JP2003043275A - Optical multiplexer/demultiplexer, and method for manufacturing optical multiplexer/demultiplexer - Google Patents

Optical multiplexer/demultiplexer, and method for manufacturing optical multiplexer/demultiplexer

Info

Publication number
JP2003043275A
JP2003043275A JP2001228554A JP2001228554A JP2003043275A JP 2003043275 A JP2003043275 A JP 2003043275A JP 2001228554 A JP2001228554 A JP 2001228554A JP 2001228554 A JP2001228554 A JP 2001228554A JP 2003043275 A JP2003043275 A JP 2003043275A
Authority
JP
Japan
Prior art keywords
demultiplexer
optical multiplexer
light
waveguide
tap waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001228554A
Other languages
Japanese (ja)
Other versions
JP4514999B2 (en
Inventor
Takeshi Sakuma
健 佐久間
Shibun Ishikawa
紫文 石川
Tomoko Yomo
朋子 四方
Hideyuki Hosoya
英行 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2001228554A priority Critical patent/JP4514999B2/en
Publication of JP2003043275A publication Critical patent/JP2003043275A/en
Application granted granted Critical
Publication of JP4514999B2 publication Critical patent/JP4514999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical multiplexer/demultiplexer whose size is reduced by integrating a mechanism to monitor the signal light of each channel even when the number of channels is increased. SOLUTION: The signal light propagates in a core 16 for every wavelength, part of the signal light is guided to a tap waveguide 18 as monitor light, received by a light receiving element 13, and then the signal light of each channel is monitored. The tap waveguide 18 is formed so as to branch and guide only very partial light of the light propagating in the core 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光波長多重通信分
野で用いられる光合分波器に関し、特に、各チャネルの
信号をモニタする機能を有する光合分波器とその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical multiplexer / demultiplexer used in the field of optical wavelength division multiplexing, and more particularly to an optical multiplexer / demultiplexer having a function of monitoring signals of respective channels and a method of manufacturing the same.

【0002】[0002]

【従来の技術】高密度波長多重通信システムにおいて各
チャネルの信号光をモニタする場合、従来は、光合分波
器の後段に、信号光の一部を導波するためのタップカプ
ラとモニタ用フォトダイオードとを融着接続によって接
続して、タップカプラにより導波された光を用いて信号
光をモニタすることが一般に行われていた。
2. Description of the Related Art Conventionally, in the case of monitoring the signal light of each channel in a high-density WDM communication system, conventionally, a tap coupler for guiding a part of the signal light and a monitor photo are provided after the optical multiplexer / demultiplexer. It has been common practice to connect a diode by fusion splicing and monitor the signal light using the light guided by the tap coupler.

【0003】[0003]

【発明が解決しようとする課題】しかし、近年の高密度
波長多重通信システムのようにチャネル数が増大する
と、光合分波器は、誘電体多層膜フィルタや光ファイバ
グレーティングに替えてアレイ導波路回折格子(以下
「AWG」と略記する)を用いることで、部品点数が削
減され、小型化が可能となるが、各チャネルの信号光を
モニタする機構を設けようとすると、チャネル数の増大
に伴って、タップカプラとモニタ用フォトダイオードの
使用数量が増大し、光モジュール全体が大型化すること
が問題となっていた。本発明は、このような問題点を解
決するためになされたもので、チャネル数が増大して
も、各チャネルの信号光をモニタする機構を集積化し
て、小型化が可能な光合分波器を提供することを目的と
する。
However, when the number of channels increases as in the high-density wavelength-division multiplex communication system in recent years, the optical multiplexer / demultiplexer replaces the dielectric multilayer filter or the optical fiber grating with the arrayed waveguide diffraction. By using a grating (hereinafter abbreviated as “AWG”), the number of parts can be reduced and downsizing can be achieved. However, if a mechanism for monitoring the signal light of each channel is provided, the number of channels will increase. As a result, the number of tap couplers and monitor photodiodes used has increased, and the size of the entire optical module has increased. The present invention has been made to solve such a problem, and an optical multiplexer / demultiplexer capable of downsizing by integrating a mechanism for monitoring the signal light of each channel even if the number of channels increases. The purpose is to provide.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
めに、請求項1記載の発明は、コア中を伝搬する信号光
の一部を分岐するためのタップ導波路がクラッド中に形
成され、クラッド中に設けられた溝に受光素子が配置さ
れ、タップ導波路により導波されたモニタ光を受光素子
で受光してチャネル毎に信号光をモニタすることを特徴
とする光合分波器である。これにより、光合分波器の基
板上にモニタ機構を備えることができ、部品点数を削減
し、小型化が可能な光合分波器を実現することができ
る。請求項2記載の発明は、請求項1記載の光合分波器
において、タップ導波路は略S字形状に形成されている
ことを特徴とする。請求項3記載の発明は、請求項1又
は2記載の光合分波器において、タップ導波路は、パル
スレーザを集光照射して、クラッド中に屈折率上昇領域
を誘起することによって形成されていることを特徴とす
る。請求項4記載の発明は、請求項3記載の光合分波器
において、パルスレーザはフェムト秒レーザであること
を特徴とする。請求項5記載の発明は、請求項1、2、
3又4記載の光合分波器において、タップ導波路は、入
力用光導波路また出力用光導波路のクラッド中に形成さ
れていることを特徴とする。
In order to solve the above-mentioned problems, the invention according to claim 1 is such that a tap waveguide for branching a part of the signal light propagating in the core is formed in the clad. The optical multiplexer / demultiplexer is characterized in that a light receiving element is arranged in a groove provided in the clad, and the monitor light guided by the tap waveguide is received by the light receiving element to monitor the signal light for each channel. is there. Accordingly, the monitor mechanism can be provided on the substrate of the optical multiplexer / demultiplexer, the number of components can be reduced, and the optical multiplexer / demultiplexer that can be downsized can be realized. According to a second aspect of the present invention, in the optical multiplexer / demultiplexer according to the first aspect, the tap waveguide is formed in a substantially S shape. According to a third aspect of the present invention, in the optical multiplexer / demultiplexer according to the first or second aspect, the tap waveguide is formed by converging and irradiating a pulse laser to induce a refractive index increasing region in the cladding. It is characterized by being According to a fourth aspect of the invention, in the optical multiplexer / demultiplexer according to the third aspect, the pulse laser is a femtosecond laser. The invention according to claim 5 is the invention according to claim 1, 2,
The optical multiplexer / demultiplexer described in 3 or 4 is characterized in that the tap waveguide is formed in the cladding of the input optical waveguide or the output optical waveguide.

【0005】請求項6記載の発明は、コア中を伝搬する
信号光の一部を分岐するためのタップ導波路をクラッド
中に形成し、クラッド中に設けられた溝に受光素子を配
置して、タップ導波路により導波されたモニタ光を受光
素子で受光してチャネル毎に信号光をモニタする光合分
波器の製造方法であって、パルスレーザをクラッドに集
光照射し、クラッド中に屈折率上昇領域を誘起すること
によってタップ導波路を形成することを特徴とする光合
分波器の製造方法である。請求項7記載の発明は、請求
項6記載の光合分波器の製造方法において、タップ導波
路は、出力光強度とモニタ光強度との分岐比を調整しつ
つ、パルスレーザを照射して形成されることを特徴とす
る。これにより、出力光強度とモニタ光強度との分岐比
を所望の値とすることが容易な光合分波器の製造方法を
実現することができる。請求項8記載の発明は、請求項
6又は7記載の光合分波器の製造方法において、パルス
レーザはフェムト秒レーザであることを特徴とする。
According to a sixth aspect of the present invention, a tap waveguide for branching a part of the signal light propagating in the core is formed in the clad, and a light receiving element is arranged in a groove provided in the clad. A method of manufacturing an optical multiplexer / demultiplexer in which a monitor light guided by a tap waveguide is received by a light receiving element and a signal light is monitored for each channel. It is a method of manufacturing an optical multiplexer / demultiplexer characterized by forming a tap waveguide by inducing a refractive index increasing region. According to a seventh aspect of the present invention, in the method of manufacturing the optical multiplexer / demultiplexer according to the sixth aspect, the tap waveguide is formed by irradiating a pulse laser while adjusting a branching ratio between the output light intensity and the monitor light intensity. It is characterized by being done. As a result, it is possible to realize a method for manufacturing an optical multiplexer / demultiplexer in which the branching ratio between the output light intensity and the monitor light intensity can be easily set to a desired value. The invention according to claim 8 is the method for manufacturing an optical multiplexer / demultiplexer according to claim 6 or 7, wherein the pulse laser is a femtosecond laser.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
図1に、本発明の光合分波器の例を示す。図1中、符号
1は光合分波器であり、一例として、AWG型の光合分
波器を示している。符号2は入力側光ファイバアレイで
あり、この入力側光ファイバアレイ2は、光合分波器1
の入力端に接続されている。符号3は、入力側光ファイ
バアレイ2に接続された入力用光ファイバである。符号
4は出力側光ファイバアレイであり、この出力側光ファ
イバアレイ4は、光合分波器1の出力端に接続されてい
る。符号5は、出力側光ファイバアレイ4に接続された
出力用光ファイバである符号6は、光合分波器の基板で
あり、例えば、シリコンウエハからなっている。この基
板6上には、入力用光導波路7と、この入力光を複数の
導波路に分岐させるための展開用スラブ導波路8と、そ
の後段に配置された長さの異なる複数本のアレイ導波路
9と、このアレイ導波路9から放射された光を互いに干
渉させるためのスラブ光導波路10と、複数の出力用光
導波路11が形成されている。符号12は、基板6上に
設けられた溝であり、この溝12の内部には、受光素子
13が出力側チャネル数だけ配置されている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
FIG. 1 shows an example of the optical multiplexer / demultiplexer of the present invention. In FIG. 1, reference numeral 1 is an optical multiplexer / demultiplexer, and an AWG type optical multiplexer / demultiplexer is shown as an example. Reference numeral 2 is an input side optical fiber array, and this input side optical fiber array 2 is an optical multiplexer / demultiplexer 1.
Is connected to the input end of. Reference numeral 3 is an input optical fiber connected to the input side optical fiber array 2. Reference numeral 4 is an output side optical fiber array, and this output side optical fiber array 4 is connected to the output end of the optical multiplexer / demultiplexer 1. Reference numeral 5 is an output optical fiber connected to the output side optical fiber array 4, and reference numeral 6 is a substrate of the optical multiplexer / demultiplexer, which is made of, for example, a silicon wafer. On this substrate 6, an input optical waveguide 7, a development slab waveguide 8 for branching this input light into a plurality of waveguides, and a plurality of array conductors of different lengths arranged in the subsequent stage. A waveguide 9, a slab optical waveguide 10 for causing lights emitted from the arrayed waveguide 9 to interfere with each other, and a plurality of output optical waveguides 11 are formed. Reference numeral 12 is a groove provided on the substrate 6, and light receiving elements 13 are arranged in the groove 12 by the number of output side channels.

【0007】図2は、図1に示したAの部分の、基板6
に対して垂直な方向の断面を示す図である。図2中、符
号6は基板であり、この基板6上には下クラッド15が
形成され、この下クラッド15上にはコア16が形成さ
れている。符号17は、コア16上に形成された上クラ
ッドであり、この上クラッド17中には、タップ導波路
18が形成されている。このタップ導波路18とは、コ
ア16内を伝搬する光のうち、ごく一部の光のみが分波
されて導波されるように形成された導波路のことをい
う。この上クラッド17の厚さは、使用波長において光
伝送損失が十分小さくなるようにクラッド材料とコア材
料との比屈折率差、導波路構造等を考慮して決定され、
通常20μm程度であるが、この例では、上クラッド1
7内に受光素子13を配置するため、さらに厚くして、
30μm〜40μmとするのが好ましい。
FIG. 2 shows the substrate 6 in the portion A shown in FIG.
It is a figure which shows the cross section of the direction perpendicular | vertical to. In FIG. 2, reference numeral 6 is a substrate, a lower clad 15 is formed on the substrate 6, and a core 16 is formed on the lower clad 15. Reference numeral 17 is an upper clad formed on the core 16, and a tap waveguide 18 is formed in the upper clad 17. The tap waveguide 18 refers to a waveguide formed so that only a part of the light propagating in the core 16 is demultiplexed and guided. The thickness of the upper clad 17 is determined in consideration of the relative refractive index difference between the clad material and the core material, the waveguide structure, etc. so that the optical transmission loss is sufficiently small at the used wavelength.
Usually, it is about 20 μm, but in this example, the upper cladding 1
Since the light receiving element 13 is arranged in 7, the thickness is further increased,
The thickness is preferably 30 μm to 40 μm.

【0008】タップ導波路18の形状は、有効にモニタ
光を導波するために、図2に示す断面から見て略S字形
状であることが好ましい。また、タップ導波路18の先
端部は、図2に示すようにコア16と重複する領域を持
つように形成してもよく、また、タップ導波路18の先
端部をコア16の近傍に接近させるように形成してもよ
い。符号12は溝であり、この溝12内に受光素子13
が配置されている。この受光素子13として、例えばフ
ォトダイオードが用いられる。溝12は、出力用光導波
路11のうち、127μmピッチまたは250μmピッ
チで直線状に導波路が整列している部分の直上に、この
導波路に対して垂直な方向に例えば研削加工機により設
けられ、この溝12内に受光素子13を配置する。この
際、溝12を設けた位置での上クラッド17の厚さは1
0μm程度とするのが好ましい。
The shape of the tap waveguide 18 is preferably substantially S-shaped when viewed from the cross section shown in FIG. 2 in order to guide the monitor light effectively. Further, the tip end portion of the tap waveguide 18 may be formed to have a region overlapping with the core 16 as shown in FIG. 2, and the tip end portion of the tap waveguide 18 may be brought close to the core 16. You may form so. Reference numeral 12 is a groove, and the light receiving element 13 is provided in the groove 12.
Are arranged. As the light receiving element 13, for example, a photodiode is used. The groove 12 is provided immediately above the portion of the output optical waveguide 11 where the waveguides are linearly aligned at a pitch of 127 μm or 250 μm, for example, by a grinding machine in a direction perpendicular to the waveguide. The light receiving element 13 is arranged in the groove 12. At this time, the thickness of the upper clad 17 at the position where the groove 12 is provided is 1
It is preferably about 0 μm.

【0009】この例の光合分波器は、信号光をモニタす
るためにタップ導波路18を形成し、受光素子13を配
置したものであり、このタップ導波路18の製造方法に
ついて以下に説明する。タップ導波路18は、上クラッ
ド17の上方からフェムト秒レーザのようなパルスレー
ザを集光照射して、屈折率上昇領域を誘起することによ
って形成される。このフェムト秒レーザ照射は、少なく
ともX、Y、Z方向の3軸移動可能な精密ステージと、
位置合わせのための観察用の顕微鏡等を含む光学系と、
フェムト秒レーザ装置と、フェムト秒レーザを集光照射
するための対物レンズを用いて行う。このフェムト秒レ
ーザを集光照射するための対物レンズは、位置あわせに
使用する顕微鏡の対物レンズを兼用することも可能であ
り、この場合には、フェムト秒レーザは顕微鏡筒にミラ
ーを用いて導光される。タップ導波路18を形成するた
めに、上クラッド17の内部にフェムト秒レーザが集光
されるように集光点を調整する。この集光点を上クラッ
ド17の内部で相対移動させることにより、光導波路と
して機能する連続した高屈折率領域が上クラッド17の
内部に形成される。集光点の相対移動は、レーザ光の集
光点に対して上クラッド17を連続的に移動させ、ある
いは上クラッド17の内部でレーザ光の集光点を連続的
に移動させることにより行われる。
In the optical multiplexer / demultiplexer of this example, a tap waveguide 18 is formed in order to monitor signal light and a light receiving element 13 is arranged. A method of manufacturing the tap waveguide 18 will be described below. . The tap waveguide 18 is formed by focusing and irradiating a pulsed laser such as a femtosecond laser from above the upper cladding 17 to induce a refractive index increase region. This femtosecond laser irradiation is performed with a precision stage that is movable in at least three axes in X, Y, and Z directions.
An optical system including a microscope for observation for alignment,
This is performed using a femtosecond laser device and an objective lens for converging and emitting the femtosecond laser. The objective lens for converging and irradiating the femtosecond laser can also serve as the objective lens of the microscope used for alignment.In this case, the femtosecond laser is guided by using a mirror on the microscope tube. Be illuminated. In order to form the tap waveguide 18, the focusing point is adjusted so that the femtosecond laser is focused inside the upper cladding 17. By relatively moving this condensing point inside the upper clad 17, a continuous high refractive index region functioning as an optical waveguide is formed inside the upper clad 17. The relative movement of the focusing point is performed by continuously moving the upper cladding 17 with respect to the focusing point of the laser light or by continuously moving the focusing point of the laser light inside the upper cladding 17. .

【0010】滑らかで連続的なタップ導波路18を形成
するためには、照射するレーザ光のパルス間隔を狭く、
すなわち繰り返し周期を短くして照射することが望まし
く、そのためには高繰り返し型のフェムト秒レーザを照
射することが好ましい。タップ導波路18の形成は、入
力側光ファイバアレイ2及び出力側光ファイバアレイ4
と受光素子13を実装した後に行ってもよい。この場合
には、波長多重された光を入力し、または1波長の光を
順次入力して、分波された出力光の強度をモニタしつ
つ、受光素子13のレベルもモニタしながらフェムト秒
レーザを照射する。このフェムト秒レーザの照射は、1
回あたりのフェムト秒レーザの強度を弱くし、複数回重
ねて照射することが好ましく、これによって分岐比の調
整を行うことができる。このようにしてタップ導波路1
8を形成すると、タップ導波路18によってコア16か
ら分岐される光の分岐比を所望の値に設定することが容
易となる。
In order to form the smooth and continuous tap waveguide 18, the pulse interval of the laser light to be irradiated is narrowed,
That is, it is desirable to irradiate with a short repetition period, and for that purpose, it is preferable to irradiate with a high repetition type femtosecond laser. The tap waveguide 18 is formed by the input side optical fiber array 2 and the output side optical fiber array 4.
Alternatively, it may be performed after mounting the light receiving element 13. In this case, the wavelength-multiplexed light is input, or the light of one wavelength is sequentially input, and the femtosecond laser is also monitored while monitoring the intensity of the demultiplexed output light and also the level of the light receiving element 13. Irradiate. Irradiation of this femtosecond laser is 1
It is preferable to weaken the intensity of the femtosecond laser per irradiation and to irradiate the femtosecond laser a plurality of times so that the branching ratio can be adjusted. In this way, tap waveguide 1
8 is formed, it becomes easy to set the branching ratio of the light branched from the core 16 by the tap waveguide 18 to a desired value.

【0011】次に、本発明の光合分波器の例の動作につ
いて説明する。図1において、入力用光ファイバ3から
送られた信号光は、入力側光ファイバアレイ2を介して
光合分波器1の入力用光導波路7に入力され、この入力
光は展開用スラブ導波路8によって複数の導波路に分岐
され、アレイ導波路9と、スラブ光導波路10とによっ
て波長毎に分波され、出力用光導波路11から出力側光
ファイバアレイ4を介して出力用光ファイバ5から出力
される。図2において、信号光は各波長毎にコア16内
を伝搬するが、その一部はモニタ光としてタップ導波路
18に導波され、受光素子13により受光されて、各チ
ャネル毎に信号光のモニタが行われる。
Next, the operation of the example of the optical multiplexer / demultiplexer of the present invention will be described. In FIG. 1, the signal light sent from the input optical fiber 3 is input to the input optical waveguide 7 of the optical multiplexer / demultiplexer 1 via the input side optical fiber array 2, and this input light is expanded slab waveguide. 8 is branched into a plurality of waveguides, demultiplexed for each wavelength by the arrayed waveguide 9 and the slab optical waveguide 10, from the output optical waveguide 11 to the output optical fiber 5 via the output side optical fiber array 4. Is output. In FIG. 2, the signal light propagates in the core 16 for each wavelength, but a part of the signal light is guided to the tap waveguide 18 as monitor light and is received by the light receiving element 13 to generate the signal light of each channel. Monitoring is done.

【0012】以上の説明においては、光分波器としてA
WGを用いた場合について説明したが、これに限定され
るものではなく、Y分岐を多段に重ねた1入力8出力型
光分波器等、他のタイプの光分波器についても適用可能
である。また、すべてのチャネルについてモニタする場
合に限らず、1チャネルのみをモニタする場合にも適用
できる。さらに、以上説明したモニタ手段によって、入
力側の各チャネルをモニタすることもできる。この場合
には、受光素子へモニタ光を導波するためのタップ導波
路18を形成する方向を逆にすることによって実現でき
る。この例の光合分波器よると、コア16中を伝搬する
信号光の一部を分岐するためのタップ導波路18を上ク
ラッド17中に形成し、上クラッド17中に設けられた
溝12に受光素子13を配置して、タップ導波路18に
より導波されたモニタ光を受光素子13で受光してチャ
ネル毎に信号光強度をモニタすることにより、光合分波
器の基板上にモニタ機構を備えることができ、部品点数
を削減し、小型化が可能な光合分波器を実現することが
できる。また、タップ導波路18を、出力光強度とモニ
タ光強度との分岐比を調整しつつ、パルスレーザを照射
して形成することにより、出力光強度とモニタ光強度と
の分岐比を所望の値とすることが容易な光合分波器の製
造方法を実現することができる。
In the above description, the optical demultiplexer is A
Although the case of using the WG has been described, the present invention is not limited to this, and the present invention is also applicable to other types of optical demultiplexers such as a 1-input 8-output type optical demultiplexer in which Y branches are stacked in multiple stages. is there. Further, the present invention is not limited to the case of monitoring all channels, but can be applied to the case of monitoring only one channel. Further, each channel on the input side can be monitored by the monitoring means described above. This case can be realized by reversing the direction in which the tap waveguide 18 for guiding the monitor light to the light receiving element is formed. According to the optical multiplexer / demultiplexer of this example, the tap waveguide 18 for branching a part of the signal light propagating in the core 16 is formed in the upper clad 17, and the tap waveguide 18 is formed in the groove 12 provided in the upper clad 17. By arranging the light receiving element 13, the monitor light guided by the tap waveguide 18 is received by the light receiving element 13 and the signal light intensity is monitored for each channel, so that a monitor mechanism is provided on the substrate of the optical multiplexer / demultiplexer. It is possible to provide an optical multiplexer / demultiplexer that can be provided, can reduce the number of components, and can be downsized. Further, the tap waveguide 18 is formed by irradiating a pulse laser while adjusting the branching ratio of the output light intensity and the monitor light intensity, so that the branching ratio of the output light intensity and the monitor light intensity has a desired value. It is possible to realize a method of manufacturing an optical multiplexer / demultiplexer that is easy to obtain.

【0013】[0013]

【発明の効果】以上説明したように、本発明によると、
コア中を伝搬する信号光の一部を分岐するためのタップ
導波路をクラッド中に形成し、該クラッド中に設けられ
た溝に受光素子を配置して、タップ導波路により導波さ
れたモニタ光を受光素子で受光してチャネル毎に信号光
強度をモニタすることにより、光合分波器の基板上にモ
ニタ機構を備えることができ、部品点数を削減し、小型
化が可能な光合分波器を実現することができる。また、
タップ導波路を、出力光強度とモニタ光強度との分岐比
を調整しつつ、パルスレーザを照射して形成することに
より、出力光強度とモニタ光強度との分岐比を所望の値
とすることが容易な光合分波器の製造方法を実現するこ
とができる。
As described above, according to the present invention,
A tap waveguide for branching a part of the signal light propagating in the core is formed in the clad, and a light receiving element is arranged in a groove provided in the clad, and a monitor guided by the tap waveguide is provided. By receiving the light with the light receiving element and monitoring the signal light intensity for each channel, a monitor mechanism can be provided on the substrate of the optical multiplexer / demultiplexer, reducing the number of parts and miniaturizing the optical multiplexer / demultiplexer. Can be realized. Also,
The tap waveguide is formed by irradiating a pulse laser while adjusting the branching ratio between the output light intensity and the monitor light intensity, thereby setting the branching ratio between the output light intensity and the monitor light intensity to a desired value. It is possible to realize a method for manufacturing an optical multiplexer / demultiplexer that is easy to manufacture.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光合分波器の例を示す図である。FIG. 1 is a diagram showing an example of an optical multiplexer / demultiplexer of the present invention.

【図2】本発明の光合分波器の例について、タップ導波
路によりモニタする機構を説明する図である。
FIG. 2 is a diagram illustrating a mechanism of monitoring with an tap waveguide in an example of the optical multiplexer / demultiplexer of the present invention.

【符号の説明】[Explanation of symbols]

6…基板、12…溝、13…受光素子、15…下クラッ
ド、16…コア、17…上クラッド、18…タップ導波
6 ... Substrate, 12 ... Groove, 13 ... Photodetector, 15 ... Lower cladding, 16 ... Core, 17 ... Upper cladding, 18 ... Tap waveguide

───────────────────────────────────────────────────── フロントページの続き (72)発明者 四方 朋子 千葉県佐倉市六崎1440番地 株式会社フジ クラ佐倉事業所内 (72)発明者 細谷 英行 千葉県佐倉市六崎1440番地 株式会社フジ クラ佐倉事業所内 Fターム(参考) 2H047 KA04 KA12 LA19 MA05 PA22 QA04 RA08 TA01 TA11 TA41   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tomoko Shikata             Fuji Co., Ltd. 1440 Rokuzaki, Sakura City, Chiba Prefecture             Kura Sakura Office (72) Inventor Hideyuki Hosoya             Fuji Co., Ltd. 1440 Rokuzaki, Sakura City, Chiba Prefecture             Kura Sakura Office F term (reference) 2H047 KA04 KA12 LA19 MA05 PA22                       QA04 RA08 TA01 TA11 TA41

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 コア中を伝搬する信号光の一部を分岐す
るためのタップ導波路がクラッド中に形成され、該クラ
ッド中に設けられた溝に受光素子が配置され、タップ導
波路により導波されたモニタ光を該受光素子で受光して
チャネル毎に信号光をモニタすることを特徴とする光合
分波器。
1. A tap waveguide for branching a part of signal light propagating in a core is formed in a clad, and a light receiving element is arranged in a groove provided in the clad, and the tap waveguide guides the light. An optical multiplexer / demultiplexer characterized in that the waved monitor light is received by the light receiving element and the signal light is monitored for each channel.
【請求項2】 前記タップ導波路は略S字形状に形成さ
れていることを特徴とする請求項1記載の光合分波器。
2. The optical multiplexer / demultiplexer according to claim 1, wherein the tap waveguide is formed in a substantially S shape.
【請求項3】 前記タップ導波路は、パルスレーザを集
光照射して、クラッド中に屈折率上昇領域を誘起するこ
とによって形成されていることを特徴とする請求項1又
は2記載の光合分波器。
3. The optical coupling / decoupling device according to claim 1, wherein the tap waveguide is formed by converging and irradiating a pulse laser to induce a refractive index increasing region in the cladding. Wave instrument.
【請求項4】 前記パルスレーザはフェムト秒レーザで
あることを特徴とする請求項3記載の光合分波器。
4. The optical multiplexer / demultiplexer according to claim 3, wherein the pulse laser is a femtosecond laser.
【請求項5】 前記タップ導波路は、入力用光導波路ま
た出力用光導波路のクラッド中に形成されていることを
特徴とする請求項1、2、3又4記載の光合分波器。
5. The optical multiplexer / demultiplexer according to claim 1, wherein the tap waveguide is formed in a clad of an input optical waveguide or an output optical waveguide.
【請求項6】 コア中を伝搬する信号光の一部を分岐す
るためのタップ導波路をクラッド中に形成し、該クラッ
ド中に設けられた溝に受光素子を配置して、タップ導波
路により導波されたモニタ光を受光素子で受光してチャ
ネル毎に信号光をモニタする光合分波器の製造方法であ
って、 パルスレーザを該クラッドに集光照射し、該クラッド中
に屈折率上昇領域を誘起することによって該タップ導波
路を形成することを特徴とする光合分波器の製造方法。
6. A tap waveguide for branching a part of signal light propagating in a core is formed in a clad, and a light receiving element is arranged in a groove provided in the clad, and the tap waveguide is formed by the tap waveguide. A method for manufacturing an optical multiplexer / demultiplexer in which a guided light is received by a light receiving element and a signal light is monitored for each channel. A pulse laser is focused and irradiated on the clad, and a refractive index rises in the clad. A method for manufacturing an optical multiplexer / demultiplexer, wherein the tap waveguide is formed by inducing a region.
【請求項7】 前記タップ導波路は、出力光強度とモニ
タ光強度との分岐比を調整しつつ、パルスレーザを照射
して形成されることを特徴とする請求項6記載の光合分
波器の製造方法。
7. The optical multiplexer / demultiplexer according to claim 6, wherein the tap waveguide is formed by irradiating a pulse laser while adjusting a branching ratio of output light intensity and monitor light intensity. Manufacturing method.
【請求項8】 前記パルスレーザはフェムト秒レーザで
あることを特徴とする請求項6又は7記載の光合分波器
の製造方法。
8. The method of manufacturing an optical multiplexer / demultiplexer according to claim 6, wherein the pulsed laser is a femtosecond laser.
JP2001228554A 2001-07-27 2001-07-27 Optical multiplexer / demultiplexer and optical multiplexer / demultiplexer manufacturing method Expired - Fee Related JP4514999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001228554A JP4514999B2 (en) 2001-07-27 2001-07-27 Optical multiplexer / demultiplexer and optical multiplexer / demultiplexer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001228554A JP4514999B2 (en) 2001-07-27 2001-07-27 Optical multiplexer / demultiplexer and optical multiplexer / demultiplexer manufacturing method

Publications (2)

Publication Number Publication Date
JP2003043275A true JP2003043275A (en) 2003-02-13
JP4514999B2 JP4514999B2 (en) 2010-07-28

Family

ID=19061047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001228554A Expired - Fee Related JP4514999B2 (en) 2001-07-27 2001-07-27 Optical multiplexer / demultiplexer and optical multiplexer / demultiplexer manufacturing method

Country Status (1)

Country Link
JP (1) JP4514999B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101393A (en) * 2013-02-12 2013-05-23 Fujitsu Ltd Optical switch
WO2019166803A1 (en) * 2018-02-27 2019-09-06 Optoscribe Limited Optical apparatus and methods of manufacture thereof
KR20200120144A (en) * 2019-04-11 2020-10-21 광운대학교 산학협력단 A Multi-channel optical power monitor for monitoring optical traffic in a multicore fiber, a Multicore fiber having the same and Femtosecond laser writing system for manufacturing the same
CN112097898A (en) * 2020-09-17 2020-12-18 纪朋 Multi-core optical fiber multi-channel optical signal online monitoring sensor and manufacturing method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9594220B1 (en) 2015-09-22 2017-03-14 Corning Optical Communications LLC Optical interface device having a curved waveguide using laser writing and methods of forming
US10162112B2 (en) 2016-05-31 2018-12-25 Corning Optical Communications LLC Optical wire bond apparatus and methods employing laser-written waveguides
WO2018022319A1 (en) 2016-07-29 2018-02-01 Corning Optical Communications LLC Waveguide connector elements and optical assemblies incorporating the same
US10564354B2 (en) 2016-12-21 2020-02-18 Corning Optical Communications LLC Flexible glass optical-electrical interconnection device and photonic assemblies using same
US10627588B2 (en) 2017-02-27 2020-04-21 Corning Optical Communications LLC Optical interconnection assemblies, glass interconnection substrates, and methods of making an optical connection
US10948658B2 (en) 2017-02-27 2021-03-16 Corning Optical Communications LLC Optical interconnection assemblies, glass interconnection substrates, and methods of making an optical connection
US10234644B1 (en) 2017-10-20 2019-03-19 Corning Optical Communications LLC Optical-electrical printed circuit boards with integrated optical waveguide arrays and photonic assemblies using same

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121408A (en) * 1985-11-22 1987-06-02 Hitachi Ltd Module for optical wavelength multiplex transmission
JPS6465508A (en) * 1987-09-04 1989-03-10 Sharp Kk Integrated optical element
JPH01315707A (en) * 1988-04-12 1989-12-20 Philips Gloeilampenfab:Nv Electromagnetic radiation coupling device
JPH03263005A (en) * 1990-03-14 1991-11-22 Ricoh Co Ltd Optical circuit element
JPH05224041A (en) * 1992-02-13 1993-09-03 Sumitomo Electric Ind Ltd Optical waveguide and its production
JPH0669490A (en) * 1992-08-14 1994-03-11 Fujitsu Ltd Electronic optical circuit
JPH0682642A (en) * 1992-03-06 1994-03-25 Fujitsu Ltd Optical circuit device ad its production and multilayered optical circuit formed by using the device
JPH09311237A (en) * 1996-03-18 1997-12-02 Kagaku Gijutsu Shinko Jigyodan Optical waveguide and its manufacture
JPH10303815A (en) * 1997-04-25 1998-11-13 Nec Corp Wavelength division circuit with monitor port using awg
JPH11109151A (en) * 1997-10-01 1999-04-23 Japan Aviation Electron Ind Ltd Optical wavelength composing and dividing equipment
JPH11248954A (en) * 1998-03-06 1999-09-17 Nippon Telegr & Teleph Corp <Ntt> Optical hybrid module
JPH11352345A (en) * 1998-06-11 1999-12-24 Mitsubishi Electric Corp Plane optical waveguide device, manufacture thereof, optical transmitter-receiver and manufacture thereof
JP2000047043A (en) * 1998-07-29 2000-02-18 Nippon Telegr & Teleph Corp <Ntt> Filter insertion type waveguide device and its production
JP2000075155A (en) * 1998-09-02 2000-03-14 Nippon Telegr & Teleph Corp <Ntt> Optical module
JP2000292636A (en) * 1999-04-05 2000-10-20 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical part and optical fiber connection method
JP2000329957A (en) * 1999-05-19 2000-11-30 Japan Aviation Electronics Industry Ltd Optical branching and demultiplexing device
WO2001009899A1 (en) * 1999-07-29 2001-02-08 Corning Incorporated Direct writing of optical devices in silica-based glass using femtosecond pulse lasers

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121408A (en) * 1985-11-22 1987-06-02 Hitachi Ltd Module for optical wavelength multiplex transmission
JPS6465508A (en) * 1987-09-04 1989-03-10 Sharp Kk Integrated optical element
JPH01315707A (en) * 1988-04-12 1989-12-20 Philips Gloeilampenfab:Nv Electromagnetic radiation coupling device
JPH03263005A (en) * 1990-03-14 1991-11-22 Ricoh Co Ltd Optical circuit element
JPH05224041A (en) * 1992-02-13 1993-09-03 Sumitomo Electric Ind Ltd Optical waveguide and its production
JPH0682642A (en) * 1992-03-06 1994-03-25 Fujitsu Ltd Optical circuit device ad its production and multilayered optical circuit formed by using the device
JPH0669490A (en) * 1992-08-14 1994-03-11 Fujitsu Ltd Electronic optical circuit
JPH09311237A (en) * 1996-03-18 1997-12-02 Kagaku Gijutsu Shinko Jigyodan Optical waveguide and its manufacture
JPH10303815A (en) * 1997-04-25 1998-11-13 Nec Corp Wavelength division circuit with monitor port using awg
JPH11109151A (en) * 1997-10-01 1999-04-23 Japan Aviation Electron Ind Ltd Optical wavelength composing and dividing equipment
JPH11248954A (en) * 1998-03-06 1999-09-17 Nippon Telegr & Teleph Corp <Ntt> Optical hybrid module
JPH11352345A (en) * 1998-06-11 1999-12-24 Mitsubishi Electric Corp Plane optical waveguide device, manufacture thereof, optical transmitter-receiver and manufacture thereof
JP2000047043A (en) * 1998-07-29 2000-02-18 Nippon Telegr & Teleph Corp <Ntt> Filter insertion type waveguide device and its production
JP2000075155A (en) * 1998-09-02 2000-03-14 Nippon Telegr & Teleph Corp <Ntt> Optical module
JP2000292636A (en) * 1999-04-05 2000-10-20 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical part and optical fiber connection method
JP2000329957A (en) * 1999-05-19 2000-11-30 Japan Aviation Electronics Industry Ltd Optical branching and demultiplexing device
WO2001009899A1 (en) * 1999-07-29 2001-02-08 Corning Incorporated Direct writing of optical devices in silica-based glass using femtosecond pulse lasers

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101393A (en) * 2013-02-12 2013-05-23 Fujitsu Ltd Optical switch
WO2019166803A1 (en) * 2018-02-27 2019-09-06 Optoscribe Limited Optical apparatus and methods of manufacture thereof
US10698164B2 (en) 2018-02-27 2020-06-30 Optoscribe Limited Optical apparatus and methods of manufacture thereof
US11415749B2 (en) 2018-02-27 2022-08-16 Optoscribe Limited Optical apparatus and methods of manufacture thereof
KR20200120144A (en) * 2019-04-11 2020-10-21 광운대학교 산학협력단 A Multi-channel optical power monitor for monitoring optical traffic in a multicore fiber, a Multicore fiber having the same and Femtosecond laser writing system for manufacturing the same
KR102183595B1 (en) 2019-04-11 2020-11-26 광운대학교 산학협력단 A Multi-channel optical power monitor for monitoring optical traffic in a multicore fiber, a Multicore fiber having the same and Femtosecond laser writing system for manufacturing the same
CN112097898A (en) * 2020-09-17 2020-12-18 纪朋 Multi-core optical fiber multi-channel optical signal online monitoring sensor and manufacturing method thereof

Also Published As

Publication number Publication date
JP4514999B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
US6839492B2 (en) Packaging device for optical waveguide element
KR100922479B1 (en) Optical Device With Slab Waveguide And Channel Waveguides On Substrate
JPH10206663A (en) Light wave length uniter-brancher
US7474824B2 (en) Planar lightwave filter with mixed diffraction elements
JP3784701B2 (en) Optical circuit member and optical transceiver
JP3563376B2 (en) Manufacturing method of optical multiplexer / demultiplexer
JPS59174803A (en) Wavelength multiplexer or demultiplexer
JPH116928A (en) Arrayed waveguide grating type wavelength multiplexer /demultiplexer
JP2006018063A (en) Optical waveguide device and optical waveguide module
JP2003043275A (en) Optical multiplexer/demultiplexer, and method for manufacturing optical multiplexer/demultiplexer
JP2003500863A (en) Compact optical amplifier package with integrated optical channel waveguide amplifier and pump source
US5974212A (en) Optical line monitor and optical amplification apparatus using same
JP2005010373A (en) Optical waveguide part and its manufacturing method
CN110989079B (en) Air cladding SU8 array waveguide grating
JP2002277675A (en) Optical wave circuit module
JP3985576B2 (en) Optical connector, optical wiring system, and optical connector manufacturing method
KR20210023511A (en) Wavelength demultiplexer with arrayed waveguide grating and methods of manufacturing
JP3974490B2 (en) Optical signal processing circuit
JP2005241730A (en) Optical multiplexer/demultiplexer and optical module
EP0947861A1 (en) Hybrid waveguiding optical device
WO2003083535A1 (en) Optical waveguide and optical multiplexer/demultiplexer
JP2003232943A (en) Wavelength multiplex communication signal demultiplexer, and optical transmission and reception module using the same
JP2005242142A (en) Optical multiplexer/demultiplexer
JP2004177776A (en) Optical multiplexer and optical device using the same
JP2003255160A (en) Optical wavelength multiplexer/demultiplexer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees