JP4508354B2 - Scanning exposure apparatus and scanning exposure method - Google Patents

Scanning exposure apparatus and scanning exposure method Download PDF

Info

Publication number
JP4508354B2
JP4508354B2 JP2000128714A JP2000128714A JP4508354B2 JP 4508354 B2 JP4508354 B2 JP 4508354B2 JP 2000128714 A JP2000128714 A JP 2000128714A JP 2000128714 A JP2000128714 A JP 2000128714A JP 4508354 B2 JP4508354 B2 JP 4508354B2
Authority
JP
Japan
Prior art keywords
substrate
original
region
mark
crystal panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000128714A
Other languages
Japanese (ja)
Other versions
JP2001312069A5 (en
JP2001312069A (en
Inventor
浩之 高橋
誠 杉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000128714A priority Critical patent/JP4508354B2/en
Publication of JP2001312069A publication Critical patent/JP2001312069A/en
Publication of JP2001312069A5 publication Critical patent/JP2001312069A5/ja
Application granted granted Critical
Publication of JP4508354B2 publication Critical patent/JP4508354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液晶パネル生産用の走露光装置および走露光方法に関するものである。
【0002】
【従来の技術】
従来の液晶パネル生産露光装置においては、マスク等の原版に描画された液晶パネルパターンと基板上に既に露光されている液晶パネルとの位置合わせのための測定は、走査方向(Y方向)上の原版と液晶パネルの中心付近および両端部付近において液晶パネルより走査方向に直交する方向(X方向)外側に配置した複数の位置合わせマークに対してそれぞれ測定を行った後に、各々の測定値から位置補正および倍率補正を行いながら、原版の液晶パネルパターン像を基板上の液晶パネルに露光処理していた。
【0003】
【発明が解決しようとする課題】
近年、液晶パネルの生産コストの低減やより付加価値の高い大型液晶パネルへの生産の移行に伴い、露光装置においても生産性が重要視されるとともに、露光する液晶パネルサイズも徐々に大きくなってきている。
【0004】
しかしながら、従来の液晶パネル用の露光装置では、マスク等の原版に描画された液晶パネルパターン像と基板上に既に露光されている液晶パネルとの位置合わせを行うための位置合わせマークを、走査方向(Y方向)上の液晶パネルの中央付近の(X方向)両側部に配置しなければならないことから、液晶パネルの大型化にとって障害となっていた。
【0005】
また、原版の液晶パネルパターンと基板上の液晶パネルとの位置合わせのための測定を、1 枚の液晶パネルについて、多数部分で行うことは、生産性を落とす要因の一つとして挙げられていた。
【0006】
そこで、本発明は、前述した従来技術の有する未解決の課題に鑑みてなされたものであって、走査方向と直交する方向において大型の液晶パネルの露光を可能にするとともに生産性を向上させることができる液晶パネル生産露光装置および走露光方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明の走査露光装置は、矩形のパターン領域を含む矩形の面を有する原版を保持する原版ステージと、前記原版ステージを移動させる第1の駆動手段と、矩形の液晶パネル領域を含む矩形の面を有する基板を保持する基板ステージと、前記基板ステージを移動させる第2の駆動手段と、整形された露光光で前記パターン領域を照明する照明光学系と、前記原版ステージに保持された原版に配された原版マークと、前記基板ステージに保持された基板に配された、前記原版マークに対応する基板マークとを検出する検出光学系とを有し、前記検出光学系の検出結果に基づいて前記ターン領域と前記晶パネル領域との位置ずれ量および倍率誤差を求め、求められた位置ずれ量および倍率誤差に基づき、前記第1の駆動手段と前記第2の駆動手段とにより前記原版ステージと前記基板ステージとを同期して走査しながら前記ターン領域を介して前記晶パネル領域を露光する液晶パネル生産用の走査露光装置において、
前記走査の方向において前記ターン領域を挟む第1の領域および第2の領域それぞれに前記走査の方向と直交する方向において前記パターン領域の範囲内に版マークを有し且つ前記直交する方向において前記パターン領域の外側には原版マークを有しない原版と、前記走査の方向において前記液晶パネル領域を挟む第3の領域および第4の領域それぞれに前記直交する方向において前記液晶パネル領域の範囲内前記原版マークに対応する基板マークを有し且つ前記直交する方向において前記液晶パネル領域の外側には基板マークを有しない基板に対し、前記原版マークと前記基板マークとを前記検出光学系の検出対象として、前記第1の駆動手段により前記原版ステージを移動させ且つ前記第2の駆動手段により前記基板ステージを移動させることにより、互いに対応する原版マークと基板マークとの複数の組を順次前記検出光学系により検出することを特徴とする。
【0008】
さらに、本発明の走査露光方法は、矩形のパターン領域を含む矩形の面を有する原版を保持する原版ステージと、矩形の液晶パネル領域を含む矩形の面を有する基板を保持する基板ステージと、整形された露光光で前記パターン領域を照明する照明光学系と、前記原版ステージに保持された原版に配された原版マークと、前記基板ステージに保持された基板に配された、前記原版マークに対応する基板マークとを検出する検出光学系とを用い検出の結果に基づいて前記ターン領域と前記晶パネル領域との位置ずれ量および倍率誤差を求め、求められた位置ずれ量および倍率誤差に基づき、前記原版ステージと前記基板ステージとを同期して走査しながら前記ターン領域を介して前記晶パネル領域を露光する液晶パネル生産用の走査露光方法において、
前記走査の方向において前記ターン領域を挟む第1の領域および第2の領域それぞれに前記走査の方向と直交する方向において前記ターン領域の範囲内に版マークを有し且つ前記直交する方向において前記パターン領域の外側には原版マークを有しない原版と、前記走査の方向において前記液晶パネル領域を挟む第3の領域および第4の領域それぞれに前記走査の方向と直交する方向において前記液晶パネル領域の範囲内前記原版マークに対応する基板マークを有し且つ前記直交する方向において前記液晶パネル領域の外側には基板マークを有しない基板とに対し、前記原版マークと前記基板マークとを前記検出光学系の検出対象として、前記原版ステージを移動させ且つ前記基板ステージを移動させることにより、互いに対応する原版マークと基板マークとの複数の組を順次該検出光学系により検出することを特徴とする。
【0009】
【作用】
本発明によれば、マスク等の原版と基板の走査方向の両端面側のみに設けられた位置合わせマークを測定することにより原版と基板の液晶パネルの位置ずれ量と倍率誤差を求め、両者の位置ずれ量と倍率誤差を補正しながら原版と基板を走査方向に駆動して走査露光することによって、原版と基板の中心付近の位置合わせマークの配置を不要にし、かつ走査方向上の原版と基板上の液晶パネルの中央付近の位置ずれ量や倍率誤差の測定が省略されることにより、走査方向に直交する方向に液晶パネルを広げることが可能となり、大型の液晶パネルの生産を可能にする。さらに、原版と基板上の液晶パネルの中央付近の位置ずれ量と倍率誤差の測定の省略に伴い、原版と基板上の液晶パネルの位置合わせに要する所要時間を短縮することができ、全体としての露光処理時間を短くすることができ、生産性の向上を図ることができる。
【0010】
【発明の実施の形態】
本発明の実施の形態を図面に基づいて説明する。
【0011】
図1は、本発明の液晶パネル生産走査光装置の構成を概略的に図示する概略構成図であり、図2の(a)および(b)は、本発明の液晶パネル生産露光装置における液晶パネルパターンが描画されているマスク(原版)と既に前工程で液晶パネルが露光されている基板をそれぞれ模式的に示す平面図である。
【0012】
図1において、1は照明光学系で、露光光源と露光光源から発せられる特定波長の露光光を露光位置にある原版であるマスクMに対して整形して照射する光学系を有している。2は液晶パネルパターンMo(図2の(a)参照)が描画されているマスクMを保持してXYθ方向に移動可能で走査方向(Y方向)に走査露光機能を有する原版ステージであるマスクステージ、3はマスクMに描画された液晶パネルパターンMoをガラス基板等の基板P上に投影する凸凹面鏡を組み合わせて構成するミラー投影光学系、4は基板Pを保持してXYθ方向に移動可能で走査方向(Y方向)に走査露光機能を有する基板ステージ、5はマスクステージ2を搭載するマスクステージ支持台5aや基板ステージ4を搭載する基板ステージ支持台5b等を備える露光装置本体である。また、6は、マスクMや基板P上の位置合わせマークMm(Mm 、Mm )、Pm(Pm 、Pm )(図2の(a)および(b)参照)を検出し、その検出結果を主制御手段12に送信する観察光学系であり、7はマスクMに描画された液晶パネルパターンMoを基板Pに転写するパターン像を走査方向(Y方向)と直交する方向(X方向)に光学的に拡大あるいは縮小させるX方向倍率制御系である。なお、転写されるパターン像の走査方向(Y方向)の拡大あるいは縮小に関しては、マスクステージ2と基板ステージ4の速度差により拡大あるいは縮小させる構成とする。
【0013】
また、露光装置本体5のマスクステージ支持台5a上に搭載されたマスクステージ2は、マスクMをXYθ方向に移動可能に保持し、走査方向(Y方向)にはマスクY軸駆動モータ9により駆動され、図1において実線で示す位置と一点鎖線で示す位置との間を移動し、マスクステージ2のY方向の位置はマスクY軸制御レーザ干渉計8により計測される。一方、露光装置本体5の基板ステージ支持台5b上に搭載された基板ステージ4は、基板PをXYθ方向に移動可能に保持し、走査方向(Y方向)には基板Y軸駆動モータ11により駆動され、図1において実線で示す位置と一点鎖線で示す位置との間を移動し、基板ステージ4のY方向の位置は基板Y軸制御レーザ干渉計10により計測される。
【0014】
主制御手段12は、露光に係わる制御およびマスクステージ2や基板ステージ4の動作シーケンスの制御を行うとともに、マスクMや基板P上のそれぞれの位置合わせマークMm、Pmを検出する観察光学系(検出光学系)6の検出結果に基づいて両者の位置合わせマークMm、Pmの相対的な位置ずれや倍率誤差等を求めて適宜記憶保管し、適宜位置合わせマークMm、Pmの相対位置ずれおよび倍率誤差等に関する情報を駆動制御手段13に送信する。駆動制御手段13は、主制御手段12の指令を基に、さらに、マスクY軸制御レーザ干渉計8や基板Y軸制御レーザ干渉計10により計測されるマスクステージ2と基板ステージ4のそれぞれの位置データに基づいて、各ステージ2、4を駆動するマスクY軸駆動モータ9と基板Y軸駆動モータ11をそれぞれ制御する。
【0015】
また、マスクステージ2上に固定されるガラス質のマスクMには、図2の(a)に示すように、基板P上の液晶パネルPo上に転写する液晶パネルパターンMoが描画され、走査方向(Y方向)の両端面側にそれぞれ複数(図においては2個)の位置合わせマークMm 、Mm (Y方向(+)側);Mm 、Mm (Y方向(−)側)が配置される。また、基板ステージ4上に固定されるガラス製の基板Pには、図2の(b)に示すように、液晶パネルPoが既に前工程で露光されており、基板Pの走査方向(Y方向)の両端面側に、原版マークであるマスクMの位置合わせマークMm 、Mm ;Mm 、Mm にそれぞれ対応するように複数(図においては2個)の基板マークである位置合わせマークPm 、Pm (Y方向(+)側);Pm 、Pm (Y方向(−)側)が配置されている。
【0016】
次に、以上のように位置合わせマークMm、Pmがそれぞれ配置されているマスクMと基板Pの位置合わせおよび液晶パネルパターンの露光動作について説明する。
【0017】
液晶パネルパターンMoが描画されているマスクMをマスクステージ2上に搭載するとともに既に前工程で液晶パネルPoが露光されている基板Pを基板ステージ4上に搭載し、マスクステージ2と基板ステージ4のそれぞれの第1の駆動手段であるマスクY軸駆動モータ9および第2の駆動手段である基板Y軸駆動モータ11を駆動させ、マスクMと基板Pのそれぞれの一方の端面側(Y方向(+)側)に設けられている位置合わせマークMm とPm が観察光学系6によって観察できる位置(例えば、図1に実線で示す位置)へマスクステージ2と基板ステージ4をそれぞれ移動させる。この移動終了後、観察光学系6を用いて、マスクMと基板Pの位置合わせマークMm 、Pm を観察検出し、その検出結果に基づいて、主制御手段12にてマスクMと基板Pの位置合わせマークMm 、Pm の相対的な位置ずれおよび倍率誤差(すなわち、液晶パネルパターンMoと液晶パネルPoの相対的な位置ずれ量および倍率誤差)を求める。
【0018】
次いで、マスクステージ2と基板ステージ4のそれぞれのマスクY軸駆動モータ9と基板Y軸駆動モータ11を駆動させ、マスクMと基板Pのそれぞれの他方の端面側(Y方向(−)側)に設けられている位置合わせマークMm とPm が観察光学系6によって観察できる位置(例えば、図1に一点鎖線で示す位置)へマスクステージ2と基板ステージ4を移動させる。この移動終了後、前述と同様に、観察光学系6を用いて、位置合わせマークMm 、Pm を観察検出し、その検出結果に基づいて、主制御手段12にてマスクMと基板Pの位置合わせマークMm とPm の相対的な位置ずれおよび倍率誤差(すなわち、液晶パネルパターンMoと液晶パネルPoの相対的な位置ずれ量および倍率誤差)を求める。
【0019】
その後、駆動制御手段13は、露光動作に際して、主制御手段12にて求めた位置合わせマークMm、Pmの位置ずれ量および倍率誤差を補正しながら、各ステージ2、4のマスクY軸駆動モータ9と基板Y軸駆動モータ11をそれぞれ駆動させる。併せて照明光学系1から露光光を照射することにより、マスクMに描画されている液晶パネルパターンMoを基板P上に既に前工程で露光されている液晶パネルPo上に正確に重ね合わせて走査露光する。
【0020】
このように、マスクMと基板Pの走査方向(Y方向)の両端面側のみに設けられた位置合わせマークMm、Pmの検出によりマスクMと基板Pの液晶パネルの位置ずれ量および倍率誤差の求め、求められた位置ずれ量と倍率誤差を補正しながら走査露光することにより、マスクMと基板Pの中央付近に位置合わせマークを配置することを不要にすることができ、走査方向(Y方向)に直交する方向(X方向)に液晶パネルを広げることが可能となり、大型の液晶パネルの露光を可能にする。さらに、マスクMと基板Pの中央付近の位置合わせマークの配置を不要とすることにより、走査方向上のマスクMと基板Pの中央付近での位置合わせを省略することができ、位置合わせに要する時間が短縮され、全体としての露光処理時間も短縮され、生産性を向上させることができる。
【0021】
また、前述した実施例では、走査方向上の位置合わせマークを走査方向に移動させて測定するようにしているが、観察光学系の検出装置を走査方向上に2つ並べて配置することにより、基板とマスクのY方向両端面側の位置合わせマークを同時に検出することができるようにし、基板ステージをX方向にステップ移動させて順次位置合わせマークの位置ずれ量や倍率誤差を測定するように構成することも可能である。
【0022】
【発明の効果】
以上説明したように、本発明によれば、査方向に直交する方向において大型の液晶パネルの露光を可能にするとともに生産性向上させることができる。
【図面の簡単な説明】
【図1】 本発明の走査露光装置の構成を概略的に図示する概略構成図である。
【図2】 発明の走査露光装置における液晶パネルパターンが描画されているマスク(原版)と既に液晶パネルが露光されている基板をそれぞれ模式的に示す平面図である。
【符号の説明】
M マスク(原版)
Mo 液晶パネルパターン
Mm (マスク(+)側の)位置合わせマーク
Mm (マスク(−)側の)位置合わせマーク
P 基板
Po 液晶パネル
Pm (基板(+)側の)位置合わせマーク
Pm (基板(−)側の)位置合わせマーク
1 照明光学系
2 マスクステージ
3 ミラー投影光学系
4 基板ステージ
5 露光装置本体
6 観察光学系
7 X方向倍率制御系
8 マスクY軸制御レーザ干渉計
9 マスクY軸駆動モータ
10 基板Y軸制御レーザ干渉計
11 基板Y軸駆動モータ
12 主制御手段
13 駆動制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to run exposure apparatus and run exposure method for a liquid crystal panel production.
[0002]
[Prior art]
In conventional run exposure apparatus for liquid crystal panel production is measured for alignment of the liquid crystal panel that has already been exposed to the liquid crystal panel pattern on the substrate drawn on the original such as a mask, the scanning direction (Y After measuring each of a plurality of alignment marks arranged outside the liquid crystal panel in the direction orthogonal to the scanning direction (X direction) near the center and both ends of the original plate and the liquid crystal panel The liquid crystal panel pattern image of the original was exposed to the liquid crystal panel on the substrate while performing position correction and magnification correction from the measured values.
[0003]
[Problems to be solved by the invention]
In recent years, along with the reduction in production cost of liquid crystal panels and the shift to production of large liquid crystal panels with higher added value, productivity has become more important in exposure apparatuses, and the size of liquid crystal panels to be exposed has gradually increased. ing.
[0004]
However, in a conventional exposure apparatus for a liquid crystal panel, an alignment mark for aligning a liquid crystal panel pattern image drawn on an original plate such as a mask and a liquid crystal panel already exposed on a substrate is provided in a scanning direction. Since it must be arranged on both sides (X direction) near the center of the liquid crystal panel on the (Y direction), it has been an obstacle to increase the size of the liquid crystal panel.
[0005]
In addition, it was cited as one of the factors that reduced productivity that the measurement for aligning the liquid crystal panel pattern of the original plate and the liquid crystal panel on the substrate was performed in many parts for one liquid crystal panel. .
[0006]
Therefore, the present invention has been made in view of the above-mentioned unsolved problems of the prior art, and enables exposure of a large liquid crystal panel in a direction orthogonal to the scanning direction and improves productivity. it is an object to provide a run exposure apparatus and run exposure method for a liquid crystal panel production can.
[0007]
[Means for Solving the Problems]
To achieve the above object, the scanning exposure apparatus of the present invention, the original stage for holding a precursor having a rectangular plane including the rectangular pattern area, and the first drive means Before moving the original stage, rectangular a substrate stage for holding a substrate having a rectangular plane including a liquid crystal panel region, and a second driving means Before moving the substrate stage, an illumination optical system for illuminating the pattern region in the shaped exposure light, wherein has a master mark arranged on the original held by an original stage, arranged on the substrate held by the substrate stage, and a detection optical system for detecting the substrate mark corresponding to the original mark, the detection obtain the position displacement amount and the magnification error between the pattern region and the liquid crystal panel area based on the detection result of the optical system, based on the positional deviation amount and the magnification error obtained the said first In the scanning exposure apparatus for liquid crystal panel production for exposing the liquid crystal panel region through the pattern region while scanning in synchronism with said substrate stage and said original plate stage by said drive means the second driving means ,
In the first region and the second region has an original plate mark within the pattern region in the direction orthogonal to the direction of the scan, each and direction the perpendicular to the direction of the scanning sandwiching the pattern region and original no original mark on the outside of the pattern area, within the range of the liquid crystal panel region in the third region and the fourth region said orthogonal directions to each sandwiching the liquid crystal panel region in the direction of the scan the contrast and the substrate having no substrate mark on the outside of the liquid crystal panel area in a direction and said orthogonal having a substrate mark corresponding to the original mark, detecting said substrate mark and the original mark of the detecting optical system as a target, the substrate stage by the first one said second drive means moving the original stage by driving means The Rukoto is moving, and detects the sequence the detection optics a plurality of sets of the original mark and the substrate mark corresponding to each other.
[0008]
Further, the scanning exposure method of the present invention includes an original stage for holding an original having a rectangular surface including a rectangular pattern region, a substrate stage for holding a substrate having a rectangular surface including a rectangular liquid crystal panel region, and shaping. an illumination optical system for illuminating the pattern area with an exposure light, and the original mark arranged on the original held by the original stage, arranged on the substrate held by the substrate stage, corresponding to the original mark using a detection optical system for detecting a substrate mark, obtains the positional shift amount and magnification error between the pattern region and the liquid crystal panel area based on a result of the detection, the positional deviation amount and the determined based on the magnification error, the through the pattern region while synchronously scanning the original stage and said substrate stage for a liquid crystal panel production for exposing the liquid crystal panel region In 査露 light method,
The first region and the second in the area direction orthogonal to the direction of the scan, each having an original version marks within the scope of the pattern area and the direction of the orthogonal sandwiching the pattern region in the direction of the scan said liquid crystal panel and the original having no original mark on the outside, in the third region and the fourth region direction perpendicular to the direction of the scan for each sandwiching the liquid crystal panel region in the direction of the scanning of the pattern area in to a substrate having no substrate mark on the outside of the liquid crystal panel area in a direction and the orthogonal having a substrate mark corresponding to the original mark within the region, said and said substrate mark and the original mark as a detection target of the detection optical system, by Rukoto to move one said substrate stage moving the original stage, correspond to each other And detecting by sequentially said detecting optical system a plurality of sets of the plate mark and the substrate mark.
[0009]
[Action]
According to the present invention, by measuring the alignment marks provided only on both side surfaces in the scanning direction of the original plate such as a mask and the substrate, the positional deviation amount and the magnification error of the liquid crystal panel of the original plate and the substrate are obtained. By scanning and exposing the original and the substrate in the scanning direction while correcting the positional deviation amount and the magnification error, it is not necessary to arrange the alignment marks near the center of the original and the substrate, and the original and the substrate in the scanning direction By omitting the measurement of the positional deviation amount and the magnification error near the center of the upper liquid crystal panel, the liquid crystal panel can be widened in the direction orthogonal to the scanning direction, thereby enabling the production of a large liquid crystal panel . Furthermore, with the omission of the measurement of the displacement and magnification error near the center of the liquid crystal panel on the original plate and the substrate, the time required for alignment of the liquid crystal panel on the original plate and the substrate can be shortened. Exposure processing time can be shortened, and productivity can be improved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
[0011]
Figure 1 is a schematic block diagram illustrating a schematic configuration of a scanning exposure light device for a liquid crystal panel production of the present invention, shown in FIG. 2 (a) and (b), the liquid crystal panel production of the present invention is a plan view showing already pre-process the mask (original) of the liquid crystal panel patterns are drawn a substrate which the liquid crystal panel is exposed, respectively schematically in run exposure apparatus.
[0012]
In Figure 1, 1 is illuminated by the optical system, and possess an optical system for irradiating shapes the exposure light of a specific wavelength emitted from the exposure light source as an exposure light source with respect to the mask M is a precursor in the exposure position. Reference numeral 2 denotes a mask stage which is an original stage which holds a mask M on which a liquid crystal panel pattern Mo (see FIG. 2A) is drawn and is movable in the XYθ direction and has a scanning exposure function in the scanning direction (Y direction). Reference numeral 3 denotes a mirror projection optical system configured by combining a convex-concave mirror that projects the liquid crystal panel pattern Mo drawn on the mask M onto a substrate P such as a glass substrate, and 4 can hold the substrate P and move in the XYθ direction. A substrate stage 5 having a scanning exposure function in the scanning direction (Y direction) is an exposure apparatus body including a mask stage support 5a on which the mask stage 2 is mounted and a substrate stage support 5b on which the substrate stage 4 is mounted. 6 detects alignment marks Mm (Mm 1 , Mm 2 ) and Pm (Pm 1 , Pm 2 ) (see (a) and (b) of FIG. 2) on the mask M and the substrate P; An observation optical system that transmits a detection result to the main control means 12, and 7 is a direction (X direction) perpendicular to the scanning direction (Y direction) of a pattern image that transfers the liquid crystal panel pattern Mo drawn on the mask M to the substrate P. ) Is an X direction magnification control system for optically enlarging or reducing. In addition, regarding the enlargement or reduction in the scanning direction (Y direction) of the transferred pattern image, the pattern image is enlarged or reduced depending on the speed difference between the mask stage 2 and the substrate stage 4.
[0013]
The mask stage 2 mounted on the mask stage support 5a of the exposure apparatus main body 5 holds the mask M so as to be movable in the XYθ directions, and is driven by the mask Y axis drive motor 9 in the scanning direction (Y direction). 1, the position of the mask stage 2 in the Y direction is measured by the mask Y-axis control laser interferometer 8. On the other hand, the substrate stage 4 mounted on the substrate stage support 5b of the exposure apparatus main body 5 holds the substrate P so as to be movable in the XYθ direction, and is driven by the substrate Y axis drive motor 11 in the scanning direction (Y direction). 1, the position of the substrate stage 4 in the Y direction is measured by the substrate Y-axis control laser interferometer 10.
[0014]
The main control means 12 controls the exposure and controls the operation sequence of the mask stage 2 and the substrate stage 4, and also observes the alignment marks Mm and Pm on the mask M and the substrate P (detection optical system (detection)). Optical system) Based on the detection result of 6, the relative misalignment and magnification error of both alignment marks Mm and Pm are obtained and stored appropriately, and the relative misalignment and magnification error of alignment marks Mm and Pm are appropriately stored. Etc. are transmitted to the drive control means 13. The drive control means 13 is further provided with the respective positions of the mask stage 2 and the substrate stage 4 measured by the mask Y-axis control laser interferometer 8 and the substrate Y-axis control laser interferometer 10 based on the command of the main control means 12. Based on the data, the mask Y-axis drive motor 9 and the substrate Y-axis drive motor 11 that drive the stages 2 and 4 are controlled.
[0015]
A glassy mask M fixed on the mask stage 2 is drawn with a liquid crystal panel pattern Mo to be transferred onto the liquid crystal panel Po on the substrate P, as shown in FIG. A plurality (two in the figure) of alignment marks Mm 1 and Mm 1 (Y direction (+) side); Mm 2 and Mm 2 (Y direction (−) side) are provided on both end surfaces in the (Y direction). Be placed. Further, as shown in FIG. 2B, the glass substrate P fixed on the substrate stage 4 has already been exposed to the liquid crystal panel Po in the previous process, and the scanning direction of the substrate P (Y direction). ) On both end surfaces of the mask M, which is the original mark, alignment marks which are a plurality of (two in the figure) substrate marks so as to respectively correspond to the alignment marks Mm 1 , Mm 1 ; Mm 2 , Mm 2 . Pm 1 and Pm 1 (Y direction (+) side); Pm 2 and Pm 2 (Y direction (−) side) are arranged.
[0016]
Next, the alignment of the mask M on which the alignment marks Mm and Pm are arranged as described above and the substrate P and the exposure operation of the liquid crystal panel pattern will be described.
[0017]
The mask M on which the liquid crystal panel pattern Mo is drawn is mounted on the mask stage 2, and the substrate P on which the liquid crystal panel Po has been exposed in the previous process is mounted on the substrate stage 4, and the mask stage 2 and the substrate stage 4 are mounted. first drive means mask Y-axis drive motor 9 and the second drives the substrate Y-axis drive motor 11 is a driving means which is, each one end surface of the mask M and the substrate P (Y direction respectively ( The mask stage 2 and the substrate stage 4 are moved to positions where the alignment marks Mm 1 and Pm 1 provided on the (+) side) can be observed by the observation optical system 6 (for example, positions indicated by solid lines in FIG. 1). After the movement, the observation optical system 6 is used to observe and detect the alignment marks Mm 1 and Pm 1 of the mask M and the substrate P, and based on the detection result, the main control means 12 uses the mask M and the substrate P. The relative displacement and magnification error of the alignment marks Mm 1 and Pm 1 (that is, the relative displacement and magnification error between the liquid crystal panel pattern Mo and the liquid crystal panel Po) are obtained.
[0018]
Next, the mask Y-axis drive motor 9 and the substrate Y-axis drive motor 11 of each of the mask stage 2 and the substrate stage 4 are driven to move to the other end face side (Y direction (−) side) of each of the mask M and the substrate P. The mask stage 2 and the substrate stage 4 are moved to a position where the provided alignment marks Mm 2 and Pm 2 can be observed by the observation optical system 6 (for example, a position indicated by a one-dot chain line in FIG. 1). After the movement, as described above, the alignment marks Mm 2 and Pm 2 are observed and detected using the observation optical system 6, and the main control means 12 determines whether the mask M and the substrate P are in accordance with the detection result. The relative displacement and magnification error between the alignment marks Mm 2 and Pm 2 (that is, the relative displacement and magnification error between the liquid crystal panel pattern Mo and the liquid crystal panel Po) are obtained.
[0019]
Thereafter, the drive control means 13 corrects the positional deviation amount and magnification error of the alignment marks Mm and Pm obtained by the main control means 12 during the exposure operation, and the mask Y-axis drive motor 9 of each stage 2, 4. each Ru drives the substrate Y-axis drive motor 11 and. At the same time, by irradiating exposure light from the illumination optical system 1, the liquid crystal panel pattern Mo drawn on the mask M is accurately superimposed on the liquid crystal panel Po that has already been exposed in the previous process and scanned. Exposure.
[0020]
As described above, by detecting the alignment marks Mm and Pm provided only on both end surfaces in the scanning direction (Y direction) of the mask M and the substrate P, the positional deviation amount and magnification error of the liquid crystal panel of the mask M and substrate P are detected. By obtaining and performing scanning exposure while correcting the obtained positional deviation amount and magnification error, it is not necessary to place an alignment mark near the center of the mask M and the substrate P, and the scanning direction (Y direction) ) Can be expanded in a direction (X direction) orthogonal to () to enable exposure of a large liquid crystal panel. Further, by eliminating the need for the alignment mark in the vicinity of the center of the mask M and the substrate P, the alignment in the vicinity of the center of the mask M and the substrate P in the scanning direction can be omitted, and the alignment is required. The time is shortened, the overall exposure processing time is shortened, and the productivity can be improved.
[0021]
In the above-described embodiments, measurement is performed by moving the alignment mark in the scanning direction in the scanning direction, but by arranging two detectors of the observation optical system side by side in the scanning direction, the substrate And the alignment marks on both end faces of the mask in the Y direction can be detected simultaneously, and the substrate stage is moved stepwise in the X direction to measure the positional deviation amount and magnification error of the alignment marks sequentially. It is also possible.
[0022]
【The invention's effect】
As described above, according to the present invention, it is possible to make increase productivity as well as to allow exposure of Oite large LCD panels in a direction perpendicular to the run査direction.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram schematically illustrating the configuration of a scanning exposure apparatus of the present invention.
FIG. 2 is a plan view schematically showing a mask (original plate) on which a liquid crystal panel pattern is drawn and a substrate on which a liquid crystal panel has already been exposed in the scanning exposure apparatus of the present invention.
[Explanation of symbols]
M mask (original version)
Mo liquid crystal panel pattern Mm 1 (on the mask (+) side) alignment mark Mm 2 (on the mask (−) side) alignment mark P substrate Po liquid crystal panel Pm 1 (on the substrate (+) side) alignment mark Pm 2 Alignment mark (on substrate (−) side) 1 Illumination optical system 2 Mask stage 3 Mirror projection optical system 4 Substrate stage 5 Exposure apparatus body 6 Observation optical system 7 X direction magnification control system 8 Mask Y axis control laser interferometer 9 Mask Y axis drive motor 10 Substrate Y axis control laser interferometer 11 Substrate Y axis drive motor 12 Main control means 13 Drive control means

Claims (4)

矩形のパターン領域を含む矩形の面を有する原版を保持する原版ステージと、前記原版ステージを移動させる第1の駆動手段と、矩形の液晶パネル領域を含む矩形の面を有する基板を保持する基板ステージと、前記基板ステージを移動させる第2の駆動手段と、整形された露光光で前記パターン領域を照明する照明光学系と、前記原版ステージに保持された原版に配された原版マークと、前記基板ステージに保持された基板に配された、前記原版マークに対応する基板マークとを検出する検出光学系とを有し、前記検出光学系の検出結果に基づいて前記ターン領域と前記晶パネル領域との位置ずれ量および倍率誤差を求め、求められた位置ずれ量および倍率誤差に基づき、前記第1の駆動手段と前記第2の駆動手段とにより前記原版ステージと前記基板ステージとを同期して走査しながら前記ターン領域を介して前記晶パネル領域を露光する液晶パネル生産用の走査露光装置において、
前記走査の方向において前記ターン領域を挟む第1の領域および第2の領域それぞれに前記走査の方向と直交する方向において前記パターン領域の範囲内に版マークを有し且つ前記直交する方向において前記パターン領域の外側には原版マークを有しない原版と、前記走査の方向において前記液晶パネル領域を挟む第3の領域および第4の領域それぞれに前記直交する方向において前記液晶パネル領域の範囲内前記原版マークに対応する基板マークを有し且つ前記直交する方向において前記液晶パネル領域の外側には基板マークを有しない基板に対し、前記原版マークと前記基板マークとを前記検出光学系の検出対象として、前記第1の駆動手段により前記原版ステージを移動させ且つ前記第2の駆動手段により前記基板ステージを移動させることにより、互いに対応する原版マークと基板マークとの複数の組を順次前記検出光学系により検出する、
ことを特徴とする走査露光装置。
Substrate holding the original stage for holding a precursor having a rectangular plane including the rectangular pattern area, and the first drive means Before moving the original stage, a substrate having a rectangular plane including the rectangular liquid crystal panel region of a stage, a second driving means Before moving the substrate stage, an illumination optical system for illuminating the pattern region in the shaped exposure light, and the original mark arranged on the original held by the original stage, arranged on the substrate held by the substrate stage, wherein and a detecting optical system for detecting the substrate mark corresponding to the original mark, the liquid and the pattern area based on the detection result of the detecting optical system obtain the position displacement amount and the magnification error of the crystal panel area, based on the positional deviation amount and the magnification error obtained it said, the original scan and the first driving means by said second driving means In the scanning exposure apparatus for liquid crystal panel production for exposing the liquid crystal panel region through the pattern region while synchronously scanning the chromatography di and said substrate stage,
In the first region and the second region has an original plate mark within the pattern region in the direction orthogonal to the direction of the scan, each and direction the perpendicular to the direction of the scanning sandwiching the pattern region and original no original mark on the outside of the pattern area, within the range of the liquid crystal panel region in the third region and the fourth region said orthogonal directions to each sandwiching the liquid crystal panel region in the direction of the scan the contrast and the substrate having no substrate mark on the outside of the liquid crystal panel area in a direction and said orthogonal having a substrate mark corresponding to the original mark, detecting said substrate mark and the original mark of the detecting optical system as a target, the substrate stage by the first one said second drive means moving the original stage by driving means The Rukoto is moving, is detected by sequentially said detecting optical system a plurality of sets of the original mark and the substrate mark corresponding to each other,
A scanning exposure apparatus.
前記第1の領域および前記第2の領域それぞれの前記範囲内に配された複数の原版マークと、前記第3の領域および前記第4の領域それぞれの前記範囲内に配された複数の基板マークとを前記検出光学系の検出対象とする、
ことを特徴とする請求項1に記載の走査露光装置。
A plurality of original marks arranged in the ranges of the first region and the second region, and a plurality of substrate marks arranged in the ranges of the third region and the fourth region, respectively. And a detection target of the detection optical system,
The scanning exposure apparatus according to claim 1, wherein:
矩形のパターン領域を含む矩形の面を有する原版を保持する原版ステージと、矩形の液晶パネル領域を含む矩形の面を有する基板を保持する基板ステージと、整形された露光光で前記パターン領域を照明する照明光学系と、前記原版ステージに保持された原版に配された原版マークと、前記基板ステージに保持された基板に配された、前記原版マークに対応する基板マークとを検出する検出光学系とを用い検出の結果に基づいて前記ターン領域と前記晶パネル領域との位置ずれ量および倍率誤差を求め、求められた位置ずれ量および倍率誤差に基づき、前記原版ステージと前記基板ステージとを同期して走査しながら前記ターン領域を介して前記晶パネル領域を露光する液晶パネル生産用の走査露光方法において、
前記走査の方向において前記ターン領域を挟む第1の領域および第2の領域それぞれに前記走査の方向と直交する方向において前記ターン領域の範囲内に版マークを有し且つ前記直交する方向において前記パターン領域の外側には原版マークを有しない原版と、前記走査の方向において前記液晶パネル領域を挟む第3の領域および第4の領域それぞれに前記走査の方向と直交する方向において前記液晶パネル領域の範囲内前記原版マークに対応する基板マークを有し且つ前記直交する方向において前記液晶パネル領域の外側には基板マークを有しない基板とに対し、前記原版マークと前記基板マークとを前記検出光学系の検出対象として、前記原版ステージを移動させ且つ前記基板ステージを移動させることにより、互いに対応する原版マークと基板マークとの複数の組を順次該検出光学系により検出する、
ことを特徴とする走査露光方法。
An original stage for holding an original having a rectangular surface including a rectangular pattern region, a substrate stage for holding a substrate having a rectangular surface including a rectangular liquid crystal panel region, and illuminating the pattern region with shaped exposure light an illumination optical system for the original mark arranged on the original held by the original stage, arranged on the substrate held by the substrate stage, a detection optical system for detecting the substrate mark corresponding to the original mark using the door, on the basis of the result of the detection obtain the position displacement amount and the magnification error between the pattern region and the liquid crystal panel region, based on the positional deviation amount and the magnification error obtained said, the said original stage in the scanning exposure method for a liquid crystal panel production for exposing the liquid crystal panel region through the pattern region while scanning the substrate stage synchronously,
The first region and the second in the area direction orthogonal to the direction of the scan, each having an original version marks within the scope of the pattern area and the direction of the orthogonal sandwiching the pattern region in the direction of the scan said liquid crystal panel and the original having no original mark on the outside, in the third region and the fourth region direction perpendicular to the direction of the scan for each sandwiching the liquid crystal panel region in the direction of the scanning of the pattern area in to a substrate having no substrate mark on the outside of the liquid crystal panel area in a direction and the orthogonal having a substrate mark corresponding to the original mark within the region, said and said substrate mark and the original mark as a detection target of the detection optical system, by Rukoto to move one said substrate stage moving the original stage, correspond to each other Sequentially detected by said detecting optical system a plurality of sets of the plate mark and the substrate mark,
The scanning exposure method characterized by the above-mentioned.
前記第1の領域および前記第2の領域それぞれの前記範囲内に配された複数の原版マークと、前記第3の領域および前記第4の領域それぞれの前記範囲内に配された複数の基板マークとを前記検出光学系の検出対象とする、
ことを特徴とする請求項3に記載の走査露光方法。
A plurality of original marks arranged in the ranges of the first region and the second region, and a plurality of substrate marks arranged in the ranges of the third region and the fourth region, respectively. And a detection target of the detection optical system,
The scanning exposure method according to claim 3.
JP2000128714A 2000-04-28 2000-04-28 Scanning exposure apparatus and scanning exposure method Expired - Fee Related JP4508354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000128714A JP4508354B2 (en) 2000-04-28 2000-04-28 Scanning exposure apparatus and scanning exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000128714A JP4508354B2 (en) 2000-04-28 2000-04-28 Scanning exposure apparatus and scanning exposure method

Publications (3)

Publication Number Publication Date
JP2001312069A JP2001312069A (en) 2001-11-09
JP2001312069A5 JP2001312069A5 (en) 2007-06-21
JP4508354B2 true JP4508354B2 (en) 2010-07-21

Family

ID=18638114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000128714A Expired - Fee Related JP4508354B2 (en) 2000-04-28 2000-04-28 Scanning exposure apparatus and scanning exposure method

Country Status (1)

Country Link
JP (1) JP4508354B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100997968B1 (en) 2003-10-13 2010-12-02 삼성전자주식회사 Method of manufacturing thin film transistor array panel
JP4401834B2 (en) 2004-03-23 2010-01-20 株式会社アドテックエンジニアリング Exposure apparatus and alignment method
US8055099B2 (en) * 2006-04-05 2011-11-08 Sharp Kabushiki Kaisha Exposure method and exposure device
CN103189799B (en) * 2010-12-03 2016-04-27 夏普株式会社 Display panel substrate and base plate exposure method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045581A1 (en) * 1998-03-02 1999-09-10 Nikon Corporation Method and apparatus for exposure, method of manufacture of exposure tool, device, and method of manufacture of device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919318A (en) * 1982-07-23 1984-01-31 Hitachi Ltd Method for inspection of positional deviation of transfer pattern and transfer pattern mask
JPS61201427A (en) * 1985-03-04 1986-09-06 Nippon Kogaku Kk <Nikon> Detection of positional shift
JPS61226924A (en) * 1985-04-01 1986-10-08 Canon Inc Exposing device
JPS61242021A (en) * 1985-04-19 1986-10-28 Canon Inc Exposing device
JPH03180017A (en) * 1989-12-08 1991-08-06 Fujitsu Ltd Manufacture of semiconductor device
JP2741114B2 (en) * 1991-05-08 1998-04-15 日立電子エンジニアリング株式会社 Alignment method of color liquid crystal substrate
JPH05265027A (en) * 1992-03-24 1993-10-15 Toshiba Corp Positioning method and its device
JP3198310B2 (en) * 1993-01-06 2001-08-13 株式会社ニコン Exposure method and apparatus
JP3259409B2 (en) * 1993-02-16 2002-02-25 株式会社ニコン Exposure equipment
JPH07297106A (en) * 1994-04-25 1995-11-10 Dainippon Screen Mfg Co Ltd Method for aligning projected image in magnifying projection aligner
JP3379238B2 (en) * 1994-09-08 2003-02-24 株式会社ニコン Scanning exposure equipment
JPH08293453A (en) * 1995-04-25 1996-11-05 Canon Inc Scanning aligner and exposure method using its device
JPH09115820A (en) * 1995-10-13 1997-05-02 Nikon Corp Scanning projection aligner and aligning method
JP2001296667A (en) * 2000-04-14 2001-10-26 Nikon Corp Scanning exposure method and scanning type aligner, and mask

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045581A1 (en) * 1998-03-02 1999-09-10 Nikon Corporation Method and apparatus for exposure, method of manufacture of exposure tool, device, and method of manufacture of device

Also Published As

Publication number Publication date
JP2001312069A (en) 2001-11-09

Similar Documents

Publication Publication Date Title
USRE37361E1 (en) Scanning type exposure apparatus and exposure method
US5573877A (en) Exposure method and exposure apparatus
US5602620A (en) Scanning exposure apparatus and exposure method
JP4168665B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP2550974B2 (en) Exposure equipment
JP4508354B2 (en) Scanning exposure apparatus and scanning exposure method
JP4214849B2 (en) Exposure method and exposure apparatus
US5523574A (en) Exposure apparatus
JP4144059B2 (en) Scanning exposure equipment
KR100575230B1 (en) Lithography method using a lithography apparatus
JP4402418B2 (en) Exposure apparatus and device manufacturing method
JP3285105B2 (en) Stage driving method and scanning exposure method
JP2003031461A (en) Exposure system and method of exposure
KR20070049061A (en) Substrate measuring apparatus
JP4319800B2 (en) Large size photomask laser exposure apparatus and laser drawing method
JPH09251952A (en) Aligner and exposing method
JP2005017204A (en) Positioning device
JP3460325B2 (en) Exposure apparatus and exposure method
JP3472078B2 (en) Exposure method and exposure apparatus
JPH08330219A (en) Scanning-type exposure device
JPH09129547A (en) Scanning-type exposure system, device and manufacture thereof
USRE37762E1 (en) Scanning exposure apparatus and exposure method
JP3339630B2 (en) Scanning exposure equipment
JPS62183517A (en) Exposure apparatus
JPH07283115A (en) Scanning aligner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees