JP2003224281A - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same

Info

Publication number
JP2003224281A
JP2003224281A JP2002340773A JP2002340773A JP2003224281A JP 2003224281 A JP2003224281 A JP 2003224281A JP 2002340773 A JP2002340773 A JP 2002340773A JP 2002340773 A JP2002340773 A JP 2002340773A JP 2003224281 A JP2003224281 A JP 2003224281A
Authority
JP
Japan
Prior art keywords
layer
anode layer
concentration
anode
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002340773A
Other languages
Japanese (ja)
Other versions
JP4123913B2 (en
Inventor
Tatsuya Naito
達也 内藤
Michio Nemoto
道生 根本
Masato Otsuki
正人 大月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2002340773A priority Critical patent/JP4123913B2/en
Publication of JP2003224281A publication Critical patent/JP2003224281A/en
Application granted granted Critical
Publication of JP4123913B2 publication Critical patent/JP4123913B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device and a method for manufacturing the same which enables reduction of reverse recovery current, reduction of reverse recovery loss and enhancement of soft recovery in comparison with an existing diode. <P>SOLUTION: A p-anode layer 3b is formed by low dose-rate ion implantation with a high acceleration voltage, and a p-anode layer 3c serving as a contact layer is formed by a high dose-rate ion implantation with low acceleration voltage, followed by low-temperature annealing. As a result, a number of flaws are allowed to stay behind the p-anode layer 3c, and with these flaws, the life time of the p-anode layer 3c is lowered, which results in lowering reverse recovery current and reverse recovery loss, and enhancing soft recovery. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、電力用半導体整
流素子(以下、単にダイオードという)などの半導体装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device such as a power semiconductor rectifier (hereinafter, simply referred to as a diode).

【0002】[0002]

【従来の技術】ダイオードはインバータをはじめ様々な
電力変換装置の用途に利用されているが、近年ではイン
バータの高効率化のために高周波化が図られ10kHz
以上のスイッチングスピードで開閉するIGBT等のト
ランジスタのFWDとしても使われるようになり、逆回
復動作時間を短くすることが強く求められている。図6
は、従来ダイオードであるpinダイオードの要部断面
図である。n+ カソード層1となる高濃度基板上にエピ
タキシャル成長でn層を形成し、このn層の表面層にp
アノード層3aを形成する。n+ カソード層1とpアノ
ード層3aに挟まれたn層がnドリフト層2となる。p
アノード層3aは、7×1013cm -2のドーズ量で加速
電圧100keVでイオン注入を1回行い、1150℃
で90分の高温アニ−ル(高温熱処理)を行い形成す
る。n+ カソード層1上、pアノード層3a上にそれぞ
れカソード電極4、アノード電極5を形成する。
2. Description of the Related Art Diodes are used in various inverters and other devices.
It has been used for power converters, but in recent years
Higher frequency is achieved to improve the efficiency of the burner, 10 kHz
IGBTs and other switches that open and close at the above switching speeds
It has also come to be used as the FWD of the randista, and the reverse turn
There is a strong demand for shortening the return operation time. Figure 6
Is the cross section of the main part of a conventional pin diode
It is a figure. n+Epi on the high-concentration substrate that becomes the cathode layer 1.
An n-layer is formed by the axial growth, and p is formed on the surface layer of this n-layer.
The anode layer 3a is formed. n+Cathode layer 1 and p-ano
The n layer sandwiched between the ground layers 3a becomes the n drift layer 2. p
The anode layer 3a is 7 × 1013cm -2Accelerate with dose amount
Ion implantation is performed once at a voltage of 100 keV and at 1150 ° C.
90 minutes high temperature annealing (high temperature heat treatment) to form
It n+On the cathode layer 1 and on the p anode layer 3a respectively
Then, the cathode electrode 4 and the anode electrode 5 are formed.

【0003】このpinダイオードは、耐圧の確保が容
易であるが、正孔の注入効率を高めてオン電圧を低下さ
せるために、pアノード層3aを高濃度で形成する。そ
のため、逆回復特性においては、逆回復電流Irrのピ
ーク値Irpが高くなり、ハードリカバリーとなる。ま
た、pinダイオードは、逆回復電流と逆回復電圧の積
により、ダイオードに大きな電気的損失を生じる。この
逆回復損失を小さくし、さらにスイッチング速度を高速
化することが近年強く要求されている。現在、ダイオー
ドの逆回復特性を改善するために、重金属拡散や電子線
照射などを用いた少数キャリアのライフタイム制御が広
く用いられている。すなわち、ライフタイムを小さくす
ることで、定常状態におけるキャリア濃度を減少させ逆
回復中に空間電荷領域の広がりで掃き出されるキャリア
濃度を減少させ、逆回復時間や逆回復電流および逆回復
電荷を小さくして、逆回復損失を低減させることができ
る。
In this pin diode, it is easy to ensure the breakdown voltage, but the p anode layer 3a is formed with a high concentration in order to increase the hole injection efficiency and lower the ON voltage. Therefore, in the reverse recovery characteristic, the peak value Irp of the reverse recovery current Irr becomes high, and hard recovery occurs. Further, the pin diode causes a large electrical loss in the diode due to the product of the reverse recovery current and the reverse recovery voltage. In recent years, there has been a strong demand for reducing the reverse recovery loss and further increasing the switching speed. At present, minority carrier lifetime control using heavy metal diffusion or electron beam irradiation is widely used in order to improve the reverse recovery characteristics of a diode. That is, by reducing the lifetime, the carrier concentration in the steady state is reduced and the carrier concentration swept out by the expansion of the space charge region during reverse recovery is reduced, and the reverse recovery time, reverse recovery current and reverse recovery charge are reduced. Then, the reverse recovery loss can be reduced.

【0004】また、逆回復電流をソフトリカバリー化す
る手段としては、アノードからの少数キャリアの注入効
率を抑制する構造がある。その代表的な構造としては、
ショットキー接合とpn接合を併設したMPS(Mer
ged pin/Schottky)ダイオードやpア
ノード層の濃度を低くし、厚みを薄くしたSFD(So
ft and Fast Recovery Diod
e)などが挙げられる。
As a means for softening the reverse recovery current, there is a structure for suppressing the injection efficiency of minority carriers from the anode. As its typical structure,
MPS with a Schottky junction and a pn junction (Mer
Ged pin / Schottky) SFD (So
ft and Fast Recovery Period
e) and the like.

【0005】[0005]

【特許文献1】米国特許第4641174号明細書[Patent Document 1] US Pat. No. 4,641,174

【特許文献2】特許第3149483号(図1)[Patent Document 2] Japanese Patent No. 3149483 (FIG. 1)

【特許文献3】特開平7−226521号公報(図3)[Patent Document 3] Japanese Patent Laid-Open No. 7-226521 (FIG. 3)

【特許文献4】特開平9−321320号公報(図1)[Patent Document 4] Japanese Patent Laid-Open No. 9-321320 (FIG. 1)

【特許文献5】特開平10−200132号公報(図
1)
[Patent Document 5] Japanese Patent Laid-Open No. 10-200132 (FIG. 1)

【特許文献6】特開平10−321876号公報(図
1)
[Patent Document 6] Japanese Patent Laid-Open No. 10-321876 (FIG. 1)

【0006】[0006]

【発明が解決しようとする課題】しかし、図6のpin
ダイオードや前記のMPSダイオードにおいて、さらに
逆回復電流Irrと逆回復損失を共に小さくし、一層の
ソフトリカバリー化を図ることが求められている。ま
た、特許文献2〜6のダイオードでは、高濃度の浅いア
ノード層と低濃度で深いアノード層が記載されている
が、これらは高濃度のアノード層を高温の熱処理で形成
しているため、活性化率がほぼ100%の高注入であ
り、逆回復特性が好ましくない。この発明の目的は、前
記の課題を解決して、従来ダイオードと比べて、逆回復
電流の低減、逆回復損失の低減および一層のソフトリカ
バリー化を図ることができる半導体装置とその製造方法
を提供することにある。
However, the pin shown in FIG. 6 is used.
In the diode and the MPS diode described above, it is required to further reduce both the reverse recovery current Irr and the reverse recovery loss to achieve further soft recovery. Further, in the diodes of Patent Documents 2 to 6, a high-concentration shallow anode layer and a low-concentration deep anode layer are described, but these are active because the high-concentration anode layer is formed by high-temperature heat treatment. The high recovery with a conversion rate of almost 100% is not preferable for the reverse recovery characteristic. An object of the present invention is to solve the above problems and provide a semiconductor device and a method of manufacturing the same capable of achieving a reduction in reverse recovery current, a reduction in reverse recovery loss, and further soft recovery as compared with a conventional diode. To do.

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
めに、第1導電型の半導体基板と、該半導体基板の一方
の表面層に形成した第2導電型のアノード層と、該アノ
ード層表面に形成したアノード電極と、他方の表面に形
成した第1導電型のカソード層と、該カソード層表面に
形成したカソード電極とを具備する半導体装置におい
て、前記アノード層が、低濃度で深いアノード層と該低
濃度のアノード層の表面層に形成する高濃度で浅いアノ
ード層とを有し、該高濃度のアノード層のドーズ量が3
×1012cm-2以上3×1013cm-2以下であり、前記
低濃度のアノード層の深さが2μm以上である構成とす
る。また、低濃度で深いアノード層は、複数の拡散層が
互いに半導体基板表面で重なり合う領域を有し、該領域
の最高濃度が、半導体基板の濃度の1倍以上10倍以下
であるとよい。
In order to achieve the above-mentioned object, a first conductivity type semiconductor substrate, a second conductivity type anode layer formed on one surface layer of the semiconductor substrate, and the anode layer. A semiconductor device comprising an anode electrode formed on a surface, a first conductivity type cathode layer formed on the other surface, and a cathode electrode formed on the cathode layer surface, wherein the anode layer has a low concentration and a deep anode. Layer and a high concentration and shallow anode layer formed on the surface layer of the low concentration anode layer, and the dose amount of the high concentration anode layer is 3
The depth is not less than × 10 12 cm −2 and not more than 3 × 10 13 cm −2 , and the low concentration anode layer has a depth of not less than 2 μm. Further, the low concentration and deep anode layer has a region where a plurality of diffusion layers overlap each other on the surface of the semiconductor substrate, and the maximum concentration of the region is preferably 1 to 10 times the concentration of the semiconductor substrate.

【0008】また、第1導電型の半導体基板と、該半導
体基板の一方の表面層に形成した第2導電型の低濃度の
第1アノード層と、該第1アノード層の表面層に形成し
た第2導電型の高濃度の第2アノード層と、該第2アノ
ード層表面に形成したアノード電極と、他方の表面に形
成した第1導電型のカソード層と、該カソード層表面に
形成したカソード電極とを具備する半導体装置の製造方
法において、前記第1アノード層が、第2アノード層の
ドーズ量より低いドーズ量をイオン注入し、高温熱処理
して形成し、その後、第2アノード層を3×1012cm
-2以上3×10 13cm-2以下のドーズ量をイオン注入
し、低温熱処理して形成する。
Further, the semiconductor substrate of the first conductivity type and the semiconductor
The second conductive type of low concentration formed on one surface layer of the body substrate
Formed on the first anode layer and a surface layer of the first anode layer;
And a high concentration second anode layer of the second conductivity type, and the second anode
Anode electrode formed on the surface of the cathode layer and
The formed first conductivity type cathode layer and the cathode layer surface
Method for manufacturing semiconductor device having formed cathode electrode
Wherein the first anode layer is a second anode layer
Ion implantation at a dose lower than the dose and high temperature heat treatment
And then form a second anode layer 3 × 1012cm
-23 x 10 or more 13cm-2Ion implantation with the following doses
Then, it is formed by low temperature heat treatment.

【0009】また、第1導電型の半導体基板と、該半導
体基板の一方の表面層に複数個互いに離して形成した第
2導電型の低濃度の第1アノード層と、該第1アノード
層のそれぞれの表面層に形成した第2導電型の高濃度の
第2アノード層と、前記第2アノード層と半導体基板の
各表面に形成したアノード電極と、他方の表面に形成し
た第1導電型のカソード層と、該カソード層表面に形成
したカソード電極とを具備する半導体装置の製造方法に
おいて、前記第1アノード層が、第2アノード層のドー
ズ量より低いドーズ量をイオン注入し、高温熱処理して
形成し、その後、第2アノード層を3×1012cm-2
上3×1013cm-2以下のドーズ量をイオン注入し、低
温熱処理して形成する。
The first conductivity type semiconductor substrate, a plurality of second conductivity type low concentration first anode layers formed on one surface layer of the semiconductor substrate so as to be separated from each other, and the first anode layer A second conductive type high-concentration second anode layer formed on each surface layer, an anode electrode formed on each surface of the second anode layer and the semiconductor substrate, and a first conductive type second electrode formed on the other surface. In a method of manufacturing a semiconductor device comprising a cathode layer and a cathode electrode formed on the surface of the cathode layer, the first anode layer is ion-implanted with a dose amount lower than that of the second anode layer, and is heat-treated at a high temperature. Then, the second anode layer is formed by ion implantation with a dose amount of 3 × 10 12 cm −2 or more and 3 × 10 13 cm −2 or less and heat treatment at low temperature.

【0010】また、前記低温熱処理の温度が350℃以
上600℃以下であるとよい。また、前記低温熱処理を
レーザアニールで行うとよい。また、前記第1アノード
層の所定の拡散深さを2μm以上とするとよい。
The temperature of the low temperature heat treatment is preferably 350 ° C. or higher and 600 ° C. or lower. Further, the low temperature heat treatment may be performed by laser annealing. The predetermined diffusion depth of the first anode layer may be 2 μm or more.

【0011】[0011]

【発明の実施の形態】以下の説明で、第1導電型をn
型、第2導電型をp型とする。勿論、逆であっても構わ
ない。また、図6と同一箇所には同一の符号を記した。
図1は、この発明の一実施例のpinダイオードの要部
断面図である。n+ カソード層1となる高濃度基板上に
エピタキシャル成長でn層を形成し、このn層の表面層
にpアノード層3を形成する。n+ カソード層1とpア
ノード層3に挟まれたn層がnドリフト層2となる。p
アノード層3は、1×1012cm-2程度の極めて低いド
ーズ量で、加速電圧100keVでイオン注入を行い、
高温アニールして形成し、さらに、PSG(リンガラ
ス)膜を900℃程度の熱処理温度で被覆した後、コン
タクト部分とする箇所のPSG膜をエッチングで除去
し、3×1013cm-2のドーズ量で、加速電圧45ke
Vでイオン注入を行い400℃の低温アニールを行うこ
とで1μm以下の高濃度のpアノード層3c(この高濃
度のpアノード層3cはコンタクト層を兼ねる)を形成
する。また、低濃度のアノード層3bと高濃度のアノー
ド層3cを合わせたpアノード層3の拡散深さ(低濃度
pアノード層3bの深さと一致する)は、pアノード層
3内の空乏層がアノード電極5に到達しないように、2
μm以上とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following description, the first conductivity type is n.
And the second conductivity type is p-type. Of course, the reverse is also possible. Further, the same parts as those in FIG. 6 are designated by the same reference numerals.
FIG. 1 is a sectional view of a main part of a pin diode according to an embodiment of the present invention. An n layer is formed by epitaxial growth on a high-concentration substrate to be the n + cathode layer 1, and a p anode layer 3 is formed on the surface layer of the n layer. The n layer sandwiched between the n + cathode layer 1 and the p anode layer 3 becomes the n drift layer 2. p
The anode layer 3 is ion-implanted at an acceleration voltage of 100 keV with an extremely low dose amount of about 1 × 10 12 cm -2 .
It is formed by high-temperature annealing, and a PSG (phosphorus glass) film is further coated at a heat treatment temperature of about 900 ° C., and then the PSG film at the contact portion is removed by etching, and a dose of 3 × 10 13 cm -2 is used. The acceleration voltage is 45 ke depending on the quantity
Ion implantation is performed at V and low-temperature annealing at 400 ° C. is performed to form a high-concentration p anode layer 3c of 1 μm or less (the high-concentration p anode layer 3c also serves as a contact layer). In addition, the diffusion depth of the p anode layer 3 including the low concentration anode layer 3b and the high concentration anode layer 3c (which matches the depth of the low concentration p anode layer 3b) is equal to 2 so as not to reach the anode electrode 5
At least μm.

【0012】この低いドーズ量で、100keVの高い
加速電圧でイオン注入された低濃度のpアノード層3b
は、高温アニールとPSG膜処理温度により、打ち込ま
れた不純物原子は殆ど活性化し、また、イオン注入で導
入された欠陥はほとんど消滅する。一方、高いドーズ量
で、45keVの低い加速電圧でイオン注入された高濃
度のpアノード層3cでは、400℃の低温アニールの
ために、イオン注入で導入された欠陥は多数残留する。
この欠陥で、高濃度のpアノード層3cのライフタイム
は低下する。また、低温アニールの温度は600℃を超
えるとイオン注入で導入された欠陥の消滅割合が多く、
また350℃未満ではイオン注入された不純物原子の活
性化率がよくない。そのため、低温アニールの温度が3
50℃以上600℃以下が好ましい。また、低温アニー
ルをレーザアニールで行うことで打ち込まれた不純物原
子の活性化率を向上させることができて、正孔の注入効
率が低下し過ぎるのを抑制できる。
With this low dose amount, a low-concentration p anode layer 3b ion-implanted with a high acceleration voltage of 100 keV.
With the high temperature annealing and the PSG film processing temperature, most of the implanted impurity atoms are activated and most of the defects introduced by ion implantation disappear. On the other hand, in the high-concentration p anode layer 3c, which is ion-implanted with a high dose amount and a low acceleration voltage of 45 keV, many defects introduced by ion implantation remain due to the low temperature annealing at 400 ° C.
This defect reduces the lifetime of the high-concentration p anode layer 3c. Further, when the temperature of the low temperature annealing exceeds 600 ° C., the annihilation ratio of defects introduced by ion implantation is high,
If the temperature is lower than 350 ° C., the activation rate of the ion-implanted impurity atoms is not good. Therefore, the low temperature annealing temperature is 3
It is preferably 50 ° C. or higher and 600 ° C. or lower. Further, by performing the low temperature annealing by laser annealing, the activation rate of the implanted impurity atoms can be improved, and it is possible to prevent the hole injection efficiency from being lowered too much.

【0013】低濃度のpアノード層3bと高濃度のpア
ノード層3cのライフタイムの低下により、pアノード
層3からnドリフト層2への正孔の注入が抑制される。
その結果、逆回復電流と逆回復損失は低下し、n+ カソ
ード層1付近のキャリア濃度がpアノード層3付近のキ
ャリア濃度より高くなり、一層のソフトリカバリー化を
図ることができる。また、低濃度のpアノード層3bの
拡散深さを2μm以上とすることで、定格電圧で空乏層
がアノード電極5へ到達すること防止することができ
る。図2は、拡散プロフィルとライフタイム分布の関係
を示す図であり、同図(a)は拡散プロフィルを示す図
であり、図中の3aは従来品のプロフィル、3は本発明
品のpアノード層全体のプロフィルで、3bは本発明品
の低濃度部分、3cは高濃度部分のプロフィルであり、
同図(b)は従来品のライフタイム分布を示す図、同図
(c)は本発明品のライフタイム分布を示す図である。
同図(b)は従来品ダイオードのライフタイム分布を推
定したものであるが、拡散プロフィル的に本発明品と類
似している特許第3149483号公報に開示されてい
るダイオードのライフタイムもこれと同じと推定され
る。従来品は、高温アニールしているために、pアノー
ド層3aのライフタイムは比較的大きい値となる。この
従来品と比べると、本発明品は低温アニールしているた
めに、pアノード層3bのライフタイムの値は小さくな
る。
Due to the decrease in the lifetime of the low-concentration p anode layer 3b and the high-concentration p anode layer 3c, injection of holes from the p anode layer 3 to the n drift layer 2 is suppressed.
As a result, the reverse recovery current and the reverse recovery loss decrease, the carrier concentration near the n + cathode layer 1 becomes higher than the carrier concentration near the p anode layer 3, and further soft recovery can be achieved. Further, by setting the diffusion depth of the low-concentration p anode layer 3b to 2 μm or more, it is possible to prevent the depletion layer from reaching the anode electrode 5 at the rated voltage. FIG. 2 is a diagram showing the relationship between the diffusion profile and lifetime distribution. FIG. 2 (a) is a diagram showing the diffusion profile. In the figure, 3a is a conventional product profile, 3 is a p-anode of the present invention product. The profile of the entire layer, 3b is the low-concentration portion of the product of the present invention, 3c is the high-concentration portion profile
The figure (b) is a figure which shows the lifetime distribution of a conventional product, and the figure (c) is a figure which shows the lifetime distribution of this invention product.
The figure (b) is an estimate of the lifetime distribution of the conventional diode, but the lifetime of the diode disclosed in Japanese Patent No. 3149483 which is similar to the product of the present invention in terms of diffusion profile is also estimated. Estimated to be the same. Since the conventional product is annealed at a high temperature, the p anode layer 3a has a relatively long lifetime. Compared with this conventional product, the product of the present invention is annealed at a low temperature, so that the lifetime value of the p anode layer 3b becomes smaller.

【0014】図3は、従来型のpinダイオードと本発
明のpinダイオードの逆回復波形図である。本発明の
pinダイオード(発明品)は、従来型のpinダイオ
ード(従来品)に比べて、pアノード層3の濃度が極め
て低いために、逆回復電流Irrのピーク値Irpは大
幅に低減する。さらに、正孔の注入が低いため、順電流
を通電した状態で、カソード側にキャリアが多い分布と
なり、ソフトリカバリーな波形となる。本発明を用いる
ことで、従来、ソフトリカバリー化が困難とされる数十
μmの薄いドリフト層を有する600V程度の高耐圧の
ダイオードをソフトリカバリー化することができる。つ
まり、数十μmと薄いドリフト層を有する600V程度
以上の高耐圧のMPSダイオードを逆回復過程で、電圧
・電流波形が発振せず、また損失の少ないダイオードと
することができる。
FIG. 3 is a reverse recovery waveform diagram of the conventional pin diode and the pin diode of the present invention. Since the pin diode (invention product) of the present invention has an extremely low concentration of the p anode layer 3 as compared with the conventional pin diode (conventional product), the peak value Irp of the reverse recovery current Irr is significantly reduced. Furthermore, since the injection of holes is low, a distribution with a large number of carriers is formed on the cathode side in the state where a forward current is applied, resulting in a soft recovery waveform. By using the present invention, a diode with a high breakdown voltage of about 600 V having a thin drift layer of several tens of μm, which is conventionally difficult to realize soft recovery, can be soft recovered. That is, an MPS diode having a high breakdown voltage of about 600 V or more, which has a drift layer as thin as several tens of μm, can be used as a diode in which the voltage / current waveform does not oscillate and the loss is small in the reverse recovery process.

【0015】尚、この発明を、特願2000−3114
42号に記載されたダイオードやMPSダイオードのp
アノード領域に適用することで、図1の構成の場合と同
様の効果が得られる。図4は、特願2000−3114
42号に記載されたダイオードに本発明を適用した構成
を示す要部断面図である。図1と異なる点は、pアノー
ド層3が重なり箇所を有するように低濃度のpアノード
層3bを形成し、その低濃度のpアノード層3bの表面
全体に高濃度のpアノード層3cを形成している点であ
る。図5は、MPSダイオードに本発明を適用した構成
を示す要部断面図である。図5では、分散して形成した
低濃度のpアノード層3bの表面に高濃度のpアノード
層3cを形成している。
The present invention is applied to Japanese Patent Application No. 2000-3114.
P of the diode and MPS diode described in No. 42
By applying it to the anode region, the same effect as in the case of the configuration of FIG. 1 can be obtained. FIG. 4 shows Japanese Patent Application No. 2000-3114.
42 is a sectional view of a key portion showing a configuration in which the present invention is applied to the diode described in No. 42. FIG. The difference from FIG. 1 is that the low concentration p anode layer 3b is formed so that the p anode layer 3 has an overlapping portion, and the high concentration p anode layer 3c is formed on the entire surface of the low concentration p anode layer 3b. That is the point. FIG. 5 is a sectional view of an essential part showing a configuration in which the present invention is applied to an MPS diode. In FIG. 5, the high concentration p anode layer 3c is formed on the surface of the low concentration p anode layer 3b formed dispersedly.

【0016】図7は、高濃度のpアノード層3cのボロ
ンのドーズ量を変えた場合の漏れ電流と逆回復ピーク電
流(Irp)の関係を示した特性図である。図7におい
て、ボロンのドーズ量が3×1012cm−2以下であ
ると漏れ電流が急激に増加している。これは、ドーズ量
が少ないと空乏層が半導体基板表面にまで拡がりパンチ
スルーするためである。また、逆回復ピーク電流はボロ
ンのドーズ量が3×1013cm−2以上になると急激
に増加している。この逆回復ピーク電流の増加はホール
の注入が増えることによる。よって、高濃度のpアノー
ド層3cのドーズ量は、3×1012cm−2以上3×
1013cm−2以下であることが望ましい。
FIG. 7 is a characteristic diagram showing the relationship between the leakage current and the reverse recovery peak current (Irp) when the dose amount of boron in the high-concentration p anode layer 3c is changed. In FIG. 7, when the dose amount of boron is 3 × 10 12 cm −2 or less, the leakage current sharply increases. This is because when the dose amount is small, the depletion layer spreads to the surface of the semiconductor substrate and punches through. The reverse recovery peak current sharply increases when the dose amount of boron is 3 × 10 13 cm −2 or more. This increase in the reverse recovery peak current is due to the increase in hole injection. Therefore, the dose amount of the high-concentration p anode layer 3c is 3 × 10 12 cm −2 or more and 3 ×.
It is preferably 10 13 cm −2 or less.

【0017】図8は、熱処理温度を変えた場合の深さ方
向の不純物分布を示した図である。図8において、pア
ノード層3をボロンのドーズ量を7×1013cm−2
として熱処理温度を1150℃の高温熱処理(従来技術
に相当)と400℃の低温熱処理(本発明)とした場合
の深さ方向の不純物の拡散の分布を比較した。高温熱処
理では、拡散深さが3.5μmとなり、実効的なドーズ
量は5.0×1013cm−2となり活性化率がほぼ1
00%である。これに対して、本発明の低温熱処理で
は、拡散深さが0.6μmとなり、実効的なドーズ量は
5.2×1012cm−2となり活性化率が10%以下
である。低温熱処理を行うことで不純物の実効的なドー
ズ量を下げることができる。
FIG. 8 is a diagram showing the impurity distribution in the depth direction when the heat treatment temperature is changed. In FIG. 8, the p anode layer 3 has a boron dose amount of 7 × 10 13 cm −2.
As a result, the distribution of impurity diffusion in the depth direction was compared when the heat treatment temperature was 1150 ° C. high temperature heat treatment (corresponding to the prior art) and 400 ° C. low temperature heat treatment (present invention). In the high temperature heat treatment, the diffusion depth becomes 3.5 μm, the effective dose amount becomes 5.0 × 10 13 cm −2 , and the activation rate is almost 1
It is 00%. On the other hand, in the low temperature heat treatment of the present invention, the diffusion depth is 0.6 μm, the effective dose amount is 5.2 × 10 12 cm −2 , and the activation rate is 10% or less. By performing the low temperature heat treatment, the effective dose of impurities can be reduced.

【0018】図9は、本発明での漏れ電流の熱処理温度
依存性と不純物活性化率の熱処理温度依存性を示した図
である。600℃以下で熱処理を施すと不純物活性化率
は10%程度となり、800℃以上の熱処理を施すと不
純物活性化率は100%程度となる。これに対して逆漏
れ電流は温度に依存せず、ほぼ一定である。なお、MP
S構造のようにpn接合の他にショットキー接合が混在
する場合は、漏れ電流が増加する。本発明では、このM
PS構造よりも漏れ電流を減少させることができる。図
10は、逆回復ピーク電流の熱処理温度依存性を示した
図である。図10において、SSDダイオードでは逆回
復ピーク電流が46Aであり、MPSダイオードでは逆
回復ピーク電流が25Aである。本発明において、熱処
理温度を600℃以下とすることでMPSダイオード並
の逆回復ピーク電流値とすることができる。よって、第
2アノード層の熱処理温度は300℃以上600℃以下
であることが望ましい。
FIG. 9 is a diagram showing the heat treatment temperature dependence of the leakage current and the heat treatment temperature dependence of the impurity activation rate in the present invention. When the heat treatment is performed at 600 ° C. or lower, the impurity activation rate is about 10%, and when the heat treatment is performed at 800 ° C. or higher, the impurity activation rate is about 100%. On the other hand, the reverse leakage current does not depend on the temperature and is almost constant. In addition, MP
When the Schottky junction is mixed with the pn junction as in the S structure, the leakage current increases. In the present invention, this M
The leakage current can be reduced as compared with the PS structure. FIG. 10 is a diagram showing the heat treatment temperature dependence of the reverse recovery peak current. In FIG. 10, the SSD diode has a reverse recovery peak current of 46 A, and the MPS diode has a reverse recovery peak current of 25 A. In the present invention, by setting the heat treatment temperature to 600 ° C. or lower, the reverse recovery peak current value comparable to that of the MPS diode can be obtained. Therefore, the heat treatment temperature of the second anode layer is preferably 300 ° C. or higher and 600 ° C. or lower.

【0019】図11は、異なる実施例の要部断面図であ
る。図11において、その低濃度のpアノード層3bの
形成された活性領域の表面全体に高濃度のpアノード層
3cを形成している。このように活性領域の表面全体に
高濃度のpアノード層3cを形成することで、図5のシ
ョットキ接合部を有する構造に比してショットキ接合部
が存在しないので、漏れ電流を大幅に減少させることが
できる。これにより基板表面に電極を形成後にボンディ
ングワイヤのワイヤをボンディングした場合の漏れ電流
の不良を低減することができる。図12は、拡散プロフ
ィルとライフタイム分布の関係を示す図であり、同図
(a)は拡散プロフィルを示す図であり、図中の3bは
本発明品の低濃度部分、3cは高濃度部分のプロフィル
であり、同図(b)は従来品と本発明品のライフタイム
分布を示す図である。従来品は、高温アニールしている
ために、pアノード層3aのライフタイムは比較的大き
い値となる。この従来品と比べると、本発明品は低温ア
ニールしているために、pアノード層3bのライフタイ
ムの値は小さくなる。同図(c)は本発明のダイオード
にライフタイムキラーとして白金拡散(Pt)と電子線
照射(EI)を用いた場合のライフタイム分布を示し
た。EIの場合は一様なライフタイム分布となる。Pt
の場合は欠陥がアノード側に偏析するためにアノード側
のライフタイムが短くなる。
FIG. 11 is a sectional view of the essential parts of a different embodiment. In FIG. 11, a high concentration p anode layer 3c is formed on the entire surface of the active region in which the low concentration p anode layer 3b is formed. By forming the high-concentration p anode layer 3c on the entire surface of the active region in this manner, the Schottky junction does not exist as compared with the structure having the Schottky junction shown in FIG. 5, so that the leakage current is significantly reduced. be able to. As a result, it is possible to reduce leakage current defects when the bonding wires are bonded after the electrodes are formed on the substrate surface. FIG. 12 is a diagram showing the relationship between the diffusion profile and the lifetime distribution. FIG. 12 (a) is a diagram showing the diffusion profile. In the figure, 3b is a low-concentration portion of the product of the present invention, and 3c is a high-concentration portion. FIG. 3B is a profile showing the lifetime distribution of the conventional product and the product of the present invention. Since the conventional product is annealed at a high temperature, the p anode layer 3a has a relatively long lifetime. Compared with this conventional product, the product of the present invention is annealed at a low temperature, so that the lifetime value of the p anode layer 3b becomes smaller. FIG. 6C shows a lifetime distribution when platinum diffusion (Pt) and electron beam irradiation (EI) are used as the lifetime killer in the diode of the present invention. In the case of EI, the lifetime distribution is uniform. Pt
In this case, the defects segregate on the anode side, and the lifetime on the anode side is shortened.

【0020】図13、14は異なる実施例の不純物分布
を示す図である。図13の(a)は、カソード電極とn
カソード層の間に高濃度層(n+層)をAsのイオン注
入で形成したものである。まず、半導体基板表面にpア
ノード層を形成後に半導体基板の裏面を削り、裏面から
As(砒素)をドーズ量2×1014cm−2加速電圧
100keVでイオン注入し、その後熱処理を1100
℃で行うことで1μm程度の高濃度n層を形成する。
更に、カソード電極にTiを用いて、この高濃度n
とオーミック接触をするように蒸着にて形成する。この
裏面から行うイオン注入はP(リン)でも良いが、As
の方がPと比べて拡散係数が小さく熱拡散が浅くできる
ため表面濃度を高くすることができるので望ましい。ま
たイオン注入後の拡散温度は1100℃で行うと、拡散
係数などの関係からAsの拡散深さは1μm以上とはな
らない。この実施例では低Vf(順電圧)にすることが
できる。図13の(b)は、nドリフト層を2段で形
成した構造である。この構造により逆回復中での電界の
拡がりを抑制しカソード側にキャリアを多く残すことで
発振現象を抑制することができる。図13の(c)は、
層にn層を拡散した構造である。n層からn
層にかけて徐々に不純物濃度が増加する分布とすること
で逆回復電荷(Qrr)が増加するが、ソフトリカバリ
には効果的である。図13の(d)は、n層からn
層にかけて少しずつ不純物濃度が増加していて、その増
加分を2回に分けて行っている2段勾配構造である。こ
の構造では、(c)の構造よりも損失を少なくすること
ができ、かつソフトリカバリ化にも効果的である。図1
4の(a)は、バルクウエハを用いてアノード側からカ
ソード側にかけて徐々に不純物濃度が増加していて、か
つ半導体基板裏面からイオン注入で数μmのn層を形
成した構造である。この構造はn+層からの電子の注入
を抑制し、かつ電界の拡がりを徐々に抑制するため、ソ
フトリカバリで低損失な特性が得られる。図14の
(b)は、n層中にn層よりも高濃度なn層(バッ
ファ層)を数μm程度の厚さ形成した構造である。この
構造では逆回復中の電界の拡がりをこのバッファ層で抑
制し、カソード側により多くのキャリアを残すことで発
振現象を抑制することができる。図14の(c)は、n
層の中心に向かって不純物濃度が徐々に増加していく
構造である。図14の(b)の構造と同じく電界の拡が
りを抑制することができるが、更に電界変化をなだらか
にすることができるためにdv/dtを小さくすること
ができる。
FIGS. 13 and 14 are diagrams showing the impurity distribution of different embodiments. FIG. 13A shows a cathode electrode and n
A high concentration layer (n + layer) is formed between the cathode layers by As ion implantation. First, after forming the p anode layer on the surface of the semiconductor substrate, the back surface of the semiconductor substrate is shaved, and As (arsenic) is ion-implanted from the back surface at a dose amount of 2 × 10 14 cm −2 accelerating voltage of 100 keV, and then heat treatment is performed at 1100.
A high concentration n + layer having a thickness of about 1 μm is formed by performing the treatment at a temperature of ° C.
Further, Ti is used for the cathode electrode, and it is formed by vapor deposition so as to make ohmic contact with this high-concentration n + layer. The ion implantation performed from the back surface may be P (phosphorus), but As
Compared with P, this is preferable because it has a smaller diffusion coefficient and shallower thermal diffusion, so that the surface concentration can be increased. If the diffusion temperature after ion implantation is 1100 ° C., the diffusion depth of As does not exceed 1 μm due to the diffusion coefficient and other factors. In this embodiment, a low Vf (forward voltage) can be achieved. FIG. 13B shows a structure in which the n drift layer is formed in two stages. With this structure, it is possible to suppress the oscillation phenomenon by suppressing the spread of the electric field during reverse recovery and leaving a large amount of carriers on the cathode side. FIG. 13C shows
This is a structure in which an n + layer is diffused into an n layer. from n layer to n +
The reverse recovery charge (Qrr) increases by making the distribution in which the impurity concentration gradually increases over the layer, but it is effective for soft recovery. FIG. 13D shows the n layer to the n + layer.
This is a two-stage gradient structure in which the impurity concentration gradually increases over the layers and the increase is divided into two times. With this structure, the loss can be reduced as compared with the structure of (c), and it is also effective for soft recovery. Figure 1
4 (a) is a structure in which the impurity concentration is gradually increased from the anode side to the cathode side using a bulk wafer, and an n + layer of several μm is formed from the back surface of the semiconductor substrate by ion implantation. This structure suppresses the injection of electrons from the n + layer and gradually suppresses the spread of the electric field, so that soft recovery and low loss characteristics can be obtained. (B) in FIG. 14, n - n in the layer - which is a high concentration n-layer structure formed of several μm (the buffer layer) thickness than the layers. In this structure, the expansion of the electric field during reverse recovery can be suppressed by this buffer layer, and the oscillation phenomenon can be suppressed by leaving more carriers on the cathode side. FIG. 14C shows n
- a structure that the impurity concentration toward the center of the layer gradually increases. Although the spread of the electric field can be suppressed as in the structure of FIG. 14B, dv / dt can be reduced because the electric field change can be further smoothed.

【0021】図15は本発明の活性領域を上からみた要
部平面図である。(a)は高濃度で低温熱処理のp
ノード層3cを活性領域の全面に形成し、低濃度で高温
熱処理のpアノード層3bをセル状に形成した構造であ
る。(b)は高濃度で低温熱処理のpアノード層3c
をセル状に形成し、低濃度で高温熱処理のpアノード層
3bを活性領域の全面に形成した構造である。(c)と
(d)は、ストライプ状に形成した構造である。(e)
は高濃度で低温熱処理のpアノード層3cを活性領域
の全面に形成し、低濃度で高温熱処理のpアノード層3
bをセル状に形成し更にpアノード層3b内にpアノ
ード層3cを形成したリングセル構造である。(f)は
(e)と各層が逆転した構造である。
FIG. 15 is a plan view of an essential part of the active region of the present invention seen from above. (A) shows a structure in which the p + anode layer 3c of high concentration and low temperature heat treatment is formed on the entire surface of the active region, and the p anode layer 3b of low concentration and high temperature heat treatment is formed in a cell shape. (B) is a high-concentration, low-temperature heat-treated p + anode layer 3c
Is formed in a cell shape, and the p anode layer 3b subjected to high temperature heat treatment at a low concentration is formed on the entire surface of the active region. (C) and (d) are structures formed in stripes. (E)
Forms a high concentration and low temperature heat-treated p + anode layer 3c on the entire surface of the active region, and a low concentration and high temperature heat treatment p anode layer 3c.
This is a ring cell structure in which b is formed in a cell shape, and ap + anode layer 3c is further formed in the p anode layer 3b. (F) is a structure in which each layer is reversed from (e).

【0022】図16は、本発明のエッジ構造を示す要部
断面図である。(a)において、図の点線の紙面右側が
活性領域、左側がエッジ部である。これは、一般的なエ
ッジ構造であり、ガードリング6と、ストッパ領域7、
ストッパ電極8、フィールドプレート9、フィールド酸
化膜10を備えている。(b)は、活性領域とエッジ部
の間のフィールド酸化膜を(a)よりも長くし、逆回復
時にエッジ部の下にキャリアを入れにくくし、逆回復耐
量を高めた構造である。図17は、本発明のエッジ構造
を示す斜視断面図である。
FIG. 16 is a cross-sectional view of an essential part showing the edge structure of the present invention. In (a), the active area is on the right side of the dotted line in the figure, and the edge part is on the left side. This is a general edge structure and includes a guard ring 6, a stopper region 7,
A stopper electrode 8, a field plate 9 and a field oxide film 10 are provided. (B) is a structure in which the field oxide film between the active region and the edge portion is made longer than that in (a) to make it difficult for carriers to enter under the edge portion during reverse recovery, and the reverse recovery withstand capability is increased. FIG. 17 is a perspective sectional view showing the edge structure of the present invention.

【0023】[0023]

【発明の効果】この発明において、pアノード層を、低
ドーズ量のイオン注入し、高温熱処理して形成した第1
アノード層と、高ドーズ量のイオン注入し、低温熱処理
して形成した第2アノード層で構成することで、従来品
より、逆回復電流と逆回復損失の低減を図り、一層のソ
フトリカバリー化を図ることができる。その結果、高速
・低損失化とソフトリカバリー化の間のドレードオフを
改善することができる。また、pアノード層の拡散深さ
を2μm以上とすることで、所定の耐圧を確保すること
ができ、活性領域の全面に形成した場合はショットキー
接合による漏れ電流の増加を防ぐことができる。
According to the present invention, the p anode layer is formed by ion-implanting a low dose of ions and heat-treating at high temperature.
By constructing the anode layer and the second anode layer formed by high-dose ion implantation and low-temperature heat treatment, the reverse recovery current and reverse recovery loss are reduced compared to the conventional product, and further soft recovery is achieved. Can be planned. As a result, it is possible to improve the drapoff between high speed / low loss and soft recovery. Further, by setting the diffusion depth of the p anode layer to 2 μm or more, a predetermined breakdown voltage can be secured, and when formed on the entire surface of the active region, an increase in leakage current due to the Schottky junction can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例のpinダイオードの要部
断面図
FIG. 1 is a sectional view of a main part of a pin diode according to an embodiment of the present invention.

【図2】従来のpinダイオードと本発明のpinダイ
オードのpアノード層のライフタイムを比較した図
FIG. 2 is a diagram comparing lifetimes of p anode layers of a conventional pin diode and a pin diode of the present invention.

【図3】従来型のpinダイオードと本発明のpinダ
イオードの逆回復波形図
FIG. 3 is a reverse recovery waveform diagram of a conventional pin diode and a pin diode of the present invention.

【図4】特願2000−311442号に記載されたダ
イオードに本発明を適用した構成を示す要部断面図
FIG. 4 is a sectional view of an essential part showing a configuration in which the present invention is applied to a diode described in Japanese Patent Application No. 2000-31142.

【図5】MPSダイオードに本発明を適用した構成を示
す要部断面図
FIG. 5 is a sectional view of an essential part showing a configuration in which the present invention is applied to an MPS diode.

【図6】従来ダイオードであるpinダイオードの要部
断面図
FIG. 6 is a cross-sectional view of a main part of a pin diode which is a conventional diode

【図7】本発明の実施例である高濃度のpアノード層の
ドーズ量を変えた場合の漏れ電流と逆回復ピーク電流の
関係を示した特性図
FIG. 7 is a characteristic diagram showing the relationship between the leakage current and the reverse recovery peak current when the dose amount of the high-concentration p anode layer according to the embodiment of the present invention is changed.

【図8】熱処理温度を変えた場合の深さ方向の不純物分
布を示した図
FIG. 8 is a diagram showing the impurity distribution in the depth direction when the heat treatment temperature is changed.

【図9】本発明での漏れ電流の熱処理温度依存性と不純
物活性化率の熱処理温度依存性を示した図
FIG. 9 is a diagram showing the heat treatment temperature dependence of the leakage current and the heat treatment temperature dependence of the impurity activation rate in the present invention.

【図10】逆回復ピーク電流の熱処理温度依存性を示し
た図
FIG. 10 is a diagram showing the heat treatment temperature dependence of the reverse recovery peak current.

【図11】異なる実施例の要部断面図FIG. 11 is a cross-sectional view of main parts of a different embodiment.

【図12】従来のpinダイオードと本発明のpinダ
イオードのpアノード層のライフタイムを比較した図
FIG. 12 is a diagram comparing lifetimes of p anode layers of a conventional pin diode and a pin diode of the present invention.

【図13】異なる実施例の不純物分布を示した図FIG. 13 is a diagram showing the impurity distribution of different examples.

【図14】異なる実施例の不純物分布を示した図FIG. 14 is a diagram showing the impurity distribution of different examples.

【図15】本発明の活性領域を上からみた要部平面図FIG. 15 is a plan view of an essential part of the active region of the present invention seen from above.

【図16】本発明のエッジ構造を示す要部断面図FIG. 16 is a sectional view of an essential part showing an edge structure of the present invention.

【図17】本発明のエッジ構造を示す斜視断面図FIG. 17 is a perspective sectional view showing an edge structure of the present invention.

【符号の説明】[Explanation of symbols]

1 n+ カソード層 2 nドリフト層 3 pアノード層(本発明品) 3a pアノード層(従来品) 3b 低濃度のpアノード層(本発明品) 3c 高濃度のpアノード層(本発明品) 4 カソード電極 5 アノード電極1 n + cathode layer 2 n drift layer 3 p anode layer (product of the present invention) 3a p anode layer (conventional product) 3b low concentration p anode layer (product of the present invention) 3c high concentration p anode layer (product of the present invention) 4 Cathode electrode 5 Anode electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大月 正人 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 4M104 BB14 CC01 CC03 DD19 DD26 DD78 DD81 GG02 GG03 GG18 HH20    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masato Otsuki             1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa             Within Fuji Electric Co., Ltd. F-term (reference) 4M104 BB14 CC01 CC03 DD19 DD26                       DD78 DD81 GG02 GG03 GG18                       HH20

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】第1導電型の半導体基板と、該半導体基板
の一方の表面層に形成した第2導電型のアノード層と、
該アノード層表面に形成したアノード電極と、他方の表
面に形成した第1導電型のカソード層と、該カソード層
表面に形成したカソード電極とを具備する半導体装置に
おいて、 前記アノード層が、低濃度で深いアノード層と該低濃度
のアノード層の表面層に形成する高濃度で浅いアノード
層とを有し、該高濃度のアノード層のドーズ量が3×1
12cm-2以上3×1013cm-2以下であり、前記低濃
度のアノード層の深さが2μm以上であることを特徴と
する半導体装置。
1. A semiconductor substrate of a first conductivity type, and an anode layer of a second conductivity type formed on one surface layer of the semiconductor substrate,
A semiconductor device comprising an anode electrode formed on the surface of the anode layer, a cathode layer of the first conductivity type formed on the other surface, and a cathode electrode formed on the surface of the cathode layer, wherein the anode layer has a low concentration. A deep anode layer and a high concentration and shallow anode layer formed on the surface layer of the low concentration anode layer, and the dose amount of the high concentration anode layer is 3 × 1.
A semiconductor device having a depth of 0 12 cm −2 or more and 3 × 10 13 cm −2 or less, and a depth of the low-concentration anode layer is 2 μm or more.
【請求項2】前記低濃度で深いアノード層は、複数の拡
散層が互いに半導体基板表面で重なり合う領域を有し、
該領域の最高濃度が、半導体基板の濃度の1倍以上10
倍以下であることを特徴とする請求項1に記載の半導体
装置。
2. The low concentration and deep anode layer has a region in which a plurality of diffusion layers overlap each other on a semiconductor substrate surface,
The maximum concentration of the region is 1 times or more the concentration of the semiconductor substrate 10
The semiconductor device according to claim 1, wherein the semiconductor device has a number of times less than or equal to twice.
【請求項3】第1導電型の半導体基板と、該半導体基板
の一方の表面層に形成した第2導電型の低濃度の第1ア
ノード層と、該第1アノード層の表面層に形成した第2
導電型の高濃度の第2アノード層と、該第2アノード層
表面に形成したアノード電極と、他方の表面に形成した
第1導電型のカソード層と、該カソード層表面に形成し
たカソード電極とを具備する半導体装置の製造方法にお
いて、 前記第1アノード層が、第2アノード層のドーズ量より
低いドーズ量をイオン注入し、高温熱処理して形成し、
その後、第2アノード層を3×1012cm-2以上3×1
13cm-2以下のドーズ量をイオン注入し、低温熱処理
して形成することを特徴とする半導体装置の製造方法。
3. A first conductivity type semiconductor substrate, a second conductivity type low concentration first anode layer formed on one surface layer of the semiconductor substrate, and a surface layer of the first anode layer. Second
A conductive type high-concentration second anode layer, an anode electrode formed on the surface of the second anode layer, a first conductive type cathode layer formed on the other surface, and a cathode electrode formed on the surface of the cathode layer In the method of manufacturing a semiconductor device, the first anode layer is formed by ion-implanting a dose amount lower than that of the second anode layer and performing high temperature heat treatment,
After that, the second anode layer is formed with a thickness of 3 × 10 12 cm −2 or more and 3 × 1.
A method of manufacturing a semiconductor device, which comprises ion-implanting a dose amount of 0 13 cm -2 or less, and performing heat treatment at a low temperature.
【請求項4】第1導電型の半導体基板と、該半導体基板
の一方の表面層に複数個互いに離して形成した第2導電
型の低濃度の第1アノード層と、該第1アノード層のそ
れぞれの表面層に形成した第2導電型の高濃度の第2ア
ノード層と、前記第2アノード層と半導体基板の各表面
に形成したアノード電極と、他方の表面に形成した第1
導電型のカソード層と、該カソード層表面に形成したカ
ソード電極とを具備する半導体装置の製造方法におい
て、 前記第1アノード層が、第2アノード層のドーズ量より
低いドーズ量をイオン注入し、高温熱処理して形成し、
その後、第2アノード層を3×1012cm-2以上3×1
13cm-2以下のドーズ量をイオン注入し、低温熱処理
して形成することを特徴とする半導体装置の製造方法。
4. A first-conductivity-type semiconductor substrate, a plurality of second-conductivity-type low-concentration first anode layers formed on one surface layer of the semiconductor substrate so as to be separated from each other; A second conductive type high-concentration second anode layer formed on each surface layer, an anode electrode formed on each surface of the second anode layer and the semiconductor substrate, and a first electrode formed on the other surface.
In a method of manufacturing a semiconductor device comprising a conductive type cathode layer and a cathode electrode formed on the surface of the cathode layer, the first anode layer is ion-implanted at a dose amount lower than that of the second anode layer, Formed by high temperature heat treatment,
After that, the second anode layer is formed with a thickness of 3 × 10 12 cm −2 or more and 3 × 1.
A method of manufacturing a semiconductor device, which comprises ion-implanting a dose amount of 0 13 cm -2 or less, and performing heat treatment at a low temperature.
【請求項5】前記低温熱処理の温度が、350℃以上6
00℃以下であることを特徴とする請求項3または4に
記載の半導体装置の製造方法。
5. The temperature of the low temperature heat treatment is 350 ° C. or higher. 6
The method for manufacturing a semiconductor device according to claim 3, wherein the temperature is 00 ° C. or lower.
【請求項6】前記低温熱処理をレーザアニールで行うこ
とを特徴とする請求項3ないし4のいずれか1項に記載
の半導体装置の製造方法。
6. The method of manufacturing a semiconductor device according to claim 3, wherein the low temperature heat treatment is performed by laser annealing.
【請求項7】前記第1アノード層の所定の拡散深さを2
μm以上とすることを特徴とする請求項3または4に記
載の半導体装置の製造方法。
7. The predetermined diffusion depth of the first anode layer is set to 2
The method for manufacturing a semiconductor device according to claim 3, wherein the thickness is at least μm.
JP2002340773A 2001-11-26 2002-11-25 Manufacturing method of semiconductor device Expired - Lifetime JP4123913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002340773A JP4123913B2 (en) 2001-11-26 2002-11-25 Manufacturing method of semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001359613 2001-11-26
JP2001-359613 2001-11-26
JP2002340773A JP4123913B2 (en) 2001-11-26 2002-11-25 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2003224281A true JP2003224281A (en) 2003-08-08
JP4123913B2 JP4123913B2 (en) 2008-07-23

Family

ID=27759280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002340773A Expired - Lifetime JP4123913B2 (en) 2001-11-26 2002-11-25 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4123913B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184327A (en) * 2006-01-04 2007-07-19 Sumitomo Electric Ind Ltd Semiconductor device and method of fabricating same
JP2007184439A (en) * 2006-01-10 2007-07-19 Shindengen Electric Mfg Co Ltd Semiconductor device
US7800204B2 (en) 2008-07-31 2010-09-21 Mitsubishi Electric Corporation Semiconductor device and method of fabricating the same
JP2011003919A (en) * 2010-08-23 2011-01-06 Sumitomo Electric Ind Ltd Semiconductor device and method of manufacturing the same
WO2011024214A1 (en) * 2009-08-25 2011-03-03 パナソニック株式会社 Fast recovery diode
JP2012004566A (en) * 2010-06-18 2012-01-05 Semikron Elektronik Gmbh & Co Kg Power semiconductor component with two-step doping profile
CN102694032A (en) * 2011-03-24 2012-09-26 株式会社东芝 Power semiconductor device
JP2013120784A (en) * 2011-12-06 2013-06-17 Toyota Motor Corp Semiconductor device
US8748236B2 (en) 2010-11-10 2014-06-10 Toyota Jidosha Kabushiki Kaisha Method for manufacturing semiconductor device
WO2014112228A1 (en) * 2013-01-18 2014-07-24 株式会社日立パワーデバイス Diode and power conversion device
CN106711232A (en) * 2015-11-16 2017-05-24 上海联星电子有限公司 Fast recovery diode (FRD) and manufacturing method thereof
US10050133B2 (en) 2014-06-18 2018-08-14 Fuji Electric Co., Ltd. Application of thin insulating film layer in semiconductor device and method of manufacturing semiconductor device
US10978596B2 (en) 2017-08-18 2021-04-13 Infineon Technologies Austria Ag Power diode and method of manufacturing a power diode
JP2021153090A (en) * 2020-03-24 2021-09-30 株式会社東芝 Semiconductor device and manufacturing method for the same
EP4235803A3 (en) * 2012-11-27 2023-11-15 Wolfspeed, Inc. Schottky structure employing central implants between junction barrier elements

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184327A (en) * 2006-01-04 2007-07-19 Sumitomo Electric Ind Ltd Semiconductor device and method of fabricating same
JP2007184439A (en) * 2006-01-10 2007-07-19 Shindengen Electric Mfg Co Ltd Semiconductor device
US8420496B2 (en) 2008-07-31 2013-04-16 Mitsubishi Electric Corporation Semiconductor device and method of fabricating the same
US7800204B2 (en) 2008-07-31 2010-09-21 Mitsubishi Electric Corporation Semiconductor device and method of fabricating the same
WO2011024214A1 (en) * 2009-08-25 2011-03-03 パナソニック株式会社 Fast recovery diode
JP2012004566A (en) * 2010-06-18 2012-01-05 Semikron Elektronik Gmbh & Co Kg Power semiconductor component with two-step doping profile
KR101801390B1 (en) * 2010-06-18 2017-11-24 세미크론 엘렉트로니크 지엠비에치 앤드 코. 케이지 Power semiconductor component with two level doping profile
JP2011003919A (en) * 2010-08-23 2011-01-06 Sumitomo Electric Ind Ltd Semiconductor device and method of manufacturing the same
US8748236B2 (en) 2010-11-10 2014-06-10 Toyota Jidosha Kabushiki Kaisha Method for manufacturing semiconductor device
JP2012204541A (en) * 2011-03-24 2012-10-22 Toshiba Corp Power semiconductor device
CN102694032A (en) * 2011-03-24 2012-09-26 株式会社东芝 Power semiconductor device
JP2013120784A (en) * 2011-12-06 2013-06-17 Toyota Motor Corp Semiconductor device
EP4235803A3 (en) * 2012-11-27 2023-11-15 Wolfspeed, Inc. Schottky structure employing central implants between junction barrier elements
WO2014112228A1 (en) * 2013-01-18 2014-07-24 株式会社日立パワーデバイス Diode and power conversion device
US10050133B2 (en) 2014-06-18 2018-08-14 Fuji Electric Co., Ltd. Application of thin insulating film layer in semiconductor device and method of manufacturing semiconductor device
CN106711232A (en) * 2015-11-16 2017-05-24 上海联星电子有限公司 Fast recovery diode (FRD) and manufacturing method thereof
US10978596B2 (en) 2017-08-18 2021-04-13 Infineon Technologies Austria Ag Power diode and method of manufacturing a power diode
US11695083B2 (en) 2017-08-18 2023-07-04 Infineon Technologies Austria Ag Power diode and method of manufacturing a power diode
JP2021153090A (en) * 2020-03-24 2021-09-30 株式会社東芝 Semiconductor device and manufacturing method for the same
JP7257984B2 (en) 2020-03-24 2023-04-14 株式会社東芝 Semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JP4123913B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
US10629678B2 (en) Semiconductor device and method of manufacturing semiconductor device
EP2223341B1 (en) Method for manufacturing a reverse-conducting semiconductor device
US7538412B2 (en) Semiconductor device with a field stop zone
EP2793267B1 (en) Semiconductor device and semiconductor device manufacturing method
JP3684962B2 (en) Manufacturing method of semiconductor device
US8912623B2 (en) Fast recovery diode
EP2223340B1 (en) Reverse-conducting semiconductor device and method for manufacturing such a reverse-conducting semiconductor device
JP6111572B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2002305305A (en) Semiconductor device
US7534666B2 (en) High voltage non punch through IGBT for switch mode power supplies
US20070231973A1 (en) Reverse conducting IGBT with vertical carrier lifetime adjustment
JP6026418B2 (en) Bipolar non-punch-through power semiconductor device
JP2012238904A (en) Semiconductor device and manufacturing method of the same
JP4123913B2 (en) Manufacturing method of semiconductor device
JPH0669509A (en) Conductivity-modulation semiconductor device and its manufacture
JP3951738B2 (en) Manufacturing method of semiconductor device
JP4088011B2 (en) Semiconductor device and manufacturing method thereof
JP3952452B2 (en) Manufacturing method of semiconductor device
WO2016112047A1 (en) Reverse-conducting gated-base bipolar-conduction devices and methods with reduced risk of warping
JP4843923B2 (en) High voltage semiconductor device and manufacturing method thereof
JP4573490B2 (en) Reverse blocking IGBT and manufacturing method thereof
KR102170068B1 (en) Bipolar non-punch-through power semiconductor device
JP2003163357A (en) Semiconductor device and method of manufacturing the same
US6753580B1 (en) Diode with weak anode
JP4770729B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

R150 Certificate of patent or registration of utility model

Ref document number: 4123913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term