JP4514999B2 - Optical multiplexer / demultiplexer and optical multiplexer / demultiplexer manufacturing method - Google Patents

Optical multiplexer / demultiplexer and optical multiplexer / demultiplexer manufacturing method Download PDF

Info

Publication number
JP4514999B2
JP4514999B2 JP2001228554A JP2001228554A JP4514999B2 JP 4514999 B2 JP4514999 B2 JP 4514999B2 JP 2001228554 A JP2001228554 A JP 2001228554A JP 2001228554 A JP2001228554 A JP 2001228554A JP 4514999 B2 JP4514999 B2 JP 4514999B2
Authority
JP
Japan
Prior art keywords
light
demultiplexer
core
optical
optical multiplexer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001228554A
Other languages
Japanese (ja)
Other versions
JP2003043275A (en
Inventor
健 佐久間
紫文 石川
朋子 四方
英行 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2001228554A priority Critical patent/JP4514999B2/en
Publication of JP2003043275A publication Critical patent/JP2003043275A/en
Application granted granted Critical
Publication of JP4514999B2 publication Critical patent/JP4514999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光波長多重通信分野で用いられる光合分波器に関し、特に、各チャネルの信号をモニタする機能を有する光合分波器とその製造方法に関する。
【0002】
【従来の技術】
高密度波長多重通信システムにおいて各チャネルの信号光をモニタする場合、従来は、光合分波器の後段に、信号光の一部を導波するためのタップカプラとモニタ用フォトダイオードとを融着接続によって接続して、タップカプラにより導波された光を用いて信号光をモニタすることが一般に行われていた。
【0003】
【発明が解決しようとする課題】
しかし、近年の高密度波長多重通信システムのようにチャネル数が増大すると、光合分波器は、誘電体多層膜フィルタや光ファイバグレーティングに替えてアレイ導波路回折格子(以下「AWG」と略記する)を用いることで、部品点数が削減され、小型化が可能となるが、各チャネルの信号光をモニタする機構を設けようとすると、チャネル数の増大に伴って、タップカプラとモニタ用フォトダイオードの使用数量が増大し、光モジュール全体が大型化することが問題となっていた。
本発明は、このような問題点を解決するためになされたもので、チャネル数が増大しても、各チャネルの信号光をモニタする機構を集積化して、小型化が可能な光合分波器を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記の課題を解決するために、請求項1記載の発明は、光分波器における基板上の複数の出力用光導波路又は光合波器における基板上の複数の入力用光導波路のコア中を伝搬する各波長毎の信号光の一部を分岐するためのタップ導波路がクラッド中に形成され、該クラッド中に設けられた溝に受光素子が配置され、タップ導波路により導波されたモニタ光を該受光素子で受光して各波長のチャネル毎に信号光をモニタする光合分波器であって、前記タップ導波路は、その一端が前記コアと重複する領域を有するか、又は前記コアの近傍に配置され、他端が前記基板の厚さ方向において前記一端よりも浅い位置に配置されて、分岐された前記モニタ光を、前記コアから、前記基板の厚さ方向において該コアよりも浅い位置にある前記受光素子の側面に導くように、略S字状に形成されており、前記タップ導波路は、フェムト秒レーザであるパルスレーザを集光照射して、クラッド中に屈折率上昇領域を誘起することによって形成されていることを特徴とする光合分波器である。これにより、光合分波器の基板上にモニタ機構を備えることができ、部品点数を削減し、小型化が可能な光合分波器を実現することができる
【0005】
請求項記載の発明は、光分波器における基板上の複数の出力用光導波路又は光合波器における基板上の複数の入力用光導波路のコア中を伝搬する各波長毎の信号光の一部を分岐するためのタップ導波路をクラッド中に形成し、該クラッド中に設けられた溝に受光素子を配置して、タップ導波路により導波されたモニタ光を受光素子で受光して各波長のチャネル毎に信号光をモニタする光合分波器の製造方法であって、前記コアと重複する領域又は前記コアの近傍から、これよりも前記基板の厚さ方向における浅い位置にかけて、フェムト秒レーザであるパルスレーザを前記クラッドに集光照射し、該クラッド中に屈折率上昇領域を誘起することによって、分岐された前記モニタ光を、前記コアから、前記基板の厚さ方向において該コアよりも浅い位置にある前記受光素子の側面に導くように、略S字状に前記タップ導波路を形成することを特徴とする光合分波器の製造方法である。
請求項記載の発明は、請求項記載の光合分波器の製造方法において、前記受光素子を配置後に、信号光を入力し、光分波器における分波された後の前記信号光又は光合波器における合波される前の前記信号光の一部である出力光の強度と、前記信号光の一部であって、前記タップ導波路により導波されて前記受光素子で受光されたモニタ光の強度とを検出しつつ、前記パルスレーザを複数回重ねて照射して、前記出力光の強度と前記モニタ光の強度との分岐比を調整し、前記タップ導波路を形成することを特徴とする。これにより、出力光強度とモニタ光強度との分岐比を所望の値とすることが容易な光合分波器の製造方法を実現することができる。
【0006】
【発明の実施の形態】
以下、本発明を詳細に説明する。
図1に、本発明の光合分波器の例を示す。
図1中、符号1は光合分波器であり、一例として、AWG型の光合分波器を示している。符号2は入力側光ファイバアレイであり、この入力側光ファイバアレイ2は、光合分波器1の入力端に接続されている。符号3は、入力側光ファイバアレイ2に接続された入力用光ファイバである。符号4は出力側光ファイバアレイであり、この出力側光ファイバアレイ4は、光合分波器1の出力端に接続されている。符号5は、出力側光ファイバアレイ4に接続された出力用光ファイバである
符号6は、光合分波器の基板であり、例えば、シリコンウエハからなっている。この基板6上には、入力用光導波路7と、この入力光を複数の導波路に分岐させるための展開用スラブ導波路8と、その後段に配置された長さの異なる複数本のアレイ導波路9と、このアレイ導波路9から放射された光を互いに干渉させるためのスラブ光導波路10と、複数の出力用光導波路11が形成されている。
符号12は、基板6上に設けられた溝であり、この溝12の内部には、受光素子13が出力側チャネル数だけ配置されている。
【0007】
図2は、図1に示したAの部分の、基板6に対して垂直な方向の断面を示す図である。図2中、符号6は基板であり、この基板6上には下クラッド15が形成され、この下クラッド15上にはコア16が形成されている。符号17は、コア16上に形成された上クラッドであり、この上クラッド17中には、タップ導波路18が形成されている。このタップ導波路18とは、コア16内を伝搬する光のうち、ごく一部の光のみが分波されて導波されるように形成された導波路のことをいう。
この上クラッド17の厚さは、使用波長において光伝送損失が十分小さくなるようにクラッド材料とコア材料との比屈折率差、導波路構造等を考慮して決定され、通常20μm程度であるが、この例では、上クラッド17内に受光素子13を配置するため、さらに厚くして、30μm〜40μmとするのが好ましい。
【0008】
タップ導波路18の形状は、有効にモニタ光を導波するために、図2に示す断面から見て略S字形状であることが好ましい。また、タップ導波路18の先端部は、図2に示すようにコア16と重複する領域を持つように形成してもよく、また、タップ導波路18の先端部をコア16の近傍に接近させるように形成してもよい。
符号12は溝であり、この溝12内に受光素子13が配置されている。この受光素子13として、例えばフォトダイオードが用いられる。
溝12は、出力用光導波路11のうち、127μmピッチまたは250μmピッチで直線状に導波路が整列している部分の直上に、この導波路に対して垂直な方向に例えば研削加工機により設けられ、この溝12内に受光素子13を配置する。この際、溝12を設けた位置での上クラッド17の厚さは10μm程度とするのが好ましい。
【0009】
この例の光合分波器は、信号光をモニタするためにタップ導波路18を形成し、受光素子13を配置したものであり、このタップ導波路18の製造方法について以下に説明する。
タップ導波路18は、上クラッド17の上方からフェムト秒レーザのようなパルスレーザを集光照射して、屈折率上昇領域を誘起することによって形成される。このフェムト秒レーザ照射は、少なくともX、Y、Z方向の3軸移動可能な精密ステージと、位置合わせのための観察用の顕微鏡等を含む光学系と、フェムト秒レーザ装置と、フェムト秒レーザを集光照射するための対物レンズを用いて行う。このフェムト秒レーザを集光照射するための対物レンズは、位置あわせに使用する顕微鏡の対物レンズを兼用することも可能であり、この場合には、フェムト秒レーザは顕微鏡筒にミラーを用いて導光される。
タップ導波路18を形成するために、上クラッド17の内部にフェムト秒レーザが集光されるように集光点を調整する。この集光点を上クラッド17の内部で相対移動させることにより、光導波路として機能する連続した高屈折率領域が上クラッド17の内部に形成される。集光点の相対移動は、レーザ光の集光点に対して上クラッド17を連続的に移動させ、あるいは上クラッド17の内部でレーザ光の集光点を連続的に移動させることにより行われる。
【0010】
滑らかで連続的なタップ導波路18を形成するためには、照射するレーザ光のパルス間隔を狭く、すなわち繰り返し周期を短くして照射することが望ましく、そのためには高繰り返し型のフェムト秒レーザを照射することが好ましい。
タップ導波路18の形成は、入力側光ファイバアレイ2及び出力側光ファイバアレイ4と受光素子13を実装した後に行ってもよい。この場合には、波長多重された光を入力し、または1波長の光を順次入力して、分波された出力光の強度をモニタしつつ、受光素子13のレベルもモニタしながらフェムト秒レーザを照射する。このフェムト秒レーザの照射は、1回あたりのフェムト秒レーザの強度を弱くし、複数回重ねて照射することが好ましく、これによって分岐比の調整を行うことができる。このようにしてタップ導波路18を形成すると、タップ導波路18によってコア16から分岐される光の分岐比を所望の値に設定することが容易となる。
【0011】
次に、本発明の光合分波器の例の動作について説明する。
図1において、入力用光ファイバ3から送られた信号光は、入力側光ファイバアレイ2を介して光合分波器1の入力用光導波路7に入力され、この入力光は展開用スラブ導波路8によって複数の導波路に分岐され、アレイ導波路9と、スラブ光導波路10とによって波長毎に分波され、出力用光導波路11から出力側光ファイバアレイ4を介して出力用光ファイバ5から出力される。
図2において、信号光は各波長毎にコア16内を伝搬するが、その一部はモニタ光としてタップ導波路18に導波され、受光素子13により受光されて、各チャネル毎に信号光のモニタが行われる。
【0012】
以上の説明においては、光分波器としてAWGを用いた場合について説明したが、これに限定されるものではなく、Y分岐を多段に重ねた1入力8出力型光分波器等、他のタイプの光分波器についても適用可能である。
また、すべてのチャネルについてモニタする場合に限らず、1チャネルのみをモニタする場合にも適用できる。
さらに、以上説明したモニタ手段によって、入力側の各チャネルをモニタすることもできる。この場合には、受光素子へモニタ光を導波するためのタップ導波路18を形成する方向を逆にすることによって実現できる。
この例の光合分波器よると、コア16中を伝搬する信号光の一部を分岐するためのタップ導波路18を上クラッド17中に形成し、上クラッド17中に設けられた溝12に受光素子13を配置して、タップ導波路18により導波されたモニタ光を受光素子13で受光してチャネル毎に信号光強度をモニタすることにより、光合分波器の基板上にモニタ機構を備えることができ、部品点数を削減し、小型化が可能な光合分波器を実現することができる。
また、タップ導波路18を、出力光強度とモニタ光強度との分岐比を調整しつつ、パルスレーザを照射して形成することにより、出力光強度とモニタ光強度との分岐比を所望の値とすることが容易な光合分波器の製造方法を実現することができる。
【0013】
【発明の効果】
以上説明したように、本発明によると、コア中を伝搬する信号光の一部を分岐するためのタップ導波路をクラッド中に形成し、該クラッド中に設けられた溝に受光素子を配置して、タップ導波路により導波されたモニタ光を受光素子で受光してチャネル毎に信号光強度をモニタすることにより、光合分波器の基板上にモニタ機構を備えることができ、部品点数を削減し、小型化が可能な光合分波器を実現することができる。
また、タップ導波路を、出力光強度とモニタ光強度との分岐比を調整しつつ、パルスレーザを照射して形成することにより、出力光強度とモニタ光強度との分岐比を所望の値とすることが容易な光合分波器の製造方法を実現することができる。
【図面の簡単な説明】
【図1】本発明の光合分波器の例を示す図である。
【図2】本発明の光合分波器の例について、タップ導波路によりモニタする機構を説明する図である。
【符号の説明】
6…基板、12…溝、13…受光素子、15…下クラッド、16…コア、
17…上クラッド、18…タップ導波路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical multiplexer / demultiplexer used in the field of optical wavelength division multiplex communication, and more particularly to an optical multiplexer / demultiplexer having a function of monitoring a signal of each channel and a manufacturing method thereof.
[0002]
[Prior art]
When monitoring the signal light of each channel in a high-density wavelength division multiplexing communication system, conventionally, a tap coupler for guiding part of the signal light and a monitoring photodiode are fused after the optical multiplexer / demultiplexer. In general, signal light is monitored by using light guided by a tap coupler by connection.
[0003]
[Problems to be solved by the invention]
However, as the number of channels increases as in recent high-density wavelength division multiplexing communication systems, an optical multiplexer / demultiplexer is abbreviated as an arrayed waveguide grating (hereinafter, “AWG”) instead of a dielectric multilayer filter or an optical fiber grating. ), The number of components can be reduced and the size can be reduced. However, if a mechanism for monitoring the signal light of each channel is provided, the tap coupler and the monitoring photodiode are increased as the number of channels increases. As a result, the use of the optical module has increased, and the entire optical module has been increased in size.
The present invention has been made to solve such a problem, and even if the number of channels increases, an optical multiplexer / demultiplexer that can be miniaturized by integrating a mechanism for monitoring signal light of each channel. The purpose is to provide.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 propagates through the cores of the plurality of output optical waveguides on the substrate in the optical demultiplexer or the plurality of input optical waveguides on the substrate in the optical multiplexer. A tap waveguide for branching a part of the signal light for each wavelength is formed in the clad, a light receiving element is disposed in a groove provided in the clad, and the monitor light guided by the tap waveguide Is received by the light receiving element, and the signal light is monitored for each channel of each wavelength, and the tap waveguide has a region where one end of the tap waveguide overlaps the core, The monitor light is arranged in the vicinity and the other end is arranged at a position shallower than the one end in the thickness direction of the substrate, and the branched monitor light is shallower than the core in the thickness direction of the substrate from the core. Of the light receiving element in position To direct the surface, is formed in a substantially S-shape, the tap waveguide, a pulsed laser is a femtosecond laser with irradiating light collecting is formed by inducing a refractive index increasing region in the cladding This is an optical multiplexer / demultiplexer. As a result, a monitor mechanism can be provided on the substrate of the optical multiplexer / demultiplexer, and an optical multiplexer / demultiplexer capable of reducing the number of components and reducing the size can be realized .
[0005]
According to a second aspect of the present invention, there is provided one of the signal lights for each wavelength propagating in the core of the plurality of output optical waveguides on the substrate in the optical demultiplexer or the plurality of input optical waveguides on the substrate in the optical multiplexer. the tap waveguide for branching a part formed in the cladding, by placing the light-receiving element in a groove provided in the cladding, each by receiving monitor light guided by the tap waveguide at the light-receiving element A method of manufacturing an optical multiplexer / demultiplexer for monitoring signal light for each wavelength channel, wherein the region overlaps with the core or the vicinity of the core, and reaches a shallower position in the thickness direction of the substrate than the femtosecond. The pulsed laser, which is a laser, is focused and irradiated on the clad, and a refractive index increasing region is induced in the clad, whereby the branched monitor light is separated from the core from the core in the thickness direction of the substrate. To direct to a side surface of the light receiving elements in a shallow position, a method for manufacturing an optical demultiplexer, characterized by forming the tap waveguide into a substantially S-shape.
According to a third aspect of the present invention, in the method for manufacturing an optical multiplexer / demultiplexer according to the second aspect , after the light receiving element is arranged, the signal light is input and the signal light after being demultiplexed by the optical demultiplexer or The intensity of the output light that is a part of the signal light before being combined in the optical multiplexer, and a part of the signal light that is guided by the tap waveguide and received by the light receiving element. Irradiating the pulsed laser multiple times while detecting the intensity of the monitor light, adjusting the branching ratio between the intensity of the output light and the intensity of the monitor light, and forming the tap waveguide. Features. As a result, it is possible to realize an optical multiplexer / demultiplexer manufacturing method that makes it easy to set the branching ratio between the output light intensity and the monitor light intensity to a desired value.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
FIG. 1 shows an example of an optical multiplexer / demultiplexer according to the present invention.
In FIG. 1, reference numeral 1 denotes an optical multiplexer / demultiplexer, and an AWG type optical multiplexer / demultiplexer is shown as an example. Reference numeral 2 denotes an input side optical fiber array, and the input side optical fiber array 2 is connected to an input end of the optical multiplexer / demultiplexer 1. Reference numeral 3 denotes an input optical fiber connected to the input side optical fiber array 2. Reference numeral 4 denotes an output side optical fiber array, and this output side optical fiber array 4 is connected to the output end of the optical multiplexer / demultiplexer 1. Reference numeral 5 denotes an output optical fiber connected to the output-side optical fiber array 4, and reference numeral 6 denotes a substrate of the optical multiplexer / demultiplexer, which is made of, for example, a silicon wafer. On this substrate 6, an input optical waveguide 7, a developing slab waveguide 8 for branching the input light into a plurality of waveguides, and a plurality of array conductors with different lengths arranged in the subsequent stage. A waveguide 9, a slab optical waveguide 10 for causing light emitted from the arrayed waveguide 9 to interfere with each other, and a plurality of output optical waveguides 11 are formed.
Reference numeral 12 denotes a groove provided on the substrate 6, and the light receiving elements 13 are arranged in the groove 12 by the number of output side channels.
[0007]
FIG. 2 is a view showing a cross section of the portion A shown in FIG. In FIG. 2, reference numeral 6 denotes a substrate. A lower clad 15 is formed on the substrate 6, and a core 16 is formed on the lower clad 15. Reference numeral 17 denotes an upper clad formed on the core 16, and a tap waveguide 18 is formed in the upper clad 17. The tap waveguide 18 is a waveguide formed so that only a small part of the light propagating in the core 16 is demultiplexed and guided.
The thickness of the upper clad 17 is determined in consideration of the relative refractive index difference between the clad material and the core material, the waveguide structure, and the like so that the optical transmission loss becomes sufficiently small at the wavelength used, and is usually about 20 μm. In this example, in order to arrange the light receiving element 13 in the upper clad 17, it is preferable that the thickness is further increased to 30 μm to 40 μm.
[0008]
The shape of the tap waveguide 18 is preferably substantially S-shaped when viewed from the cross section shown in FIG. 2 in order to effectively guide the monitor light. Further, the tip end portion of the tap waveguide 18 may be formed to have a region overlapping with the core 16 as shown in FIG. 2, and the tip end portion of the tap waveguide 18 is brought close to the vicinity of the core 16. You may form as follows.
Reference numeral 12 denotes a groove, and the light receiving element 13 is disposed in the groove 12. For example, a photodiode is used as the light receiving element 13.
The groove 12 is provided directly above the portion of the output optical waveguide 11 where the waveguide is linearly arranged at a pitch of 127 μm or 250 μm, for example by a grinding machine in a direction perpendicular to the waveguide. The light receiving element 13 is disposed in the groove 12. At this time, the thickness of the upper clad 17 at the position where the groove 12 is provided is preferably about 10 μm.
[0009]
The optical multiplexer / demultiplexer of this example is formed by forming a tap waveguide 18 for monitoring signal light and disposing a light receiving element 13. A method for manufacturing the tap waveguide 18 will be described below.
The tap waveguide 18 is formed by condensing and irradiating a pulse laser such as a femtosecond laser from above the upper clad 17 to induce a refractive index increase region. This femtosecond laser irradiation includes an optical system including a precision stage capable of moving in at least three axes in the X, Y, and Z directions, an observation microscope for alignment, a femtosecond laser device, and a femtosecond laser. This is performed using an objective lens for focused irradiation. The objective lens for condensing and irradiating the femtosecond laser can also be used as the objective lens of the microscope used for alignment. In this case, the femtosecond laser is guided using a mirror in the microscope tube. Lighted.
In order to form the tap waveguide 18, the focusing point is adjusted so that the femtosecond laser is focused inside the upper cladding 17. By continuously moving the condensing point inside the upper clad 17, a continuous high refractive index region functioning as an optical waveguide is formed inside the upper clad 17. The relative movement of the condensing point is performed by continuously moving the upper clad 17 with respect to the condensing point of the laser light or by continuously moving the condensing point of the laser light within the upper clad 17. .
[0010]
In order to form a smooth and continuous tap waveguide 18, it is desirable to irradiate with a narrow pulse interval of the laser beam to be irradiated, that is, with a short repetition period. For that purpose, a high repetition type femtosecond laser is used. Irradiation is preferred.
The tap waveguide 18 may be formed after the input side optical fiber array 2, the output side optical fiber array 4, and the light receiving element 13 are mounted. In this case, a wavelength-multiplexed light is input, or light of one wavelength is sequentially input to monitor the intensity of the demultiplexed output light and also monitor the level of the light receiving element 13 while monitoring the level of the light receiving element 13. Irradiate. The irradiation of the femtosecond laser is preferably performed by reducing the intensity of the femtosecond laser per one time and irradiating the femtosecond laser a plurality of times, whereby the branching ratio can be adjusted. When the tap waveguide 18 is formed in this manner, it becomes easy to set the branching ratio of light branched from the core 16 by the tap waveguide 18 to a desired value.
[0011]
Next, the operation of the example of the optical multiplexer / demultiplexer of the present invention will be described.
In FIG. 1, the signal light sent from the input optical fiber 3 is input to the input optical waveguide 7 of the optical multiplexer / demultiplexer 1 via the input-side optical fiber array 2, and this input light is applied to the developing slab waveguide. 8 is branched into a plurality of waveguides, demultiplexed for each wavelength by the arrayed waveguide 9 and the slab optical waveguide 10, and output from the output optical fiber 5 via the output optical fiber array 4 from the output optical waveguide 11. Is output.
In FIG. 2, the signal light propagates in the core 16 for each wavelength, but a part of the signal light is guided to the tap waveguide 18 as monitor light and received by the light receiving element 13, and the signal light is transmitted for each channel. Monitoring is performed.
[0012]
In the above description, the case where an AWG is used as an optical demultiplexer has been described. However, the present invention is not limited to this. The present invention can also be applied to a type of optical demultiplexer.
Further, the present invention is not limited to monitoring all channels, and can be applied to monitoring only one channel.
Furthermore, each channel on the input side can be monitored by the monitoring means described above. In this case, it can be realized by reversing the direction in which the tap waveguide 18 for guiding the monitor light to the light receiving element is formed.
According to the optical multiplexer / demultiplexer of this example, the tap waveguide 18 for branching a part of the signal light propagating in the core 16 is formed in the upper cladding 17, and the groove 12 provided in the upper cladding 17 is formed. The light receiving element 13 is arranged, the monitor light guided by the tap waveguide 18 is received by the light receiving element 13 and the signal light intensity is monitored for each channel, thereby providing a monitor mechanism on the substrate of the optical multiplexer / demultiplexer. An optical multiplexer / demultiplexer that can be provided, can reduce the number of components, and can be miniaturized can be realized.
Further, the tap waveguide 18 is formed by irradiating a pulse laser while adjusting the branching ratio between the output light intensity and the monitor light intensity, so that the branching ratio between the output light intensity and the monitor light intensity is a desired value. It is possible to realize an optical multiplexer / demultiplexer manufacturing method that is easy to achieve.
[0013]
【The invention's effect】
As described above, according to the present invention, the tap waveguide for branching a part of the signal light propagating in the core is formed in the clad, and the light receiving element is arranged in the groove provided in the clad. The monitor light guided by the tap waveguide is received by the light receiving element, and the signal light intensity is monitored for each channel, so that a monitor mechanism can be provided on the substrate of the optical multiplexer / demultiplexer. An optical multiplexer / demultiplexer that can be reduced and reduced in size can be realized.
Further, the tap waveguide is formed by irradiating with a pulse laser while adjusting the branching ratio between the output light intensity and the monitor light intensity, so that the branching ratio between the output light intensity and the monitor light intensity is set to a desired value. An optical multiplexer / demultiplexer manufacturing method that can be easily performed can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an example of an optical multiplexer / demultiplexer according to the present invention.
FIG. 2 is a diagram illustrating a mechanism for monitoring with an optical waveguide according to an example of the optical multiplexer / demultiplexer of the present invention.
[Explanation of symbols]
6 ... substrate, 12 ... groove, 13 ... light receiving element, 15 ... lower clad, 16 ... core,
17 ... upper clad, 18 ... tap waveguide

Claims (3)

光分波器における基板上の複数の出力用光導波路又は光合波器における基板上の複数の入力用光導波路のコア中を伝搬する各波長毎の信号光の一部を分岐するためのタップ導波路がクラッド中に形成され、該クラッド中に設けられた溝に受光素子が配置され、タップ導波路により導波されたモニタ光を該受光素子で受光して各波長のチャネル毎に信号光をモニタする光合分波器であって、
前記タップ導波路は、その一端が前記コアと重複する領域を有するか、又は前記コアの近傍に配置され、他端が前記基板の厚さ方向において前記一端よりも浅い位置に配置されて、分岐された前記モニタ光を、前記コアから、前記基板の厚さ方向において該コアよりも浅い位置にある前記受光素子の側面に導くように、略S字状に形成されており、
前記タップ導波路は、フェムト秒レーザであるパルスレーザを集光照射して、クラッド中に屈折率上昇領域を誘起することによって形成されていることを特徴とする光合分波器。
Tap guide for branching a part of the signal light for each wavelength propagating in the core of the plurality of output optical waveguides on the substrate in the optical demultiplexer or the plurality of input optical waveguides on the substrate in the optical multiplexer A waveguide is formed in the cladding, and a light receiving element is disposed in a groove provided in the cladding, and the monitor light guided by the tap waveguide is received by the light receiving element, and signal light is transmitted for each wavelength channel. An optical multiplexer / demultiplexer to monitor,
The tap waveguide has a region where one end thereof overlaps with the core or is disposed in the vicinity of the core, and the other end is disposed at a position shallower than the one end in the thickness direction of the substrate. The monitor light is formed in a substantially S shape so as to guide the monitor light from the core to the side surface of the light receiving element located shallower than the core in the thickness direction of the substrate .
2. The optical multiplexer / demultiplexer according to claim 1, wherein the tap waveguide is formed by condensing and irradiating a pulse laser which is a femtosecond laser to induce a refractive index increasing region in the cladding .
光分波器における基板上の複数の出力用光導波路又は光合波器における基板上の複数の入力用光導波路のコア中を伝搬する各波長毎の信号光の一部を分岐するためのタップ導波路をクラッド中に形成し、該クラッド中に設けられた溝に受光素子を配置して、タップ導波路により導波されたモニタ光を受光素子で受光して各波長のチャネル毎に信号光をモニタする光合分波器の製造方法であって、
前記コアと重複する領域又は前記コアの近傍から、これよりも前記基板の厚さ方向における浅い位置にかけて、フェムト秒レーザであるパルスレーザを前記クラッドに集光照射し、該クラッド中に屈折率上昇領域を誘起することによって、分岐された前記モニタ光を、前記コアから、前記基板の厚さ方向において該コアよりも浅い位置にある前記受光素子の側面に導くように、略S字状に前記タップ導波路を形成することを特徴とする光合分波器の製造方法。
Tap guide for branching a part of the signal light for each wavelength propagating in the core of the plurality of output optical waveguides on the substrate in the optical demultiplexer or the plurality of input optical waveguides on the substrate in the optical multiplexer A waveguide is formed in the clad, and a light receiving element is arranged in a groove provided in the clad. The monitor light guided by the tap waveguide is received by the light receiving element, and signal light is transmitted for each wavelength channel. A method of manufacturing an optical multiplexer / demultiplexer to be monitored,
From the region overlapping the core or the vicinity of the core to a shallower position in the thickness direction of the substrate than this, a pulsed laser that is a femtosecond laser is focused on the clad, and the refractive index rises in the clad By inducing a region, the branched monitor light is guided from the core to the side surface of the light receiving element that is shallower than the core in the thickness direction of the substrate. A method of manufacturing an optical multiplexer / demultiplexer, wherein a tap waveguide is formed.
前記受光素子を配置後に、信号光を入力し、光分波器における分波された後の前記信号光又は光合波器における合波される前の前記信号光の一部である出力光の強度と、前記信号光の一部であって、前記タップ導波路により導波されて前記受光素子で受光されたモニタ光の強度とを検出しつつ、前記パルスレーザを複数回重ねて照射して、前記出力光の強度と前記モニタ光の強度との分岐比を調整し、前記タップ導波路を形成することを特徴とする請求項記載の光合分波器の製造方法。After placing the light receiving element, the signal light is input, the signal light after being demultiplexed by the optical demultiplexer, or the intensity of the output light that is a part of the signal light before being combined by the optical multiplexer And detecting the intensity of the monitor light that is a part of the signal light and is guided by the tap waveguide and received by the light receiving element, and irradiates the pulse laser multiple times, 3. The method of manufacturing an optical multiplexer / demultiplexer according to claim 2 , wherein the tap waveguide is formed by adjusting a branching ratio between the intensity of the output light and the intensity of the monitor light.
JP2001228554A 2001-07-27 2001-07-27 Optical multiplexer / demultiplexer and optical multiplexer / demultiplexer manufacturing method Expired - Fee Related JP4514999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001228554A JP4514999B2 (en) 2001-07-27 2001-07-27 Optical multiplexer / demultiplexer and optical multiplexer / demultiplexer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001228554A JP4514999B2 (en) 2001-07-27 2001-07-27 Optical multiplexer / demultiplexer and optical multiplexer / demultiplexer manufacturing method

Publications (2)

Publication Number Publication Date
JP2003043275A JP2003043275A (en) 2003-02-13
JP4514999B2 true JP4514999B2 (en) 2010-07-28

Family

ID=19061047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001228554A Expired - Fee Related JP4514999B2 (en) 2001-07-27 2001-07-27 Optical multiplexer / demultiplexer and optical multiplexer / demultiplexer manufacturing method

Country Status (1)

Country Link
JP (1) JP4514999B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9594220B1 (en) 2015-09-22 2017-03-14 Corning Optical Communications LLC Optical interface device having a curved waveguide using laser writing and methods of forming
US10162112B2 (en) 2016-05-31 2018-12-25 Corning Optical Communications LLC Optical wire bond apparatus and methods employing laser-written waveguides
US10234644B1 (en) 2017-10-20 2019-03-19 Corning Optical Communications LLC Optical-electrical printed circuit boards with integrated optical waveguide arrays and photonic assemblies using same
US10564354B2 (en) 2016-12-21 2020-02-18 Corning Optical Communications LLC Flexible glass optical-electrical interconnection device and photonic assemblies using same
US10627588B2 (en) 2017-02-27 2020-04-21 Corning Optical Communications LLC Optical interconnection assemblies, glass interconnection substrates, and methods of making an optical connection
US10684419B2 (en) 2016-07-29 2020-06-16 Corning Optical Communications LLC Waveguide connector elements and optical assemblies incorporating the same
US10948658B2 (en) 2017-02-27 2021-03-16 Corning Optical Communications LLC Optical interconnection assemblies, glass interconnection substrates, and methods of making an optical connection

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101393A (en) * 2013-02-12 2013-05-23 Fujitsu Ltd Optical switch
GB201803170D0 (en) 2018-02-27 2018-04-11 Optoscribe Ltd Optical apparatus and methods of manufacture thereof
KR102183595B1 (en) * 2019-04-11 2020-11-26 광운대학교 산학협력단 A Multi-channel optical power monitor for monitoring optical traffic in a multicore fiber, a Multicore fiber having the same and Femtosecond laser writing system for manufacturing the same
CN112097898A (en) * 2020-09-17 2020-12-18 纪朋 Multi-core optical fiber multi-channel optical signal online monitoring sensor and manufacturing method thereof

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121408A (en) * 1985-11-22 1987-06-02 Hitachi Ltd Module for optical wavelength multiplex transmission
JPH01315707A (en) * 1988-04-12 1989-12-20 Philips Gloeilampenfab:Nv Electromagnetic radiation coupling device
JPH03263005A (en) * 1990-03-14 1991-11-22 Ricoh Co Ltd Optical circuit element
JPH05224041A (en) * 1992-02-13 1993-09-03 Sumitomo Electric Ind Ltd Optical waveguide and its production
JPH0669490A (en) * 1992-08-14 1994-03-11 Fujitsu Ltd Electronic optical circuit
JPH0682642A (en) * 1992-03-06 1994-03-25 Fujitsu Ltd Optical circuit device ad its production and multilayered optical circuit formed by using the device
JPH09311237A (en) * 1996-03-18 1997-12-02 Kagaku Gijutsu Shinko Jigyodan Optical waveguide and its manufacture
JPH10303815A (en) * 1997-04-25 1998-11-13 Nec Corp Wavelength division circuit with monitor port using awg
JPH11109151A (en) * 1997-10-01 1999-04-23 Japan Aviation Electron Ind Ltd Optical wavelength composing and dividing equipment
JPH11248954A (en) * 1998-03-06 1999-09-17 Nippon Telegr & Teleph Corp <Ntt> Optical hybrid module
JPH11352345A (en) * 1998-06-11 1999-12-24 Mitsubishi Electric Corp Plane optical waveguide device, manufacture thereof, optical transmitter-receiver and manufacture thereof
JP2000047043A (en) * 1998-07-29 2000-02-18 Nippon Telegr & Teleph Corp <Ntt> Filter insertion type waveguide device and its production
JP2000075155A (en) * 1998-09-02 2000-03-14 Nippon Telegr & Teleph Corp <Ntt> Optical module
JP2000292636A (en) * 1999-04-05 2000-10-20 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical part and optical fiber connection method
JP2000329957A (en) * 1999-05-19 2000-11-30 Japan Aviation Electronics Industry Ltd Optical branching and demultiplexing device
WO2001009899A1 (en) * 1999-07-29 2001-02-08 Corning Incorporated Direct writing of optical devices in silica-based glass using femtosecond pulse lasers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465508A (en) * 1987-09-04 1989-03-10 Sharp Kk Integrated optical element

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121408A (en) * 1985-11-22 1987-06-02 Hitachi Ltd Module for optical wavelength multiplex transmission
JPH01315707A (en) * 1988-04-12 1989-12-20 Philips Gloeilampenfab:Nv Electromagnetic radiation coupling device
JPH03263005A (en) * 1990-03-14 1991-11-22 Ricoh Co Ltd Optical circuit element
JPH05224041A (en) * 1992-02-13 1993-09-03 Sumitomo Electric Ind Ltd Optical waveguide and its production
JPH0682642A (en) * 1992-03-06 1994-03-25 Fujitsu Ltd Optical circuit device ad its production and multilayered optical circuit formed by using the device
JPH0669490A (en) * 1992-08-14 1994-03-11 Fujitsu Ltd Electronic optical circuit
JPH09311237A (en) * 1996-03-18 1997-12-02 Kagaku Gijutsu Shinko Jigyodan Optical waveguide and its manufacture
JPH10303815A (en) * 1997-04-25 1998-11-13 Nec Corp Wavelength division circuit with monitor port using awg
JPH11109151A (en) * 1997-10-01 1999-04-23 Japan Aviation Electron Ind Ltd Optical wavelength composing and dividing equipment
JPH11248954A (en) * 1998-03-06 1999-09-17 Nippon Telegr & Teleph Corp <Ntt> Optical hybrid module
JPH11352345A (en) * 1998-06-11 1999-12-24 Mitsubishi Electric Corp Plane optical waveguide device, manufacture thereof, optical transmitter-receiver and manufacture thereof
JP2000047043A (en) * 1998-07-29 2000-02-18 Nippon Telegr & Teleph Corp <Ntt> Filter insertion type waveguide device and its production
JP2000075155A (en) * 1998-09-02 2000-03-14 Nippon Telegr & Teleph Corp <Ntt> Optical module
JP2000292636A (en) * 1999-04-05 2000-10-20 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical part and optical fiber connection method
JP2000329957A (en) * 1999-05-19 2000-11-30 Japan Aviation Electronics Industry Ltd Optical branching and demultiplexing device
WO2001009899A1 (en) * 1999-07-29 2001-02-08 Corning Incorporated Direct writing of optical devices in silica-based glass using femtosecond pulse lasers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9594220B1 (en) 2015-09-22 2017-03-14 Corning Optical Communications LLC Optical interface device having a curved waveguide using laser writing and methods of forming
US9784930B2 (en) 2015-09-22 2017-10-10 Corning Optical Communications LLC Optical interface device having a curved waveguide using laser writing and methods of forming
US10162112B2 (en) 2016-05-31 2018-12-25 Corning Optical Communications LLC Optical wire bond apparatus and methods employing laser-written waveguides
US10684419B2 (en) 2016-07-29 2020-06-16 Corning Optical Communications LLC Waveguide connector elements and optical assemblies incorporating the same
US10564354B2 (en) 2016-12-21 2020-02-18 Corning Optical Communications LLC Flexible glass optical-electrical interconnection device and photonic assemblies using same
US10627588B2 (en) 2017-02-27 2020-04-21 Corning Optical Communications LLC Optical interconnection assemblies, glass interconnection substrates, and methods of making an optical connection
US10948658B2 (en) 2017-02-27 2021-03-16 Corning Optical Communications LLC Optical interconnection assemblies, glass interconnection substrates, and methods of making an optical connection
US10234644B1 (en) 2017-10-20 2019-03-19 Corning Optical Communications LLC Optical-electrical printed circuit boards with integrated optical waveguide arrays and photonic assemblies using same

Also Published As

Publication number Publication date
JP2003043275A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
US6839492B2 (en) Packaging device for optical waveguide element
KR100922479B1 (en) Optical Device With Slab Waveguide And Channel Waveguides On Substrate
JP3563376B2 (en) Manufacturing method of optical multiplexer / demultiplexer
US20050175306A1 (en) Waveguides with integrated lenses and reflective surfaces
JPS59174803A (en) Wavelength multiplexer or demultiplexer
KR101228225B1 (en) Optical device, optical device manufacturing method, and optical integrated device
JP4514999B2 (en) Optical multiplexer / demultiplexer and optical multiplexer / demultiplexer manufacturing method
JPH116928A (en) Arrayed waveguide grating type wavelength multiplexer /demultiplexer
JP3784701B2 (en) Optical circuit member and optical transceiver
JPH09159851A (en) Waveguide type optical multiplexing/demultiplexing module
KR20130071747A (en) Hybrid integration of optical transmitter device and monitor photodiode on plc platform
JP2005010373A (en) Optical waveguide part and its manufacturing method
JP2002228863A (en) Optical coupling structure
US6706154B1 (en) Method for fabricating integrated optical components using ultraviolet laser techniques
EP1130424A3 (en) Optical waveguide circuit
US6728435B2 (en) Arrayed waveguide grating type optical multiplexer/demultiplexer and optical waveguide circuit
JP2001108850A (en) Trimmed and integrated optical multibeam interferometer
JP2001074950A (en) Method for adjusting characteristic for optical multiplexer/demultiplexer
CN110989079B (en) Air cladding SU8 array waveguide grating
JP3788397B2 (en) Optical waveguide device and communication device using optical waveguide device
JP3922029B2 (en) Manufacturing method of waveguide
JP2004012930A (en) Planar waveguide type optical circuit
EP0947861A1 (en) Hybrid waveguiding optical device
JP2006184758A (en) Optical waveguide and optical waveguide module
KR101501139B1 (en) Planar Lightwave Circuit Module having an improved Structure of an Optical Power Monitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees