer structure in which the center line is shifted, the periodic defect generated from the same flaw occurrence factor in the periodicity determination region 27 of any layer. Can be included. For example, in the case of FIG. 7, the periodicity determination area ABCD of the first layer 28 can include only 32 of the periodic defects 30, 31, and 32, but the second layer HGJI includes 30, 31 and All 32 can be included.

続いて,SP2で周期性欠陥の候補に分類された欠陥の中から,分類された画像データ26全体を網羅するように定めた複数の周期性判定領域27の各々に含まれる周期性欠陥の候補を計数する(SP3)。ここで,図7に示すように分類された画像データ26について定めた複数の周期性判定領域27のうち,図8に示す任意の3つの周期性判定領域27a,27b及び27cを用いて具体的に説明する。周期性判定領域27aには,圧延ロール13の疵発生原因22から生じた周期性欠陥α〜α14及び非周期性欠陥γが含まれる。周期性判定領域27bには,非周期性欠陥δ〜δが含まれる。周期性判定領域27cには,非周期性欠陥ε〜εが含まれる。即ち,周期性判定領域27a,27b及び27cに含まれる周期性欠陥の候補を計数すると,周期性判定領域27aは15個,周期性判定領域27bは9個,周期性判定領域27cは3個になっている。 Subsequently, periodic defect candidates included in each of a plurality of periodicity determination areas 27 determined so as to cover the entire classified image data 26 from defects classified as periodic defect candidates in SP2. Is counted (SP3). Here, among the plurality of periodicity determination areas 27 defined for the image data 26 classified as shown in FIG. 7, any three periodicity determination areas 27a, 27b and 27c shown in FIG. Explained. The periodicity determination region 27a includes the periodic defects α 1 to α 14 and the non-periodic defect γ generated from the cause 22 of wrinkles of the rolling roll 13. The periodicity determination region 27b includes non-periodic defects δ 1 to δ 9 . The periodicity determination region 27c includes non-periodic defects ε 1 to ε 3 . That is, when the periodic defect candidates included in the periodicity determination areas 27a, 27b, and 27c are counted, the periodicity determination area 27a is 15, the periodicity determination area 27b is 9, and the periodicity determination area 27c is 3. It has become.

次に,周期性判定領域の各々に対して,SP3で計数された周期性欠陥の候補の個数を第1の閾値と比較し,この個数が第1の閾値を上回る場合に,その周期性判定領域について,隣接する周期性欠陥の候補同士の長手方向の欠陥間隔を横軸,その頻度を縦軸とするヒストグラムを作成する(SP4)。例えば,図8に示す周期性判定領域27a,27b,及び27cは,各々15個,9個及び3個の周期性欠陥の候補を含んでいる。図8において,判定用の第1の閾値を8とすると,周期性判定領域27a及び27bの各々に含まれる欠陥の個数はこの閾値を上回る。従って,これらの周期性判定領域27a及び27bに含まれる周期性欠陥の候補α〜α14,γ及びδ〜δは,周期性欠陥の可能性があると判定されて,後述のようにヒストグラムが作成される。それに対して,周期性判定領域27cに含まれる周期性欠陥の候補の数は,この閾値を下回る。従って,周期性判定領域27cは,非周期性欠陥のみを含むと判定され,ヒストグラムは作成されない。 Next, for each of the periodicity determination areas, the number of periodic defect candidates counted in SP3 is compared with a first threshold value, and if this number exceeds the first threshold value, the periodicity determination is performed. For a region, a histogram is created with the horizontal axis representing the defect interval in the longitudinal direction between adjacent periodic defect candidates and the vertical axis representing the frequency (SP4). For example, the periodicity determination areas 27a, 27b, and 27c shown in FIG. 8 include 15, 9, and 3 periodic defect candidates, respectively. In FIG. 8, when the first threshold value for determination is 8, the number of defects included in each of the periodicity determination regions 27a and 27b exceeds this threshold value. Therefore, the periodic defect candidates α 1 to α 14 , γ and δ 1 to δ 9 included in these periodicity determination areas 27a and 27b are determined to be periodic defects, and will be described later. A histogram is created. On the other hand, the number of periodic defect candidates included in the periodicity determination region 27c is less than this threshold value. Therefore, it is determined that the periodicity determination region 27c includes only a non-periodic defect, and a histogram is not created.

図8に示す周期性判定領域27aの内部に含まれる周期性欠陥の候補に基づいて実際に作成したヒストグラムを図9に示す。また,図8に示す周期性判定領域27bの内部に含まれる周期性欠陥の候補に基づいて実際に作成したヒストグラムを図11に示す。図9に示すヒストグラムは,図8に示す周期性判定領域27a内の欠陥α〜α14及びγの位置関係(図10参照)から得られる。これらの欠陥の隣接する欠陥同士の長手方向Yの欠陥間隔を横軸,その頻度を縦軸にしてヒストグラムを作成する。このヒストグラムでは,周期性欠陥α〜α14の周期Lを欠陥間隔とするデータの頻度が12となり,著しいピークを形成する。一方,図11に示すヒストグラムは,図8に示す周期性判定領域27b内の欠陥δ〜δの位置関係(図12参照)から得られる。これらの欠陥の隣接する欠陥同士の長手方向Yの欠陥間隔を横軸,その頻度を縦軸にしてヒストグラムを作成する。これらの欠陥は非周期欠陥であるので,このヒストグラムは,各データの欠陥間隔は頻度がほぼ均等に分布する。 FIG. 9 shows a histogram actually created based on the periodic defect candidates included in the periodicity determination region 27a shown in FIG. FIG. 11 shows a histogram actually created based on the periodic defect candidates included in the periodicity determination region 27b shown in FIG. The histogram shown in FIG. 9 is obtained from the positional relationship between the defects α 1 to α 14 and γ in the periodicity determination region 27a shown in FIG. 8 (see FIG. 10). A histogram is created with the horizontal axis representing the defect interval in the longitudinal direction Y between adjacent defects and the vertical axis representing the frequency thereof. In this histogram, the frequency of data having the period L of the periodic defects α 1 to α 14 as the defect interval is 12, and a remarkable peak is formed. On the other hand, the histogram shown in FIG. 11 is obtained from the positional relationship (see FIG. 12) of the defects δ 1 to δ 9 in the periodicity determination region 27b shown in FIG. A histogram is created with the horizontal axis representing the defect interval in the longitudinal direction Y between adjacent defects and the vertical axis representing the frequency thereof. Since these defects are non-periodic defects, the frequency of the defect intervals of each data is almost evenly distributed in this histogram.

上記図9,10で説明した場合は,漏れなく欠陥が生じたが,歯抜けの場合も考えられる。例えば,図13は,図10に示す周期性欠陥間隔のうち,α,α,α及びαが歯抜けしている場合を想定した図である。α,αが抜けているのでαとαとの欠陥間隔が周期Lの3倍になっており,α,αが抜けているのでαとαの欠陥間隔及びαとα10の欠陥間隔が周期Lの2倍になっている。図10に示す位置関係から得られる図9のヒストグラムと同様に,図13に示すヒストグラムは,周期性欠陥α〜α14の周期Lを欠陥間隔とするデータがピークを形成する。しかしながら,歯抜けにより周期2L及び3Lにも分布が広がり,図9に示すヒストグラムの場合よりもピークが低くなっている。 In the case described with reference to FIGS. 9 and 10, the defect occurred without omission, but the case of missing teeth is also conceivable. For example, FIG. 13 is a diagram assuming a case where α 2 , α 3 , α 5, and α 9 are missing from the periodic defect interval shown in FIG. Since α 2 and α 3 are missing, the defect interval between α 1 and α 4 is three times the period L, and since α 5 and α 9 are missing, the defect interval between α 4 and α 6 and α defect spacing 8 and alpha 10 is twice the period L. Similar to the histogram of FIG. 9 obtained from the positional relationship shown in FIG. 10, in the histogram shown in FIG. 13, data having a defect interval of the period L of the periodic defects α 1 to α 14 forms a peak. However, the distribution also spreads in the periods 2L and 3L due to missing teeth, and the peak is lower than in the case of the histogram shown in FIG.

そこで,SP4で得られたヒストグラムに対して,横軸の所定範囲内にある各データの頻度に,それら各頻度の横軸の値をK倍(K=2,3,・・・,N(Nは所定の自然数))した値のデータの頻度を重みを付けて加算することで,周期性欠陥の一部が歯抜けしている場合に対応するための補正加工を行い,加工ヒストグラムを得る。そしてこの加工ヒストグラムにおいて,第2の閾値を上回る頻度が存在する場合に,その横軸の値を周期とする周期性欠陥を含むと判定する(SP5)。ここで,所定範囲の最小値及び最大値は,実際に周期の値が取り得る最小値及び最大値を定める。   Therefore, with respect to the histogram obtained at SP4, the horizontal axis value of each frequency is multiplied by K times (K = 2, 3,..., N ( N is a predetermined natural number)). By adding the frequency of the value data with weighting, correction processing is performed to cope with a case where a part of the periodic defect is missing, and a processing histogram is obtained. . Then, in this processed histogram, when there is a frequency exceeding the second threshold, it is determined that a periodic defect whose period is the value on the horizontal axis is included (SP5). Here, the minimum value and the maximum value of the predetermined range determine the minimum value and the maximum value that can be actually taken by the period value.

図13を用いて具体的に説明する。周期性欠陥の発生原因になる複数の圧延ロール13の外周長の最小値及び最大値が,各々(1/2)L及び(3/2)Lだとすると,所定最小値は(1/2)L,所定最大値は(3/2)Lと定められる。ここでは,圧延ロール13の外周長を所定範囲の最小値及び最大値に定めたが,その他の値に基づいて所定最小値及び所定最大値を定めてもよい。   This will be specifically described with reference to FIG. Assuming that the minimum value and the maximum value of the outer peripheral length of the plurality of rolling rolls 13 that cause periodic defects are (1/2) L and (3/2) L, respectively, the predetermined minimum value is (1/2) L The predetermined maximum value is defined as (3/2) L. Here, the outer peripheral length of the rolling roll 13 is set to the minimum value and the maximum value in the predetermined range, but the predetermined minimum value and the predetermined maximum value may be determined based on other values.

図13に示すヒストグラムにおいて,横軸が(1/2)L〜(3/2)Lの範囲をK倍(K=2,3,・・・N(Nは所定の自然数))した範囲は,各々,L〜3L,(3/2)L〜(9/2)L,・・・,(N/2)L〜(3N/2)Lである。図13の場合,N=4としているので,L〜3L,(3/2)L〜(9/2)L,2L〜6Lの3つの範囲を考える。次に,これらの範囲のデータの頻度に0.8(K−1)の重みを付けてから,横軸が(1/2)L〜(3/2)Lの範囲内のデータの頻度に加算する。即ち,横軸がL〜3Lの範囲内のデータの頻度を0.8倍して,(1/2)L〜(3/2)Lの範囲内のデータの頻度に加算する。また,横軸が(3/2)L〜(9/2)Lの範囲内のデータの頻度を0.8倍して,(1/2)L〜(3/2)Lの範囲内のデータの頻度に加算する。同様に,横軸が2L〜6Lの範囲内のデータの頻度を0.8倍して,(1/2)L〜(3/2)Lの範囲内のデータの頻度に加算する。このようにして得られた加工ヒストグラムを図15に示す。 In the histogram shown in FIG. 13, the range in which the horizontal axis is (1/2) L to (3/2) L times K (K = 2, 3,... N (N is a predetermined natural number)) is , L to 3L, (3/2) L to (9/2) L, ..., (N / 2) L to (3N / 2) L, respectively. In the case of FIG. 13, since N = 4, three ranges of L to 3L, (3/2) L to (9/2) L, and 2L to 6L are considered. Next, after assigning a weight of 0.8 (K-1) to the frequency of data in these ranges, the horizontal axis represents the frequency of data in the range of (1/2) L to (3/2) L. to add. In other words, the frequency of data in the range of L to 3L on the horizontal axis is multiplied by 0.8 and added to the frequency of data in the range of (1/2) L to (3/2) L. The horizontal axis is (3/2) L~ (9/2) and 0.8 twice the frequency of the data in the range L, (1/2) L~ (3/2 ) in the range of L Is added to the data frequency. Similarly, the horizontal axis is 0.8 3 times the frequency of the data in the range of 2L~6L, it is added to the frequency of the data within the range of (1/2) L~ (3/2) L . The processing histogram thus obtained is shown in FIG.

図15に示す加工ヒストグラムから明らかなように,周期性欠陥の一部が歯抜けしている場合にも,上記の歯抜け補正によって対応可能になる。歯抜けにより生じた真の周期の自然数倍の周期性欠陥の頻度が,真の周期の頻度に重み付け加算されるので,周期性欠陥の周期性判定精度が向上する。この際の重み付けは,真の周期が最終的に最も大きな値になるように行う。ここでは,加算するデータを0.8(K−1)倍することで重み付けを行ったが,この重み付けは,加算するデータをa(K−1)倍して行ってもよい(aは0<a<1の実数)し,その他の方法を用いてもよい。なお,図16に示す加工ヒストグラムは,上記と同じ歯抜け補正を,図11に示すヒストグラムに対して行って得られたものである。 As apparent from the processing histogram shown in FIG. 15, even when a part of the periodic defect is missing, it is possible to cope with the missing tooth correction described above. Since the frequency of the periodic defect that is a natural number multiple of the true period caused by the missing tooth is weighted and added to the frequency of the true period, the periodicity determination accuracy of the periodic defect is improved. The weighting at this time is performed so that the true period finally becomes the largest value. Here, weighting is performed by multiplying the data to be added by 0.8 (K-1) , but this weighting may be performed by multiplying the data to be added by a (K-1) (a is 0). <A <1 real number) and other methods may be used. The processed histogram shown in FIG. 16 is obtained by performing the same missing tooth correction as described above on the histogram shown in FIG.

次に,得られた加工ヒストグラムのデータのうちで,第2の閾値を上回る頻度が存在する場合に,その周期性判定領域は,その頻度の横軸の値,即ち,欠陥間隔を周期とする周期性欠陥を含むと判定する。具体的に説明すると,図15に示す加工ヒストグラムでは,第2の閾値6を上回る頻度7.24が存在するので,周期性判定領域27aは,この頻度の横軸の値,即ち,欠陥間隔Lを周期とする周期性欠陥を含むと判定する。これに対して,図16に示す加工ヒストグラムでは,加工ヒストグラム内の最高頻度が1.44であり,第2の閾値4.8を上回る頻度は存在していないので,周期性判定領域27bは,周期性欠陥を含んでいないと判定される。なお,第2の閾値は,0.6×(SP4のヒストグラムの全頻度の総和)として計算した。   Next, in the obtained processed histogram data, when there is a frequency exceeding the second threshold, the periodicity determination region has the frequency on the horizontal axis, that is, the defect interval as a cycle. It is determined that a periodic defect is included. More specifically, in the processed histogram shown in FIG. 15, there is a frequency 7.24 exceeding the second threshold 6, so the periodicity determination region 27 a has a value on the horizontal axis of this frequency, that is, a defect interval L It is determined that it contains a periodic defect with a period. On the other hand, in the processed histogram shown in FIG. 16, the highest frequency in the processed histogram is 1.44, and there is no frequency exceeding the second threshold value 4.8. It is determined that no periodic defect is included. The second threshold was calculated as 0.6 × (sum of all frequencies of the SP4 histogram).

SP1〜SP5で得られた情報がまとめられて,各欠陥に対する周期性欠陥又は非周期性欠陥のいずれかであるかという情報がディスプレイ19に表示される(SP6)。さらに,SP2で得られた各欠陥の情報も一緒に表示される。また,検出された欠陥が周期性欠陥である場合には,SP5で得られた周期も一緒に表示する。具体的に説明すると,欠陥α〜α14が検出されて表示される場合,周期Lを有する周期性欠陥であるという情報が,その他の特徴の情報と共に表示される。一方,欠陥β,γ及びδ〜δが検出されて表示される場合,周期性欠陥でないという情報及びその他の特徴の情報が表示される。 The information obtained in SP1 to SP5 is collected, and information indicating whether the defect is a periodic defect or a non-periodic defect is displayed on the display 19 (SP6). Furthermore, information on each defect obtained in SP2 is also displayed. In addition, when the detected defect is a periodic defect, the period obtained in SP5 is also displayed. More specifically, when the defects α 1 to α 14 are detected and displayed, information indicating that the defect is a periodic defect having a period L is displayed together with other characteristic information. On the other hand, when the defects β, γ, and δ 1 to δ 9 are detected and displayed, information indicating that the defect is not a periodic defect and other characteristic information are displayed.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されない。当業者であれば,特許請求の範囲に記載された技術的思想の範疇内において,各種の変更例又は修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, this invention is not limited to the example which concerns. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

例えば,上述した実施形態においては,被検査体として鋼板の場合について説明したが,被検査体は紙,フィルム,不織物等であってもよい。   For example, in the above-described embodiment, the case where a steel plate is used as the object to be inspected has been described. However, the object to be inspected may be paper, a film, a non-woven fabric, or the like.

また,上述した実施形態においては,被検査体がシート状の場合について説明したが,被検査体は棒状あるいはH型鋼のようなものでもよい。   In the above-described embodiment, the case where the object to be inspected is a sheet shape has been described.

また,上述した実施形態においては,検査の判定結果をディスプレイ19に出力する場合について説明したが,出力先は,印刷装置やディスク記録装置等のように何らかの媒体への出力装置であってもよいし,解析装置や送信装置等のようにさらに別処理を行うための装置であってもよい。   In the above-described embodiment, the case where the inspection determination result is output to the display 19 has been described. However, the output destination may be an output device to some medium such as a printing device or a disk recording device. However, it may be a device for performing another process, such as an analysis device or a transmission device.

また,上述した実施形態においては,SP1〜SP6の処理手順で説明したが,実質的な処理内容が変わらない範囲で順序を変更しても,本発明を逸脱するものではない。   In the above-described embodiment, the processing procedure of SP1 to SP6 has been described. However, even if the order is changed within a range where the substantial processing content does not change, it does not depart from the present invention.

また,上述した実施形態においては,SP1〜SP6を通して周期性欠陥検査を行っているが,周期性欠陥検査は,工程の一部のみで行われてもよい。   In the above-described embodiment, the periodic defect inspection is performed through SP1 to SP6. However, the periodic defect inspection may be performed only in a part of the process.

鋼板の表面を撮像して得られた画像データから以下の諸条件でヒストグラムを作成した。
1)SP5における所定範囲の最小値:500mm
2)SP5における所定範囲の最大値:2500mm
3)周期性判定領域の幅方向の辺の長さ:20mm
4)ヒストグラム作成ピッチ:50mm
5)ヒストグラムの横軸最大値:20000mm
A histogram was created from the image data obtained by imaging the surface of the steel sheet under the following conditions.
1) Minimum value of the predetermined range in SP5: 500 mm
2) Maximum value of the predetermined range in SP5: 2500 mm
3) Length of side in width direction of periodicity determination region: 20 mm
4) Histogram creation pitch: 50 mm
5) Histogram horizontal axis maximum value: 20000 mm

得られたヒストグラムを図17に示す。この場合,周期性欠陥の歯抜けはほとんどなく,周期性判定領域内の欠陥個数は46個である。従って,欠陥間隔の頻度の総和は45になる。   The obtained histogram is shown in FIG. In this case, there is almost no loss of periodic defects, and the number of defects in the periodicity determination area is 46. Therefore, the sum of the frequency of defect intervals is 45.

図17のヒストグラムを,欠陥間隔の頻度の総和45で正規化したものが図18である。周期性欠陥の歯抜けがほとんどないので,著しいピークが形成されており,この時点で,周期性欠陥の周期が約1800mmであることが判明する。   FIG. 18 shows the histogram of FIG. 17 normalized by the sum 45 of the frequency of defect intervals. Since there is almost no missing tooth of the periodic defect, a remarkable peak is formed. At this time, it is found that the period of the periodic defect is about 1800 mm.

図18のヒストグラムにおいて500mm〜2500mmの範囲内にある各頻度に,それらの頻度の横軸の値をK倍(K=2,3,・・・,N(Nは所定の自然数))した値の頻度を0.8(K−1)倍して加算したものが図19である。この歯抜け補正によって,周期の1/2及び1/3の位置にもピークが形成されるが,実際の周期を越えるものではない。 In the histogram of FIG. 18, each frequency within the range of 500 mm to 2500 mm is a value obtained by multiplying the value of the horizontal axis by K times (K = 2, 3,..., N (N is a predetermined natural number)). FIG. 19 shows the result of adding the frequency of .times.0.8 (K-1) times. This tooth loss correction forms peaks at 1/2 and 1/3 of the period, but does not exceed the actual period.

鋼板の表面を撮像して得られた画像データから以下の諸条件でヒストグラムを作成した。
1)SP5における所定範囲の最小値:500mm
2)SP5における所定範囲の最大値:2500mm
3)周期性判定領域の幅方向の辺の長さ:20mm
4)ヒストグラム作成ピッチ:50mm
5)ヒストグラムの横軸最大値:20000mm
A histogram was created from the image data obtained by imaging the surface of the steel sheet under the following conditions.
1) Minimum value of the predetermined range in SP5: 500 mm
2) Maximum value of the predetermined range in SP5: 2500 mm
3) Length of side in width direction of periodicity determination region: 20 mm
4) Histogram creation pitch: 50 mm
5) Histogram horizontal axis maximum value: 20000 mm

得られたヒストグラムを図20に示す。この場合,周期性欠陥の歯抜けが存在しており,周期性判定領域内の欠陥個数は36個である。従って,欠陥間隔の頻度の総和は35になる。   The obtained histogram is shown in FIG. In this case, there are missing teeth of periodic defects, and the number of defects in the periodicity determination region is 36. Accordingly, the sum of the frequency of defect intervals is 35.

図20のヒストグラムを,欠陥間隔の頻度の総和35で正規化したものが図21である。周期性欠陥の歯抜けによって,複数のピークが形成されており,真の周期が判明しなかった。   FIG. 21 shows the histogram of FIG. 20 normalized by the sum 35 of the frequency of defect intervals. Due to the missing teeth of periodic defects, multiple peaks were formed, and the true period could not be determined.

図21のヒストグラムにおいて500mm〜2500mmの範囲内にある各頻度に,それらの頻度の横軸の値をK倍(K=2,3,・・・,N(Nは所定の自然数))した値のデータの頻度を0.8(K−1)倍して加算したものが図22である。この歯抜け補正によって,真の周期である約1800mmに最大頻度のピークがあらわれた。最大頻度の値は,第2の閾値0.5を越えており,周期性欠陥と判定された。 In the histogram of FIG. 21, each frequency in the range of 500 mm to 2500 mm is a value obtained by multiplying the value of the horizontal axis by K times (K = 2, 3,..., N (N is a predetermined natural number)). FIG. 22 shows the result of adding the frequency of data multiplied by 0.8 (K−1) . By this tooth loss correction, a peak of the maximum frequency appeared at a true period of about 1800 mm. The value of the maximum frequency exceeded the second threshold value 0.5, and was determined to be a periodic defect.

図21のヒストグラムに歯抜け補正をする際に,0.8(K−1)倍ではなく1.0(K−1)倍の重み付けを行ったものが図23である。この場合には,真の周期を越えるピークが出現してしまう。従って,重み付けの際には0.8程度の値が適切であることが分かる。 FIG. 23 shows weighting of 1.0 (K-1) times instead of 0.8 (K-1) times when correcting missing teeth on the histogram of FIG. In this case, a peak exceeding the true period appears. Therefore, it can be seen that a value of about 0.8 is appropriate for weighting.

本発明によれば,鋼板等の被検査体の表面の周期性欠陥を検査することが可能である。   According to the present invention, it is possible to inspect periodic defects on the surface of an object to be inspected such as a steel plate.

本発明の実施の形態に係る周期性欠陥検査を適用した典型的な鉄鋼圧延ラインの説明図である。It is explanatory drawing of the typical steel rolling line to which the periodic defect inspection which concerns on embodiment of this invention is applied. CCDラインカメラによる鋼板のライン画像の連続的撮像の説明図である。It is explanatory drawing of continuous imaging of the line image of the steel plate by a CCD line camera. 本発明の画像データを説明する図である。It is a figure explaining the image data of this invention. 本発明の好適実施例のフローチャートである。2 is a flowchart of a preferred embodiment of the present invention. 特徴検出された画像データを説明する図である。It is a figure explaining the image data by which the feature detection was carried out. 欠陥が検出された画像データを説明する図である。It is a figure explaining the image data from which the defect was detected. 本発明の周期性判定領域を説明する図である。It is a figure explaining the periodicity determination area | region of this invention. 本発明の周期性判定領域と周期性欠陥の候補との関係を説明する図である。It is a figure explaining the relationship between the periodicity determination area | region of this invention, and the candidate of a periodic defect. 周期性判定領域内の欠陥に基づくヒストグラムである。It is a histogram based on the defect in a periodicity determination area | region. 周期性判定領域内の欠陥同士の位置関係を説明する図である。It is a figure explaining the positional relationship of the defects in a periodicity determination area | region. 周期性判定領域の欠陥に基づくヒストグラムである。It is a histogram based on the defect of a periodicity determination area | region. 周期性判定領域内の欠陥同士の位置関係を説明する図である。It is a figure explaining the positional relationship of the defects in a periodicity determination area | region. 周期性判定領域の欠陥に基づくヒストグラムである。It is a histogram based on the defect of a periodicity determination area | region. 周期性判定領域内の欠陥同士の位置関係を説明する図である。It is a figure explaining the positional relationship of the defects in a periodicity determination area | region. 図13のヒストグラムに対して歯抜け補正を行った後の加工ヒストグラムである。FIG. 14 is a processing histogram after tooth missing correction is performed on the histogram of FIG. 13. FIG. 図11のヒストグラムに対して歯抜け補正を行った後の加工ヒストグラムである。12 is a processed histogram after tooth missing correction is performed on the histogram of FIG. 歯抜けがない場合の周期性欠陥に基づくヒストグラムである。It is a histogram based on a periodic defect when there is no missing tooth. 図17のヒストグラムを正規化したヒストグラムである。It is the histogram which normalized the histogram of FIG. 図15のヒストグラムを歯抜け補正した加工ヒストグラムである。FIG. 16 is a processing histogram obtained by correcting the missing tooth from the histogram of FIG. 15. FIG. 歯抜けがある場合の周期性欠陥に基づくヒストグラムである。It is a histogram based on a periodic defect when there is a missing tooth. 図20のヒストグラムを正規化したヒストグラムである。21 is a histogram obtained by normalizing the histogram of FIG. 20. 図21のヒストグラムを歯抜け補正(重み付けの式:0.8(K−1))した加工ヒストグラムである。FIG. 22 is a processed histogram obtained by correcting the missing tooth in the histogram of FIG. 21 (weighting formula: 0.8 (K−1) ). 図21のヒストグラムを歯抜け補正(重み付けの式:1.0(K−1))した加工ヒストグラムである。FIG. 22 is a processed histogram obtained by correcting the missing teeth in the histogram of FIG. 21 (weighting formula: 1.0 (K−1) ).

符号の説明Explanation of symbols

1 周期性欠陥検査装置
10 巻出しリール
11 プレート状の鋼板
12 搬送ロール
13 圧延ロール
14 巻取りリール
15 照明
16 CCDラインカメラ
17 画像メモリ
18 画像データ処理装置
19 ディスプレイ
20 ライン画像
21,25,26 画像データ
22 疵発生原因
23,24 周期性欠陥
27,27a,27b,27c 周期性判定領域
28,29 周期性判定領域の層
L,M ロール外周長
X 鋼板の幅方向
Y 鋼板の進行方向
A,B,C,D,E,F,G,H,I,J,K,L 周期性判定領域の頂点
a 画像データの長手方向長さ
l 周期性判定領域の幅方向の長さ
α,α〜α14 周期性欠陥
β 面積の大きい非周期性欠陥
γ,δ〜δ,ε〜ε 非周期性欠陥
DESCRIPTION OF SYMBOLS 1 Periodic defect inspection apparatus 10 Unwinding reel 11 Plate-shaped steel plate 12 Conveyance roll 13 Roll roll 14 Take-up reel 15 Illumination 16 CCD line camera 17 Image memory 18 Image data processing apparatus 19 Display 20 Line image 21, 25, 26 Image Data 22 Cause of wrinkle generation 23, 24 Periodic defect 27, 27a, 27b, 27c Periodicity determination area 28, 29 Layer of periodicity determination area L, M Roll perimeter length X Width direction of steel sheet Y Advancing direction of steel sheet A, B , C, D, E, F, G, H, I, J, K, L Vertex of periodicity determination area a Length in longitudinal direction of image data l Length in width direction of periodicity determination area α, α 1 to α 14 periodic defect β non-periodic defect with large area γ, δ 1 to δ 9 , ε 1 to ε 3 aperiodic defect

Claims (4)

被検査体を撮像して得た画像データにおいて検出された欠陥を,周期性欠陥の候補と非周期性欠陥とに分類する欠陥分類工程と,
前記画像データ全体を網羅するように前記被検査体の幅方向に分割配置された,前記被検査体の長手方向に長辺方向が一致する複数の矩形状の各周期性判定領域に含まれる前記周期性欠陥の候補をそれぞれ計数する欠陥候補計数工程と,
前記周期性欠陥の候補の個数が第1の閾値を上回る場合に,当該周期性判定領域について,隣接する前記周期性欠陥の候補同士の前記長手方向の欠陥間隔を横軸,その頻度を縦軸とするヒストグラムを作成するヒストグラム作成工程と,
前記ヒストグラムの前記横軸の所定範囲内にある各頻度に,当該頻度に対応する前記横軸の値をK倍(K=2,3,・・・,N(Nは所定の自然数))した値の頻度を重みを付けて加算して得た加工ヒストグラムにおいて,第2の閾値を上回る頻度が存在する場合に,その横軸の値を周期とする周期性欠陥を含むと判定する周期性欠陥判定工程とを有することを特徴とする周期性欠陥検査方法。
A defect classification step for classifying defects detected in image data obtained by imaging the object to be inspected into periodic defect candidates and non-periodic defects;
The plurality of rectangular periodicity determination regions that are divided and arranged in the width direction of the object to be inspected so as to cover the entire image data and that have a long side direction that coincides with the longitudinal direction of the object to be inspected A defect candidate counting step for counting the number of candidates for periodic defects,
When the number of the periodic defect candidates exceeds a first threshold, the longitudinal defect interval between adjacent periodic defect candidates is plotted on the horizontal axis and the frequency is plotted on the vertical axis. A histogram creation process for creating a histogram
Each frequency within the predetermined range on the horizontal axis of the histogram is multiplied by K times (K = 2, 3,..., N (N is a predetermined natural number)) corresponding to the frequency. In the processing histogram obtained by adding the frequency of values with weights, when there is a frequency that exceeds the second threshold, the periodic defect that is determined to include a periodic defect with the value on the horizontal axis as the period A periodic defect inspection method comprising: a determination step.
前記周期性判定領域は,前記画像データ全体を網羅するように長辺同士を密接させて配置された第1の層と,前記画像データ全体を網羅するように長辺同士を密接させて配置された第2の層にそれぞれ配置され,且つ前記第1の層の前記周期性判定領域の長辺が,前記第2の層の前記周期性判定領域の長手方向の中心線に一致するように配置されることを特徴とする請求項1に記載の周期性欠陥検査方法。 The periodicity determination region is arranged such that the long sides are closely arranged so as to cover the entire image data, and the first layer arranged so that long sides are closely attached so as to cover the entire image data. And arranged so that the long side of the periodicity determination region of the first layer coincides with the longitudinal center line of the periodicity determination region of the second layer. The periodic defect inspection method according to claim 1, wherein: 複数のロール間を進行する被検査体の表面を撮像する撮像手段と,
前記撮像手段により得られる前記被検査体の表面の画像データを記憶する記憶手段と,
前記画像データに含まれる欠陥を検出して,検出された欠陥を周期性欠陥の候補と非周期性欠陥とに分類して,前記画像データ全体を網羅するように前記被検査体の幅方向に分割配置された,前記被検査体の長手方向に長辺方向が一致する複数の矩形状の各周期性判定領域に含まれる前記周期性欠陥の候補をそれぞれ計数し,前記周期性欠陥の候補の個数が第1の閾値を上回る場合に,当該周期性判定領域について,隣接する前記周期性欠陥の候補同士の前記長手方向の欠陥間隔を横軸,その頻度を縦軸とするヒストグラムを作成して,当該ヒストグラムの前記横軸の所定範囲内にある各頻度に,当該頻度に対応する前記横軸の値をK倍(K=2,3,・・・,N(Nは所定の自然数))した値の頻度を重みを付けて加算して得た加工ヒストグラムにおいて,第2の閾値を上回る頻度が存在する場合に,その横軸の値を周期とする周期性欠陥を含むと判定する周期性判定手段とを有することを特徴とする周期性欠陥検査装置。
An imaging means for imaging the surface of the object to be inspected traveling between a plurality of rolls;
Storage means for storing image data of the surface of the object to be inspected obtained by the imaging means;
Detecting defects included in the image data, classifying the detected defects into periodic defect candidates and aperiodic defects, and in the width direction of the inspection object so as to cover the entire image data The periodic defect candidates included in each of the plurality of rectangular periodicity determination areas that are arranged in a plurality of rectangular shapes whose long side directions coincide with the longitudinal direction of the inspected object are divided, and the periodic defect candidates are counted. When the number exceeds the first threshold, a histogram is created for the periodicity determination region, with the horizontal defect interval between adjacent periodic defect candidates and the vertical axis indicating the frequency. , Each frequency within the predetermined range of the horizontal axis of the histogram is multiplied by K times the horizontal axis corresponding to the frequency (K = 2, 3,..., N (N is a predetermined natural number)) Processing histogram obtained by weighting and adding frequency A periodic defect inspection device characterized by comprising periodicity determining means for determining that a periodic defect having a value on the horizontal axis is included when a frequency exceeding a second threshold is present in the ram. .
前記周期性判定領域は,前記画像データ全体を網羅するように長辺同士を密接させて配置された第1の層と,前記画像データ全体を網羅するように長辺同士を密接させて配置された第2の層にそれぞれ配置され,且つ前記第1の層の前記周期性判定領域の長辺が,前記第2の層の前記周期性判定領域の長手方向の中心線に一致するように配置されることを特徴とする請求項3に記載の周期性欠陥検査装置。 The periodicity determination region is arranged such that the long sides are closely arranged so as to cover the entire image data, and the first layer arranged so that long sides are closely attached so as to cover the entire image data. And arranged so that the long side of the periodicity determination region of the first layer coincides with the longitudinal center line of the periodicity determination region of the second layer. The periodic defect inspection apparatus according to claim 3, wherein:
JP2005132760A 2005-04-28 2005-04-28 Periodic defect inspection method and apparatus Active JP4516884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005132760A JP4516884B2 (en) 2005-04-28 2005-04-28 Periodic defect inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005132760A JP4516884B2 (en) 2005-04-28 2005-04-28 Periodic defect inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2006308473A JP2006308473A (en) 2006-11-09
JP4516884B2 true JP4516884B2 (en) 2010-08-04

Family

ID=37475523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005132760A Active JP4516884B2 (en) 2005-04-28 2005-04-28 Periodic defect inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP4516884B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5667337B2 (en) * 2008-03-31 2015-02-12 アズビル株式会社 Reflective photoelectric switch and object detection method
TWI420098B (en) * 2008-07-18 2013-12-21 Asahi Glass Co Ltd A defect inspection apparatus and method using the image data for defect inspection, a method for manufacturing the same, and a recording medium
JP5267442B2 (en) * 2009-12-02 2013-08-21 住友金属鉱山株式会社 Singular partial distribution feature detection apparatus and singular partial distribution feature detection method
JP5206698B2 (en) * 2010-01-12 2013-06-12 新日鐵住金株式会社 Periodic defect detection apparatus, periodic defect detection method, and program
JP2013522595A (en) * 2010-03-10 2013-06-13 スリーエム イノベイティブ プロパティズ カンパニー Application-specific repetitive defect detection in the web manufacturing process
JP5471818B2 (en) * 2010-05-20 2014-04-16 Jfeスチール株式会社 Method and apparatus for inspecting periodic defects in strip material
JP6048302B2 (en) * 2013-04-25 2016-12-21 Jfeスチール株式会社 Defect determination apparatus and defect determination method
JP6244260B2 (en) * 2014-05-08 2017-12-06 株式会社神戸製鋼所 Defect analysis apparatus and defect analysis method
KR101733017B1 (en) * 2015-02-25 2017-05-24 동우 화인켐 주식회사 Apparatus and method for detecting defect of optical film
CN105572143B (en) * 2015-12-17 2018-05-25 湖北第二师范学院 The detection method of rolled material surface periodic defect in calender line
CN107475509B (en) * 2017-08-04 2019-03-19 北京首钢股份有限公司 A kind of analysis method of the periodicity defect of strip
CN110763693B (en) * 2018-07-26 2022-01-14 宝山钢铁股份有限公司 Periodic measuring device and method for periodic defects on surface of strip steel
JP7020392B2 (en) * 2018-12-25 2022-02-16 東芝三菱電機産業システム株式会社 Data collection and playback system
JP7211265B2 (en) * 2019-05-22 2023-01-24 日本製鉄株式会社 Identification model generation device, identification model generation method, identification model generation program, steel flaw determination device, steel flaw determination method, and steel flaw determination program
JP2022100705A (en) * 2020-12-24 2022-07-06 京セラドキュメントソリューションズ株式会社 Image processing method, and image processing apparatus
CN116030030B (en) * 2023-02-13 2023-08-29 中建科技集团有限公司 Integrated assessment method for internal and external defects of weld joint of prefabricated part

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245045A (en) * 1985-04-23 1986-10-31 Nisshin Steel Co Ltd Automatic surface defect inspecting method for metallic band
JPS63222244A (en) * 1987-03-12 1988-09-16 Toshiba Corp Surface inspector
JPH01262447A (en) * 1988-04-13 1989-10-19 Fuji Photo Film Co Ltd Periodic defect discriminating processing circuit
JPH0989801A (en) * 1995-09-28 1997-04-04 Nisshin Steel Co Ltd Method and device for surface inspection of long object
JP2001516457A (en) * 1997-03-28 2001-09-25 ソラック Method for inspecting the surface of a moving strip by pre-classification of detected surface irregularities
JP2004245720A (en) * 2003-02-14 2004-09-02 Mitsubishi Rayon Co Ltd Defect inspecting apparatus and defect inspection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245045A (en) * 1985-04-23 1986-10-31 Nisshin Steel Co Ltd Automatic surface defect inspecting method for metallic band
JPS63222244A (en) * 1987-03-12 1988-09-16 Toshiba Corp Surface inspector
JPH01262447A (en) * 1988-04-13 1989-10-19 Fuji Photo Film Co Ltd Periodic defect discriminating processing circuit
JPH0989801A (en) * 1995-09-28 1997-04-04 Nisshin Steel Co Ltd Method and device for surface inspection of long object
JP2001516457A (en) * 1997-03-28 2001-09-25 ソラック Method for inspecting the surface of a moving strip by pre-classification of detected surface irregularities
JP2004245720A (en) * 2003-02-14 2004-09-02 Mitsubishi Rayon Co Ltd Defect inspecting apparatus and defect inspection method

Also Published As

Publication number Publication date
JP2006308473A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP4516884B2 (en) Periodic defect inspection method and apparatus
JP4351522B2 (en) Pattern defect inspection apparatus and pattern defect inspection method
US8023720B2 (en) Method and apparatus for identifying repeated patterns
JP2016524334A (en) Wafer inspection using free form protection area
JP2015513703A5 (en)
JP5169336B2 (en) Hole / crack defect detection device for strips
US10109045B2 (en) Defect inspection apparatus for inspecting sheet-like inspection object, computer-implemented method for inspecting sheet-like inspection object, and defect inspection system for inspecting sheet-like inspection object
JP2011242318A (en) Periodic defect inspection method and device for strip-shaped material
JP2006275802A (en) Method and device for inspecting defect
JP5347661B2 (en) Belt surface inspection apparatus, surface inspection method, and program
US7646892B2 (en) Image inspecting apparatus, image inspecting method, control program and computer-readable storage medium
JP3491147B2 (en) Defect detection method and defect detection device
JPH08105842A (en) Surface inspecting apparatus
JP4403036B2 (en) Soot detection method and apparatus
JP4956077B2 (en) Defect inspection apparatus and defect inspection method
JP5786631B2 (en) Surface defect inspection equipment
JP2004125686A (en) Method and apparatus for detecting flaw of steel sheet, computer program, and computer-readable recording medium
JP4233813B2 (en) Processing method of sheet-like molded body
JPH10176997A (en) Method and apparatus for detecting cyclic flaw
JP2006153614A (en) Method and apparatus for detecting cyclic flaw of strip-like member or columnar member
JP2010038650A (en) Method and device for inspecting width of tube in heat exchanger
JPH06324005A (en) Method for detecting rolling flaw of steel plate
JP2002162363A (en) Meandering tracking system for error detector
JP4344312B2 (en) Method and apparatus for inspecting surface flaw of strip or column
JP2002281484A (en) Device for detecting periodical defect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100517

R151 Written notification of patent or utility model registration

Ref document number: 4516884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350