以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。
<第1の実施形態>
図1は本発明に係る露光装置の第1の実施形態を示す概略構成図である。図1において、露光装置EXは、マスクMを保持して移動可能なマスクステージMSTと、基板Pを保持して移動可能な基板ステージPSTと、マスクステージMSTに保持されているマスクMを露光光ELで照明する照明光学系ILと、露光光ELで照明されたマスクMのパターン像を基板ステージPSTに保持されている基板Pに投影露光する投影光学系PLと、露光装置EX全体の動作を統括制御する制御装置CONTとを備えている。
本実施形態の露光装置EXは、露光波長を実質的に短くして解像度を向上するとともに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置であって、液体LQを供給するとともに液体LQを回収する液浸機構1を備えている。液浸機構1は、投影光学系PLの像面側に液体LQを供給する液体供給機構10と、液体供給機構10で供給された液体LQを回収する液体回収機構20とを備えている。露光装置EXは、少なくともマスクMのパターン像を基板P上に転写している間、液体供給機構10から供給した液体LQにより投影光学系PLの投影領域AR1を含む基板P上の一部に、投影領域AR1よりも大きく且つ基板Pよりも小さい液浸領域AR2を局所的に形成する。具体的には、露光装置EXは、投影光学系PLの像面側端部の光学素子LS1と、その像面側に配置された基板P表面との間に液体LQを満たす局所液浸方式を採用し、この投影光学系PLと基板Pとの間の液体LQ及び投影光学系PLを介してマスクMを通過した露光光ELを基板Pに照射することによってマスクMのパターンを基板Pに投影露光する。制御装置CONTは、液体供給機構10を使って基板P上に液体LQを所定量供給するとともに、液体回収機構20を使って基板P上の液体LQを所定量回収することで、基板P上に液体LQの液浸領域AR2を局所的に形成する。
投影光学系PLの像面近傍、具体的には投影光学系PLの像面側端部の光学素子LS1の近傍には、後に詳述するノズル部材70が配置されている。ノズル部材70は、基板P(基板ステージPST)の上方において光学素子LS1の周りを囲むように設けられた環状部材である。本実施形態において、ノズル部材70は液浸機構1の一部を構成している。
本実施形態では、露光装置EXとしてマスクMと基板Pとを走査方向における互いに異なる向き(逆方向)に同期移動しつつマスクMに形成されたパターンを基板Pに露光する走査型露光装置(所謂スキャニングステッパ)を使用する場合を例にして説明する。以下の説明において、投影光学系PLの光軸AXと一致する方向をZ軸方向、Z軸方向に垂直な平面内でマスクMと基板Pとの同期移動方向(走査方向)をX軸方向、Z軸方向及びX軸方向に垂直な方向(非走査方向)をY軸方向とする。また、X軸、Y軸、及びZ軸まわりの回転(傾斜)方向をそれぞれ、θX、θY、及びθZ方向とする。
露光装置EXは、床面上に設けられたベースBPと、そのベースBP上に設置されたメインコラム9とを備えている。メインコラム9には、内側に向けて突出する上側段部7及び下側段部8が形成されている。照明光学系ILは、マスクステージMSTに支持されているマスクMを露光光ELで照明するものであって、メインコラム9の上部に固定された支持フレーム3により支持されている。
照明光学系ILは、露光用光源、露光用光源から射出された光束の照度を均一化するオプティカルインテグレータ、オプティカルインテグレータからの露光光ELを集光するコンデンサレンズ、リレーレンズ系、及び露光光ELによるマスクM上の照明領域をスリット状に設定する可変視野絞り等を有している。マスクM上の所定の照明領域は照明光学系ILにより均一な照度分布の露光光ELで照明される。照明光学系ILから射出される露光光ELとしては、例えば水銀ランプから射出される輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)や、ArFエキシマレーザ光(波長193nm)及びF2レーザ光(波長157nm)等の真空紫外光(VUV光)などが用いられる。本実施形態においてはArFエキシマレーザ光が用いられる。
本実施形態においては、液体LQとして純水が用いられる。純水はArFエキシマレーザ光のみならず、例えば水銀ランプから射出される輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)も透過可能である。
マスクステージMSTは、マスクMを保持して移動可能である。マスクステージMSTは、マスクMを真空吸着(又は静電吸着)により保持する。マスクステージMSTの下面には非接触軸受である気体軸受(エアベアリング)85が複数設けられている。マスクステージMSTは、エアベアリング85によりマスク定盤4の上面(ガイド面)に対して非接触支持されている。マスクステージMST及びマスク定盤4の中央部にはマスクMのパターン像を通過させる開口部MK1、MK2がそれぞれ形成されている。マスク定盤4は、メインコラム9の上側段部7に防振装置86を介して支持されている。すなわち、マスクステージMSTは、防振装置86及びマスク定盤4を介してメインコラム9(上側段部7)に支持された構成となっている。また、防振装置86によって、メインコラム9の振動が、マスクステージMSTを支持するマスク定盤4に伝わらないように、マスク定盤4とメインコラム9とが振動的に分離されている。
マスクステージMSTは、制御装置CONTにより制御されるリニアモータ等を含むマスクステージ駆動装置MSTDの駆動により、マスクMを保持した状態で、マスク定盤4上において、投影光学系PLの光軸AXに垂直な平面内、すなわちXY平面内で2次元移動可能及びθZ方向に微少回転可能である。マスクステージMSTは、X軸方向に指定された走査速度で移動可能となっており、マスクMの全面が少なくとも投影光学系PLの光軸AXを横切ることができるだけのX軸方向の移動ストロークを有している。
マスクステージMST上には移動鏡81が設けられている。また、移動鏡81に対向する位置にはレーザ干渉計82が設けられている。マスクステージMST上のマスクMの2次元方向の位置、及びθZ方向の回転角(場合によってはθX、θY方向の回転角も含む)はレーザ干渉計82によりリアルタイムで計測される。レーザ干渉計82の計測結果は制御装置CONTに出力される。制御装置CONTは、レーザ干渉計82の計測結果に基づいてマスクステージ駆動装置MSTDを駆動し、マスクステージMSTに保持されているマスクMの位置制御を行う。
投影光学系PLは、マスクMのパターンを所定の投影倍率βで基板Pに投影露光するものであって、基板P側の先端部に設けられた光学素子LS1を含む複数の光学素子で構成されており、それら光学素子は鏡筒PKで支持されている。本実施形態において、投影光学系PLは、投影倍率βが例えば1/4、1/5、あるいは1/8の縮小系である。なお、投影光学系PLは等倍系及び拡大系のいずれでもよい。また、投影光学系PLは、屈折素子と反射素子とを含む反射屈折系、反射素子を含まない屈折系、屈折素子を含まない反射系のいずれであってもよい。また、本実施形態の投影光学系PLの先端部の光学素子LS1は鏡筒PKより露出しており、その光学素子LS1には液浸領域AR2の液体LQが接触する。
投影光学系PLを保持する鏡筒PKの外周にはフランジPFが設けられており、投影光学系PLはこのフランジPFを介して鏡筒定盤5に支持されている。鏡筒定盤5は、メインコラム9の下側段部8に防振装置87を介して支持されている。すなわち、投影光学系PLは、防振装置87及び鏡筒定盤5を介してメインコラム9(下側段部8)に支持された構成となっている。また、防振装置87によって、メインコラム9の振動が、投影光学系PLを支持する鏡筒定盤5に伝わらないように、鏡筒定盤5とメインコラム9とが振動的に分離されている。
基板ステージPSTは、基板Pを保持する基板ホルダPHを支持して移動可能である。基板ホルダPHは、例えば真空吸着等により基板Pを保持する。基板ステージPSTの下面には非接触軸受である気体軸受(エアベアリング)88が複数設けられている。基板ステージPSTは、エアベアリング88により基板定盤6の上面(ガイド面)に対して非接触支持されている。基板定盤6は、ベースBP上に防振装置89を介して支持されている。また、防振装置89によって、ベースBP(床面)やメインコラム9の振動が、基板ステージPSTを支持する基板定盤6に伝わらないように、基板定盤6とメインコラム9及びベースBP(床面)とが振動的に分離されている。
基板ステージPSTは、制御装置CONTにより制御されるリニアモータ等を含む基板ステージ駆動装置PSTDの駆動により、基板Pを基板ホルダPHを介して保持した状態で、基板定盤6上において、XY平面内で2次元移動可能及びθZ方向に微小回転可能である。更に基板ステージPSTは、Z軸方向、θX方向、及びθY方向にも移動可能である。
基板ステージPST上には移動鏡83が設けられている。また、移動鏡83に対向する位置にはレーザ干渉計84が設けられている。基板ステージPST上の基板Pの2次元方向の位置、及び回転角はレーザ干渉計84によりリアルタイムで計測される。また、不図示ではあるが、露光装置EXは、基板ステージPSTに支持されている基板Pの表面の位置情報を検出するフォーカス・レベリング検出系を備えている。フォーカス・レベリング検出系としては、基板Pの表面に斜め方向より検出光を照射する斜入射方式、あるいは静電容量型センサを用いた方式等を採用することができる。フォーカス・レベリング検出系は、基板P表面のZ軸方向の位置情報、及び基板PのθX及びθY方向の傾斜情報を液体LQを介して、あるいは液体LQを介さずに検出する。液体LQ1を介さずに基板P表面の面情報を検出するフォーカス・レベリング検出系の場合、投影光学系PLから離れた位置で基板P表面の面情報を検出するものであってもよい。投影光学系PLから離れた位置で基板P表面の面情報を検出する露光装置は、例えば米国特許第6,674,510号に開示されている。
レーザ干渉計84の計測結果は制御装置CONTに出力される。フォーカス・レベリング検出系の検出結果も制御装置CONTに出力される。制御装置CONTは、フォーカス・レベリング検出系の検出結果に基づいて、基板ステージ駆動装置PSTDを駆動し、基板Pのフォーカス位置及び傾斜角を制御して基板Pの表面を投影光学系PLの像面に合わせ込むとともに、レーザ干渉計84の計測結果に基づいて、基板PのX軸方向及びY軸方向における位置制御を行う。
基板ステージPST上には凹部90が設けられており、基板Pを保持するための基板ホルダPHは凹部90に配置されている。そして、基板ステージPSTのうち凹部90以外の上面91は、基板ホルダPHに保持された基板Pの表面とほぼ同じ高さ(面一)になるような平坦面(平坦部)となっている。また本実施形態においては、移動鏡83の上面も、基板ステージPSTの上面91とほぼ面一に設けられている。
基板Pの周囲に基板P表面とほぼ面一の上面91を設けたので、基板Pのエッジ領域を液浸露光するときにおいても、基板Pのエッジ部の外側には段差部がほぼ無いので、投影光学系PLの像面側に液体LQを保持して液浸領域AR2を良好に形成することができる。また、基板Pのエッジ部とその基板Pの周囲に設けられた平坦面(上面)91との間には0.1〜2mm程度の隙間があるが、液体LQの表面張力によりその隙間に液体LQが流れ込むことはほとんどなく、基板Pの周縁近傍を露光する場合にも、上面91により投影光学系PLの下に液体LQを保持することができる。
液浸機構1の液体供給機構10は、液体LQを投影光学系PLの像面側に供給するためのものであって、液体LQを送出可能な液体供給部11と、液体供給部11にその一端部を接続する供給管13とを備えている。供給管13の他端部はノズル部材70に接続されている。本実施形態においては、液体供給機構10は純水を供給するものであって、液体供給部11は、純水製造装置、及び供給する液体(純水)LQの温度を調整する温調装置等を備えている。なお、所定の水質条件を満たしていれば、露光装置EXに純水製造装置を設けずに、露光装置EXが配置される工場の純水製造装置(用力)を用いるようにしてもよい。また、液体(純水)LQの温度を調整する温調装置も露光装置EXに設けずに、工場などの設備を代わりに用いてもよい。液体供給機構10(液体供給部11)の動作は制御装置CONTにより制御される。基板P上に液浸領域AR2を形成するために、液体供給機構10は、制御装置CONTの制御の下で、投影光学系PLの像面側に配置された基板P上に液体LQを所定量供給する。
また、供給管13の途中には、液体供給部11から送出され、投影光学系PLの像面側に供給される単位時間あたりの液体量を制御するマスフローコントローラと呼ばれる流量制御器16が設けられている。流量制御器16による液体供給量の制御は制御装置CONTの指令信号の下で行われる。
液浸機構1の液体回収機構20は、投影光学系PLの像面側の液体LQを回収するためのものであって、液体LQを回収可能な液体回収部21と、液体回収部21にその一端部を接続する回収管23とを備えている。回収管23の他端部はノズル部材70に接続されている。液体回収部21は例えば真空ポンプ等の真空系(吸引装置)、及び回収された液体LQと気体とを分離する気液分離器、回収された液体LQを収容するタンク等を備えている。なお、真空系、気液分離器、タンクなどの少なくとも一部を露光装置EXに設けずに、露光装置EXが配置される工場などの設備を用いるようにしてもよい。液体回収機構20(液体回収部21)の動作は制御装置CONTにより制御される。基板P上に液浸領域AR2を形成するために、液体回収機構20は、制御装置CONTの制御の下で、液体供給機構10より供給された基板P上の液体LQを所定量回収する。
ノズル部材70はノズルホルダ92に保持されており、そのノズルホルダ92はメインコラム9の下側段部8に接続されている。ノズル部材70をノズルホルダ92を介して支持しているメインコラム9と、投影光学系PLの鏡筒PKをフランジPFを介して支持している鏡筒定盤5とは、防振装置87を介して振動的に分離されている。したがって、ノズル部材70で発生した振動が投影光学系PLに伝達されることは防止されている。また、ノズル部材70をノズルホルダ92を介して支持しているメインコラム9と、基板ステージPSTを支持している基板定盤6とは、防振装置89を介して振動的に分離している。したがって、ノズル部材70で発生した振動が、メインコラム9及びベースBPを介して基板ステージPSTに伝達されることが防止されている。また、ノズル部材70をノズルホルダ92を介して支持しているメインコラム9と、マスクステージMSTを支持しているマスク定盤4とは、防振装置86を介して振動的に分離されている。したがって、ノズル部材70で発生した振動がメインコラム9を介してマスクステージMSTに伝達されることが防止されている。
次に、図2、図3、及び図4を参照しながら、液浸機構1及びその液浸機構1の一部を構成するノズル部材70について説明する。図2はノズル部材70近傍を示す概略斜視図の一部破断図、図3はノズル部材70を下側から見た斜視図、図4は側断面図である。
ノズル部材70は、投影光学系PLの像面側先端部の光学素子LS1の近傍に配置されており、基板P(基板ステージPST)の上方において光学素子LS1の周りを囲むように設けられた環状部材である。ノズル部材70は、その中央部に投影光学系PL(光学素子LS1)を配置可能な穴部70Hを有している。ノズル部材70の穴部70Hの内側面と投影光学系PLの光学素子LS1の側面との間には間隙が設けられている。間隙は、投影光学系PLの光学素子LS1とノズル部材70とを振動的に分離するために設けられたものである。これにより、ノズル部材70で発生した振動が、投影光学系PL(光学素子LS1)側に直接的に伝達することが防止されている。
なお、ノズル部材70の穴部70Hの内側面は液体LQに対して撥液性(撥水性)であり、投影光学系PLの側面とノズル部材70の内側面との間隙への液体LQの浸入が抑制されている。
ノズル部材70の下面には、液体LQを供給する液体供給口12、及び液体LQを回収する液体回収口22が形成されている。また、ノズル部材70の内部には、液体供給口12に接続する供給流路14、及び液体回収口22に接続する回収流路24が形成されている。また、供給流路14には供給管13の他端部が接続されており、回収流路24には回収管23の他端部が接続されている。液体供給口12、供給流路14、及び供給管13は液体供給機構10の一部を構成するものであり、液体回収口22、回収流路24、及び回収管23は液体回収機構20の一部を構成するものである。
液体供給口12は、基板ステージPSTに支持された基板Pの上方において、その基板P表面と対向するように設けられている。液体供給口12と基板P表面とは所定距離だけ離れている。液体供給口12は、露光光ELが照射される投影光学系PLの投影領域AR1を囲むように配置されている。本実施形態においては、液体供給口12は、投影領域AR1を囲むように、ノズル部材70の下面において環状のスリット状に形成されている。また、本実施形態においては、投影領域AR1は、Y軸方向(非走査方向)を長手方向とする矩形状に設定されている。
供給流路14は、供給管13の他端部にその一部を接続されたバッファ流路部14Hと、その上端部をバッファ流路部14Hに接続し、下端部を液体供給口12に接続した傾斜流路部14Sとを備えている。傾斜流路部14Sは液体供給口12に対応した形状を有し、そのXY平面に沿った断面は光学素子LS1を囲む環状のスリット状に形成されている。傾斜流路部14Sは、その内側に配置されている光学素子LS1の側面に応じた傾斜角度を有しており、側断面視において、投影光学系PL(光学素子LS1)の光軸AXから離れるにつれて、基板Pの表面との間隔が大きくなるように形成されている。
バッファ流路部14Hは、傾斜流路部14Sの上端部を囲むようにその外側に設けられており、XY方向(水平方向)に拡がるように形成された空間部である。バッファ流路部14Hの内側(光軸AX側)と傾斜流路部14Sの上端部とは接続しており、その接続部は曲がり角部17となっている。そして、その接続部(曲がり角部)17の近傍、具体的にはバッファ流路部14Hの内側(光軸AX側)の領域には、傾斜流路部14Sの上端部を囲むように形成された堤防部15が設けられている。堤防部15はバッファ流路部14Hの底面より+Z方向に突出するように設けられている。堤防部15によって、バッファ流路部14Hよりも狭い狭流路部14Nが形成されている。
本実施形態においては、ノズル部材70は、第1部材71と、第2部材72とを組み合わせて形成されている。第1、第2部材71、72は、例えばアルミニウム、チタン、ステンレス鋼、ジュラルミン、またはこれらを少なくとも二つ含む合金によって形成可能である。
第1部材71は、側板部71Aと、側板部71Aの上部の所定位置にその外側端部を接続した天板部71Bと、天板部71Bの内側端部にその上端部を接続した傾斜板部71Cと、傾斜板部71Cの下端部に接続した底板部71D(図3参照)とを有しており、それら各板部は互いに接合されて一体化されている。第2部材72は、第1部材71の上端部にその外側端部を接続した天板部72Bと、天板部72Bの内側端部にその上端部を接続した傾斜板部72Cと、傾斜板部72Cの下端部に接続した底板部72Dとを有しており、それら各板部は互いに接合されて一体化されている。そして、第1部材71の天板部71Bによってバッファ流路部14Hの底面が形成され、第2部材72の天板部72Bの下面によってバッファ流路部14Hの天井面が形成されている。また、第1部材71の傾斜板部71Cの上面(光学素子LS1側に向く面)によって傾斜流路部14Sの底面が形成され、第2部材72の傾斜板部72Cの下面(光学素子LS1とは反対側に向く面)によって傾斜流路部14Sの天井面が形成されている。第1部材71の傾斜板部71C及び第2部材72の傾斜板部72Cのそれぞれはすり鉢状に形成されている。これら第1、第2部材71、72を組み合わせることによってスリット状の供給流路14が形成される。また、バッファ流路部14Hの外側は、第1部材71の側板部71Aの上部領域によって閉塞されており、第2部材72の傾斜板部72Cの上面は、光学素子LS1の側面と対向している。
液体回収口22は、基板ステージPSTに支持された基板Pの上方において、その基板P表面と対向するように設けられている。液体回収口22と基板P表面とは所定距離だけ離れている。液体回収口22は、投影光学系PLの投影領域AR1に対して液体供給口12の外側に、投影領域AR1に対して液体供給口12よりも離れて設けられており、液体供給口12、及び投影領域AR1を囲むように形成されている。具体的には、第1部材71の側板部71A、天板部71B、及び傾斜板部71Cによって下向きに開口する空間部24が形成されており、空間部24の前記開口部により液体回収口22が形成されており、前記空間部24により回収流路24が形成されている。そして、回収流路(空間部)24の一部に、回収管23の他端部が接続されている。
液体回収口22には、その液体回収口22を覆うように複数の孔を有する多孔部材25が配置されている。多孔部材25は複数の孔を有したメッシュ部材により構成されている。多孔部材25としては、例えば略六角形状の複数の孔からなるハニカムパターンを形成されたメッシュ部材によって構成可能である。多孔部材25は薄板状に形成されており、例えば100μm程度の厚みを有するものである。
多孔部材25は、ステンレス鋼(例えばSUS316)などからなる多孔部材の基材となる板部材に孔あけ加工を施すことで形成可能である。また、液体回収口22に、複数の薄板状の多孔部材25を重ねて配置することも可能である。また、多孔部材25に、液体LQへの不純物の溶出を抑えるための表面処理、あるいは親液性を高めるための表面処理を施してもよい。そのような表面処理としては、多孔部材25に酸化クロムを付着する処理が挙げられ、例えば株式会社神鋼環境ソリューションの「GOLDEP」処理あるいは「GOLDEP WHITE」処理が挙げられる。このような表面処理を施すことにより、多孔部材25から液体LQに不純物が溶出する等の不都合を防止できる。また、ノズル部材70(第1、第2部材71、72)に上述した表面処理を施してもよい。また、多孔部材25を、第1液体LQ1への不純物の溶出が少ない材料(チタンなど)を用いて形成してもよい。
ノズル部材70は平面視四角形状である。図3に示すように、液体回収口22は、ノズル部材70の下面において、投影領域AR1及び液体供給口12を取り囲むように平面視枠状(口の字状)に形成されている。そして、その液体回収口22に薄板状の多孔部材25が配置されている。また、液体回収口22(多孔部材25)と液体供給口12との間には、第1部材71の底板部71Dが配置されている。液体供給口12は、第1部材71の底板部71Dと、第2部材72の底板部72Dとの間において平面視環状のスリット状に形成されたものである。
ノズル部材70のうち、底板部71D、72Dそれぞれの基板Pと対向する面(下面)は、XY平面と平行な平坦面となっている。すなわち、ノズル部材70は、基板ステージPSTに支持された基板Pの表面(XY平面)と対向するように、且つ基板Pの表面と略平行となるように形成された下面を有する底板部71D、72Dを備えた構成となっている。また、本実施形態においては、底板部71Dの下面と底板部72Dの下面とは略面一であり、基板ステージPSTに配置された基板P表面とのギャップが最も小さくなる部分となる。これにより、底板部71D、72Dの下面と基板Pとの間で液体LQを良好に保持して液浸領域AR2を形成することができる。以下の説明においては、基板Pの表面と対向するように、且つ基板Pの表面(XY平面)と略平行となるように形成された底板部71D、72Dの下面(平坦部)を合わせて、「ランド面75」と適宜称する。
ランド面75は、ノズル部材70のうち、基板ステージPSTに支持された基板Pに最も近い位置に配置された面である。なお本実施形態においては、底板部71Dの下面と底板部72Dの下面とは略面一となっているため、底板部71Dの下面及び底板部72Dの下面を合わせてランド面75としているが、底板部71Dが配置されている部分も多孔部材25を配置して液体回収口としてもよく、この場合には底板部72Dの下面のみがランド面75となる。
多孔部材25は、基板ステージPSTに支持された基板Pと対向する下面2を有している。そして、多孔部材25は、その下面2が基板ステージPSTに支持された基板Pの表面(すなわちXY平面)に対して傾斜するように液体回収口22に設けられている。すなわち、液体回収口22に設けられた多孔部材25は、基板ステージPSTに支持された基板Pの表面と対向する斜面(下面)2を有している。液体LQは、液体回収口22に配置された多孔部材25の斜面2を介して回収される。そのため、液体回収口22は斜面2に形成された構成となっている。換言すれば、本実施形態においては、斜面全体が液体回収口22として機能する。また、液体回収口22は、露光光ELが照射される投影領域AR1を囲むように形成されているため、その液体回収口22に配置された多孔部材25の斜面2は、投影領域AR1を囲むように形成された構成となっている。
基板Pと対向する多孔部材25の斜面2は、投影光学系PL(光学素子LS1)の光軸AXから離れるにつれて、基板Pの表面との間隔が大きくなるように形成されている。図3に示すように、本実施形態においては、液体回収口22は平面視ロの字状に形成され、その液体回収口22には4枚の多孔部材25A〜25Dが組み合わされて配置されている。このうち、投影領域AR1に対してX軸方向(走査方向)両側のそれぞれに配置されている多孔部材25A、25Cは、その表面とXZ平面とを直交させつつ、光軸AXから離れるにつれて基板Pの表面との間隔が大きくなるように配置されている。また、投影領域AR1に対してY軸方向の両側のそれぞれに配置されている多孔部材25B、25Dは、その表面とYZ平面とを直交させつつ、光軸AXから離れるにつれて基板Pの表面との間隔が大きくなるように配置されている。
XY平面に対する多孔部材25の下面2の傾斜角は液体LQの粘性や基板P表面における液体LQの接触角等を考慮して3〜20度の間に設定される。なお本実施形態においては、その傾斜角は7度に設定されている。
第1部材の傾斜板部71Cの下端部に接続された底板部71Dの下面と側板部71Aの下端部とは、Z軸方向においてほぼ同じ位置(高さ)に設けられている。また、多孔部材25は、その斜面2の内縁部と底板部71Dの下面(ランド面75)とがほぼ同じ高さになるように、且つ斜面2の内縁部と底板部71Dの下面(ランド面75)とが連続するように、ノズル部材70の液体回収口22に取り付けられている。すなわち、ランド面75は、多孔部材25の斜面2と連続的に形成されている。また、多孔部材25は光軸AXから離れるにつれて基板Pの表面との間隔が大きくなるように配置されている。そして、斜面2(多孔部材25)の外縁部の外側には、側板部71Aの下部の一部の領域によって形成された壁部76が設けられている。壁部76は、多孔部材25(斜面2)を囲むように、その周縁に設けられたものであって、投影領域AR1に対して液体回収口22の外側に設けられており、液体LQの漏出を抑制するためのものである。
ランド面75を形成する底板部72Dの一部は、Z軸方向に関して、投影光学系PLの光学素子LS1の像面側の端面(下面)T1と基板Pとの間に配置されている。すなわち、ランド面75の一部が、投影光学系PLの光学素子LS1の下面(端面)T1の下にもぐり込んでいる。また、ランド面75を形成する底板部72Dの中央部には、露光光ELが通過する開口部74が形成されている。開口部74は、投影領域AR1に応じた形状を有しており、本実施形態においてはY軸方向(非走査方向)を長手方向とする楕円状に形成されている。開口部74は投影領域AR1よりも大きく形成されており、投影光学系PLを通過した露光光ELは、底板部72Dに遮られることなく、基板P上に到達できる。すなわち、ランド面75の少なくとも一部は、露光光ELの光路を妨げない位置において、露光光ELの光路を囲むように、且つ投影光学系PLの端面T1の下にもぐり込むようにして配置されている。換言すれば、ランド面75の少なくとも一部は、投影光学系PLの像面側の端面T1と基板Pとの間において、投影領域AR1を囲むように配置されている。また、底板部72Dは、その下面をランド面75として、基板Pの表面と対向するように配置されており、光学素子LS1の下面T1及び基板Pとは接触しないように設けられている。なお、開口部74のエッジ部74Eは、直角状であってもよいし、鋭角に形成されていてもよいし、円弧状に形成されていてもよい。
そして、ランド面75は、投影領域AR1と液体回収口22に配置された多孔部材25の斜面2との間に配置された構成となっている。液体回収口22は、投影領域AR1に対してランド面75の外側で、且つランド面75を囲むように配置された構成となっている。すなわち、液体回収口22は、露光光ELの光路に対してランド面75より離れた位置に、ランド面を囲むように配置されている。また、液体供給口12も、投影領域AR1に対してランド面75の外側に配置された構成となっている。液体供給口12は、投影光学系PLの投影領域AR1と液体回収口22との間に設けられた構成となっており、液浸領域AR2を形成するための液体LQは、液体供給口12を介して、投影光学系PLの投影領域AR1と液体回収口22との間で供給される。なお、液体供給口12と液体回収口22の数、位置及び形状は、本実施形態で述べるものに限られず、液浸領域AR2を所望状態に維持できる構成であればよい。例えば、液体回収口22はランド面75を囲まないように配置されていてもよい。この場合、ノズル部材70の下面のうち、投影領域AR1に対して走査方向(X方向)の両側の所定領域のみ、あるいは投影領域AR1に対して非走査方向(Y方向)の両側の所定領域のみに液体回収口22を設けるようにしてもよい。
上述したように、ランド面75は、光学素子LS1の下面T1と基板Pとの間に配置されており、基板P表面と光学素子LS1の下面T1との距離は、基板P表面とランド面75との距離よりも長くなっている。すなわち、光学素子LS1の下面T1は、ランド面75より高い位置に(基板Pに対して遠くなるように)形成されている。本実施形態においては、光学素子LS1の下面T1と基板Pとの距離は3mm程度であり、ランド面75と基板Pとの距離は1mm程度である。そして、ランド面75には液浸領域AR2の液体LQが接触するようになっており、光学素子LS1の下面T1にも液浸領域AR2の液体LQが接触するようになっている。すなわち、ランド面75及び下面T1は、液浸領域AR2の液体LQと接触する液体接触面となっている。
投影光学系PLの光学素子LS1の液体接触面T1は、親液性(親水性)を有している。本実施形態においては、液体接触面T1に対して親液化処理が施されており、その親液化処理によって、光学素子LS1の液体接触面T1が親液性となっている。また、ランド面75も親液化処理されて親液性を有している。なお、ランド面75の一部(例えば、底板部71Dの下面)は撥液化処理されて撥液性を有していてもよい。もちろん、上述したように、第1部材71及び第2部材72を、親液性の材料で形成して、ランド面75に親液性を持たせてもよい。
光学素子LS1の液体接触面T1等の所定部材を親液性にするための親液化処理としては、例えば、MgF2、Al2O3、SiO2等の親液性材料を付着させる等の処理が挙げられる。あるいは、本実施形態における液体LQは極性の大きい水であるため、親液化処理(親水化処理)としては、例えばアルコールなどOH基を持った極性の大きい分子構造の物質で薄膜を形成することで、親液性(親水性)を付与することもできる。また、光学素子LS1を蛍石又は石英で形成することにより、これら蛍石又は石英は水との親和性が高いため、親液化処理を施さなくても、良好な親液性を得ることができ、光学素子LS1の液体接触面(端面)T1のほぼ全面に液体LQを密着させることができる。
また、ランド面75の一部を撥液性にする場合の撥液化処理としては、例えば、ポリ四フッ化エチレン(テフロン(登録商標))等のフッ素系樹脂材料、アクリル系樹脂材料、シリコン系樹脂材料等の撥液性材料を付着させる等の処理が挙げられる。また、基板ステージPSTの上面91を撥液性にすることにより、液浸露光中における基板P外側(上面91外側)への液体LQの流出を抑え、また液浸露光後においても液体LQを円滑に回収できて上面91に液体LQが残留する不都合を防止できる。
基板P上に液体LQを供給するために、制御装置CONTは、液体供給部11を駆動して液体供給部11より液体LQを送出する。液体供給部11より送出された液体LQは、供給管13を流れた後、ノズル部材70の供給流路14のうちバッファ流路部14Hに流入する。バッファ流路部14Hは水平方向に拡がる空間部であり、バッファ流路部14Hに流入した液体LQは水平方向に拡がるように流れる。バッファ流路部14Hの流路下流側である内側(光軸AX側)の領域には堤防部15が形成されているため、液体LQはバッファ流路部14Hの全域に拡がった後、一旦貯められる。そして、バッファ流路部14Hに液体LQが所定量以上貯まった後(液体LQの液面が堤防部15の高さ以上になった後)、狭流路部14Nを介して傾斜流路部14Sに流入する。傾斜流路部14Sに流入した液体LQは、傾斜流路部14Sを下方に向かって流れ、液体供給口12より投影光学系PLの像面側に配置された基板P上に供給される。液体供給口12は基板Pの上方より基板P上に液体LQを供給する。
このように、堤防部15を設けたことにより、バッファ流路部14Hから流れ出た液体LQは、投影領域AR1を囲むように環状に形成された液体供給口12の全域からほぼ均一に基板P上に供給される。つまり、堤防部15(狭流路部14N)が形成されていないと、傾斜流路部14Sを流れる液体LQの流量は、供給管13とバッファ流路部14Hとの接続部近傍の領域のほうが他の領域よりも多くなるため、環状に形成された液体供給口12の各位置において基板P上に対する液体供給量が不均一となる場合がある。しかしながら、狭流路部14Nを設けてバッファ流路部14Hを形成し、そのバッファ流路部14Hに所定量以上の液体LQが貯められた後、液体供給口12への液体供給が開始されるようにしたので、液体供給口12の各位置における流量分布や流速分布を均一化した状態で基板P上に液体LQを供給することができる。ここで、供給流路14の曲がり角部17近傍には例えば供給開始時などに気泡が残存しやすいが、この曲がり角部17近傍の供給流路14を狭めて狭流路部14Nを形成したことにより、狭流路部14Nを流れる液体LQの流速を高速化でき、その高速化された液体LQの流れにより気泡を液体供給口12を介して供給流路14外部に排出できる。そして、気泡を排出した後、液浸露光動作を実行することにより、液浸領域AR2に気泡がない状態で露光処理できる。なお堤防部15は、バッファ流路14Hの天井面より−Z方向に突出するように設けられていてもよい。要は、バッファ流路部14Hよりも狭い狭流路部14Nが、バッファ流路部14Hよりも流路下流側に設けられていればよい。
なお、堤防部15は部分的に低く(高く)してもよい。堤防部15に部分的に高さの異なる領域を設けておくことによって、液体LQの供給を開始したときに液浸領域AR2を形成する液体中への気体(気泡)の残留を防止することができる。またバッファ流路部14Hを複数の流路に分割して、スリット状の液体供給口12の位置に応じて異なる量の液体LQを供給できるようにしてもよい。
基板P上の液体LQを回収するために、制御装置CONTは、液体回収部21を駆動する。真空系を有する液体回収部21が駆動されることにより、基板P上の液体LQは、多孔部材25を配置された液体回収口22を介して回収流路24に流入する。液浸領域AR2の液体LQを回収するとき、その液体LQには多孔部材25の下面(斜面)2が接触する。液体回収口22(多孔部材25)は基板Pの上方において、基板Pに対向するように設けられているため、基板P上の液体LQを上方より回収する。回収流路24に流入した液体LQは、回収管23を流れた後、液体回収部21に回収される。
図5は液体回収部21の一例を示す図である。図5において、液体回収部21は、回収管23の一端部に接続された回収タンク26と、回収タンク26に配管27Kを介して接続された真空ポンプ(真空系)27と、回収タンク26に配管29Kを介して接続された排液ポンプ(排水ポンプ)29と、回収タンク26の内側に設けられた液位センサ(水位センサ)28とを備えている。回収管23の一端部は、回収タンク26の上部に接続されている。また、その一端部を真空ポンプ27に接続した配管27Kの他端部は、回収タンク26の上部に接続されている。また、その一端部を排液ポンプ29に接続した配管29Kの他端部は、回収タンク26の下部に接続されている。真空ポンプ27が駆動することにより、ノズル部材70の液体回収口22を介して液体LQが回収され、回収タンク26に収容される。排液ポンプ29が駆動することにより、回収タンク26に収容されている液体LQは、配管29Kを介して外部に排出される。真空ポンプ26及び排液ポンプ29の動作は制御装置CONTに制御される。液位センサ28は、回収タンク26に収容されている液体LQの液位(水位)を計測するものであって、その計測結果を制御装置CONTに出力する。制御装置CONTは、回収タンク26に収容された液体LQの液位(水位)がほぼ一定となるように、液位センサ28の出力に基づいて、排液ポンプ29の吸引力(排水力)を調整する。制御装置CONTは、回収タンク26内の液体LQの液位をほぼ一定に維持できるため、回収タンク26内の圧力を安定化することができる。したがって、液体回収口22を介した液体LQの回収力(吸引力)を安定させることができる。なお、図5に示す実施形態において、排液ポンプ29の替わりに排液バルブを設け、液位センサ28の出力に基づいて、排液バルブの開閉調整あるいは排出口の径調整を行う等して、回収タンク26内の液体LQの液位をほぼ一定に維持するようにしてもよい。
本実施形態における液体回収機構20の回収方法の一例について説明する。なお、本実施形態においては、この回収方法をバブルポイント法と呼ぶことにする。液体回収機構20は、このバルブポイント法を用いて回収口22から液体LQだけを回収するようにしており、これによって液体回収に起因する振動の発生を抑制することができる。
以下、図6の模式図を参照しながら、本実施形態における液体回収機構20による液体回収動作の原理について説明する。液体回収機構20の回収口22には、多孔部材25が配置される。多孔部材25としては、例えば多数の孔が形成された薄板状のメッシュ部材を使用することができる。バルブポイント法は、多孔部材25が濡れた状態で、多孔部材25の上面と下面との圧力差を後述の所定条件を満足するように制御することで、多孔部材25の孔から液体LQだけを回収するものである。バルブポイントの条件に係るパラメータとしては、多孔部材25の孔径、多孔部材25の液体LQとの接触角(親和性)、及び液体回収部21の吸引力(多孔部材25の上面の圧力)等が挙げられる。
図6は、多孔部材25の部分断面の拡大図であって、多孔部材25を介して行われる液体回収の一態様を示すものである。多孔部材25の下には、基板Pが配置されており、多孔部材25と基板Pとの間には、気体空間及び液体空間が形成されている。このような状況は、例えば、図4に示した液浸領域AR2の端部で生じる。あるいは、液浸領域AR2の液体LQ中に空隙(Void)が形成された場合にも、このような状況が生じ得る。より具体的には、多孔部材25の第1孔25Haと基板Pとの間には気体空間が形成され、多孔部材25の第2孔25Hbと基板Pとの間には液体空間が形成されている。また、多孔部材25の上には、回収流路24の一部を形成する流路空間が形成されている。
図6において、多孔部材25の第1孔25Haと基板Pとの間の空間の圧力(多孔部材25Hの下面での圧力)をPa、多孔部材25の上の流路空間の圧力(多孔部材25の上面での圧力)をPb、孔25Ha、25Hbの孔径(直径)をd、多孔部材25(孔25Hの内側)の液体LQとの接触角をθ、液体LQの表面張力をγとして、
(4×γ×cosθ)/d ≧ (Pa−Pb) …(1A)
の条件が成立する場合、図6に示すように、多孔部材25の第1孔25Haの下側(基板P側)に気体空間が形成されても、多孔部材25の下側の空間の気体が孔25Haを介して多孔部材25の上側の空間に移動(侵入)することを防止することができる。すなわち、上記(1A)式の条件を満足するように、接触角θ、孔径d、液体LQの表面張力γ、圧力Pa、Pbを最適化することで、液体LQと気体との界面が多孔部材25の孔25Ha内に維持され、第1孔25Haからの気体の侵入を抑えることができる。一方、多孔部材25の第2孔25Hbの下側(基板P側)には液体空間が形成されているので、第2孔25Hbを介して液体LQのみを回収することができる。
なお、上記(1A)式の条件においては、説明を簡単にするために多孔部材25の上の液体LQの静水圧は考慮してない。
また、本実施形態において、液体回収機構20は、多孔部材25の下の空間の圧力Pa、孔25Hの直径d、多孔部材25(孔25Hの内側面)の液体LQとの接触角θ、液体(純水)LQの表面張力γは一定として、液体回収部21の吸引力を制御して、上記(1A)式を満足するように、多孔部材25の上の流路空間の圧力を調整している。ただし、上記(1A)式において、(Pa−Pb)が大きいほど、すなわち、((4×γ×cosθ)/d)が大きいほど、上記(1A)式を満足するような圧力Pbの制御が容易になるので、孔25Ha、25Hbの直径d、及び多孔部材25の液体LQとの接触角θは可能な限り小さくすることが望ましい。
次に、上述した構成を有する露光装置EXを用いてマスクMのパターン像を基板Pに露光する方法について説明する。
制御装置CONTは、液体供給機構10及び液体回収機構20を有する液浸機構1により、基板P上に液体LQを所定量供給するとともに基板P上の液体LQを所定量回収することで、基板P上に液体LQの液浸領域AR2を形成する。液浸機構1より供給された液体LQは、投影領域AR1を含む基板P上の一部に、投影領域AR1よりも大きく且つ基板Pよりも小さい液浸領域AR2を局所的に形成する。
そして、制御装置CONTは、液体供給機構10による基板P上に対する液体LQの供給と並行して、液体回収機構20による基板P上の液体LQの回収を行いつつ、基板Pを支持する基板ステージPSTをX軸方向(走査方向)に移動しながら、マスクMのパターン像を投影光学系PLと基板Pとの間の液体LQ及び投影光学系PLを介して基板P上に投影露光する。
本実施形態における露光装置EXは、マスクMと基板PとをX軸方向(走査方向)に移動しながらマスクMのパターン像を基板Pに投影露光するものであって、走査露光時には、液浸領域AR2の液体LQ及び投影光学系PLを介してマスクMの一部のパターン像が投影領域AR1内に投影され、マスクMが−X方向(又は+X方向)に速度Vで移動するのに同期して、基板Pが投影領域AR1に対して+X方向(又は−X方向)に速度β・V(βは投影倍率)で移動する。基板P上には複数のショット領域が設定されており、1つのショット領域への露光終了後に、基板Pのステッピング移動によって次のショット領域が走査開始位置に移動し、以下、ステップ・アンド・スキャン方式で基板Pを移動しながら各ショット領域に対する走査露光処理が順次行われる。
本実施形態においては、多孔部材25は基板Pの表面に対して傾斜しており、液体回収口22に配置された多孔部材25の斜面2を介して液体LQを回収する構成であって、液体LQは斜面2を含む液体回収口22を介して回収される構成である。また、ランド面75(底板部71Dの下面)と斜面2とは連続的に形成されている。その場合において、図7(a)に示す初期状態(ランド面75と基板Pとの間に液体LQの液浸領域AR2が形成されている状態)から、基板Pを液浸領域AR2に対して+X方向に所定速度で所定距離だけスキャン移動した場合、図7(b)に示すような状態となる。図7(b)に示すようなスキャン移動後の所定状態においては、液浸領域AR2の液体LQには、斜面2に沿って斜め上方に移動する成分F1と、水平方向に移動する成分F2とが生成される。その場合、液浸領域AR2の液体LQとその外側の空間との界面(気液界面)LGの形状は維持される。また、たとえ液浸領域AR2に対して基板Pを高速に移動したとしても、界面LGの形状の大きな変化を抑制することができる。
また、斜面2と基板Pとの間の距離は、ランド面75と基板Pとの間の距離よりも大きい。すなわち、斜面2と基板Pとの間の空間は、ランド面75と基板Pとの間の空間よりも大きい。したがって、基板Pを移動したとき、図7(a)に示す初期状態での界面LG’と、図7(b)に示すスキャン移動後の所定状態での界面LGとの距離Lを比較的小さくすることができる。そのため、液浸領域AR2の拡がりを抑えて、液浸領域AR2の大きさを小さくすることができる。
例えば、図8(a)に示すように、ランド面75と液体回収口22に配置された多孔部材25の下面2’とが連続的に形成されており、多孔部材25の下面2’が基板Pに対して傾斜しておらず、基板P表面と略平行である場合、換言すれば、下面2’を含む液体回収口22が傾斜していない場合においても、液浸領域AR2に対して基板Pを移動したとき、界面LGの形状は維持される。ところが、下面2’は傾斜していないので、液体LQには水平方向に移動する成分F2のみが生成され、上方に移動する成分(F1)はほとんど生成されない。その場合、界面LGは基板Pの移動量とほぼ同じ距離を移動するため、初期状態での界面LG’とスキャン移動後の所定状態での界面LGとの距離Lは比較的大きい値となり、それに伴って液浸領域AR2も大きくなる。すると、その大きな液浸領域AR2に応じてノズル部材70も大型化しなければならず、また、液浸領域AR2の大きさに応じて基板ステージPST自体の大きさや基板ステージPSTの移動ストロークも大きくする必要があり、露光装置EX全体の巨大化を招く。そして、液浸領域AR2の大型化は、液浸領域AR2に対する基板Pのスキャン速度が高速化するにつれて顕著になる。
また、図8(b)に示すように、ランド面75と液体回収口22(多孔部材25の下面2’)との間に段差を設けることによって、下面2’と基板Pとの間の距離を、ランド面75と基板Pとの間の距離よりも大きくした場合、換言すれば、下面2’と基板Pとの間の空間を、ランド面75と基板Pとの間の空間よりも大きくした場合、液体LQには上方に移動する成分F1’が生成されるので、距離Lを比較的小さい値にすることができ、液浸領域AR2の大型化を抑制することができる。ところが、ランド面75と下面2’との間には段差が設けられており、ランド面75と下面2’とは連続的に形成されていないので、界面LGの形状が崩れやすくなる。界面LGの形状が崩れると、液浸領域AR2の液体LQ中に気体が噛み込んで液体LQ中に気泡が生成される不都合が発生する可能性が高くなる。また、例えば基板Pを+X方向に高速スキャンしたとき、段差があると、界面LGの形状が崩れるとともに上方に移動する成分F1’がより大きくなり、液浸領域AR2の最も+X側の領域の液体LQの膜厚が薄くなり、その状態で基板Pを−X方向(逆スキャン)に移動したとき、液体LQがちぎれる現象が発生する可能性が高くなる。そのちぎれた液体(図8(b)中、符号LQ’参照)が、例えば基板P上に残存すると、その液体LQ’の気化により基板上に付着跡(所謂ウォーターマーク)が形成される不都合が生じる。また、液体LQが基板Pの外側に流出し、周辺部材及び機器に錆びや漏電等の不都合を引き起こす可能性も高くなる。そして、前記不都合が発生する可能性は、液浸領域AR2に対する基板Pのスキャン速度が高速化するにつれて高くなる。
本実施形態においては、ランド面75(底板部71Dの下面)と連続的に斜面2を形成し、液浸機構1(液体回収機構20)の液体回収口22を、基板Pの表面と対向する斜面2に形成したので、投影光学系PLの像面側に形成された液浸領域AR2と基板Pとを相対移動させた場合においても、液浸領域AR2の液体LQとその外側の空間との界面LGの移動距離を抑えつつ、界面LGの形状を維持する(界面LGの形状変化を小さくする)ことができ、液浸領域AR2の大きさや形状を所望状態に維持することができる。したがって、液体LQ中に気泡が生成されたり、あるいは液体を十分に回収できなかったり、液体が流出する等の不都合が防止される。また、液浸領域AR2の大きさを小さくすることができる。したがって、露光装置EX全体のコンパクト化を図ることもできる。
また、基板Pを高速スキャンした場合、液浸領域AR2の液体LQが外側に流出したり、液浸領域AR2の液体LQが周囲に飛散する可能性が高くなるが、斜面2の周縁に壁部76を設けたので、液体LQの漏出を抑制することができる。すなわち、多孔部材25の周縁に壁部76を設けることによって、壁部76の内側にバッファ空間が形成されるので、液体LQが壁部76の内側面に達しても、液浸領域AR2を形成する液体LQは壁部76の内側のバッファ空間に濡れ拡がるため、壁部76の外側への液体LQの漏出をより確実に防止することできる。
また、ランド面75の一部(底板部72Dの下面)が投影領域AR1を囲むように投影光学系PLの端面T1の下に配置されているので、ランド面75の一部(底板部72Dの下面)と基板P表面との間に形成される小さいギャップが、投影領域の近傍に、且つ投影領域を囲むように形成される。したがって、投影領域AR1を覆うために必要十分な小さな液浸領域を保ち続けることができる。したがって、基板Pを高速に移動(スキャン)した場合にも、液浸領域AR2の液体LQ中への気体の混入や液体LQの流出などの不都合を抑えつつ、露光装置EX全体のコンパクト化を図ることができる。また、ランド面75の一部(底板部72Dの下面)の外側に液体供給口12が配置されているので、液浸領域AR2を形成する液体LQ中への気体(気泡)の混入が防止され、基板Pを高速で移動させた場合にも、露光光ELの光路を液体で満たし続けることが可能となる。
<第2の実施形態>
次に、本発明の第2の実施形態について図9を参照しながら説明する。ここで、以下の説明において、上述した実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。上述した第1の実施形態においては、薄板状の多孔部材25を基板Pに対して傾斜して取り付けることで、斜面2を形成しているが、図9に示すように、ノズル部材70の下面に、露光光ELの光軸AXから離れるにつれて、基板Pの表面との間隔が大きくなるような斜面2”を設け、その斜面2”の一部の所定位置(所定領域)に液体回収口22を形成するようにしてもよい。そして、その液体回収口22に多孔部材25を設けるようにしてもよい。この場合において、ノズル部材70の斜面2”と多孔部材25の下面2とは連続しており、斜面2”と下面2とはほぼ面一となっている。こうすることによっても、例えば斜面2”と基板Pとの間に液体LQの界面LGが形成された場合に、その界面LGの形状を維持し、液浸領域AR2の液体LQ中に気泡が生成される等の不都合を防止することができる。また、液浸領域AR2の大きさを小さくすることもできる。
<第3の実施形態>
図10は本発明の第3の実施形態を示す図である。図10に示すように、多孔部材25の下面2のうち、光軸AXに近い第1領域2Aの基板Pに対する傾斜角度が、その外側の第2領域2Bの基板Pに対する傾斜角度よりも大きくなるように形成してもよい。
<第4の実施形態>
図11は本発明の第4の実施形態を示す図である。図11に示すように、多孔部材25の下面2のうち、光軸AXに近い第1領域2Aの基板Pに対する傾斜角度が、その外側の第2領域2Bの基板Pに対する傾斜角度よりも小さくなるように形成してもよい。すなわち、多孔部材25の下面2は平坦面である必要は無く、多孔部材25の下面2が露光光ELの光軸AXから離れるにつれて、基板Pの表面との間隔が大きくなるように設けられていればよい。
<第5の実施形態>
図12は本発明の第5の実施形態を示す図である。 図12に示すように、ノズル部材70の下面に形成されている斜面(多孔部材25の下面)に、複数のフィン部材150を形成してもよい。フィン部材150は側面視略三角形状であって、図12の側断面図において、多孔部材25の下面2と壁部76の内側に形成されるバッファ空間に配置される。またフィン部材150は、その長手方向を外側に向けるようにして放射状に、壁部76の内側面76に取り付けられる。ここで、複数のフィン部材150どうしは離間しており、各フィン部材150間には空間部が形成されている。このように複数のフィン部材150を配置することによって、ノズル部材70の下面に形成されている斜面(多孔部材25の下面)での液体接触面積を増加させることができるので、ノズル部材70の下面における液体LQの保持性能を向上させることができる。なお、複数のフィン部材は等間隔で設けられてもよいし、不等間隔であってもよい。例えば、投影領域AR1に対してX軸方向の両側に配置されるフィン部材150の間隔を、投影領域AR1に対してY軸方向の両側に配置されるフィン部材150の間隔より小さく設定してもよい。なお、フィン部材150の表面は液体LQに対して親液性であることが好ましい。また、フィン部材150はステンレス鋼(例えばSUS316)に「GOLDEP」処理あるいは「GOLDEP WHITE」処理することで形成してもよいし、ガラス(石英)などで形成することもできる。
<第6の実施形態>
次に、本発明の第6の実施形態について、図13、図14、図15、及び図16を参照しながら説明する。なお、上述の各実施形態と同一または類似の機構及び部材には、共通の符号を付して詳細な説明は省略する。図13はノズル部材70’近傍を示す概略斜視図の一部破断図、図14はノズル部材70’を下側から見た斜視図、図15はYZ平面と平行な側断面図、図16はXZ平面と平行な側断面図である。
本実施形態におけるノズル部材70’は、第1部材171と第2部材172とを組み合わせて構成されており、全体として平面視略円形状に形成されている。第1部材171は、側板部171Aと、厚肉の傾斜板部171Cとを有しており、側板部171Aの上端部と傾斜板部171Cの上端部とが接続されている。一方、第2部材172は、傾斜板部172Cと、傾斜板部172Cの下端部に接続した底板部172Dとを有している。第1部材171の傾斜板部171C、及び第2部材172の傾斜板部172Cのそれぞれは、すり鉢状に形成されており、第2部材172の傾斜板部172Cは、第1部材171の傾斜板部171Cの内側に配置されている。そして、第1部材171の傾斜板部171Cの内側面171Tと、第2部材172の傾斜板部172Cの外側面172Sとが僅かに離れる状態となるように、第1部材171及び第2部材172が不図示の支持機構で支持されている。そして、第1部材171の傾斜板部171Cの内側面171Tと、第2部材172の傾斜板部172Cの外側面172Sとの間には、平面視円環状であってスリット状の溝部73が設けられている。本実施形態においては、溝部73のスリット幅G1は例えば3mm程度に設定されている。また本実施形態においては、溝部73は、XY平面(基板Pの表面)に対して約45度の傾斜を持つように形成されている。
光学素子LS1は、第2部材172の傾斜板部172Cによって形成された穴部70Hの内側に配置されるようになっており、その穴部70Hに配置された光学素子LS1の側面と、第2部材172の傾斜板部172Cの内側面172Tとが対向する。そして、その傾斜板部172Cの内側面172Tは、液体LQに対して撥液性(撥水性)となっており、投影光学系PLの側面と傾斜板部172C(ノズル部材70’)の内側面172Tとの間隙への液体LQの浸入が抑制されている。
第1部材171の傾斜板部171Cのうち、基板Pと対向する下面171Rは、XY平面と平行な平坦面となっている。また、第2部材172の底板部172Dのうち、基板Pと対向する下面172Rも、XY平面と平行な平坦面となっている。そして、第1部材171の傾斜板部171Cの下面171Rと、第2部材172の底板部172Dの下面172Rとは略面一となっており、これら傾斜板部171Cの下面171R、及び底板部172Dの下面172Rによって、ノズル部材70’のうち、基板ステージPSTに支持された基板P表面(基板ステージPSTの上面)と対向し、この基板P表面(基板ステージPSTの上面)に最も近い面であるランド面75が形成されている。また、ランド面75を形成する底板部172Dの中央部には、露光光ELが通過する開口部74が形成されている。すなわち、ランド面75は、投影領域AR1を取り囲むように形成されている。
図15に示すように、ランド面75を形成する底板部172Dの一部は、Z軸方向に関して、投影光学系PLの光学素子LS1の像面側の下面T1と基板P(基板ステージPST)との間に配置されている。底板部172Dは、光学素子LS1の下面T1及び基板P(基板ステージPST)とは接触しないように設けられている。底板部172の上面は光学素子LS1の下面T1と対向するように、且つ光学素子LS1の下面とほぼ平行に配置され、投影光学系PLの端面T1と底板部172Dの上面との間には、所定の隙間(空間)G2が形成されている。
第1部材171には、下向きに開口する空間部24が形成されており、上述した第1の実施形態と同様、空間部24の開口部に液体回収口22が形成されており、空間部24が回収流路として機能する。そして、回収流路(空間部)24の一部に、回収管23の他端部が接続されている。液体回収口22には、その液体回収口22を覆うように複数の孔を有する多孔部材25が配置されている。多孔部材25は、基板ステージPSTに支持された基板Pと対向する下面2を有している。上述した第1の実施形態と同様、多孔部材25は、その下面2が基板ステージPSTに支持された基板Pの表面(すなわちXY平面)に対して傾斜するように液体回収口22に設けられている。多孔部材25の斜面2は、投影光学系PL(光学素子LS1)の光軸AXから離れるにつれて、基板Pの表面との間隔が大きくなるように形成されている。また、図15に示すように、多孔部材25は、その斜面2の内縁部と第1部材171の下面171R(ランド面75)とがほぼ同じ高さになるように、且つ斜面2の内縁部と下面171R(ランド面75)とが連続するように、ノズル部材70’の液体回収口22に取り付けられている。
また、図14に示すように、ノズル部材70’の下面において、液体回収口22は、開口部74(投影領域AR1)、溝部73、及びランド面75を取り囲むように平面視円環状に形成されている。ランド面75は、露光光ELが通過する開口部74(投影領域AR1)と液体回収口22に配置された多孔部材25の斜面2との間に配置されている。液体回収口22は、開口部74(投影領域AR1)に対してランド面75の外側で、且つランド面75を囲むように配置された構成となっている。
斜面(多孔部材25の下面)2には、第5の実施形態で説明したような、複数のフィン部材150が放射状に設けられている。フィン部材150は側面視略三角形状であって、多孔部材25の下面2と壁部76の内側に形成されるバッファ空間に配置される。本実施形態においては、フィン部材150それぞれの厚みは約0.1mm程度であり、周方向に2度の間隔で多数配置されている。
図13に示すように、第2部材172の傾斜板部172Cの内側面172Tのうち、投影光学系PLの投影領域AR1に対してY軸方向両側のそれぞれには、凹部14Aが形成されている。凹部14Aは、傾斜板部172Cの傾斜方向に沿って形成されており、光学素子LS1の側面との間で所定の隙間G3(図15参照)を形成している。そして、凹部14Aと光学素子LS1との間に形成された隙間G3によって、投影光学系PLの像面側に液体LQを供給する供給流路14が形成されている。供給流路14の上端部は、不図示の供給管(供給流路)を介して液体供給部11に接続されており、下端部は、投影光学系PLの下面T1と底板部172Dとの間の隙間(空間)G2に接続され、その下端部に、隙間G2に液体LQを供給する液体供給口12が形成されている。そして、液浸機構1は、液体供給部11より送出した液体LQを、流路14の下端部に設けられた液体供給口12を介して、投影光学系PLと底板部172Dとの間の隙間G2に供給するようになっている。本実施形態においては、供給流路14は、XY平面(基板Pの表面)に対して、約45度の傾斜を持つように形成されている。
なお、底板部172Dの上面などに凹凸を設けて、底板部172Dの上面での液体の流れる方向や液体の流速をコントロールするようにしてもよい。例えば、液体供給口12から底板部172Dの上面172Aに供給された液体LQの流れ方向を決めるために、液体供給口12にフィン状の部材を配置したり、底板部172Dの上面172Aにフィン状の突起部を設けるようにしてもよい。この場合、液体LQを流す方向および液体LQの流速は、気体部分が残留することなく、投影光学系PLの像面側の光路空間を液体で満たし続けることができるように、実験やシミュレーションの結果に基づいて最適化するのが好ましい。また、液体LQを流す方向および液体LQの流速は、投影光学系PLの像面側の空間から液体LQをほぼすべて回収して、非液浸状態を形成するときに、光学素子LS1の端面T1などに液体LQの残留がしないように、実験やシミュレーションの結果に基づいて最適化するのが好ましい。あるいは、液体LQを流す方向および液体LQの流速は、基板P(感光性の樹脂など)から溶出した物質を含む液体が滞留しないように、実験やシミュレーションの結果に基づいて最適化するのが好ましい。
更に、第2部材172のうち、投影領域AR1に対してX軸方向両側のそれぞれには、第2部材172の傾斜板部172Cの内部を傾斜方向に沿って貫通するスリット状の貫通孔130が形成されている。貫通孔130の下端部130Aに形成された開口は、投影光学系PLの下面T1と底板部172Dとの間の隙間(空間)G2に接続しており、上端部130Bは大気開放されている。下端部130Aの開口は、底板部172Dの上面172Aに沿って、すなわち、基板に平行な方向に液体を送出することができる。
第1部材171と第2部材172との間の溝部73は、露光光ELが照射される投影領域AR1と、液体回収口22の斜面2との間に配置され、開口部74(投影領域AR1)を囲むようにして形成されている。更に、溝部73は、ランド面75の一部を構成する下面172Rも取り囲むようにして形成されている。換言すれば、ランド面75の一部を構成する下面172Rの外側に溝部73が配置されている。その溝部73は、基板ステージPSTの上面(基板ステージPSTに支持されている基板P)と対向するように配置された開口部73Aを有している。すなわち、溝部73は下側を向くように開口している。開口部73Aは、投影光学系PLの像面近傍に設けられており、溝部73は、その内部において、開口部73Aを介して、投影光学系PLの像面周囲の気体と流通している。
また、溝部73は、基板P(基板ステージPST)と対向する開口部73A以外にも、大気開放のための開口部73Bを有している。本実施形態においては、溝部73は、その上端部に大気開放のための開口部73Bを有している。なお、開口部73Bは、溝部73の上端部に沿って、平面視円環状に形成されているが、溝部73の上端部の一部のみに形成されていてもよい。また、溝部73の内部と外部とを流通するための流通路は、溝部73の上端部に限らず、任意の位置に設けてもよい。例えば、第1部材171の一部に、溝部73内部のZ軸方向における中間位置(所定位置)と溝部73外部とを流通するための流路を形成し、その流路を介して溝部73を大気開放するようにしてもよい。
このように、基板P(基板ステージPST)に対向する開口部73Aと大気開放のための開口部73Bとを有する溝部73Bを形成しているため、ノズル部材70’と基板P(基板ステージPST)との間の液体LQの一部が溝部73内部に出入りすることができる。したがって、ノズル部材70’の大きさ(径)が小さくても、液体回収口22の外側への液体LQの流出を抑えることができる。
また、図15に示すように、第1部材171の一部には、溝部73の内部と外部とを流通するための流通路131が形成され、その流通路131に真空系を含む吸引装置132が接続されている。流通路131及び吸引装置132は、ノズル部材70’と基板P(基板ステージPST)との間の液体LQ、すなわち液浸領域AR2を形成する液体LQ2を完全に回収するときに、その液体LQを溝部73を介して回収するために使用される。
次に、上述した構成を有するノズル部材70’を有する液浸機構1の動作について説明する。基板P上に液体LQを供給するために、制御装置CONTは、液体供給部11を駆動して液体供給部11より液体LQを送出する。液体供給部11より送出された液体LQは、供給管を流れた後、ノズル部材70’の供給流路14の上端部に流入する。供給流路14の上端部に流入した液体LQは、傾斜板部172Cの傾斜方向に沿って下方に向かって流れ、液体供給口12より投影光学系PLの端面T1と底板部172Dとの間の空間G2に供給される。ここで、空間G2に液体LQを供給する前に空間G2に存在していた気体部分は、貫通孔130や開口部74を介して外部に排出される。したがって、空間G2に対する液体LQの供給開始時に、空間G2に気体が留まってしまうといった不都合の発生を防止でき、液体LQ中に気体部分(気泡)が生成される不都合を防止できる。
空間G2に供給された液体LQは、空間G2を満たした後、開口部74を介して、ランド面75と基板P(基板ステージPST)との間の空間に流入する。このとき、液体回収機構20が単位時間あたり所定量で基板P上の液体LQを回収しているため、開口部74を介してランド面75と基板P(基板ステージPST)との間の空間に流入した液体LQによって、基板P上に所望の大きさの液浸領域AR2が形成される。
なお、本実施形態では、露光光ELが通過する開口部74を小さくしてランド面75の大きさを比較的大きくするようにしているので、基板P(基板ステージPST)とノズル部材70’との間において液体LQを良好に保持することができる。
基板Pを液浸露光している間など、液浸領域AR2を形成している間は、溝部73に接続されている流通路131は閉じられ、吸引装置132の駆動は停止している。したがって、投影領域AR1を覆うようにして形成されている液浸領域AR2に対して基板P(基板ステージPST)を移動する場合であっても、液浸領域AR2の液体LQの一部が、大気開放されている溝部73に出入りすることができ、液浸領域AR2が拡大したり、液浸領域AR2の液体LQが流出する等の不都合の発生を防止することができる。すなわち、例えば図16に示すように、基板Pを+X方向に移動することによって、液浸領域AR2の液体LQも、基板Pの移動とともに+X方向に移動しようとする。この場合、液体LQの+X方向への移動によって、液浸領域AR2が+X方向に拡大したり、液浸領域AR2の液体LQが液体回収口22の外側へ流出する可能性がある。ところが、その+X方向へ移動する液体LQの一部は、+X側の溝部73に入り拡がるため(図16中、矢印F3参照)、液浸領域AR2の拡大や液体LQの流出等を抑えることができる。
また、基板Pの液浸露光が完了したときなど、ノズル部材70’と基板P(基板ステージPST)との間の液体LQを全て回収するときには、制御装置CONTは、液体供給機構10による液体供給動作を停止し、液体回収機構20による液体回収口22を介した液体回収動作を行うとともに、溝部73に接続された流通路131を開いて、吸引装置132を駆動し、溝部73の内部空間を負圧にして、溝部73の開口部73Aを介した液体回収動作も並行して行う。このように、基板P(基板ステージPST)に最も近い開口部73Aも使うことで、ノズル部材70’と基板P(基板ステージPST)との間の液体LQをより短時間に確実に回収することができる。この場合、液体LQの回収口として機能する開口部73Aの大きさに比べて、大気開放のための開口部73Bは小さいため、溝部73内部を十分な負圧にして液体LQを回収することができる。
また、溝部73を介して液体LQを回収する場合、溝部73内の気体が液体LQと一緒に流通路131に流入して、ノズル部材70’に振動が発生する可能性があるが、溝部73を介して行われる液体LQの回収は、基板Pの露光動作などの精度を必要とする動作を行っていないときに実行されるため問題とならない。
なお本実施形態においては、供給流路14を形成する凹部14Aは、投影領域AR1に対してY軸方向両側のそれぞれに1つずつ(合計2つ)設けられているが、露光光ELが照射される投影光学系PLの投影領域AR1を取り囲むように任意の複数箇所に設けることができる。また、凹部14Aの上端部近傍に、第1の実施形態で説明したような堤防部15(バッファ流路部14H)を設けることもできる。
<第7の実施形態>
次に、本発明の第7の実施形態について、図17及び図18を参照しながら説明する。なお、上述の各実施形態と同一または類似の機構及び部材には、共通の符号を付して詳細な説明は省略する。図17はノズル部材70’を下側から見た斜視図、図18は側断面図である。図17及び図18において、上述した第6の実施形態と異なる点は、第2部材72の底板部172Dの大きさが小さく、底板部172Dは、投影光学系PLの下面T1と基板P(基板ステージPST)との間に殆ど配置されていない点にある。すなわち、底板部172Dに形成された開口部74は、投影光学系PL(光学素子LS1)の下面T1とほぼ同じ大きさで、投影領域AR1よりも十分に大きい略円形状に形成されている。そして、光学素子LS1の下面T1の殆どが基板P(基板ステージPST)と対向するように露出している。液体供給部11から送出された液体LQは、光学素子LS1の側面と凹部14Aとの間に形成された供給流路14を介して、投影光学系PLの下面T1と基板P(基板ステージPST)との間の空間に供給される。本実施形態においては、ランド面75の面積が小さくなるものの、第6の実施形態に比べて、底板部172と投影光学系PLの光学素子LS1との間に殆ど空間がなく、気体が留まりやすい部分が少ないので、液体LQの供給開始時において、液浸領域AR2を形成する液体LQ中に気体部分(気泡)が生成される不都合をより確実に防止することができる。
なお、上述の第6の実施形態及び第7の実施形態においては、説明を簡単にするために、ノズル部材70’は、第1部材171と第2部材172との組み合わせから構成されているが、実際には他のいくつかの部材を更に組み合わせて構成されている。もちろん、ノズル部材70’を一つの部材で構成するようにしてもよい。
また、上述の第6の実施形態及び第7の実施形態において、液体LQの供給開始時に空間G2の気体を貫通孔130を使って排出するようにしているが、貫通孔130を吸引装置(真空系)に接続して、液体LQの供給開始時に空間G2の気体を強制的に排出するようにしてもよい。
また、上述の第6の実施形態及び第7の実施形態において、底板部172Dの開口部74は、図14や図17に示した形状に限らず、気体部分が残留することなく、基板P(基板ステージPST)が動いても、投影光学系PLの像面側の光路空間を液体LQで満たし続けることができるように決めることができる。
また、上述の第6の実施形態及び第7の実施形態において、ノズル部材70’と基板P(基板ステージPST)との間(投影光学系PLの像面側の光路空間)の液体LQを全て回収する場合には、液体回収口22や開口部73Aを使った液体回収動作に加えて、液体供給口12から気体を吹き出すようにしてもよい。液体供給口12から吹き出された気体は、投影光学系PLの先端部の光学素子LS1の下面T1に吹き付けられるため、光学素子LS1の下面T1に付着(残留)している液体LQを除去することができる。液体供給口12から吹き出された気体は、下面T1に沿って流れ、光学素子LS1の下面T1において露光光ELが通過する領域、即ち、光学素子LS1の下面T1の投影領域AR1に対応する領域に付着している液体(液滴)LQをその領域の外側へ移動する(退かす)ことができる。これにより、光学素子LS1の下面T1において露光光ELが通過する領域に付着していた液体LQが除去される。なお、吹き付けた気体によって、光学素子LS1の下面T1に付着していた液体LQを気化(乾燥)することで除去するようにしてもよい。液体供給口12からは、ケミカルフィルタやパーティクル除去フィルタを含むフィルタ装置(不図示)を介したクリーンな気体が吹き出される。また、気体としては、露光装置EXが収容されたチャンバ内部の気体とほぼ同じ気体、例えば空気(ドライエア)が使用される。なお、吹き出す気体としては窒素ガス(ドライ窒素)を使用してもよい。
また、液体LQを全て回収する場合に、空間G2に存在していた気体を外部に排出するための貫通孔130に真空系などを接続して、貫通孔130の下端130Aに形成された開口から液体LQを吸引して、回収するようにしてもよい。
また、空間G2に存在していた気体を外部に排出するための貫通孔130に、気体供給系を接続し、その貫通孔130を介して気体を吹き出すようにしてもよい。
なお、第6及び第7の実施形態において、液体供給口12を投影領域AR1に対してX軸方向両側のそれぞれに配置し、走査方向両側のそれぞれから液体LQを供給するようにしてもよい。この場合、貫通孔130の下端部130Aは、例えば投影領域AR1に対してY軸方向両側のそれぞれの位置など、液体供給口12とは別の位置に設けられる。
また、第6及び第7の実施形態においては、傾斜板部172Cの凹部14Aと光学素子LS1の側面との間の隙間G3によって供給流路14が形成され、その供給流路14の下端部が液体供給口12として機能しているが、貫通孔130の上端部130Bと液体供給部11とを接続し、貫通孔130を供給流路として機能させるとともに、貫通孔130の下端部130Aを液体供給口として機能させてもよい。貫通孔130の上端部130Bと液体供給部11とを接続して貫通孔130を介して液体LQを供給する場合には、傾斜板部172Cの凹部14Aと光学素子LS1の側面との間の隙間G3と、液体供給部11とは接続されず(隙間G3は供給流路として機能せず)、隙間G3の上端部は大気開放される。そして、貫通孔130より空間G2に対して液体LQを供給する前に、空間G2に存在していた気体は、隙間G3を介して外部に排出される。このように、貫通孔130を介して液体LQを供給する場合においても、空間G2に対する液体LQの供給開始時に、空間G2に気体が留まってしまうといった不都合の発生を防止でき、液体LQ中に気体部分(気泡)が生成される不都合を防止できる。また、この場合においても、隙間G3の上端部と吸引装置(真空系)とを接続して、液体LQの供給開始時に空間G2の気体を強制的に排出するようにしてもよい。
また、貫通孔130を介して液体LQを供給する場合、液体供給口として機能する貫通孔130の下端部130Aを、投影領域AR1に対して、Y軸方向両側のそれぞれに配置し、非走査方向両側のそれぞれから液体LQを供給するようにしてもよい。
<第8の実施形態>
次に、本発明の第8の実施形態について、図19、図20、図21、及び図22を参照しながら説明する。図19はノズル部材70”近傍を示す概略斜視図の一部破断図、図20はノズル部材70”を下側から見た斜視図、図21はYZ平面と平行な側断面図、図22はXZ平面と平行な側断面図である。以下の説明において、上述の各実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。
ノズル部材70”は、第1部材171と第2部材172と第3部材173とを組み合わせて構成されており、全体として平面視略円形状に形成されている。第1部材171は、側板部171Aと、厚肉の傾斜板部171Cとを有している。第2部材172は、傾斜板部172Cと、傾斜板部172Cの下端部に接続した底板部172Dとを有している。第3部材173は、第1部材171及び第2部材172の上端部に接続されており、第3部材173の中央部には、光学素子LS1を配置するための穴部173Hが形成されている。光学素子LS1は、第3部材173の穴部173H、及び第2部材172の傾斜板部172Cによって形成された穴部70Hの内側に配置されるようになっており、穴部70Hの内側に配置された光学素子LS1の側面と、第2部材172の傾斜板部172Cの内側面172Tとが対向する。また、第1部材171の傾斜板部171Cの内側面171Tと、第2部材172の傾斜板部172Cの外側面172Sとの間には、平面視円環状であってスリット状の溝部73が設けられている。溝部73は、XY平面(基板Pの表面)に対して約45度の傾斜を持つように形成されている。
また、第1部材171の傾斜板部171Cの下面171Rと、第2部材172の底板部172Dの下面172Rとによって、ノズル部材70”のうち、基板ステージPSTに支持された基板P表面(基板ステージPSTの上面)と対向し、この基板P表面(基板ステージPSTの上面)に最も近い面であるランド面75が形成されている。ランド面75は、投影領域AR1を取り囲むように形成されている。
ランド面75を形成する底板部172Dの一部は、Z軸方向に関して、投影光学系PLの光学素子LS1の像面側の下面T1と基板P(基板ステージPST)との間に配置されている。底板部172Dは、光学素子LS1の下面T1及び基板P(基板ステージPST)とは接触しないように設けられている。底板部172の上面は光学素子LS1の下面T1と対向するように、且つ光学素子LS1の下面とほぼ平行に配置され、投影光学系PLの端面T1と底板部172Dの上面との間には、所定の隙間(空間)G2が形成されている。
第1部材171には、回収流路として機能する空間部24が形成されており、空間部24の開口部に液体回収口22が形成されている。液体回収口22は、開口部74(投影領域AR1)、溝部73、及びランド面75を取り囲むように平面視円環状に形成されている。回収流路(空間部)24の一部には回収管23の他端部が接続されている。液体回収口22には、基板ステージPSTに支持された基板Pと対向する斜面2を有する多孔部材25が配置されている。多孔部材25は、その斜面2の内縁部と第1部材171の下面171R(ランド面75)とがほぼ同じ高さになるように、且つ斜面2の内縁部と下面171R(ランド面75)とが連続するように、液体回収口22に取り付けられている。斜面2には、複数のフィン部材150が放射状に設けられている。
第2部材172のうち、投影領域AR1に対してY軸方向両側のそれぞれには、第2部材172の傾斜板部172Cの内部を傾斜方向に沿って貫通するスリット状の貫通孔140が形成されている。そして、貫通孔140の上端部140Bは、不図示の供給管(供給流路)を介して液体供給部11に接続されており、下端部140Aは、投影光学系PLの下面T1と底板部172Dとの間の隙間(空間)G2に接続されている。すなわち、貫通孔140は供給流路として機能し、その貫通孔140の下端部140Aに形成されている開口は、隙間G2に液体LQを供給する液体供給口として機能している。そして、液体供給口140Aは、露光光ELが照射される投影領域AR1を挟んだY軸方向両側のそれぞれに設けられており、露光光ELの光路空間の外側において、その露光光ELの光路空間を挟んだ両側のそれぞれの所定位置(第1の位置)に設けられた構成となっている。
液浸機構1は、液体供給部11より送出した液体LQを、供給流路(貫通孔)140を介して、液体供給口(下端部)140Aより、投影光学系PLと底板部172Dとの間の隙間(空間)G2を含む内部空間に供給するようになっている。供給流路140は、XY平面(基板Pの表面)に対して、約45度の傾斜を持つように形成されている。なお、液体供給口140Aから底板部172Dの上面に供給された液体LQの流れ方向を決めるために、液体供給口140Aにフィン状の部材を配置したり、底板部172Dの上面にフィン状の突起部を設けるようにしてもよい。
第2部材172のうち、投影領域AR1に対してX軸方向両側のそれぞれには、第2部材172の傾斜板部172Cの内部を傾斜方向に沿って貫通するスリット状の貫通孔130が形成されている。第2部材172の上面のうち、貫通孔130の上端部130Bが形成されている所定領域と第3部材173との間には隙間が形成されている。そして、貫通孔130の上端部130Bは大気開放されており、貫通孔130の下端部130Aは、投影光学系PLの下面T1と底板部172Dとの間の隙間(空間)G2に接続されている。したがって、隙間G2の気体は、貫通孔130の上端部130Bを介して、外部空間に排出(排気)可能となっている。すなわち、貫通孔130の下端部130Aに形成されている開口は、隙間G2の気体を排気する排気口として機能し、貫通孔130は排気流路として機能している。また、排気口(下端部)130Aは、隙間(空間)G2の気体、すなわち投影光学系PLの像面周囲の気体と接続された構成となっている。そして、排気口130Aは、露光光ELが照射される投影領域AR1を挟んだX軸方向両側のそれぞれに設けられており、露光光ELの光路空間の外側において、その露光光ELの光路空間を挟んだ両側のそれぞれの所定位置(第2の位置)に設けられた構成となっている。
上述のように、液体供給口140Aは、露光光ELの光路空間の外側の所定位置(第1の位置)に設けられている。そして、底板部172Dは、液体供給口140Aから供給された液体LQの流れをガイドするガイド部材としての機能も有している。底板部(ガイド部材)172Dは、露光光ELの光路空間の液体LQ中に気体が留まるのを防止するように配置されている。すなわち、底板部172Dは、露光光ELの光路空間の外側の第1の位置に設けられている液体供給口140Aから供給された液体LQが、露光光ELの光路空間を介してその光路空間の外側の第1の位置とは異なる第2の位置に向かって流れるように配置されている。なお、底板部172Dは、基板Pと対向するように配置されたランド面(平坦部)75を有しており、上述の実施形態と同様に、露光光ELの光路を安定して液体LQで満たす機能も有している。
図23は、底板部(ガイド部材)172Dの平面図である。本実施形態において、露光光ELの光路空間の外側の第2の位置には排気口130Aが設けられており、底板部172Dは、液体供給口140Aから供給された液体LQを、排気口130Aが設けられている第2の位置に向かって流すように配置されている。ガイド部材172Dは、露光光ELの光路空間内において、渦流が生成されないように、液体LQを流す。すなわち、底板部172Dは、液体供給口140Aが配置されている第1の位置から供給された液体LQが、排気口130Aが設けられている第2の位置に向かって流れるように形成された開口74’を有しており、露光光ELの光路空間内における渦流の生成が防止されている。
底板部172Dは、液体供給口140Aが設けられた第1の位置から、露光光ELの光路空間(投影領域AR1)に向かう流れを形成する第1ガイド部181と、露光光ELの光路空間から、排気口130Aが設けられた第2の位置に向かう流れを形成する第2ガイド部182とを有している。すなわち、第1ガイド部181によって、液体供給口140Aから露光光ELの光路空間に向かって液体LQを流す流路181Fが形成され、第2ガイド部182によって、露光光ELの光路空間から第2の位置(排気口130A)に向かって液体LQを流す流路182Fが形成されている。
第1ガイド部181によって形成される流路181Fと、第2ガイド部182によって形成される流路182Fとは交差している。第1ガイド部181によって形成された流路181Fは、液体LQをほぼY軸方向に沿って流し、第2ガイド部182によって形成された流路182Fは、液体LQをほぼX軸方向に沿って流す。そして、第1ガイド部181と第2ガイド部182とによって、平面視略十字状の開口部74’が形成されている。開口部74’は、投影光学系PLの像面側に配置されたものであって、露光光ELは、略十字状に形成された開口部74’のほぼ中央部を通過するように設けられている。すなわち、露光光ELの光路空間は、第1ガイド部181によって形成された流路181Fと、第2ガイド部182によって形成された流路182Fとの交差部に設定されている。
本実施形態においては、第1ガイド部181によって形成された流路181Fと、第2ガイド部182によって形成された流路182Fとはほぼ直交している。また、第1ガイド部181によって形成された流路181Fの幅D1と、第2ガイド部182によって形成された流路182Fの幅D2とはほぼ同じである。また、本実施形態においては、第1ガイド部181と第2ガイド部182との接続部190は曲線状(円弧状)に形成されている。
液体供給口140Aは、投影光学系PLの下面T1と底板部172Dとの間の隙間(空間)G2を含む内部空間に液体LQを供給する。液体供給口140Aから隙間G2に供給された液体LQは、第1ガイド部材181にガイドされつつ露光光ELの光路空間に向かって流れ、露光光ELの光路空間を通過した後、第2ガイド部182にガイドされつつ露光光ELの光路空間の外側に向かって流れる。すなわち、液体LQの流路は第1ガイド部材181及び第2ガイド部182の交差位置またはその近傍で屈曲している。液浸機構1は、液体LQを底板部172Dの第1、第2ガイド部181、182でガイドしつつ流すことにより、露光光ELの光路空間内において、渦流が生成されることを抑制する。これにより、露光光ELの光路空間中に気体(気泡)があっても、液体LQの流れによって、気体(気泡)を露光光ELの光路空間の外側の第2の位置に排出し、露光光ELの光路空間に気体(気泡)が留まることを防止する。
図19、図21等に示すように、第1部材171と第2部材172との間の溝部73は、露光光ELの光路空間を含む開口部74’を囲むようにして形成されている。更に溝部73は、ランド面75の一部を構成する下面172Rも取り囲むようにして形成されている。溝部73の下端部には、基板P(基板ステージPSTの上面)と対向するように配置された開口部73Aが形成されている。開口部73Aは平面視略円環状に形成されている。一方、溝部73の上端部にも平面視略円環状の開口部73Bが形成されている。また、第1部材171の傾斜板部171Cの上端部のうち、第2部材172と対向する部分には切欠部171Kが形成されており、その切欠部171Kによって、溝部73の上端部には幅広部が形成されている。そして、その幅広部と第3部材173との間で空間73Wが形成されている。溝部73の上端部の開口部73Bは空間73Wの内側に配置されており、溝部73の下端部(投影光学系PLの像面側近傍)に設けられた開口部73Aと空間73Wとは溝部73を介して接続されている。すなわち、空間73Wは、溝部73(開口部73A)を介して、投影光学系PLの像面周囲の気体と流通している。
また、図21に示すように、第3部材173の一部には、空間73Wと接続する流通路131’が形成され、その流通路131’と真空系を含む吸引装置132とが配管133を介して接続されている。流通路131’及び吸引装置132は、ノズル部材70”と基板P(基板ステージPST)との間の液体LQを完全に回収するときに、その液体LQを溝部73を介して回収するために使用される。
また、第3部材173のうち、流通路131’と別の位置には、空間73Wの内部と外部とを流通する穴部134が形成されている。穴部134の径(大きさ)は、流通路131’の径(大きさ)よりも小さく、開口部73Aよりも十分に小さい。本実施形態においては、穴部134の直径は約1mmである。穴部134によって、空間73Wが大気開放されており、これにより、投影光学系PLの像面周囲の気体(空間G2)も、開口部73A、溝部73、及び空間73Wを介して大気開放されている。これにより、ノズル部材70”と基板P(基板ステージPST)との間の液体LQの一部が溝部73内部に出入りすることができる。したがって、ノズル部材70”の大きさ(径)が小さくても、液体回収口22の外側への液体LQの流出を抑えることができる。
次に、上述した構成を有するノズル部材70”を有する液浸機構1の動作について説明する。基板P上に液体LQを供給するために、制御装置CONTは、液体供給部11を駆動して液体供給部11より液体LQを送出する。液体供給部11より送出された液体LQは、供給管を流れた後、ノズル部材70”の供給流路140の上端部140Bに流入する。供給流路140の上端部140Bに流入した液体LQは、供給流路140を流れ、液体供給口140Aより投影光学系PLの端面T1と底板部172Dとの間の空間G2に供給される。ここで、空間G2に液体LQを供給する前に空間G2に存在していた気体部分は、貫通孔130や開口部74’を介して外部に排出される。したがって、空間G2に対する液体LQの供給開始時に、空間G2に気体が留まってしまうといった不都合の発生を防止でき、液体LQ中に気体部分(気泡)が生成される不都合を防止できる。また、液体供給部11より送出された液体LQは、溝部(供給流路)140の内側を流れるので、光学素子LS1の側面等に力を加えることなく、空間G2に供給される。また、液体LQは光学素子LS1の側面に接しないので、光学素子LS1の側面に例えば所定の機能材料がコーティングされている場合であっても、機能材料に影響を及ぼすことが抑制されている。
空間G2に供給された液体LQは、空間G2を満たした後、開口部74’を介して、ランド面75と基板P(基板ステージPST)との間の空間に流入する。このとき、液体回収機構20が単位時間あたり所定量で基板P上の液体LQを回収しているため、開口部74’を介してランド面75と基板P(基板ステージPST)との間の空間に流入した液体LQによって、基板P上に所望の大きさの液浸領域AR2が形成される。
液体供給口140Aから空間G2に対して供給された液体LQは、第1ガイド部181にガイドされつつ露光光ELの光路空間(投影領域AR1)に向かって流れた後、第2ガイド部182にガイドされつつ露光光ELの光路空間の外側に向かって流れるので、仮に液体LQ中に気体部分(気泡)が生成されても、液体LQの流れによって、その気泡を露光光ELの光路空間の外側に排出することができる。また、底板部172Dは、露光光ELの光路空間において渦流が生成されないように液体LQを流すので、露光光ELの光路空間に気泡が留まることを防止することができる。また、底板部172Dは、液体LQを排気口130Aに向けて流すので、液体LQ中に存在している気体部分(気泡)は、排気口130Aを介して外部に円滑に排出される。また、ランド面75と基板P(基板ステージPST)との間の空間の液体LQ中に気体部分(気泡)が存在しても、ランド面75と基板P(基板ステージPST)との間の空間の液体LQは、気体部分(気泡)とともに回収口22を介して回収される。
基板Pを液浸露光している間など、液浸領域AR2を形成している間は、溝部73に接続されている流通路131’は閉じられ、吸引装置132の駆動は停止している。したがって、投影領域AR1を覆うようにして形成されている液浸領域AR2に対して基板P(基板ステージPST)を移動する場合であっても、液浸領域AR2の液体LQの一部が、穴部134を介して大気開放されている溝部73に出入りするため(図22中、矢印F3参照)、液浸領域AR2が拡大したり、液浸領域AR2の液体LQが流出する等の不都合の発生を防止することができる。
また、基板Pの液浸露光が完了したときなど、ノズル部材70”と基板P(基板ステージPST)との間の液体LQを全て回収するときには、制御装置CONTは、液体回収機構20による液体回収口22を介した液体回収動作を行うとともに、溝部73に接続された流通路131’を開いて、吸引装置132を駆動し、溝部73の内部空間を負圧にして、溝部73の開口部73Aを介した液体回収動作も並行して行う。このように、基板P(基板ステージPST)に最も近い開口部73Aも使うことで、ノズル部材70’と基板P(基板ステージPST)との間の液体LQをより短時間に確実に回収することができる。この場合、液体LQの回収口として機能する開口部73Aの大きさに比べて、大気開放のための穴部134は小さいため、溝部73内部を十分な負圧にして液体LQを回収することができる。また、ノズル部材70”と基板P(基板ステージPST)との間の液体LQを全て回収する場合には、液体回収口22や開口部73Aを使った液体回収動作に加えて、液体供給口140から気体を吹き出すようにしてもよい。
なお、基板Pを液浸露光している間など、液浸領域AR2を形成している間においても、液浸領域AR2の状態(形状など)を維持できる程度であれば、溝部73に接続された流通路131’を開けて、吸引装置132を駆動してもよい。こうすることにより、液体LQ中の気泡を溝部73を介して回収することができる。
また、図24に示すように、溝部130の上端部130Bと吸引装置(吸気系)135とを接続し、排気口130Aと吸引装置135とを溝部130を介して接続するようにしてもよい。そして、例えば液浸領域AR2を形成するための液体LQの供給開始時に、吸引装置135を駆動して溝部130の内側を負圧にし、空間G2の気体を強制的に排出するようにしてもよい。こうすることによっても、空間G2に気体が留まってしまうといった不都合の発生を防止でき、液体LQ中に気体部分(気泡)が生成される不都合を防止できる。また、吸引装置135を駆動しつつ基板Pを液浸露光してもよいし、基板Pの液浸露光中には吸引装置135の駆動を停止するようにしてもよい。
なお、ノズル部材70”は、第1、第2、第3部材171、172、173の3つの部材から構成されているが、一つの部材で構成されていてもよいし、3つ以外の複数の部材から構成されていてもよい。
<第9の実施形態>
図25は、第9の実施形態を示す図である。本実施形態の特徴的な部分は、第2ガイド部182によって形成される流路182Fの幅D2が、第1ガイド部181によって形成される流路181Fによって形成される流路181Fの幅D1よりも小さい点にある。こうすることにより、第1ガイド部181によって形成される流路181Fを流れる液体LQの流速に対して、第2ガイド部182によって形成される流路182Fを流れる液体LQの流速を高めることができる。したがって、露光光ELの光路空間の気体(気泡)を、高速化された液体LQの流れによって、露光光ELの光路空間の外側に迅速に且つ円滑に排出することができる。
<第10の実施形態>
図26は、第10の実施形態を示す図である。本実施形態の特徴的な部分は、第2ガイド部182によって形成された流路182Fの幅D2が、露光光ELの光路空間(投影領域AR1または第2ガイド部182の上流側)から、排気口130Aが設けられている第2の位置(または第2ガイド部182の下流側)に向かって漸次窄まるように形成されている点にある。このような構成であっても、第1ガイド部181によって形成される流路181Fを流れる液体LQの流速に対して、第2ガイド部182によって形成される流路182Fを流れる液体LQの流速を高めることができ、気体(気泡)を露光光ELの光路空間の外側に迅速且つ円滑に排出することができる。
<第11の実施形態>
図27は、第11の実施形態を示す図である。本実施形態の特徴的な部分は、第1ガイド部181と第2ガイド部182との接続部190は直線状に形成されており、第1ガイド部181と第2ガイド部182との間に角部が形成されている点にある。このような構成であっても、渦流の生成を抑制し、露光光ELの光路空間の液体LQに気体(気泡)が留まることを防止して、気体(気泡)を露光光ELの光路空間の外側に排出することができる。
<第12の実施形態>
図28は、第12の実施形態を示す図である。本実施形態の特徴的な部分は、第1ガイド部181によって形成される流路181Fのうち、液体供給口140A近傍の所定領域(の流路幅)が、液体供給口140Aから露光光ELの光路空間(投影領域AR1)に向かって(上流から下流に)漸次窄まるように形成されており、第2ガイド部182によって形成される流路182Fのうち、排気口130A近傍の所定領域(の流路幅)が、露光光ELの光路空間(投影領域AR1)から排気口130Aに向かって(上流から下流に)漸次拡がるように形成されている点にある。また、本実施形態においては、第1ガイド部181と第2ガイド部182とはほぼ直角に交差している。このような構成であっても、渦流の生成を抑制し、露光光ELの光路空間の液体LQに気体(気泡)が留まることを防止して、気体(気泡)を露光光ELの光路空間の外側に排出することができる。
<第13の実施形態>
図29は、第13の実施形態を示す図である。本実施形態の特徴的な部分は、液体供給口140Aが1つだけ設けられている点にある。そして、第1ガイド部181によって形成された流路181Fと、第2ガイド部182によって形成された流路182Fとはほぼ直交しており、開口部74’は平面視略T字状に形成されている。このような構成であっても、渦流の生成を抑制し、露光光ELの光路空間の液体LQに気体(気泡)が留まることを防止して、気体(気泡)を露光光ELの光路空間の外側に排出することができる。
<第14の実施形態>
図30は、第14の実施形態を示す図である。本実施形態の特徴的な部分は、第1ガイド部181によって形成された流路181Fと、第2ガイド部182によって形成された流路182Fとは直交しておらず、90度以外の所定の角度で交差している点にある。また、液体供給口140A(第1の位置)は、露光光ELの光路空間(投影領域AR1)の外側の領域のうち、投影領域AR1とY軸方向に関して並んだ位置からθZ方向にずれた位置に設けられており、排気口130A(第2の位置)も、投影領域AR1とX軸方向に関して並んだ位置からθZ方向にずれた位置に設けられている。このような構成であっても、渦流の生成を抑制し、露光光ELの光路空間の液体LQに気体(気泡)が留まることを防止して、気体(気泡)を露光光ELの光路空間の外側に排出することができる。
<第15の実施形態>
図31は、第15の実施形態を示す図である。本実施形態の特徴的な部分は、液体供給口140A及び排気口130Aのそれぞれが、露光光ELの光路空間の外側の領域のうち、3つの所定位置のそれぞれに設けられている点にある。本実施形態においては、液体供給口140Aと排気口130Aとは、露光光ELの光路空間(投影領域AR1)の外側の領域において、投影光学系PLの光軸AXを囲むように、ほぼ等間隔で交互に配置されている。そして、第1ガイド部181によって形成された複数の流路181Fと第2ガイド部182によって形成された複数の流路182Fとは所定角度で互いに交差している。このような構成であっても、渦流の生成を抑制し、露光光ELの光路空間の液体LQに気体(気泡)が留まることを防止して、気体(気泡)を露光光ELの光路空間の外側に排出することができる。
<第16の実施形態>
図32は、第16の実施形態を示す図である。本実施形態の特徴的な部分は、液体供給口140A(第1の位置)は、露光光ELの光路空間(投影領域AR1)の外側の領域のうち、投影領域AR1とY軸方向に関して並んだ位置に設けられており、排気口130A(第2の位置)は、投影領域AR1とX軸方向に関して並んだ位置からθZ方向にずれた位置に設けられている。本実施形態においては、排気口130Aは、露光光ELの光路空間(投影領域AR1)の外側の領域のうち、投影領域AR1とX軸方向に関して並んだ位置からθZ方向にほぼ45度ずれた位置に設けられている。また、底板部(ガイド部材)172Dは、液体供給口140Aから露光光ELの光路空間に向かう流れを形成する第1ガイド部181と、露光光ELの光路空間から排気口130Aに向かう流れを形成する第2ガイド部182とを有している。第1ガイド部181によって形成された流路181Fは、液体LQをほぼY軸方向に沿って流す。一方、第2ガイド部182によって形成された流路182Fは、流路181Fと直交し、液体LQをほぼX軸方向に沿って流す第1領域182Faと、第1領域182Faを流れた液体LQを排気口130Aに向かって流す第2領域182Fbとを有している。流路181Fと流路182Fの第1領域182Faとによって、平面視略十字状の開口部74’が形成されている。このような構成によれば、液体供給口140Aや排気口130Aを設ける位置に制約がある場合でも、渦流の生成を抑制し、露光光ELの光路空間の液体LQに気体(気泡)が留まることを防止して、気体(気泡)を露光光ELの光路空間の外側に排出することができる。
なお、渦流の生成を抑制し、気体(気泡)を露光光ELの光路空間の外側に排出することができるのであれば、液体供給口140A及び排気口130Aの数及び配置、及びその液体供給口140A及び排気口130Aに応じた流路181F、182Fの形状等は任意に設定可能である。例えば、液体供給口140A及び排気口130Aを4つ以上の複数設けてもよいし、液体供給口140Aと排気口130Aとの数が互いに異なっていてもよいし、液体供給口140Aと排気口130Aとが不等間隔で配置されていてもよい。液体供給口140A及び排気口130Aの数及び配置、及びその液体供給口140A及び排気口130Aに応じた流路181F、182Fの形状等は、渦流の生成が抑制され、気体(気泡)を露光光ELの光路空間の外側に排出することができるように、実験やシミュレーションの結果に基づいて最適化するのが好ましい。
なお、上述の第8〜第16の実施形態においては、液浸機構1は、底板部(ガイド部材)172Dによって、第1の位置に設けられている液体供給口140Aから供給された液体LQを、第2の位置に設けられている排気口130Aに向かって流しているが、第2の位置には排気口130Aが無くてもよい。排気口130Aが無くても、露光光ELの光路空間にある気体部分(気泡)を、液体LQの流れによって、露光光ELの光路空間の外側に排出することができ、露光光ELの光路空間の液体LQ中に気体が留まることを防止できる。一方、第2の位置に排気口130Aを設けることにより、露光光ELの光路空間より気体を円滑に排出することができる。
また、上述の第8〜第16の実施形態においては、液浸機構1は、投影領域AR1に対してY軸方向に沿って液体LQを供給しているが、例えば液体供給口140Aを投影領域AR1に対してX軸方向両側のそれぞれに設け、投影領域AR1に対してX軸方向に沿って液体LQを供給するようにしてもよい。
なお、上述した第1〜第16の実施形態において、ノズル部材70の下面に形成されている斜面(多孔部材の下面)は曲面であってもよい。また、図9〜図11を参照して説明した第2〜第4の実施形態において、多孔部材25の下面2の周縁に壁部76を設けても良い。
なお、上述した第1〜第16の実施形態においては、液体回収口22には多孔部材25が配置されているが、多孔部材25は無くてもよい。その場合においても、例えばノズル部材70の下面に、露光光ELの光軸AXから離れるにつれて、基板Pの表面との間隔が大きくなるような斜面を設け、その斜面の所定位置に液体回収口を設けることにより、界面LGの形状を維持し、液浸領域AR2の液体LQ中に気泡が生成される等の不都合を防止することができる。また、液浸領域AR2の大きさを小さくすることもできる。
また、上述の第1〜16実施形態においては、ノズル部材70の下面の斜面(多孔部材の下面)に液体回収口を設けているが、液体LQの液浸領域AR2を所望状態に維持可能であれば、ノズル部材70の下面に斜面を形成せずに、ランド面75とほぼ平行(面一)な面に液体回収口を設けるようにしてもよい。すなわち、基板Pに対する液体LQの接触角が大きい場合、あるいは液体回収口22からの液体LQの回収能力が高い場合など、基板Pの移動速度を大きくしても液体LQを漏出させることなく回収できるならば、ランド面75とほぼ平行(例えば面一)な面に液体回収口を設けるようにしてもよい。
また、上述の第1〜第16の実施形態においては、ノズル部材70の下面に形成されている斜面(多孔部材の下面)の周縁に壁部76を設けているが、液体LQの漏出が抑えられる場合には、壁部76を省くこともできる。
また、上述の第1〜第16の実施形態においては、基板Pと対向する開口73Aを有する溝部73をノズル部材に設けているが、この溝部73を省略してもよい。この場合、投影光学系PLの像面側の空間を非液浸状態にするために、液体回収口22を使って、投影光学系PLの像面側の液体LQをすべて回収すればよい。この場合、第6〜16実施形態のように、底板部72Dの上面と光学素子LS1との間の空間G2に接続された開口が形成されている場合には、液体回収口22の液体回収動作と並行して、その開口から液体LQを回収するようにしてもよい。
また、上述の第1〜第6の実施形態におけるノズル部材70は、ランド面(平坦部)75の一部が投影光学系PLと基板Pとの間に形成され、その外側に斜面(多孔部材25の下面)が形成されているが、ランド面の一部を投影光学系PLの下に配置せずに、投影光学系PLの光軸に対して投影光学系PLの端面T1の外側(周囲)に配置するようにしてもよい。この場合、ランド面75は投影光学系PLの端面T1とほぼ面一でもよいし、ランド面75のZ軸方向の位置が、投影光学系PLの端面T1に対して+Z方向又は−Z方向に離れていてもよい。
また、上述の第1〜第5の実施形態においては、投影領域AR1を囲むように、液体供給口12は環状のスリット状に形成されているが、互いに離れた複数の供給口を設けるようにしてもよい。この場合、特に供給口の位置は限定されないが、投影領域AR1の両側(X軸方向の両側またはY軸方向の両側)に一つずつ供給口を設けることもできるし、投影領域AR1のX軸及びY軸方向の両側に一つずつ(計4つ)供給口を設けることもできる。また所望の液浸領域AR2が形成可能であれば、投影領域AR1に対して所定方向に離れた位置に一つの供給口を設けるだけでもよい。また、複数の供給口から液体LQの供給を行う場合には、それぞれの供給口から供給される液体LQの量を調整可能にして、各供給口から異なる量の液体を供給するようにしてもよい。
また、上述の第1〜第16の実施形態においては、投影光学系PLの光学素子LS1は屈折力を有するレンズ素子であるが、光学素子LS1として無屈折力の平行平面板を用いてもよい。
また、上述の第1〜第16の実施形態においては、投影光学系PLの光学素子LS1の像面側(下面側)の光路空間を液体LQで満たすようにしているが、国際公開第2004/019128号パンフレットに開示されているように、投影光学系PLの光学素子LS1の上面側と下面側との両方の光路空間を液体で満たす構成を採用することもできる。
上述したように、本実施形態における液体LQは純水により構成されている。純水は、半導体製造工場等で容易に大量に入手できるとともに、基板P上のフォトレジストや光学素子(レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影響がないとともに、不純物の含有量が極めて低いため、基板Pの表面、及び投影光学系PLの先端面に設けられている光学素子の表面を洗浄する作用も期待できる。なお工場等から供給される純水の純度が低い場合には、露光装置が超純水製造器を持つようにしてもよい。
そして、波長が193nm程度の露光光ELに対する純水(水)の屈折率nはほぼ1.44程度と言われており、露光光ELの光源としてArFエキシマレーザ光(波長193nm)を用いた場合、基板P上では1/n、すなわち約134nm程度に短波長化されて高い解像度が得られる。更に、焦点深度は空気中に比べて約n倍、すなわち約1.44倍程度に拡大されるため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、投影光学系PLの開口数をより増加させることができ、この点でも解像度が向上する。
なお、上述したように液浸法を用いた場合には、投影光学系の開口数NAが0.9〜1.3になることもある。このように投影光学系の開口数NAが大きくなる場合には、従来から露光光として用いられているランダム偏光光では偏光効果によって結像性能が悪化することもあるので、偏光照明を用いるのが望ましい。その場合、マスク(レチクル)のライン・アンド・スペースパターンのラインパターンの長手方向に合わせた直線偏光照明を行い、マスク(レチクル)のパターンからは、S偏光成分(TE偏光成分)、すなわちラインパターンの長手方向に沿った偏光方向成分の回折光が多く射出されるようにするとよい。投影光学系PLと基板P表面に塗布されたレジストとの間が液体で満たされている場合、投影光学系PLと基板P表面に塗布されたレジストとの間が空気(気体)で満たされている場合に比べて、コントラストの向上に寄与するS偏光成分(TE偏光成分)の回折光のレジスト表面での透過率が高くなるため、投影光学系の開口数NAが1.0を越えるような場合でも高い結像性能を得ることができる。また、位相シフトマスクや特開平6−188169号公報に開示されているようなラインパターンの長手方向に合わせた斜入射照明法(特にダイポール照明法)等を適宜組み合わせると更に効果的である。特に、直線偏光照明法とダイポール照明法との組み合わせは、ライン・アンド・スペースパターンの周期方向が所定の一方向に限られている場合や、所定の一方向に沿ってホールパターンが密集している場合に有効である。例えば、透過率6%のハーフトーン型の位相シフトマスク(ハーフピッチ45nm程度のパターン)を、直線偏光照明法とダイポール照明法とを併用して照明する場合、照明系の瞳面においてダイポールを形成する二光束の外接円で規定される照明σを0.95、その瞳面における各光束の半径を0.125σ、投影光学系PLの開口数をNA=1.2とすると、ランダム偏光光を用いるよりも、焦点深度(DOF)を150nm程度増加させることができる。
また、例えばArFエキシマレーザを露光光とし、1/4程度の縮小倍率の投影光学系PLを使って、微細なライン・アンド・スペースパターン(例えば25〜50nm程度のライン・アンド・スペース)を基板P上に露光するような場合、マスクMの構造(例えばパターンの微細度やクロムの厚み)によっては、Wave guide効果によりマスクMが偏光板として作用し、コントラストを低下させるP偏光成分(TM偏光成分)の回折光よりS偏光成分(TE偏光成分)の回折光が多くマスクMから射出されるようになる。この場合、上述の直線偏光照明を用いることが望ましいが、ランダム偏光光でマスクMを照明しても、投影光学系PLの開口数NAが0.9〜1.3のように大きい場合でも高い解像性能を得ることができる。
また、マスクM上の極微細なライン・アンド・スペースパターンを基板P上に露光するような場合、Wire Grid効果によりP偏光成分(TM偏光成分)がS偏光成分(TE偏光成分)よりも大きくなる可能性もあるが、例えばArFエキシマレーザを露光光とし、1/4程度の縮小倍率の投影光学系PLを使って、25nmより大きいライン・アンド・スペースパターンを基板P上に露光するような場合には、S偏光成分(TE偏光成分)の回折光がP偏光成分(TM偏光成分)の回折光よりも多くマスクMから射出されるので、投影光学系PLの開口数NAが0.9〜1.3のように大きい場合でも高い解像性能を得ることができる。
更に、マスク(レチクル)のラインパターンの長手方向に合わせた直線偏光照明(S偏光照明)だけでなく、特開平6−53120号公報に開示されているように、光軸を中心とした円の接線(周)方向に直線偏光する偏光照明法と斜入射照明法との組み合わせも効果的である。特に、マスク(レチクル)のパターンが所定の一方向に延びるラインパターンだけでなく、複数の異なる方向に延びるラインパターンが混在(周期方向が異なるライン・アンド・スペースパターンが混在)する場合には、同じく特開平6−53120号公報に開示されているように、光軸を中心とした円の接線方向に直線偏光する偏光照明法と輪帯照明法とを併用することによって、投影光学系の開口数NAが大きい場合でも高い結像性能を得ることができる。例えば、透過率6%のハーフトーン型の位相シフトマスク(ハーフピッチ63nm程度のパターン)を、光軸を中心とした円の接線方向に直線偏光する偏光照明法と輪帯照明法(輪帯比3/4)とを併用して照明する場合、照明σを0.95、投影光学系PLの開口数をNA=1.00とすると、ランダム偏光光を用いるよりも、焦点深度(DOF)を250nm程度増加させることができ、ハーフピッチ55nm程度のパターンで投影光学系の開口数NA=1.2では、焦点深度を100nm程度増加させることができる。
本実施形態では、投影光学系PLの先端に光学素子LS1が取り付けられており、このレンズにより投影光学系PLの光学特性、例えば収差(球面収差、コマ収差等)の調整を行うことができる。なお、投影光学系PLの先端に取り付ける光学素子としては、投影光学系PLの光学特性の調整に用いる光学プレートであってもよい。あるいは露光光ELを透過可能な平行平面板であってもよい。
なお、液体LQの流れによって生じる投影光学系PLの先端の光学素子と基板Pとの間の圧力が大きい場合には、その光学素子を交換可能とするのではなく、その圧力によって光学素子が動かないように堅固に固定してもよい。
なお、本実施形態では、投影光学系PLと基板P表面との間は液体LQで満たされている構成であるが、例えば基板Pの表面に平行平面板からなるカバーガラスを取り付けた状態で液体LQを満たす構成であってもよい。
また、図1〜図18を使って説明した実施形態の投影光学系PLは、先端の光学素子の像面側の光路空間を液体で満たしているが、国際公開第2004/019128号パンフレットに開示されているように、光学素子LS1のマスクM側の光路空間も液体で満たす投影光学系を採用することもできる。
なお、本実施形態の液体LQは水であるが、水以外の液体であってもよい、例えば、露光光ELの光源がF2レーザである場合、このF2レーザ光は水を透過しないので、液体LQとしてはF2レーザ光を透過可能な例えば、過フッ化ポリエーテル(PFPE)やフッ素系オイル等のフッ素系流体であってもよい。この場合、液体LQと接触する部分には、例えばフッ素を含む極性の小さい分子構造の物質で薄膜を形成することで親液化処理する。また、液体LQとしては、その他にも、露光光ELに対する透過性があってできるだけ屈折率が高く、投影光学系PLや基板P表面に塗布されているフォトレジストに対して安定なもの(例えばセダー油)を用いることも可能である。この場合も表面処理は用いる液体LQの極性に応じて行われる。
なお、図1、4,15,16,18,21,22及び24を用いた説明において、光学素子LS1の下面T1と基板Pを対向させた状態で、光学素子LS1の下面T1と基板Pの間の空間を液体LQ1で満たしているが、投影光学系PLと他の部材(例えば、基板ステージの上面91など)が対向している場合にも、投影光学系PLと他の部材との間を液体で満たすことができることは言うまでもない。
なお、上記各実施形態の基板Pとしては、半導体デバイス製造用の半導体ウエハのみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。
なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスク(レチクル)を用いたが、このレチクルに代えて、例えば米国特許第6,778,257号公報に開示されているように、露光すべきパターンの電子データに基づいて、透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスクを用いても良い。
また、国際公開第2001/035168号パンフレットに開示されているように、干渉縞をウエハW上に形成することによって、ウエハW上にライン・アンド・スペースパターンを形成する露光装置(リソグラフィシステム)にも本発明を適用することができる。
露光装置EXとしては、マスクMと基板Pとを同期移動してマスクMのパターンを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。
また、露光装置EXとしては、第1パターンと基板Pとをほぼ静止した状態で第1パターンの縮小像を投影光学系(例えば1/8縮小倍率で反射素子を含まない屈折型投影光学系)を用いて基板P上に一括露光する方式の露光装置にも適用できる。この場合、更にその後に、第2パターンと基板Pとをほぼ静止した状態で第2パターンの縮小像をその投影光学系を用いて、第1パターンと部分的に重ねて基板P上に一括露光するスティッチ方式の一括露光装置にも適用できる。また、スティッチ方式の露光装置としては、基板P上で少なくとも2つのパターンを部分的に重ねて転写し、基板Pを順次移動させるステップ・アンド・スティッチ方式の露光装置にも適用できる。
また、本発明は、特開平10−163099号公報、特開平10−214783号公報、特表2000−505958号公報などに開示されているツインステージ型の露光装置にも適用できる。
更に、特開平11−135400号公報に開示されているように、基板Pを保持する基板ステージと基準マークが形成された基準部材や各種の光電センサを搭載した計測ステージとを備えた露光装置にも本発明を適用することができる。
露光装置EXの種類としては、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装置や、薄膜磁気ヘッド、撮像素子(CCD)あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。
基板ステージPSTやマスクステージMSTにリニアモータ(USP5,623,853またはUSP5,528,118参照)を用いる場合は、エアベアリングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもよい。また、各ステージPST、MSTは、ガイドに沿って移動するタイプでもよく、ガイドを設けないガイドレスタイプであってもよい。
各ステージPST、MSTの駆動機構としては、二次元に磁石を配置した磁石ユニットと、二次元にコイルを配置した電機子ユニットとを対向させ電磁力により各ステージPST、MSTを駆動する平面モータを用いてもよい。この場合、磁石ユニットと電機子ユニットとのいずれか一方をステージPST、MSTに接続し、磁石ユニットと電機子ユニットとの他方をステージPST、MSTの移動面側に設ければよい。
基板ステージPSTの移動により発生する反力は、投影光学系PLに伝わらないように、特開平8−166475号公報(USP5,528,118)に記載されているように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。
マスクステージMSTの移動により発生する反力は、投影光学系PLに伝わらないように、特開平8−330224号公報(US S/N 08/416,558)に記載されているように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。
以上のように、本願実施形態の露光装置EXは、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
半導体デバイス等のマイクロデバイスは、図33に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、前述した実施形態の露光装置EXによりマスクのパターンを基板に露光する露光処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)205、検査ステップ206等を経て製造される。
1…液浸機構、2…斜面、12…液体供給口、22…液体回収口、25…多孔部材、7070’、70”…ノズル部材、71D、72D…底板部(板状部材)、73…溝部、73A…開口部、74、74’…開口部、75…ランド面(平坦部)、76…壁部、130A…排気口、135…吸引装置(吸気系)、140A…液体供給口、172D…底板部(部材、ガイド部材)、181…第1ガイド部、181F…流路、182…第2ガイド部、182F…流路、AR1…投影領域、AR2…液浸領域、AX…光軸、EL…露光光、EX…露光装置、G2…隙間(空間)、LQ…液体、P…基板、PL…投影光学系、T1…端面