JP4500159B2 - 透明導電性積層体およびそれを備えたタッチパネル - Google Patents

透明導電性積層体およびそれを備えたタッチパネル Download PDF

Info

Publication number
JP4500159B2
JP4500159B2 JP2004370645A JP2004370645A JP4500159B2 JP 4500159 B2 JP4500159 B2 JP 4500159B2 JP 2004370645 A JP2004370645 A JP 2004370645A JP 2004370645 A JP2004370645 A JP 2004370645A JP 4500159 B2 JP4500159 B2 JP 4500159B2
Authority
JP
Japan
Prior art keywords
layer
thin film
film
transparent conductive
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004370645A
Other languages
English (en)
Other versions
JP2006179274A (ja
Inventor
豪彦 安藤
英男 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004370645A priority Critical patent/JP4500159B2/ja
Publication of JP2006179274A publication Critical patent/JP2006179274A/ja
Application granted granted Critical
Publication of JP4500159B2 publication Critical patent/JP4500159B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Position Input By Displaying (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、可視光線領域に於いて透明性を有し、かつフィルム基材上に導電性薄膜を備えた透明導電性積層体およびそれを備えたタッチパネルに関する。本発明の透明導電性積層体は、液晶ディスプレイ、エレクトロルミネッセンスディスプレイなどのディスプレイ方式やタッチパネルなどに於ける透明電極のほか、透明物品の帯電防止や電磁波遮断などのために用いられる。
タッチパネルには、位置検出の方法により光学方式、超音波方式、静電容量方式、抵抗膜方式などがある。このうち、抵抗膜方式はその構造が単純であるため、コストパフォーマンスに優れており、近年、急速に普及している。抵抗膜方式タッチパネルは、例えば銀行の現金自動受払機(ATM)や交通機関の切符販売機等の表示板に用いられている。
この抵抗膜方式のタッチパネルは、透明導電性積層体と透明導電性薄膜付ガラスとがスペーサーを介して対向配置されており、透明導電性積層体に電流を流し透明導電性薄膜付ガラスに於ける電圧を計測するような構造となっている。透明導電性積層体を指やペン等による押圧操作を介して透明導電性薄膜付きガラスに接触させると、その接触部分が通電することにより、その接触部分の位置が検知される。
ところで、タッチパネルには、指またはペンにてタッチパネルを押圧する際に、ペンまたは指の周辺に干渉による虹模様、いわゆるニュートンリングが発生し、ディスプレイの視認性が低下するといった問題がある。この様な問題に対しては、絶縁性スペーサーを大きくし、多数設けるといった方法が提案されている。しかし、この方法ではニュートンリングの課題は解決することができても各スペーサー自体が視認される様になり、ディスプレイの鮮明性が損なわれるという弊害が生じる結果となっている。
また、前記の透明導電性薄膜に於いては、スペーサーを介して対向させた一対の透明導電性薄膜同士がその一方のパネル板から押圧打点で強く接触するものである為、これに抗し得る良好な耐久性、つまり打点特性、特にペン入力耐久性を有していることが望まれる。しかし、従来の透明導電性薄膜は、このペン入力耐久性に劣り、その分、タッチパネルとしての寿命が短くなるという問題があった。尚、前記透明導電性積層体としては、例えば、ポリエチレンテレフタレート(PET)フィルム上に透明導電性薄膜としてインジウム・スズ酸化物膜を形成したものが一般に用いられている。
前記のニュートンリングの問題に対しては、その解決方法として、例えば下記特許文献1には、透明薄膜電極層の表面が、所定の表面粗さ等を示すように無数の微細凹凸状となった抵抗膜型透明タッチパネルが開示されている。また、下記特許文献2には、所定の表面粗さ等を示すように粗面化された透明フィルムを備えたニュートンリング防止フィルムが開示されている。これらの先行技術では、透明薄膜電極層等を粗面化することにより、ペンまたは指にて押圧した際に対向する透明薄膜電極層との接触面積を低減してニュートンリングの抑制を図っている。
しかしながら、特許文献1に記載の抵抗膜型透明タッチパネルであると、透明性導電膜と透明電極層の間に酸化ケイ素薄膜を積層することにより、ポリアセタール性のペン先を使用した摺動試験に於いて、酸化ケイ素薄膜を積層しない場合よりも耐摩耗性が向上するが、十分ではない。この為、長期間使用することができないという問題がある。
また、特許文献2に記載のニュートンリング防止フィルムであると、中心線平均粗さ(Ra)や突起間距離(Sm)を規定するのみでは、抵抗膜式タッチパネルの上部電極基板として使用した場合、ペン増動性試験等によるタッチパネル特有の耐久性試験によればペン入力耐久性が低下することが判っている。
また、特許文献3には、スティッキング性および打鍵寿命の向上を目的として、中心線平均粗さ(Ra)が0.05〜0.5μm、550nmでの光線透過率が80%以上、曇価が20%以下の範囲の凹凸構造層と、その上に形成された透明性導電膜を有する透明導電性フィルムが提案されている。しかし、当該透明導電性フィルムでは、中心線平均粗さ(Ra)が前記の範囲であってもペン揺動性試験等のタッチパネル特有の耐久性試験での耐久性が低下することが判っている。
また、特許文献4には、相対向するタッチパネルの透明性導電膜のどちらか一方の表面粗さがJIS B 0601に基づくRzを0.5μ〜50μ、Rmaxを相対向する基板の間隙以下に設定することで押圧時のニュートンリングを防止するという提案をしている。しかし、Rz(平均粗さ)およびRmax(最大粗さ)の規定のみではニュートンリングの発生を抑制することはできるが、Rzの値1.0μmを超えると、例えば、液晶ディスプレイに適用した場合に表示画面に於ける画像の鮮明性が損なわれるという課題がある。
その一方、ペン入力耐久性の問題に対しては、本件出願人が厚さ2〜120μmの透明なフィルム基材の一方の面に、透明な第1誘電体薄膜、透明な第2誘電体薄膜および透明な導電性薄膜をこの順に積層し、前記フィルム基材の他方の面に透明な粘着剤層を介して透明基体を貼り合わせてなる透明導電性積層体を提案している(下記特許文献5、6参照)。
特開2002−373056号公報 特開平11−250764号公報 特開平5−338086号公報 実公平08−2896号 特開2002−316378号公報 特開2002−326301号公報
本発明は前記問題点に鑑みなされたものであり、その目的は、ペン入力耐久性を低下させることなくニュートンリングの発生を防止した透明導電性積層体およびそれを備えたタッチパネルを提供することにある。
本願発明者等は、前記従来の問題点を解決すべく、透明導電性積層体およびタッチパネルについて鋭意検討した。その結果、下記構成を採用することにより前記目的を達成できることを見出して、本発明を完成させるに至った。
即ち、本発明に係る透明導電性積層体は、前記の課題を解決する為に、透明なフィルム基材の一方の面に、凹凸構造層、第1誘電体薄膜、第2誘電体薄膜および透明な導電性薄膜が順次積層されており、前記フィルム基材の他方の面に透明な粘着剤層を介して透明基体が貼り合わされていることを特徴とする。
前記第1誘電体薄膜は、SiO層(xは1.5以上2未満)であることが好ましい。
前記第2誘電体薄膜は、二酸化ケイ素層であることが好ましい。
前記凹凸構造層は、有機樹脂バインダーに微粒子を添加して凹凸形状に形成されたものであることが好ましい。
前記微粒子は、略球形であることが好ましい。
また、本発明に係るタッチパネルは、前記の課題を解決する為に、前記に記載の透明導電性積層体と、他の透明な導電性薄膜を有する他の透明基体とを、導電性薄膜同士が対向するようにスペーサーを介して対向配置して構成されることを特徴とする。
本発明によれば、透明なフィルム基材上には凹凸構造層が設けられているので、透明基体側をペンまたは指にて押圧することにより、導電性薄膜と他の導電性薄膜とが接触する際の接触面積を低減させることができる。その結果、ニュートンリングの発生を防止することができる。また、透明導電性積層体は、その誘電体薄膜が第1誘電体薄膜と第2誘電体薄膜との2層構造からなり、またフィルム基材の他方の面に透明な粘着剤層を介して透明基体が貼り合わされた構成であるので、粘着剤層のクッション効果および誘電体薄膜の2層構造により、ペン入力耐久性を凹凸構造層のない構造のタッチパネルと比較して同等以上とすることができる。即ち、本発明によれば、ペン入力耐久性を低下させることなくニュートンリングを防止または抑制することが可能な透明導電性積層体およびタッチパネルを提供することができる。
本発明の実施の形態について、図を参照しながら以下に説明する。但し、説明に不要な部分は省略して図示した部分がある。
図1は、本実施の形態に係る透明導電性積層体の一例を示す断面模式図である。即ち、透明導電性積層体10は、透明なフィルム基材1の一方の面に、凹凸構造層2、第1誘電体薄膜3、第2誘電体薄膜4、透明な導電性薄膜5が順次積層され、他方の面に透明な粘着剤層7を介して透明基体8が貼り合わされた構造である。図2は、本発明の透明導電性積層体の他の例を示したもので、前記図1に示す前記透明基体8の外表面にハードコート層9を設けたものであり、その他の構成は図1と全く同様である。
前記フィルム基材1としては、特に制限されないが、透明性を有する各種のプラスチックフィルムが用いられる。たとえば、その材料として、ポリエステル系樹脂、アセテート系樹脂、ポリエーテルスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、ポリアリレート系樹脂、ポリフェニレンサルファイド系樹脂等があげられる。この中で特に好ましいのは、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂である。
また、特開2001−343529号公報(WO10/37007)に記載の高分子フィルム、たとえば、(A)側鎖に置換および/または非置換イミド基を有する熱可塑性樹脂と、(B)側鎖に置換および/非置換フェニルならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が挙げられる。具体的には、イソブチレンおよびN−メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを含有する樹脂組成物の高分子フィルムを用いることができる。
これらフィルム基材1の厚みは、2〜120μmの範囲内であることが好ましく、6〜100μmの範囲内であることより好ましい。フィルム基材1の厚みが2μm未満であると、フィルム基材1の機械的強度が不足し、このフィルム基材1をロール状にして第1誘電体薄膜3、第2誘電体薄膜4、導電性薄膜5および粘着剤層7を連続的に形成する操作が困難になる場合がある。一方、厚みが120μmを超えると、粘着剤層7のクッション効果に基づく導電性薄膜5の耐擦傷性やタッチパネル用としての打点特性の向上が図れなくなる場合がある。
前記フィルム基材1は、表面に予めスパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化などのエッチング処理や下塗り処理を施して、この上に設けられる凹凸構造層2の前記フィルム基材1に対する密着性を向上させるようにしてもよい。また、凹凸構造層2を設ける前に、必要に応じて溶剤洗浄や超音波洗浄などにより除塵、清浄化してもよい。
前記凹凸構造層2は、有機樹脂バインダー2aに微粒子2bを添加して凹凸形状に形成された層である。
前記有機樹脂バインダー2aとしては特に限定されず、例えば、電離放射線硬化型樹脂、熱硬化型樹脂、熱可塑性樹脂等が挙げられる。加工速度の早さ、透明基体8への熱ダメージの少なさの点からは、電離放射線硬化型樹脂を用いることが特に好ましい。
このような電離放射線硬化型樹脂としては、例えば、多価アルコールのアクリル酸やメタクリル酸エステル等の多官能性のアクリレート樹脂、ジイソシアネート、多価アルコールおよびアクリル酸またはメタクリル酸のヒドロキシアルキルエステル等から合成されるような多官能性のウレタンアクリレート樹脂などを挙げることができる。さらにアクリレート系の官能基を有するポリエーテル樹脂、ポリエステル樹脂、エポキシ樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も必要に応じて好適に使用することができる。また、メラニン系樹脂、ウレタン系樹脂、アルキド系樹脂、シリコーン系樹脂等も好ましく用いられる。
また、前記電離放射線硬化型樹脂等の反応性希釈剤としては、比較的低粘度である1,6−ヘキサンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の2官能以上のモノマーおよびオリゴマー並びに単官能モノマー、例えばN−ビニルピロリドン、エチルアクリレート、プロピルアクリレート等のアクリル酸エステル類、エチルメタクリレート、プロピルメタクリレート、イソプロピルメタクリレート、ブチルメタクリレート、ヘキシルメタクリレート、イソオクチルメタクリレート、2−ヒドロキシエチルメタクリレート、シクロヘキシルメタクリレート、ノニルフェニルメタクリレート等のメタクリル酸エステル類、テトラヒドロフルフリルメタクリレート、そのカプロラクトン変成物などの誘導体、スチレン、q−メチルスチレン、アクリル酸等、またはそれらの混合物などを使用することができる。
また、前記凹凸構造層2の形成材料には、従来公知の光重合開始剤を用いることができる。例えば2,2−ジメトキシ−2−フェニルアセトフェノン、アセトフェノン、ベンゾフェノン、キサントン、3−メチルアセトフェノン、4−クロロベンゾフェノン、4,4’−ジメトキシベンゾフェノン、ベンゾインプロピルエーテル、ベンジルジメチルケタール、N,N,N,N−テトラメチル−4,4’−ジアミノベンゾフェノン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、その他チオキサント系化合物等が使用できる。
前記微粒子2bとしては、有機物または無機物に関係なく用いることができる。有機物の微粒子としては、例えば、アクリル樹脂、ポリエチレン樹脂、ポリスチレン樹脂、アクリル−スチレン樹脂、ポリカーボネート樹脂、シリコーン樹脂等からなるものが挙げられる。また、無機物の微粒子としては、例えば、酸化ケイ素、酸化チタン、酸化ジルコニウム、硫酸バリウム、酸化カルシウム、酸化スズ、酸化インジウム等からなるものが挙げられる。中でも前記の微粒子2bと有機樹脂バインダー2aの界面に生じる光の散乱をできるだけ低減するには、微粒子2bと有機樹脂バインダー2aの屈折率差を小さくする必要がある。有機樹脂バインダー2aの屈折率は一般的に約1.5〜1.6である。よって、微粒子2bとしては、有機樹脂バインダー2aの屈折率の値に近接した屈折率を有する有機物の微粒子や、酸化ケイ素等の無機物からなる微粒子が好ましく用いられる。
また、前記微粒子2bとしては、そのアスペクト比が1.5以下の球形粒子を用いることが好ましい。アスペクト比が1.5を超える球形の微粒子や多角形の微粒子を用いた場合、ペン入力耐久性の向上が図れなくなる場合がある。つまり、微粒子2bにより形成した凹凸構造層2の凸部は、入力ペンによる入力時に下側基板の透明電極層(後述する)に接触することとなる。その際、凸部の形状、すなわち接触部の形状や表面の粗さ等によってはペン耐久性が低下する可能性も考えられる。
さらにまた、前記微粒子2bは、有機樹脂バインダー2a100重量部に対し0.1重量部〜2.0重量部添加することが好ましい。0.1重量部未満の場合は微粒子添加量が少なすぎるため、ニュートンリングの十分な抑制が困難になる傾向がある。その一方、2.0重量部を超える場合はニュートンリングの抑制効果が十分得られるが、透過率および鮮明性の低下を招来する傾向がある。
本発明の凹凸構造層2には、各種レベリング剤を添加することができる。レベリング剤としては、フッ素系またはシリコーン系のレベリング剤を適宜使用することができるが、より好ましくはシリコーン系のレベリング剤であり。シリコーン系レベリング剤としては、ポリジメチルシロキサン、ポリエーテル変性ポリジメチルシロキサン、ポリメチルアルキルシロキサン等が挙げられる。フッ素系またはシリコーン系のレベリング剤の添加量は、有機樹脂バインダー2a100重量部に対し0.01〜5重量部の範囲内で添加することが好ましい。
前記凹凸構造層2の形成材料には、必要に応じ、性能を損なわない範囲で、顔料、充填剤、分散剤、可塑剤、紫外線吸収剤、界面活性剤、酸化防止剤、チクソトロピー化剤等を使用してもよい。これらは単独で使用してもよいし、2種類以上併用してもよい。
微粒子2bを分散させる溶媒としては、分散状態に影響を与えず、電離放射線硬化型樹脂、熱硬化型樹脂、または熱可塑性樹脂が溶解するものであれば特に制限はない。具体的には、例えば、メタノール、エタノール、イソプロピルアルコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類やトルエン等が挙げられる。これらの溶媒は単独でも、又任意の割合で混合して用いても良い。
前記凹凸構造層2の厚みは、1.0〜5.0μmの範囲内にすることが好ましく、より好ましくは、1.5〜3.0μmの範囲内である。厚みが1.0μm未満であると、凹凸構造層2の硬度が低下する傾向がある。その一方、5.0μmを超えると、凹凸構造層2自体にクラックが発生したり、凹凸構造層2の有機樹脂バインダー2aの硬化収縮により、透明導電性積層体10が凹凸構造層2の積層面側にカールしてしまい実用上問題となる場合がある。
凹凸構造層2の表面粗さは、有機樹脂バインダー2aとシリカや樹脂等からなる微粒子2bとの混合比率や塗工膜厚により制御することができる。ニュートンリングの十分な抑制効果を得る為には中心線平均粗さRaは0.05μm〜0.4μmの範囲であり、十点平均粗さRzは0.5μm〜2.0μmの範囲であることが好ましい。Raが0.5μmを超えたり、或いはRzが2.0μmを超えたりすると、ヘイズおよび鮮明性の低下を招来し、視認性が低下する傾向がある。Raが0.05μm未満となり、或いはRzが0.5μ未満となると、ニュートンリングの十分な抑制効果が得られなくなる傾向がある。
凹凸構造層2の形成には、有機樹脂バインダー2a中に微粒子2bを添加して透明なフィルム基材1上に塗工し、乾燥、硬化処理を行うことで添加した微粒子2bによる凹凸を形成する方法等、適宜な方法を使用することができる。塗工方法としては特に限定されず、例えば、公知のファンテンコート、ダイコート、スピンコート、スプレーコート、グラビアコート、ロールコート、バーコート等が例示できる。
硬化処理としては、例えば、エネルギー線の照射による方法等が例示できる。エネルギー線源としては、例えば、高圧水銀ランプ、ハロゲンランプ、キセノンランプ、メタルハライドランプ、窒素レーザー、電子線加速装置、放射性元素などの線源が使用される。エネルギー線源の照射量は、紫外線波長365nmでの積算露光量として、50〜5000mW/cmが好ましい。照射量が50mW/cm未満の場合は、硬化が不十分となるため、凹凸構造層2の硬度が低下する。また、5000mW/cmを超えると、凹凸構造層2が着色して透明性が低下する。
尚、本実施の形態に於いては、凹凸構造層2として有機樹脂バインダー2aと微粒子2bとからなるものを例にして説明したが、本発明はこれに何ら限定されない。例えば、フィルム基材1上に塗工した未硬化の樹脂の表面に凹凸構造を転写し、その後硬化処理により形成したもの等を用いることもできる。但し、製造の容易さの観点からは、微粒子2bを用いて凹凸構造層2を形成する方法の方が好ましく用いられる。
フィルム基材1の相対屈折率と凹凸構造層2の相対屈折率の差をdとすると、dは0.2以下が好ましく、より好ましくは0.15以下である。フィルム基材1としてポリエチレンテレフタレートフィルムを用いる場合には、その相対屈折率約1.64に対し凹凸構造層2の相対屈折率は1.44〜1.84にすることが好ましく、1.49〜1.79にすることがさらに好ましい。フィルム基材1の相対屈折率と凹凸構造層2の相対屈折率の差dが0.2よりも大きくなるとフィルム基材1と凹凸構造層2の界面で光の干渉が起こり、干渉縞として視認性を低下させる場合がある。
凹凸構造層2の上に積層する第1誘電体薄膜3および第2誘電体薄膜4に用いられる材料としては、例えば、NaF、NaAlF、LiF、MgF、CaF、BaF、SiO、LaF、CeF、Al、TiO、Ta、ZrO、ZnO、ZnS、SiO(xは1.5以上2未満)などの無機物や、アクリル樹脂、ウレタン樹脂、シロキサン系ポリマー等の有機物や、前記無機物と前記有機物との混合物が好適に用いられる。
前記材料のうち、第1誘電体薄膜3としては、SiO(xは1.5以上2未満)からなるものが好ましい。また、第2誘電体薄膜4としては、SiOからなるものが好ましい。例えば、フィルム基材1としてポリエチレンテレフタレートフィルムを用いた場合に、SiOからなる第2誘電体薄膜4をフィルム基材1に直接設けた場合には、十分な密着性が得られない。この為、SiOからなる第1誘電体薄膜3をフィルム基材1と第2誘電体薄膜4との間に設けて、該SiOからなる第1誘電体薄膜3をバインダーとして用い、十分な密着性を確保する。また、SiOは低屈折率の材料である為反射率を低くし、その結果高い光線透過率を達成できる。この為、SiOからなる第2誘電体薄膜4は、導電性薄膜のアンダーコート層として特に効果を発揮する。
第1誘電体薄膜3および第2誘電体薄膜4の総厚としては、特に限定されるものではない。第1誘電体薄膜3の厚さについては3nm以上とするのが好ましく、より好ましくは3〜25nmである。厚さが3nm未満であると連続被膜になりに難くなる傾向がある。ここで、第1誘電体薄膜3がSiO層からなる場合、その厚みが25nmを超えると、環境信頼性試験により反射および透過色相の変化を招来する場合がある。これは、環境信頼性試験に於いて、xが2に近づいてSiOからSiOに徐々に変化することにより、SiO層の屈折率が、1.7程度から1.45に変化するためである。SiO層は光学薄膜でもあり、光学薄膜の特性は各層の屈折率とその厚みにより決定されるが、厚みが25nm以下の場合は、屈折率の変化に対する光学特性への影響が少ないことがわかっている。尚、前記の環境信頼性試験とは、例えば80℃での高温試験や、60℃/90%または85℃/85%等での高温高湿試験等を言う。
第2誘電体薄膜4の厚さについては、10nm以上とするのが好ましく、より好ましくは10〜300nm、特に好ましくは20〜120nmの範囲内である。厚さが10nm未満であると連続被膜となりにくく、耐擦傷性の向上をあまり期待できない。なお、厚くなりすぎると透明性の向上が期待できなくなり、またクラックが生じるおそれがあり、好ましくない。
第1誘電体薄膜3および第2誘電体薄膜4の形成方法としては特に限定されず、前記の材料の種類および必要とする膜厚に応じて適宜の方法を採用することができる。具体的には、例えば、真空蒸着法、スパッタリング法,イオンプレーティング法、塗工法などが例示できる。
尚、凹凸構造層2の表面に各種表面処理を行うことによって、凹凸構造層2と第1誘電体薄膜3(後述する)との接着性を向上させることができる。その表面処理としては、低圧プラズマ処理、紫外線照射処理、コロナ処理、火炎処理、酸またはアルカリ処理が例示できる。
本発明においては、前記の如く透明な2層からなる誘電体薄膜を形成した後、さらにこの薄膜上に導電性薄膜5を形成する。導電性薄膜5の形成方法としては、誘電体薄膜の場合と同様の技術を採用できる。用いる薄膜材料も特に制限されるものではなく、例えば、酸化スズを含有する酸化インジウム、アンチモンを含有する酸化スズなどが好ましく用いられる。
この導電性薄膜5の厚さは、10nm以上とするのが好ましい。10nm未満であると、表面電気抵抗が10(Ω/□)以下となる良好な導電性を有する連続被膜となり難い。また、あまり厚くし過ぎると透明性の低下などを招来するため、特に好適な厚さとしては、10〜300nm程度である。
このような透明な第1誘電体薄膜3および第2誘電体薄膜4と、透明な導電性薄膜5とが順次形成されたフィルム基材1の他方の面には、透明な粘着剤層7を介して透明基体8が貼り合わされる。この貼り合わせは、透明基体8の方に前記の粘着剤層7を設けておき、これに前記のフィルム基材1を貼り合わせるようにしてもよい。また、逆にフィルム基材1の方に前記の粘着剤層7を設けておき、これに透明基体8を貼り合わせるようにしてもよい。また、セパレーター上に粘着剤層7を予め形成し、透明基体8またはフィルム基材1に粘着剤層7を転写することもできる。
粘着剤層7としては、透明性を有するものであれば特に制限なく使用できる。具体的には、例えば、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルエーテル、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン、エポキシ系、フッ素系、天然ゴム、合成ゴム等のゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、光学的透明性に優れ、適度なぬれ性、凝集性および接着性等の粘着特性を示し、耐候性や耐熱性等にも優れるという点からは、アクリル系粘着剤が好ましく用いられる。
粘着剤層7の構成材料である粘着剤の種類によっては、適当な粘着用下塗り剤を用いることで投錨力を向上させることが可能なものがある。従って、そのような粘着剤を用いる場合には、粘着用下塗り剤を用いることが好ましい。
前記粘着用下塗り剤としては、粘着剤の投錨力を向上できる層であれば特に制限はない。具体的には、例えば、同一分子内にアミノ基、ビニル基、エポキシ基、メルカプト基、クロル基等の反応性官能基と加水分解性のアルコキシシリル基とを有するシラン系カップリング剤、同一分子内にチタンを含む加水分解性の親水性基と有機官能性基とを有するチタネート系カップリング剤、および同一分子内にアルミニウムを含む加水分解性の親水性基と有機官能性基とを有するアルミネート系カップリング剤等のいわゆるカップリング剤、エポキシ系樹脂、イソシアネート系樹脂、ウレタン系樹脂、エステルウレタン系樹脂等の有機反応性基を有する樹脂を用いることができる。工業的に取扱い易いという観点からは、シラン系カップリング剤を含有する層が特に好ましい。
また、前記粘着剤層7には、ベースポリマーに応じた架橋剤を含有させることができる。また、粘着剤層7には必要に応じて例えば天然物や合成物の樹脂類、ガラス繊維やガラスビーズ、金属粉やその他の無機粉末等からなる充填剤、顔料、着色剤、酸化防止剤などの適宜な添加剤を配合することもできる。また透明微粒子を含有させて光拡散性が付与された粘着剤層7とすることもできる。
なお、前記の透明微粒子には、例えば平均粒径が0.5〜20μmのシリカ、酸化カルシウム、アルミナ、チタニア、ジルコニア、酸化スズ、酸化インジウム、酸化カドミウム、酸化アンチモン等の導電性の無機系微粒子や、ポリメチルメタクリレート、ポリウレタンの如き適宜なポリマーからなる架橋または未架橋の有機系微粒子など適宜なものを1種または2種以上用いることができる。
前記粘着剤層7は、通常、ベースポリマーまたはその組成物を溶剤に溶解または分散させた固形分濃度が10〜50重量%程度の粘着剤溶液として用いられる。前記溶剤としては、トルエンや酢酸エチル等の有機溶剤や水等の粘着剤の種類に応じたものを適宜に選択して用いることができる。
この粘着剤層7は、透明基体8の接着後に於いては、そのクッション効果により、フィルム基材1の一方の面に設けられた導電性薄膜の耐擦傷性やタッチパネル用としての打点特性、いわゆるペン入力耐久性を向上させる機能を有する。この機能をより良く発揮させる観点から、粘着剤層7の弾性係数を1〜100N/cmの範囲、厚さを1μm以上、通常5〜100μmの範囲に設定するのが望ましい。
上記の弾性係数が1N/cm未満となると、粘着剤層7は非弾性となるため、加圧により容易に変形してフィルム基材1、ひいては導電性薄膜5に凹凸を生じさせ、また加工切断面からの粘着剤のはみ出しなどが生じやすくなり、そのうえ導電性薄膜5の耐擦傷性やタッチパネル用としての打点特性の向上効果が低減する。一方、弾性係数が100N/cmを超えると、粘着剤層7が硬くなり、そのクッション効果を期待できなくなるため、導電性薄膜5の耐擦傷性やタッチパネル用としてのペン入力耐久性を向上させることが困難になる傾向がある。
また、粘着剤層7の厚さが1μm未満となると、そのクッション効果がやはり期待できないため、導電性薄膜5の耐擦傷性やタッチパネル用としてのペン入力耐久性を向上させることが困難になる傾向がある。その一方、厚くしすぎると、透明性を損なったり、粘着剤層7の形成や透明基体8の貼り合わせ作業性、さらにコストの面でも好結果を得にくい。
このような粘着剤層7を介して貼り合わされる透明基体8は、フィルム基材1に対して良好な機械的強度を付与し、とくにカールなどの発生防止に寄与するものである。貼り合わせ後においても可撓性を有することが要求される場合は、透明基体8は、通常6〜300μm程度のプラスチックフィルムが用いられる。その一方、可撓性が特に要求されない場合には、通常0.05〜10mm程度のガラス板やフィルム状ないし板状のプラスチック等が、それぞれ用いられる。プラスチックの材質としては、前記したフィルム基材1と同様のものが挙げられる。
粘着剤層7を前記セパレーターを用いて転写する場合、そのセパレーターとしては、例えばポリエステルフィルムの少なくとも粘着剤層7と接着する面に移行防止層および/または離型層が積層されたポリエステルフィルム等を用いるのが好ましい。
前記セパレーターの総厚は、30μm以上であることが好ましく、75〜100μmの範囲内であることがより好ましい。粘着剤層7を形成後、ロール状態にて保管する場合に、ロール間に入り込んだ異物等により発生することが想定される粘着剤層7の変形(打痕)を抑制する為である。
前記移行防止層としては、ポリエステルフィルム中の移行成分、特に、ポリエステルの低分子量オリゴマー成分の移行を防止する為の適宜な材料にて形成することができる。移行防止層形成材料として、無機物若しくは有機物、またはそれらの複合材料を用いることができる。移行防止層の厚さは、0.01〜20μmの範囲で適宜に設定することができる。移行防止層の形成方法としては特に限定されず、例えば、塗工法、スプレー法、スピンコート法、インラインコート法などが用いられる。また、真空蒸着法、スパッタリング法、イオンプレーティング法、スプレー熱分解法、化学メッキ法、電気メッキ法等も用いることができる。
前記離型層としては、シリコーン系、長鎖アルキル系、フッ素系、硫化モリブテン等の適宜な剥離剤からなるものを形成することができる。離型層の厚さは、離型効果の点から適宜に設定することができる。一般には、柔軟性等の取り扱い性などの点から、該厚さとしては20μm以下であることが好ましく、0.01〜10μmの範囲内であることがより好ましく、0.1〜5μmの範囲内であることが特に好ましい。
前記塗工法、スプレー法、スピンコート法、インラインコート法に於いては、アクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、エポキシ系樹脂等の電離放射線硬化型樹脂や前記樹脂に酸化アルミニウム、二酸化ケイ素、マイカ等を混合したものを用いることができる。また、真空蒸着法、スパッタリング法、イオンプレーティング法、スプレー熱分解法、化学メッキ法または電気メッキ法を用いる場合、金、銀、白金、パラジウム、銅、アルミニウム、ニッケル、クロム、チタン、鉄、コバルトまたはスズやこれらの合金等からなる金属酸化物、ヨウ化鋼等からなる他の金属化合物を用いることができる。
また、必要に応じて、前記透明基体8の外表面(粘着剤層7とは反対側の面)に、視認性の向上を目的とした防眩処理層や反射防止層を設けたり、外表面の保護を目的としたハードコート層9を設けるようにしてもよい。防眩処理層や反射防止層は、透明基体8上に設けたハードコート層9上に設けることもできる。ハードコート層9としては、例えば、メラニン系樹脂、ウレタン系樹脂、アルキド系樹脂、アクリル系樹脂、シリコーン系樹脂などの硬化型樹脂からなる硬化被膜が好ましく用いられる。
防眩処理層としては、前記凹凸構造層2の形成に用いる有機樹脂バインダー2aと同様のものを用いることができる。防眩処理層の厚みは0.1〜30μmが好ましい。0.1μmより薄くなると硬度不足が懸念され、30μmより厚いと防眩処理層にクラックが発生したり、防眩処理層を塗工した透明基体8全体にカールが発生する場合がある。
反射防止層としては、前記ハードコート層9の上に反射防止層を設けることができる。光は物体に当たるとその界面での反射、内部での吸収、散乱といった現象を繰り返して物体の背面に透過していく。画像表示装置にタッチパネル15を装着した際、画像の視認性を低下させる要因のひとつに空気と透明基体8またはハードコート層9界面での光の反射が挙げられる。その表面反射を低減させる方法として、厚みおよび屈折率を厳密に制御した薄膜をハードコート層9表面に積層し、光の干渉効果を利用した入射光と反射光の逆転した位相を互いに相殺させることで反射防止機能を発現させる。
光の干渉効果に基づく反射防止層の設計において、その干渉効果を向上させるには、反射防止層とハードコート層9の屈折率差を大きくすることである。一般的に、基材上に2〜5層の光学薄膜(前記厚みおよび屈折率を厳密に制御した薄膜)を積層する多層反射防止層では、屈折率の異なる成分を所定の厚さだけ複数層形成することで、反射防止層の光学設計に自由度が増し、より反射防止効果を向上させ、分光反射特性も可視光領域でフラットにすることが可能になってくる。光学薄膜の各層の厚み精度が要求される為、一般的にはドライ方式である真空蒸着法、スパッタリング法、CVD法等により各層の形成が行われている。
反射防止層としては、酸化チタン、酸化ジルコニウム、酸化ケイ素、フッ化マグネシウム等が用いられる。反射防止機能を一層大きく発現させる為には、酸化チタン層と酸化ケイ素層との積層体を用いることが好ましい。前記積層体は、ハードコート層9上に屈折率の高い酸化チタン層(屈折率:約1.8)が形成され、該酸化チタン層上に屈折率の低い酸化ケイ素層(屈折率:約1.45)が形成された2層積層体、さらに、この2層積層体上に、酸化チタン層および酸化ケイ素層がこの順序で形成された4層積層体が好ましい。このような2層積層体または4層積層体の反射防止層を設けることにより、可視光線の波長領域(380〜780nm)の反射を均一に低減させることが可能である。
また、透明基体8上またはハードコート層9上に単層の光学薄膜を積層することによっても、反射防止効果を発現させることが可能である。反射防止層を単層にする設計においても、反射防止機能を最大限引き出す為には、反射防止層とハードコート層9の屈折率差を大きくする必要がある。前記反射防止層の膜厚をd、屈折率をn、入射光の波長を入とすると.反射防止層の膜厚とその屈折率との間でnd=λ/4なる関係式が成立する。反射防止層の屈折率が基材の屈折率より小さい場合は、前記関係式が成立する条件では反射率が最小となる。例えば、反射防止層の屈折率が1.45である場合は、可視光線中の550nmの波長の入射光に対して、反射率を最小にする反射防止層の膜厚は95nmとなる。
反射防止機能を発現させる可視光線の波長領域は、380〜780nmであり、り寺に視感度が高い波長領域は450〜650nmの範囲であり、その中心波長である550nmの反射率を最小にする設計を行なうことが通常行われている。
単層で反射防止膜を設計する場合,その厚み精度は、多層反射防止膜の厚み精度ほど厳密ではなく、設計厚みに対し±10%の範囲、つまり設計波長が95nmの場合は、86nm〜105nmの範囲であれば問題なく使用できる。このことより、一般的に単層の反射防止膜の形成には、ウェット方式であるファンテンコート、ダイコート、スピンコート、スプレーコート、グラビアコート、ロールコート、バーコート等の塗工法が用いられている。
ハードコート層9としては、前記凹凸構造層2の形成に用いる有機樹脂バインダー2aと同様のものを用いることができる。ハードコート層9の厚みは0.1〜30μmが好ましい。0.1μmより薄くなると硬度不足が懸念され、30μmより厚いとハードコート層9にクラックが発生したり、ハードコート層9を塗工した透明基体8全体にカールが発生する場合がある。
尚、図1に示す透明導電性積層体10や、図2に示す透明導電性積層体11は、タッチパネル作製時に、または必要に応じて、100〜150℃の範囲内でアニール処理が施されることがある。この為、透明導電性積層体10、11としては、100℃以上、更には150℃以上の耐熱性を有することが好ましい。
次に、本実施の形態に係るタッチパネルについて説明する。図3は、本実施の形態に係るタッチパネルを概略的に示す断面模式図である。同図に示すように、タッチパネル15は、前記の透明導電性積層体10と、下側基板14とがスペーサー13を介して対向配置された構造である。
下側基板14は、他の透明基体12上に他の導電性薄膜5’が積層された構成である。但し、本発明はこれに限定されず、例えば図1に示す透明導電性積層体10や、図2に示す透明導電性積層体11を下側基板14として使用することも可能である。他の透明基体12の構成材料としては、基本的には透明基体8と同様のものを用いることができる。また、その厚さ等についても透明基体8と同様とすることができる。他の導電性薄膜5’の構成材料としては、基本的には導電性薄膜5と同様のものを用いることができる。また、その厚さ等についても導電性薄膜5と同様とすることができる。
スペーサー13としては絶縁性のものであれば特に限定されず、従来公知の種々のものを採用することができる。スペーサー13の製造方法、サイズ、配置位置、数量についても特に限定されない。また、スペーサー13の形状としては、略球形のものや多角形状のもの等、従来公知の形状を採用することができる。但し、スペーサー13の大きさ、特に高さについては、透明導電性積層体10と下側基板14との離間距離を決定し得るものであるため、凹凸構造層2を設けたことに起因して凹凸状となった導電性薄膜5の凹凸差よりも大きいことが必要である。
このタッチパネル15は、透明導電性積層体10側より、入力ペン等にてスペーサー13の弾性力に抗して押圧打点したとき、導電性薄膜5、5’同士が接触して電気的にON状態となり、前記押圧を解除すると元のOFF状態に戻る、透明スイッチ基体として機能する。その際、タッチパネル15は、その導電性薄膜5の耐擦傷性やペン入力耐久性などに優れ、長期にわたって前記機能を安定に維持させることができる。
以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。また、各例中、部は特記がない限りいずれも重量基準である。
(実施例1)
先ず、大日本インキ製アクリルウレタン系樹脂100重量部、重合開始剤としてイルガキュア907(商品名、チノミガイギー製)5重量部とをトルエン溶媒により固形分濃度が30%となる様に希釈して、ハードコート層形成材料を作製した。
次に、透明基体として厚さ125μmのポリエチレンテレフタレートフィルム(PETフィルム)の一方の面に、前記のハードコート層形成材料をグラビアコーターにて塗工した。その後、120℃で5分間加熱することにより塗膜を乾燥し、メタルハライドランプにて積算露光量600mJ/cmの紫外線を照射して硬化処理し、厚さ7μmのハードコート層を形成した。
PETフィルムの他方の面に、ファウンテンコーターを用いて厚さ25μmのアクリル系の粘着剤層を形成し、これにより粘着剤層付きハードコートフィルムを得た。より具体的には、アクリルウレタン系樹脂からなる移行防止層、およびシリコーン系材料からなる剥離剤を有するセパレーター層が順次積層されたポリエチレンテレフタレートフィルム(厚さ75μm)の一方の面に、アクリル系の粘着剤組成物を塗工し、乾燥してアクリル系の粘着剤層を形成し、該粘着剤層をハードコートフィルムに転写することにより形成した。
次に、透明なプラスチックのフィルム基材(相対屈折率1.66)として厚さ23μmのPETフィルムを用意し、その一方の面に凹凸構造層(相対屈折率1.53)を形成した。即ち、ポリメタクリル酸メチル系架橋物微粒子(平均粒子径2.0μm、球形状)0.3重量部、電離放射線硬化型樹脂として大日本インキ製アクリルウレタンモノマー100重量部、ペンゾフェノン系光重合開始剤5重量部、および固形分が15重量%となるように計量されたトルエン溶媒とを混合した溶液をフィルム基材の一方の面に塗工し、120℃で5分間乾燥した。次に、積算露光量600mJ/cmの紫外線を照射することにより硬化処理を施し、厚さ1.8μmの凹凸構造層を得た。
続いて、凹凸構造層上に厚さ10nmのSiOからなる第1誘電体薄膜(屈折率1.75)を形成した。アルバック・ファイ社製Quantum2000にて元素分析(ESCA)を行った結果、xは1.60〜1.70であった。
次に、第1誘電体薄膜上に二酸化ケイ素(SiO2)を電子ビーム加熱法により、1〜2×10−4Torrの真空度で真空蒸着して、厚さ30nmからなる第2誘電体薄膜(屈折率1.45)を形成した。さらに、第2誘電体薄膜上に、アルゴンガス80%と酸素ガス20%からなる4×10−3Torrの雰囲気中で、インジウム−スズ合金を用いた反応性スパッタリング法により、厚さ20nmの酸化インジウムと酸化スズとの複合酸化物からなる透明導電性薄膜(ITO薄膜、屈折率2.1〜2.2)を形成した。前記厚みが125μmの透明基体の粘着剤層を同じく前記厚みが23μmのポリエチレンテレフタレートフィルムの他方の面(凹凸構造層が設けられていない面)に接着積層して、本実施例1に係る透明導電性積層体を得た。
(実施例2)
平均粒子径2.0μmのポリメタクリル酸メチル系架橋物微粒子の配合部数を0.5部に変更したこと以外は、全て実施例1と同様の方法にて本実施例2に係る透明導電性積層体を得た。
(実施例3)
凹凸構造層上に形成するSiOからなる第1誘電体薄膜の厚みを30nmに変更し、さらに二酸化ケイ素(SiO)からなる第2誘電体薄膜の厚みを40nmに変更したこと以外は、全て実施例1と同様の方法にて本実施例3に係る透明導電性積層体を得た。
(実施例4)
ポリメタクリル酸メチル系架橋物微粒子の粒子径を3.0μmにし、電離放射線硬化型樹脂に対する微粒子の配合部数を0.5部にし、凹凸構造層の厚みを1.5μmに変更したこと以外は、全て実施例1と同様の方法にて本実施例4に係る透明導電性積層体を得た。
(実施例5)
平均粒子径2.0μmのポリメタクリル酸メチル系架橋物微粒子の配合部数を0.5部に変更し、凹凸構造層の厚みを1.0μmに変更したこと以外は、全て実施例1と同様の方法にて本実施例5に係る透明導電性積層体を得た。
(実施例6)
平均粒子径3.0μmのポリメタクリル酸メチル系架橋物微粒子を平均粒子径3.0μmの多角形状のシリカ粒子に変更したこと以外は、全て実施例4と同様な方法にて本実施例6に係る透明導電性積層体を得た。
(実施例7)
凹凸構造層上に形成するSiOからなる第1誘電体薄膜の厚みを5nmに変更したこと以外は、全て実施例1と同様の方法にて本実施例7に係る透明導電性積層体を得た。
(実施例8)
凹凸構造層上に形成するSiOからなる第1誘電体薄膜の厚みを20nmに変更したこと以外は、全て実施例1と同様な方法にて本実施例8に係る透明導電性積層体を得た。
(実施例9)
ポリメタクリル酸メチル系架橋物微粒子の粒径を1.0μmにし、電離放射線硬化型樹脂に対する微粒子の配合部数を0.5部にし、凹凸構造層の厚みを1.3μmに変更したこと以外は、全て実施例1と同様な方法にて本実施例9に係る透明導電性積層体を得た。
(比較例1)
実施例1の凹凸構造層に替えて凹凸形状を有さない樹脂層を形成し、かつ、第1誘電体薄膜を設けずに樹脂層上にSi0からなる第2誘電体薄膜を直接形成したこと以外は、全て実施例1と同様な方法にて比較例1に係る透明導電性積層体を得た。樹脂層の形成は、実施例1の凹凸構造層の形成に於いて微粒子を添加せずに行った。
(比較例2)
樹脂層上にSiOxからなる厚さ10nmの第1誘電体薄膜を形成し、さらにSi0からなる第2誘電体薄膜を形成したこと以外は、全て比較例1と同様な方法にて比較例2に係る透明導電性積層体を得た。
(比較例3)
第1誘電体薄膜を設けなかったこと以外は、全て実施例1と同様な方法にて比較例3に係る透明導電性積層体を得た。
(比較例4)
凹凸構造層上に形成するSiOxからなる第1誘電体薄膜の厚みを15nmに変更し、さらに第2誘電体薄膜を設けなかったこと以外は、全て実施例1と同様な方法にて比較例4に係る透明導電性積層体を得た。
(比較例5)
第1誘電体薄膜および第2誘電体薄膜を設けなかったこと以外は、全て実施例1と同様な方法にて比較例5に係る透明導電性積層体を得た。
(タッチパネルの作製)
実施例および比較例で得られた各透明導電性積層体をパネル板とし、他方のパネル板(下側基板)として、ガラス板上に厚さ30nmのITO薄膜を上記と同様の方法で形成したものを用い、この両パネル板を、ITO薄膜同士が対向するように、15μmのスペーサーを介して対向配置して、スイッチ構体としてのタッチパネルをそれぞれ作製した。なお、両パネル板の各ITO薄膜は、上記の対向配置に先立って、予め互いに直交するように形成した。
(屈折率)
フィルム基材、凹凸構造層、第1および第2誘電体薄膜、透明導電性薄膜等の屈折率は、アタゴ社製のアッベ屈折率計を用い、各種測定面に対して測定光を入射させるようにして、該屈折計に示される規定の測定方法により測定を行った。
(各層の厚さ)
各種フィルム基材、ハードコート層、凹凸構造層、粘着剤層等の1μm以上の厚みを有するものに関しては、ミツトヨ製マイクロゲージ式厚み計にて測定を行った。ハードコート層、凹凸構造層、粘着剤層等の直接厚みを計測することが困難な層の場合は、各層を設けた基材の総厚みを測定し、基材の厚みを差し引くことで各層の膜厚を算出した。
第1および第2誘電体薄膜、透明導電性薄膜等の厚みは、大塚電子(株)製の瞬間マルチ測光システムであるMCPD2000(商品名)を用い、干渉スペクトルよりの波形より算出した。各膜厚については、下記表1に示す。
(ニュートンリング抑制効果の評価)
各実施例および比較例で得られた透明導電性積層体について、それらのニュートンリング抑制効果の評価を行った。即ち、三波長の蛍光灯を用い、透明導電性積層体の透明導電性薄膜が形成されている面を、別の透明な厚さ700μmのITO付きガラスに押付け、目視により観察した。結果を下記表2に示す。尚、評価基準は次の通りとした。
○:ニュートンリングによる干渉色はほとんど目立たない。
△:透明導電性積層体表面に薄くニュートンリングによる干渉色の変化が確認できる。
×:数mm〜数cmの間隔でニュートンリングによる干渉色が確認できる。
(ヘイズの測定)
へイズ(曇度)の測定方法は、JIS K7136に準じ、ヘイズメーターHGM−2DP(スガ試験機株式会社製)を用いて測定した。結果を下記表2に示す。
(表面粗さ)
表面粗さは、ET‐4000(商品名、小坂研究所製)にてJIS B1994に準じ粗さ曲線を求め、Ra(中心線平均粗さ)、Rz(平均粗さ)、Rmax(最大粗さ)をそれぞれ算出した。結果を下記表2に示す。
(像鮮明度)
像鮮明度はJIS K7105−1981に準じ、スガ試験機(株)製(商品名:ICM−1)を用いて測定した。光学くしの種類としては、それぞれ幅が0.125mm、0.5mm、2.0mmのものを用いた。また、鮮明性の評価については、光学くしの幅0.5mmに於ける像鮮明度の値を用いて、下記の判断基準により判断した。結果を下記表1に示す。
○:30%より大きい
△:10%〜30%
×:10%未満
(ペン入力耐久性)
各実施例または比較例で得られた透明導電性積層体をそれぞれ備えたタッチパネルについて、ペン入力耐久性の評価を行った。即ち、それぞれのタッチパネルについて、ポリアセタールからなるペン(ペン先R0.8mm)を用いて、透明導電性積層体側から荷重500gで30万回の増動を行った後に導電面のリニアリティを測定した。透明導電性積層体において、5Vの電圧を印加し、測定開始位置Aの出力電圧をE、測定終了位置Bの出力電圧をE、測定点の出力電圧をE、理論値をExxとすると、リニアリティは下記数式を用いた計算から得られる。図4に、実施例1で得られたタッチパネルに於ける電圧値と測定位置との関係を示すグラフを示す。同図に示す実線は実測値を示し、破線は理論値を示す。得られたリニアリティの値から、ペン入力耐久性の評価をした。結果を下記表1に示す。尚、評価基準は次の通りとした。また、実施例2〜9および比較例1〜5に於いて得られた透明導電性積層体を備えるタッチパネルについても同様の方法で評価した。
○:1.5%未満
△:1.5%〜3%
×:3.0%より大きい
Figure 0004500159
(結果)
下記表1および2から明らかな様に、例えば実施例1〜3、7および8に係るタッチパネルについては、鮮明性、ニュートンリングの抑制効果、およびペン入力耐久性の全てに優れている。しかし、比較例1〜5に係るタッチパネルであると、鮮明性は良好であっても、ニュートンリングの抑制効果およびペン入力耐久性については良好な結果が得られなかった。
Figure 0004500159
Figure 0004500159
以上説明したとおり、本発明に係る透頭導電性体およびそれを備えたタッチパネルは、凹凸構造層を設けることによりタッチパネル使用時に発生するニュートンリングの発生を抑制するので、視認性に優れたタッチパネルを提供することができる。加えて、粘着剤層のクッション効果と、誘電体薄膜を2層設けることにより、凹凸構造層を設けない場合と同等以上のペン入力耐久性を長期にわたって発揮させ、長寿命のタッチパネルとすることができる。
本発明の実施の一形態に係る透明導電性積層体を示す断面模式図である。 本発明の他の実施の形態に係る透明導電性積層体を示す断面模式図である。 本発明の実施の一形態に係るタッチパネルを示す断面模式図である。 実施例1で得られたタッチパネルに於ける電圧値と測定位置との関係を示すグラフである。
符号の説明
1 フィルム基材
2 凹凸構造層
2a 有機樹脂バインダー
2b 微粒子
3 第1誘電体薄膜
4 第2誘電体薄膜
5 導電性薄膜
5’ 他の導電性薄膜
7 粘着剤層
8 透明基体
9 ハードコート層
10、11 透明導電性積層体
12 透明基体
13 スペーサー
14 下側基板
15 タッチパネル

Claims (4)

  1. 透明なフィルム基材の一方の面に、凹凸構造層、第1誘電体薄膜、第2誘電体薄膜および透明な導電性薄膜が順次積層されており、
    前記フィルム基材の他方の面に透明な粘着剤層を介して透明基体が貼り合わされており、
    前記第1誘電体薄膜は、SiO 層(xは1.5以上2未満)であり、
    前記第2誘電体薄膜は、二酸化ケイ素層であることを特徴とする透明導電性積層体。
  2. 前記凹凸構造層は、有機樹脂バインダーに微粒子を添加して凹凸形状に形成されたものであることを特徴とする請求項1記載の透明導電性積層体。
  3. 前記微粒子は、略球形であることを特徴とする請求項に記載の透明導電性積層体。
  4. 請求項1〜のいずれかに記載の透明導電性積層体と、他の透明な導電性薄膜を有する他の透明基体とを、導電性薄膜同士が対向するようにスペーサーを介して対向配置して構成されることを特徴とするタッチパネル。
JP2004370645A 2004-12-22 2004-12-22 透明導電性積層体およびそれを備えたタッチパネル Expired - Fee Related JP4500159B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004370645A JP4500159B2 (ja) 2004-12-22 2004-12-22 透明導電性積層体およびそれを備えたタッチパネル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004370645A JP4500159B2 (ja) 2004-12-22 2004-12-22 透明導電性積層体およびそれを備えたタッチパネル

Publications (2)

Publication Number Publication Date
JP2006179274A JP2006179274A (ja) 2006-07-06
JP4500159B2 true JP4500159B2 (ja) 2010-07-14

Family

ID=36733174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004370645A Expired - Fee Related JP4500159B2 (ja) 2004-12-22 2004-12-22 透明導電性積層体およびそれを備えたタッチパネル

Country Status (1)

Country Link
JP (1) JP4500159B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070033443A (ko) 2004-10-06 2007-03-26 닛토덴코 가부시키가이샤 투명 도전성 필름 및 터치 패널
JP2006190511A (ja) * 2005-01-04 2006-07-20 Teijin Ltd 透明導電性積層体及びそれを用いた透明タッチパネル
JP2006190510A (ja) * 2005-01-04 2006-07-20 Teijin Ltd 透明導電性積層体及びそれを用いた透明タッチパネル
JP2006190508A (ja) * 2005-01-04 2006-07-20 Teijin Ltd 透明導電性積層体及びそれを用いた透明タッチパネル
JP2006190512A (ja) * 2005-01-04 2006-07-20 Teijin Ltd 透明導電性積層体及びそれを用いた透明タッチパネル
JP2006190509A (ja) * 2005-01-04 2006-07-20 Teijin Ltd 透明導電性積層体及びそれを用いた透明タッチパネル
KR100954309B1 (ko) 2005-09-12 2010-04-21 닛토덴코 가부시키가이샤 투명 도전성 필름, 터치 패널용 전극판 및 터치 패널
JP5116004B2 (ja) * 2006-08-03 2013-01-09 日東電工株式会社 透明導電性積層体及びそれを備えたタッチパネル
JP5219363B2 (ja) * 2006-12-21 2013-06-26 日本合成化学工業株式会社 積層体
JP5506011B2 (ja) * 2007-03-02 2014-05-28 日東電工株式会社 粘着剤層付き透明導電性フィルムおよびその製造方法
JP2010020267A (ja) 2008-06-09 2010-01-28 Sony Corp 光学フィルムおよびその製造方法、防眩性フィルム、光学層付偏光子、ならびに表示装置
JP5472290B2 (ja) * 2009-03-17 2014-04-16 コニカミノルタ株式会社 透明導電膜の製造方法
JP5518374B2 (ja) * 2009-05-18 2014-06-11 デクセリアルズ株式会社 貼り合わせ積層petフィルムのオリゴマ析出抑制接着剤層
WO2011001925A1 (ja) * 2009-06-30 2011-01-06 京セラ株式会社 座標入力装置および座標入力機能付き表示装置
JP6087292B2 (ja) * 2011-12-06 2017-03-01 株式会社きもと 表面部材付きディスプレイ及びニュートンリング防止シート
JP5394561B2 (ja) * 2011-12-19 2014-01-22 日東電工株式会社 透明導電フィルム用キャリアフィルム及び積層体
JP5705272B2 (ja) * 2013-06-24 2015-04-22 日東電工株式会社 粘着剤層付き透明導電性フィルムとその製造方法、透明導電性積層体およびタッチパネル
JP6183700B2 (ja) * 2013-08-12 2017-08-23 大日本印刷株式会社 タッチパネル用中間基材フィルム、タッチパネル用積層フィルム、およびタッチパネルセンサ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316378A (ja) * 2001-02-14 2002-10-29 Nitto Denko Corp 透明導電性積層体及びそれを用いたタッチパネル
JP2003094552A (ja) * 2001-09-25 2003-04-03 Teijin Ltd 透明導電性積層体及びタッチパネル

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3614575B2 (ja) * 1996-08-02 2005-01-26 ソニー株式会社 光学的素子又は装置、これらの製造方法、及びその製造装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316378A (ja) * 2001-02-14 2002-10-29 Nitto Denko Corp 透明導電性積層体及びそれを用いたタッチパネル
JP2003094552A (ja) * 2001-09-25 2003-04-03 Teijin Ltd 透明導電性積層体及びタッチパネル

Also Published As

Publication number Publication date
JP2006179274A (ja) 2006-07-06

Similar Documents

Publication Publication Date Title
JP4500159B2 (ja) 透明導電性積層体およびそれを備えたタッチパネル
JP4721359B2 (ja) 透明導電性積層体及びそれを備えたタッチパネル
JP5275372B2 (ja) 透明導電性フィルム、その製造方法およびタッチパネル
JP4314623B2 (ja) 透明導電性積層体及びタッチパネル
JP5116004B2 (ja) 透明導電性積層体及びそれを備えたタッチパネル
TWI466138B (zh) Transparent conductive film, transparent conductive laminate and touch panel, and method for manufacturing transparent conductive film
TWI381400B (zh) A transparent conductive film, a method for manufacturing the same, and a touch panel provided with the same
KR100954309B1 (ko) 투명 도전성 필름, 터치 패널용 전극판 및 터치 패널
JP6328984B2 (ja) 両面透明導電性フィルムおよびタッチパネル
JP2011167914A (ja) 積層フィルムおよびそれを用いた透明導電性積層フィルム、透明導電性積層シート並びにタッチパネル
JP2007234424A (ja) 透明導電性フィルムおよびタッチパネル
JP2013022843A (ja) 透明導電性フィルムおよびタッチパネル
JP2006261091A (ja) 透明導電性積層体及びそれを備えたタッチパネル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4500159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160423

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees