JP4506100B2 - Method for manufacturing silicon carbide Schottky barrier diode - Google Patents

Method for manufacturing silicon carbide Schottky barrier diode Download PDF

Info

Publication number
JP4506100B2
JP4506100B2 JP2003131071A JP2003131071A JP4506100B2 JP 4506100 B2 JP4506100 B2 JP 4506100B2 JP 2003131071 A JP2003131071 A JP 2003131071A JP 2003131071 A JP2003131071 A JP 2003131071A JP 4506100 B2 JP4506100 B2 JP 4506100B2
Authority
JP
Japan
Prior art keywords
silicon carbide
type
barrier diode
protective film
schottky barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003131071A
Other languages
Japanese (ja)
Other versions
JP2004335815A (en
Inventor
裕司 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003131071A priority Critical patent/JP4506100B2/en
Publication of JP2004335815A publication Critical patent/JP2004335815A/en
Application granted granted Critical
Publication of JP4506100B2 publication Critical patent/JP4506100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化珪素ショットキーバリアダイオードの製造方法に関する。
【0002】
【従来の技術】
ワイドギャップ半導体である炭化珪素(SiC)を構成材料としたショットキーバリアダイオードは、SiCが一般的な構成材料であるシリコン(Si)に比べて絶縁破壊耐圧において約1桁高く、また、約2倍の電子飽和ドリフト速度という優れた物性を有しているため、高周波でかつ大電力制御可能な素子として有望である。
【0003】
しかしながら,大電力による高周波動作では逆電圧の印加時にショットキー電極の周縁部に電界集中が発生し,SiCを構成材料にすることによって本来見込まれる耐圧より低電圧で素子が破壊する場合がある。このような周縁部への電界集中を緩和して耐圧を確保するために、ショットキー電極周縁部にいわゆるガードリングとよばれる終端構造を形成して素子の耐圧向上を図っていた。
【0004】
かかる終端構造はショットキー電極周縁部のn型SiCエピタキシャル成長層中にp型不純物をイオン注入した後,1500℃以上の高温で熱処理して、イオン注入されたp型不純物を電気的に活性化させn型SiCエピタキシャル成長層とは逆導電型のp型領域とすることにより形成されていた。しかしながら、不純物活性化アニール時の1500℃以上という極めて高温で行われる処理によってSiC結晶表面に損傷が発生し,SiCショットキーバリアダイオードに逆耐圧を印加した際に、損傷を介したショットキー電極からのリーク電流が増大するという素子特性上の不具合が生じた。
【0005】
特許文献1に開示された従来のSiCショットキーバリアダイオードの製造方法では,上述のような問題が生じる高温熱処理に代えて、レーザ活性化アニールを実施していた。レーザ活性化アニールでは従来の熱処理より低温で、同レベルの不純物の電気的活性化の効果がもたらされるからである。
【0006】
【特許文献1】
特開2002−289550号公報
【0007】
【発明が解決しようとする課題】
SiCショットキーバリアダイオードの場合,イオン注入不純物の電気的活性化を目的としたレーザ活性化アニールは終端構造の形成領域のみで実施すればよく,ショットキー電極の形成領域のSiC表面にはレーザ照射による活性化アニールは何ら必要ないばかりか、却って結晶表面荒れの原因となった。しかしながら、終端構造の形成領域のみ局所的にレーザ活性化アニールしようとすると、スループットが極端に低下し、素子を容易に製造できないという問題が新たに発生した。一方、ウエハ全面を一様にレーザ活性化アニールすると、本来アニールする必要の無いショットキー電極形成領域のSiC表面もレーザ照射されてしまい、上述の結晶表面荒れの原因となった。
【0008】
この発明は、上記のような問題点を解決するためになされたものであり、ショットキー電極からのリーク電流が小さい良好な素子特性を具備するSiCショットキーバリアダイオードを容易に製造することを目的とする。
【0009】
【課題を解決するための手段】
本発明に係る炭化珪素ショットキーバリアダイオードの製造方法は、n型炭化珪素基板と、上記n型炭化珪素基板上に形成されたn型炭化珪素エピタキシャル成長層と、上記n型炭化珪素エピタキシャル成長層上に設けられたショットキー電極と、上記ショットキー電極の周縁部の上記n型炭化珪素エピタキシャル成長層中に設けられたp型終端構造と、を備えた炭化珪素ショットキーバリアダイオードの製造方法であって、上記終端構造の形成領域にp型不純物をイオン注入するイオン注入工程と、前記イオン注入工程の後に、上記ショットキー電極の形成領域上にレーザ光の透過を防止する保護膜を設け、上記p型終端構造の形成領域にレーザ光を照射することにより上記イオン注入されたp型不純物を活性化させるレーザ活性化アニール工程と、前記レーザ活性化アニール工程の後に前記保護膜を除去する工程と、前記保護膜を除去する工程の後に前記ショットキー電極を形成する工程と、を含んでなる。
【0010】
【発明の実施の形態】
実施の形態1.
実施の形態1のSiCショットキーバリアダイオードの製造方法を図1および2に基づき説明する。ここで、図1はSiCショットキーバリアダイオードの製造工程中、p型終端構造にレーザ活性化アニールを行う工程を示す図であり、図2はショットキー電極および裏面オーミック電極形成後のSiCショットキーバリアダイオードを示す図である。図中、1はn型SiC基板、2はn型SiCエピタキシャル成長層、3はp型終端構造、4は保護膜、5はショットキー電極、6はn型裏面オーミック電極、をそれぞれ示す。
【0011】
以下、実施の形態1のSiCショットキーバリアダイオードの製造方法を説明する。まず、n型SiC基板1上にn型SiCエピタキシャル成長層2を結晶成長する。続いてp型終端構造3を形成すべく、後工程でショットキー電極5を形成する領域の周縁部のn型SiCエピタキシャル成長層2中にp型不純物をイオン注入する。イオン注入におけるイオン種として,n型SiC基板1に対して逆導電型のp型不純物、例えばアルミニウムイオンが好適である。なお、SiC基板1がp型の場合は、SiC基板1に対して逆導電型のn型不純物をイオン注入すれば良い。
【0012】
上述のイオン注入に際しては、p型終端構造3の形成領域のみ選択的にイオン注入可能なように、p型終端構造3の形成領域以外の領域をレジスト等によって被覆してイオン注入マスクを設ける。
【0013】
上述のイオン注入マスクを除去後、後工程でショットキー電極5を形成する領域に保護膜4を形成する。照射するレーザの波長に対して反射率,吸収率あるいは透過率が所望の値となるように保護膜4の材質および膜厚を選択する。保護膜4の膜種としては、例えば窒化シリコン膜(Si)が好適である。また、上述の各設定値を実現できるような材質および膜厚からなるレジスト膜でも良い。
【0014】
レーザ活性化アニール時のレーザ光源としては、例えば波長308nmのXeClエキシマレーザ、波長248nmのKrFレーザ、あるいは波長488nmのArイオンレーザが好適である。SiC結晶のバンドギャップエネルギーより高いエネルギーのレーザ波長のレーザ光により、SiC結晶を効果的にアニールできるからである。
【0015】
レーザ光を照射する際には,ウエハを室温あるいは100℃〜1000℃の温度に保持する。レーザ照射は1回あるいは複数回行い,SiC結晶中にイオン注入された不純物の電気的な活性化を行う。
【0016】
続いて、保護膜4を除去した後、n型SiCエピタキシャル成長層2表面にチタン(Ti)等の金属からなるショットキー電極5を形成し,n型SiC基板1の裏面側、すなわちn型SiCエピタキシャル成長層2が形成されている側とは反対側の面上にニッケル(Ni)等の金属からなるn型裏面オーミック電極6を形成する(図2)。
【0017】
SiCショットキーバリアダイオードに逆電圧が印加された場合,ショットキー電極5の周縁部の電界集中は不純物をイオン注入したp型終端構造3により緩和され,この結果、SiCショットキーバリアダイオードの耐圧が向上する。
【0018】
本実施の形態におけるSiCショットキーバリアダイオードで、ショットキー電極5下面に位置するn型SiCエピタキシャル成長層2表面では、ウエハ全面にレーザ照射するレーザ活性化アニール時でもレーザ光を効果的に防止する保護膜4の存在によってかかる領域の温度上昇の度合いがp型終端構造3の領域に比べて著しく低温となるため,温度上昇に起因するSiC結晶表面の損傷が保護膜4の無い場合より顕著に低減できる。したがって、SiCショットキーバリアダイオード動作の際、結晶表面損傷を介して生じるショットキー電極5からのリーク電流を大幅に低減できる。さらに、ショットキー電極5形成領域のSiC結晶表面を露出していた場合に生じるおそれのある結晶表面の汚染や損傷も防止できる。つまり、ショットキー電極5形成領域のSiC結晶表面荒れを誘起することなく、レーザ照射の走査をウエハ全面で行うことができるので、素子特性を良好に維持した状態でレーザ照射の作業性やスループットを向上できる。
【0019】
上述のイオン注入において、イオン注入する不純物はボロン(B)イオンでもよい。また、イオン注入の際,SiC表面の全面を酸化膜等で覆ってイオン注入すると、イオン注入時のSiC表面の汚染,損傷を有効に防止できる。
【0020】
以上、本実施の形態のSiCショットキーバリアダイオードの製造方法によると、レーザ活性化アニール時にショットキー電極に相当する領域にレーザ光を透過しないような保護膜を形成してウエハ全面をレーザ照射することとしたので、ショットキー電極からのリーク電流の小さい良好な素子特性を有するSiCショットキーバリアダイオードを容易に製造できる。
【0021】
実施の形態2.
実施の形態2のSiCショットキーバリアダイオードの製造方法を図3に示す。本実施の形態のSiCショットキーバリアダイオードの製造方法では、ショットキー電極5の形成領域に設けられた保護膜4aがレーザ照射時の保護マスクとイオン注入時のイオン注入マスクの両方の機能を兼用することにより,図3に示すようにレーザ活性化アニールとイオン注入を同時あるいは交互に行うものである。
【0022】
上述の複数の機能を具備する保護膜4aを適用すると、イオン注入工程とレーザ活性化アニール工程で別個の保護膜を一々形成する必要がなくなる。よって、例えば、不純物イオン注入を異なる加速エネルギーで複数回行って所望の深さまでの不純物濃度を得る際に,イオン注入とレーザ活性化アニールを同時にあるいは交互に連続的にするような工程を単一の保護膜4aのみ使用して実行できるので、工程全体が簡略化できる。
【0023】
以上、実施の形態2のSiCショットキーバリアダイオードの製造方法では、p型終端構造の形成領域への不純物のイオン注入とレーザ活性化アニールを連続的に実施できるので,実施の形態1の製造方法の効果に加えて、さらに、工程全体の簡略化およびイオン注入不純物の活性化率の向上が達成できる。
【0024】
実施の形態3.
実施の形態3のSiCショットキーバリアダイオードの製造方法を図4に示す。本実施の形態のSiCショットキーバリアダイオードの製造方法では、ショットキー電極5の形成領域に第1保護膜4を、p型終端構造3の形成領域に第2保護膜7をそれぞれ別個に形成する。ここで,第1保護膜4と第2保護膜7は照射されるレーザに対して異なる反射率,透過率あるいは吸収率を具備するように各保護膜の材質や膜厚等を選択している。
【0025】
上述のような保護膜構成を適用すると、各保護膜4,7の固有の性質によってショットキー電極5の形成領域とp型終端構造3の形成領域間で、同一のレーザ照射によって生じる温度分布を意図的に変えることが可能となる。したがって、p型終端構造3の形成領域はイオン注入不純物の電気的な活性化に充分なアニール温度に到達する一方,ショットキー電極5の形成領域におけるn型SiCエピタキシャル成長層2の表面近傍の温度は不純物注入されたp型終端構造3よりも低温となるように設定可能となるので、p型終端構造3の形成領域における良好な不純物活性化率を保持すると同時に、ショットキー電極5の形成領域のSiC結晶表面の荒れを効果的に防止できる。よって,SiCショットキーバリアダイオード動作時のショットキー電極からのリーク電流を大幅に低減できる。
【0026】
以上、実施の形態3のSiCショットキーバリアダイオードの製造方法によれば、実施の形態1あるいは2の製造方法に比べて、良好な素子特性を具備するSiCショットキーバリアダイオードを一層容易に製造できる効果がある。
【0027】
【発明の効果】
本発明に係る炭化珪素ショットキーバリアダイオードの製造方法は、n型炭化珪素基板と、上記n型炭化珪素基板上に形成されたn型炭化珪素エピタキシャル成長層と、上記n型炭化珪素エピタキシャル成長層上に設けられたショットキー電極と、上記ショットキー電極の周縁部の上記n型炭化珪素エピタキシャル成長層中に設けられたp型終端構造と、を備えた炭化珪素ショットキーバリアダイオードの製造方法であって、上記終端構造の形成領域にp型不純物をイオン注入するイオン注入工程と、上記ショットキー電極の形成領域上にレーザ光の透過を防止する保護膜を設け、ウエハ全面にレーザ光を照射することにより上記イオン注入されたp型不純物を活性化させるレーザ活性化アニール工程と、を含んでなるので、ショットキー電極からのリーク電流の小さい良好な素子特性を具備するSiCショットキーバリアダイオードを容易に製造できる。
【図面の簡単な説明】
【図1】 実施の形態1におけるSiCショットキーバリアダイオードの製造工程中、p型終端構造にレーザ活性化アニールを行う工程を示す図である。
【図2】 ショットキー電極および裏面オーミック電極形成後のSiCショットキーバリアダイオードを示す図である。
【図3】 実施の形態2のSiCショットキーバリアダイオードの製造工程の一部を示す図である。
【図4】 実施の形態3のSiCショットキーバリアダイオードの製造工程の一部を示す図である。
【符号の説明】
1 n型SiC基板、 2 n型SiCエピタキシャル成長層、 3 p型終端構造、 4、4a 保護膜(第1保護膜)、 5 ショットキー電極、 6 n型裏面オーミック電極、 7 第2保護膜。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a silicon carbide Schottky barrier diode.
[0002]
[Prior art]
A Schottky barrier diode using silicon carbide (SiC), which is a wide gap semiconductor, as a constituent material has a dielectric breakdown voltage higher by about one digit than silicon (Si), which is a general constituent material of SiC, and about 2 Since it has an excellent physical property of double electron saturation drift velocity, it is promising as an element capable of controlling high frequency and high power.
[0003]
However, in high-frequency operation with high power, electric field concentration occurs at the peripheral portion of the Schottky electrode when a reverse voltage is applied, and the element may be destroyed at a voltage lower than the originally expected breakdown voltage by using SiC as a constituent material. In order to alleviate such electric field concentration on the peripheral portion and ensure a breakdown voltage, a termination structure called a so-called guard ring is formed on the peripheral portion of the Schottky electrode to improve the breakdown voltage of the element.
[0004]
In such a termination structure, p-type impurities are ion-implanted into the n-type SiC epitaxial growth layer at the periphery of the Schottky electrode, and then heat-treated at a high temperature of 1500 ° C. or more to electrically activate the ion-implanted p-type impurities. The n-type SiC epitaxial growth layer is formed by forming a p-type region having a reverse conductivity type. However, the SiC crystal surface is damaged by the process performed at an extremely high temperature of 1500 ° C. or higher during the impurity activation annealing, and when reverse breakdown voltage is applied to the SiC Schottky barrier diode, the damage is caused from the Schottky electrode through the damage. There was a problem in device characteristics that the leakage current of the device increased.
[0005]
In the conventional method for manufacturing a SiC Schottky barrier diode disclosed in Patent Document 1, laser activation annealing is performed instead of high-temperature heat treatment that causes the above-described problems. This is because laser activation annealing provides the same level of electrical activation effect of impurities at a lower temperature than conventional heat treatment.
[0006]
[Patent Document 1]
JP 2002-289550 A [0007]
[Problems to be solved by the invention]
In the case of a SiC Schottky barrier diode, laser activation annealing for the purpose of electrical activation of ion-implanted impurities may be performed only in the region where the termination structure is formed, and the SiC surface in the region where the Schottky electrode is formed is irradiated with laser. The activation annealing by is not necessary at all, but on the contrary, it causes crystal surface roughness. However, if laser activation annealing is performed locally only in the region where the termination structure is formed, the throughput is drastically reduced and a new problem arises that the device cannot be easily manufactured. On the other hand, when the laser activation annealing is uniformly performed on the entire surface of the wafer, the SiC surface of the Schottky electrode formation region that originally does not need to be annealed is also irradiated with the laser, causing the above-described crystal surface roughness.
[0008]
The present invention has been made to solve the above-described problems, and an object of the present invention is to easily manufacture a SiC Schottky barrier diode having good device characteristics with a small leakage current from a Schottky electrode. And
[0009]
[Means for Solving the Problems]
A method for manufacturing a silicon carbide Schottky barrier diode according to the present invention includes an n-type silicon carbide substrate, an n-type silicon carbide epitaxial growth layer formed on the n-type silicon carbide substrate, and an n-type silicon carbide epitaxial growth layer. A method of manufacturing a silicon carbide Schottky barrier diode comprising: a Schottky electrode provided; and a p-type termination structure provided in the n-type silicon carbide epitaxial growth layer at a peripheral portion of the Schottky electrode, an ion implantation step of implanting p-type impurity region for forming the above termination structure, after the ion implantation step, a protective film for preventing transmission of the laser beam on the formation region of the Schottky electrode, the p-type laser activation Annie to activate the p-type impurity implanted the ions by applying a laser beam to form a region of the termination structure And step comprises removing the protective film after the laser activation annealing step, a step of forming the Schottky electrode after the step of removing the protective film.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
A method for manufacturing the SiC Schottky barrier diode of the first embodiment will be described with reference to FIGS. Here, FIG. 1 is a diagram showing a step of performing laser activation annealing on the p-type termination structure during the manufacturing process of the SiC Schottky barrier diode, and FIG. 2 is a diagram showing the SiC Schottky after forming the Schottky electrode and the back ohmic electrode. It is a figure which shows a barrier diode. In the figure, 1 is an n-type SiC substrate, 2 is an n-type SiC epitaxial growth layer, 3 is a p-type termination structure, 4 is a protective film, 5 is a Schottky electrode, and 6 is an n-type back ohmic electrode.
[0011]
Hereinafter, a method for manufacturing the SiC Schottky barrier diode of the first embodiment will be described. First, the n-type SiC epitaxial growth layer 2 is crystal-grown on the n-type SiC substrate 1. Subsequently, in order to form the p-type termination structure 3, p-type impurities are ion-implanted into the n-type SiC epitaxial growth layer 2 in the peripheral portion of the region where the Schottky electrode 5 is formed in a later step. As an ion species in the ion implantation, a p-type impurity having a reverse conductivity type with respect to the n-type SiC substrate 1, for example, aluminum ions is preferable. If SiC substrate 1 is p-type, reverse conductivity type n-type impurities may be ion-implanted into SiC substrate 1.
[0012]
In the above-described ion implantation, an ion implantation mask is provided by covering regions other than the formation region of the p-type termination structure 3 with a resist or the like so that only the formation region of the p-type termination structure 3 can be selectively implanted.
[0013]
After removing the ion implantation mask, a protective film 4 is formed in a region where the Schottky electrode 5 is to be formed in a later step. The material and film thickness of the protective film 4 are selected so that the reflectance, absorption rate, or transmittance becomes a desired value with respect to the wavelength of the laser to be irradiated. As a film type of the protective film 4, for example, a silicon nitride film (Si 3 N 4 ) is suitable. Further, a resist film made of a material and a film thickness that can realize each of the above set values may be used.
[0014]
As a laser light source at the time of laser activation annealing, for example, a XeCl excimer laser with a wavelength of 308 nm, a KrF laser with a wavelength of 248 nm, or an Ar ion laser with a wavelength of 488 nm is suitable. This is because the SiC crystal can be effectively annealed by laser light having a laser wavelength higher than the band gap energy of the SiC crystal.
[0015]
When irradiating with laser light, the wafer is kept at room temperature or at a temperature of 100 ° C. to 1000 ° C. Laser irradiation is performed once or a plurality of times to electrically activate impurities implanted into the SiC crystal.
[0016]
Subsequently, after removing the protective film 4, a Schottky electrode 5 made of a metal such as titanium (Ti) is formed on the surface of the n-type SiC epitaxial growth layer 2, and the back side of the n-type SiC substrate 1, that is, n-type SiC epitaxial growth. An n-type back ohmic electrode 6 made of a metal such as nickel (Ni) is formed on the surface opposite to the side on which the layer 2 is formed (FIG. 2).
[0017]
When a reverse voltage is applied to the SiC Schottky barrier diode, the electric field concentration at the peripheral portion of the Schottky electrode 5 is relaxed by the p-type termination structure 3 into which impurities are ion-implanted. As a result, the breakdown voltage of the SiC Schottky barrier diode is reduced. improves.
[0018]
In the SiC Schottky barrier diode according to the present embodiment, the surface of the n-type SiC epitaxial growth layer 2 located on the lower surface of the Schottky electrode 5 is a protection that effectively prevents laser light even during laser activation annealing in which laser irradiation is performed on the entire surface of the wafer. Due to the presence of the film 4, the degree of temperature increase in such a region is significantly lower than that in the region of the p-type termination structure 3, so that the damage on the SiC crystal surface due to the temperature increase is significantly reduced compared to the case without the protective film 4. it can. Therefore, the leakage current from the Schottky electrode 5 generated through crystal surface damage during the SiC Schottky barrier diode operation can be greatly reduced. Furthermore, contamination and damage of the crystal surface that may occur when the SiC crystal surface in the Schottky electrode 5 formation region is exposed can be prevented. That is, the laser irradiation scan can be performed on the entire surface of the wafer without inducing the SiC crystal surface roughness in the Schottky electrode 5 formation region, so that the workability and throughput of the laser irradiation can be improved while maintaining the element characteristics well. It can be improved.
[0019]
In the above-described ion implantation, the impurity to be implanted may be boron (B) ions. Further, when the ion implantation is performed by covering the entire surface of the SiC surface with an oxide film or the like, contamination and damage of the SiC surface during the ion implantation can be effectively prevented.
[0020]
As described above, according to the manufacturing method of the SiC Schottky barrier diode of the present embodiment, a protective film that does not transmit laser light is formed in a region corresponding to the Schottky electrode during laser activation annealing, and laser irradiation is performed on the entire wafer surface. As a result, a SiC Schottky barrier diode having good device characteristics with a small leakage current from the Schottky electrode can be easily manufactured.
[0021]
Embodiment 2. FIG.
A method for manufacturing the SiC Schottky barrier diode of the second embodiment is shown in FIG. In the manufacturing method of the SiC Schottky barrier diode of the present embodiment, the protective film 4a provided in the formation region of the Schottky electrode 5 functions as both a protective mask at the time of laser irradiation and an ion implantation mask at the time of ion implantation. Thus, as shown in FIG. 3, laser activation annealing and ion implantation are performed simultaneously or alternately.
[0022]
When the protective film 4a having a plurality of functions described above is applied, it is not necessary to form separate protective films one by one in the ion implantation process and the laser activation annealing process. Thus, for example, when performing impurity ion implantation a plurality of times with different acceleration energies to obtain an impurity concentration up to a desired depth, a single process is performed in which ion implantation and laser activation annealing are performed simultaneously or alternately. Therefore, the entire process can be simplified.
[0023]
As described above, in the manufacturing method of the SiC Schottky barrier diode according to the second embodiment, the impurity ion implantation into the formation region of the p-type termination structure and the laser activation annealing can be continuously performed. In addition to the above effect, further simplification of the whole process and improvement of the activation rate of the ion implantation impurity can be achieved.
[0024]
Embodiment 3 FIG.
FIG. 4 shows a method for manufacturing the SiC Schottky barrier diode of the third embodiment. In the method for manufacturing the SiC Schottky barrier diode according to the present embodiment, the first protective film 4 is separately formed in the formation region of the Schottky electrode 5 and the second protective film 7 is separately formed in the formation region of the p-type termination structure 3. . Here, the first protective film 4 and the second protective film 7 are selected for the material, film thickness, and the like of each protective film so as to have different reflectance, transmittance, or absorption rate with respect to the irradiated laser. .
[0025]
When the protective film configuration as described above is applied, the temperature distribution generated by the same laser irradiation between the formation region of the Schottky electrode 5 and the formation region of the p-type termination structure 3 is caused by the inherent properties of the protective films 4 and 7. It can be changed intentionally. Therefore, the formation region of the p-type termination structure 3 reaches an annealing temperature sufficient for the electrical activation of the ion-implanted impurities, while the temperature near the surface of the n-type SiC epitaxial growth layer 2 in the formation region of the Schottky electrode 5 is Since the temperature can be set to be lower than that of the impurity-implanted p-type termination structure 3, a good impurity activation rate in the formation region of the p-type termination structure 3 can be maintained, and at the same time, the formation region of the Schottky electrode 5 can be reduced. Roughening of the SiC crystal surface can be effectively prevented. Therefore, the leakage current from the Schottky electrode when the SiC Schottky barrier diode is operated can be greatly reduced.
[0026]
As described above, according to the manufacturing method of the SiC Schottky barrier diode of the third embodiment, it is possible to more easily manufacture the SiC Schottky barrier diode having good element characteristics as compared with the manufacturing method of the first or second embodiment. effective.
[0027]
【The invention's effect】
A method for manufacturing a silicon carbide Schottky barrier diode according to the present invention includes an n-type silicon carbide substrate, an n-type silicon carbide epitaxial growth layer formed on the n-type silicon carbide substrate, and an n-type silicon carbide epitaxial growth layer. A method of manufacturing a silicon carbide Schottky barrier diode comprising: a Schottky electrode provided; and a p-type termination structure provided in the n-type silicon carbide epitaxial growth layer at a peripheral portion of the Schottky electrode, An ion implantation step of ion-implanting p-type impurities in the termination structure formation region, a protective film for preventing transmission of laser light on the Schottky electrode formation region, and irradiating the entire surface of the wafer with laser light; A laser activation annealing step for activating the ion-implanted p-type impurity. The SiC Schottky barrier diode having a small excellent device characteristics leakage current from can be easily manufactured.
[Brief description of the drawings]
FIG. 1 is a diagram showing a step of performing laser activation annealing on a p-type termination structure during the manufacturing process of the SiC Schottky barrier diode in the first embodiment.
FIG. 2 is a diagram showing a SiC Schottky barrier diode after formation of a Schottky electrode and a backside ohmic electrode.
3 is a diagram showing a part of the manufacturing process of the SiC Schottky barrier diode according to the second embodiment; FIG.
4 is a diagram showing a part of manufacturing process of the SiC Schottky barrier diode according to the third embodiment; FIG.
[Explanation of symbols]
1 n-type SiC substrate, 2 n-type SiC epitaxial growth layer, 3 p-type termination structure, 4, 4a protective film (first protective film), 5 Schottky electrode, 6 n-type back ohmic electrode, 7 second protective film.

Claims (3)

n型炭化珪素基板と、前記n型炭化珪素基板上に形成されたn型炭化珪素エピタキシャル成長層と、前記n型炭化珪素エピタキシャル成長層上に設けられたショットキー電極と、前記ショットキー電極の周縁部の前記n型炭化珪素エピタキシャル成長層中に設けられたp型終端構造と、を備えた炭化珪素ショットキーバリアダイオードの製造方法であって、
前記p型終端構造の形成領域にp型不純物をイオン注入するイオン注入工程と、
前記イオン注入工程の後に、前記ショットキー電極の形成領域上にレーザ光の透過を防止する保護膜を設け、ウエハ全面に前記レーザ光を照射することにより前記イオン注入されたp型不純物を活性化させるレーザ活性化アニール工程と、
前記レーザ活性化アニール工程の後に前記保護膜を除去する工程と、
前記保護膜を除去する工程の後に前記ショットキー電極を形成する工程と、
を含んでなる炭化珪素ショットキーバリアダイオードの製造方法。
An n-type silicon carbide substrate, an n-type silicon carbide epitaxial growth layer formed on the n-type silicon carbide substrate, a Schottky electrode provided on the n-type silicon carbide epitaxial growth layer, and a peripheral portion of the Schottky electrode A p-type termination structure provided in the n-type silicon carbide epitaxial growth layer, and a method for manufacturing a silicon carbide Schottky barrier diode,
An ion implantation step of ion-implanting p-type impurities into the formation region of the p-type termination structure;
After the ion implantation step, a protective film for preventing transmission of laser light is provided on the formation region of the Schottky electrode, and the ion-implanted p-type impurity is activated by irradiating the entire surface of the wafer with the laser light. A laser activation annealing step,
Removing the protective film after the laser activation annealing step;
Forming the Schottky electrode after the step of removing the protective film;
A method for manufacturing a silicon carbide Schottky barrier diode comprising:
前記レーザ活性化アニール工程は、前記レーザ光を照射する前に前記レーザ光に対して前記保護膜と異なる反射率、透過率あるいは吸収率を有している第2保護膜を前記p型終端構造の形成領域に更に設ける工程を含むことを特徴とする
請求項1記載の炭化珪素ショットキーバリアダイオードの製造方法。
In the laser activation annealing step, a second protective film having a reflectance, transmittance, or absorption rate different from that of the protective film is applied to the laser light before the laser light irradiation. The method for producing a silicon carbide Schottky barrier diode according to claim 1, further comprising a step of providing in the formation region.
前記保護膜が窒化シリコン膜で構成されていることを特徴とする請求項1記載の炭化珪素ショットキーバリアダイオードの製造方法。The process according to claim 1 Symbol placement of silicon carbide Schottky barrier diode, wherein the protective film is composed of silicon nitride film.
JP2003131071A 2003-05-09 2003-05-09 Method for manufacturing silicon carbide Schottky barrier diode Expired - Fee Related JP4506100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131071A JP4506100B2 (en) 2003-05-09 2003-05-09 Method for manufacturing silicon carbide Schottky barrier diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131071A JP4506100B2 (en) 2003-05-09 2003-05-09 Method for manufacturing silicon carbide Schottky barrier diode

Publications (2)

Publication Number Publication Date
JP2004335815A JP2004335815A (en) 2004-11-25
JP4506100B2 true JP4506100B2 (en) 2010-07-21

Family

ID=33506346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131071A Expired - Fee Related JP4506100B2 (en) 2003-05-09 2003-05-09 Method for manufacturing silicon carbide Schottky barrier diode

Country Status (1)

Country Link
JP (1) JP4506100B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153442A (en) * 2006-12-18 2008-07-03 Renesas Technology Corp Method of manufacturing semiconductor device
JP4356764B2 (en) 2007-04-18 2009-11-04 株式会社デンソー Silicon carbide semiconductor device
JP5557584B2 (en) * 2010-04-20 2014-07-23 新電元工業株式会社 Semiconductor device manufacturing method and semiconductor device
JP5626037B2 (en) * 2011-03-09 2014-11-19 住友電気工業株式会社 Manufacturing method of semiconductor device
JP2014053393A (en) * 2012-09-06 2014-03-20 Sumitomo Electric Ind Ltd Wide gap semiconductor device and method for manufacturing the same
CN105324833B (en) * 2013-06-14 2018-02-02 新电元工业株式会社 The manufacture method and semiconductor device of semiconductor device
CN109509706B (en) * 2018-12-29 2023-05-02 重庆伟特森电子科技有限公司 Preparation method of silicon carbide diode and silicon carbide diode
CN109473485B (en) * 2018-12-29 2023-07-04 重庆伟特森电子科技有限公司 Silicon carbide diode and preparation method thereof
CN113410137B (en) * 2021-06-15 2023-06-20 西安微电子技术研究所 High-reliability SiC Schottky diode and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546503A (en) * 1978-09-28 1980-04-01 Toshiba Corp Method of making semiconductor device
JPS5723223A (en) * 1980-07-18 1982-02-06 Fujitsu Ltd Manufacture of compound semiconductor device
JPH04329633A (en) * 1991-04-30 1992-11-18 Sony Corp Treatment of semiconductor substrate
JP2001085704A (en) * 1999-09-14 2001-03-30 Hitachi Ltd SiC SCHOTTKY DIODE
JP2002057164A (en) * 2000-05-31 2002-02-22 Sony Corp Manufacturing method of semiconductor device
JP2002289550A (en) * 2001-03-27 2002-10-04 National Institute Of Advanced Industrial & Technology Activating method for impurity ion implanted layer
JP2003060193A (en) * 2001-06-04 2003-02-28 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546503A (en) * 1978-09-28 1980-04-01 Toshiba Corp Method of making semiconductor device
JPS5723223A (en) * 1980-07-18 1982-02-06 Fujitsu Ltd Manufacture of compound semiconductor device
JPH04329633A (en) * 1991-04-30 1992-11-18 Sony Corp Treatment of semiconductor substrate
JP2001085704A (en) * 1999-09-14 2001-03-30 Hitachi Ltd SiC SCHOTTKY DIODE
JP2002057164A (en) * 2000-05-31 2002-02-22 Sony Corp Manufacturing method of semiconductor device
JP2002289550A (en) * 2001-03-27 2002-10-04 National Institute Of Advanced Industrial & Technology Activating method for impurity ion implanted layer
JP2003060193A (en) * 2001-06-04 2003-02-28 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method therefor

Also Published As

Publication number Publication date
JP2004335815A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
US8216929B2 (en) Method of manufacturing silicon carbide semiconductor device
JP3684962B2 (en) Manufacturing method of semiconductor device
JPH11503570A (en) Method of manufacturing a semiconductor device having a semiconductor layer of SiC including a masking step
JP5408248B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
WO2013145022A1 (en) Method for manufacturing silicon carbide semiconductor device
US8609521B2 (en) Method of manufacturing semiconductor device
EP2325872A1 (en) Bipolar semiconductor device and method for manufacturing same
JP4506100B2 (en) Method for manufacturing silicon carbide Schottky barrier diode
JP5326217B2 (en) Semiconductor device and manufacturing method thereof
JP2008112834A (en) Manufacturing method of silicon carbide semiconductor device
WO2015033740A1 (en) Silicon carbide semiconductor element and method for manufacturing silicon carbide semiconductor element
US10453687B2 (en) Method of manufacturing semiconductor device
JP2003224281A (en) Semiconductor device and method for manufacturing the same
JP5201305B2 (en) Manufacturing method of semiconductor device
JP2010073857A (en) Method of manufacturing semiconductor device
JP7155759B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP3539417B2 (en) Silicon carbide semiconductor device and method of manufacturing the same
JP6870286B2 (en) Manufacturing method of silicon carbide semiconductor device
JP3635956B2 (en) Method for manufacturing silicon carbide Schottky barrier diode
JP2003197642A (en) Semiconductor device and its manufacturing method
JP2019201032A (en) Manufacturing method for semiconductor device
JP2017168676A (en) Silicon carbide semiconductor element and silicon carbide semiconductor element manufacturing method
WO2024024386A1 (en) Semiconductor device and method for manufacturing semiconductor device
US20130109200A1 (en) Method for manufacturing semiconductor device
JP5092353B2 (en) Method for doping silicon carbide and method for manufacturing silicon carbide semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees