JP4493967B2 - CO2 laser processing method and laser processing apparatus - Google Patents

CO2 laser processing method and laser processing apparatus Download PDF

Info

Publication number
JP4493967B2
JP4493967B2 JP2003343340A JP2003343340A JP4493967B2 JP 4493967 B2 JP4493967 B2 JP 4493967B2 JP 2003343340 A JP2003343340 A JP 2003343340A JP 2003343340 A JP2003343340 A JP 2003343340A JP 4493967 B2 JP4493967 B2 JP 4493967B2
Authority
JP
Japan
Prior art keywords
laser
period
electric field
oscillation
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003343340A
Other languages
Japanese (ja)
Other versions
JP2005103625A (en
Inventor
吾一 大前
博志 青山
邦男 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Via Mechanics Ltd filed Critical Hitachi Via Mechanics Ltd
Priority to JP2003343340A priority Critical patent/JP4493967B2/en
Publication of JP2005103625A publication Critical patent/JP2005103625A/en
Application granted granted Critical
Publication of JP4493967B2 publication Critical patent/JP4493967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)
  • Laser Beam Processing (AREA)

Description

この発明は、RF電場を形成することによりパルス状のレーザを出力させ、出力されたレーザを加工部に照射して加工を行うようにしたCOレーザ加工方法およびレーザ加工装置に関するものである。 The present invention relates to a CO 2 laser processing method and a laser processing apparatus in which a pulsed laser is output by forming an RF electric field, and processing is performed by irradiating a processing portion with the output laser.

図4は、COレーザ発振器の模式図である。
発振器1には、図示を省略するインピーダンス整合回路網が接続されている。RF電源6は、このインピーダンス整合回路網により、出力されるレーザ4が仕様を満足するように調整されている。1対の放電電極2の一方はRF電源6に、他方はアース7に、それぞれ接続されている。発振器1の内部には、1対の共振器ミラー3が設置されている(特許文献1)。
FIG. 4 is a schematic diagram of a CO 2 laser oscillator.
An impedance matching network (not shown) is connected to the oscillator 1. The RF power source 6 is adjusted by the impedance matching network so that the output laser 4 satisfies the specifications. One of the pair of discharge electrodes 2 is connected to the RF power source 6 and the other is connected to the ground 7. A pair of resonator mirrors 3 is installed inside the oscillator 1 (Patent Document 1).

RF電源6は発振指令5が入力されると、発振器1内部に設置された放電電極2に電力を供給し、供給された電力により、放電電極2間にRF電場が形成される。このRF電場によりCOを含む混合ガスが電気的に励起され、放電電極2間にプラズマが形成される。このプラズマを利得媒質として放電電極2と直交する方向に配置された共振器ミラー3により、レーザ4が生成される。 When an oscillation command 5 is input to the RF power source 6, power is supplied to the discharge electrode 2 installed inside the oscillator 1, and an RF electric field is formed between the discharge electrodes 2 by the supplied power. The mixed gas containing CO 2 is electrically excited by this RF electric field, and plasma is formed between the discharge electrodes 2. A laser 4 is generated by a resonator mirror 3 arranged in a direction orthogonal to the discharge electrode 2 using this plasma as a gain medium.

次に、パルスの発振過程について説明する。
図5は、従来のレーザ4の波形を示す図であり、横軸は時間、縦軸はエネルギ強度である。
発振指令5がRF電源6に入力されている間、放電電極2にはRF電場が形成される。このRF電場によってプラズマが生成され、ある時間が経過した後(図では発振指令5が入力されてから約10μs)レーザ4の出力が始まり、レーザ4の強度は時間と共に指数関数的に成長する。そして、発振指令5が停止されるとRF電場が消滅し、利得の緩和と共にレーザ4の強度は指数関数的に立ち下がり、その後消滅する。
Next, the pulse oscillation process will be described.
FIG. 5 is a diagram showing a waveform of a conventional laser 4, where the horizontal axis represents time and the vertical axis represents energy intensity.
While the oscillation command 5 is being input to the RF power source 6, an RF electric field is formed on the discharge electrode 2. Plasma is generated by this RF electric field, and after a certain time has elapsed (in the figure, about 10 μs after the oscillation command 5 is input), the output of the laser 4 starts, and the intensity of the laser 4 grows exponentially with time. When the oscillation command 5 is stopped, the RF electric field disappears, the intensity of the laser 4 falls exponentially with the gain relaxation, and then disappears.

図6は、レーザ強度の時間的な変化を示す図であり、(a)は発振直後、(b)は発振1秒後である。
レーザの発振周期が1kHz、最大デューティが10%であるCOレーザ発振器(以下、「基準レーザ発振器」という)を、発振周波数1kHz、パルス幅35μs(つまり、デューティ3.5%)で動作させた場合、発振直後と発振1秒後におけるパルス20個のピーク強度はほぼ同じである。(なお、発振1秒後のピーク強度は、発振が継続される限りその後も維持される。)
米国特許第4,169,251号公報
6A and 6B are diagrams showing temporal changes in laser intensity, where FIG. 6A shows a state immediately after oscillation and FIG. 6B shows a state after 1 second of oscillation.
A CO 2 laser oscillator (hereinafter referred to as “reference laser oscillator”) having a laser oscillation period of 1 kHz and a maximum duty of 10% was operated at an oscillation frequency of 1 kHz and a pulse width of 35 μs (that is, a duty of 3.5%). In this case, the peak intensities of 20 pulses immediately after oscillation and 1 second after oscillation are almost the same. (Note that the peak intensity after 1 second of oscillation is maintained thereafter as long as oscillation continues.)
U.S. Pat. No. 4,169,251

ところで、上記した基準レーザ発振器は、ピーク強度が大きく、かつ、パルスエネルギが大きいレーザ発振器であり、大きな穴を高能率で加工することができる。   By the way, the reference laser oscillator described above is a laser oscillator having a large peak intensity and a large pulse energy, and can process a large hole with high efficiency.

しかし、加工する穴の直径は大きいものばかりでなく、小さいものもある。しかも、加工速度をより高速化することが望まれている。   However, the diameter of the hole to be processed is not only large but also small. In addition, it is desired to increase the processing speed.

図7は、従来の制御方法によるレーザパルスの時間的変化を示す図であり、基準レーザ発振器を、パルス幅35μs、レーザ発振周期250μs(デューティ14%)で動作させた場合の発振直後(同図(a))と発振1秒後(同図(b))の20個のパルスのピーク強度を示す図である。
同図に示すように、レーザ発振器の仕様を超えてデューティを大きくした場合、発振直後の3パルス以降のパルスは強度が急激に減少し、1秒後には発振直後の約70%にまで低下する。したがって、この条件で穴明け加工を行うと、穴形状がばらついてしまい、加工品質が低下する。
FIG. 7 is a diagram showing a temporal change of a laser pulse by a conventional control method. Immediately after oscillation when a reference laser oscillator is operated with a pulse width of 35 μs and a laser oscillation period of 250 μs (duty 14%) (FIG. 7) It is a figure which shows the peak intensity of 20 pulses after (a)) and 1 second of oscillation (the figure (b)).
As shown in the figure, when the duty is increased beyond the specification of the laser oscillator, the intensity of the pulses after the third pulse immediately after the oscillation decreases rapidly, and after 1 second, it decreases to about 70% immediately after the oscillation. . Therefore, when drilling is performed under these conditions, the hole shape varies, and the processing quality deteriorates.

なお、説明を省略するが、基準レーザ発振器により、デューティが仕様以下になる条件でレーザの発振周波数を定格周波数以上(例えば、4kHz)にした場合、レーザのピーク強度は発振直後から減少する傾向にある。   Although explanation is omitted, when the laser oscillation frequency is set to be higher than the rated frequency (for example, 4 kHz) under the condition that the duty is below the specification by the reference laser oscillator, the peak intensity of the laser tends to decrease immediately after the oscillation. is there.

しかも、レーザの発振周波数を定格周波数以上(例えば、4kHz)にする場合、レーザを連続して発振することができなくなるため、例えば、数パルスのレーザを発振させた後に、1ms程度の休止時間を設ける必要がある。   In addition, when the laser oscillation frequency is higher than the rated frequency (for example, 4 kHz), the laser cannot oscillate continuously. For example, after oscillating several pulses of laser, a pause time of about 1 ms is required. It is necessary to provide it.

このように、レーザの発振周波数およびデューティを仕様以上に大きくした場合、レーザパルスのピーク強度のばらつきが大きくなるだけでなく、加工能率を向上させることができないが、基準レーザ発振器の定格は、現在入手できる最大の定格である。   In this way, when the laser oscillation frequency and duty are increased beyond the specifications, not only the variation in the peak intensity of the laser pulse increases, but also the processing efficiency cannot be improved. The maximum rating available.

ピーク強度変化を抑制する手段としては、例えば、発振周期250μs、デューティ14%の条件でインピーダンスの整合を行えばよい。しかし、レーザ加工装置では加工パターンやワークの種類によってレーザの照射周期やパルス幅を変える必要がある。したがって、時間を要するインピーダンスの整合を加工毎に行うことは実用的でない。   As a means for suppressing the change in peak intensity, for example, impedance matching may be performed under the conditions of an oscillation period of 250 μs and a duty of 14%. However, in the laser processing apparatus, it is necessary to change the laser irradiation period and pulse width depending on the processing pattern and the type of workpiece. Therefore, it is not practical to perform impedance matching that requires time for each processing.

本発明の目的は、レーザ発振器の定格が同じであっても、加工時におけるレーザのピーク強度のばらつきを小さくすることにより加工品質を向上させると共に、レーザの発振周波数を高くした場合(例えば、4kHz)であっても、レーザを連続して発振させることにより加工能率を向上させることができるレーザ加工方法およびレーザ加工装置を提供するにある。   The object of the present invention is to improve the processing quality by reducing the variation in the peak intensity of the laser during processing even when the rating of the laser oscillator is the same, and to increase the laser oscillation frequency (for example, 4 kHz). However, the present invention is to provide a laser processing method and a laser processing apparatus capable of improving the processing efficiency by continuously oscillating a laser.

上記の目的を達成するため、請求項1の発明は、レーザ発振器の放電電極に接続されたRF電源により、前記放電電極でRF電場を形成することで、パルス状のレーザを出力させ、前記レーザを加工部に照射して加工を行うようにしたCO2レーザ加工方法において、前記RF電源のオン期間とオフ期間とが等しい1回のオンオフ周期で前記RF電場を形成すると共に、前記RF電源の1回のオン期間ではレーザが発振しないオンオフ周期で前記RF電場を形成することを繰り返すことにより1個の前記パルス状のレーザを出力させることを特徴とする。 In order to achieve the above object, the invention of claim 1 is characterized in that an RF electric field is formed by the discharge electrode by an RF power source connected to the discharge electrode of a laser oscillator, thereby outputting a pulsed laser, and the laser In the CO2 laser processing method in which processing is performed by irradiating the processing portion, the RF electric field is formed in one on / off cycle in which the ON period and the OFF period of the RF power source are equal, and 1 of the RF power source is formed. One pulse-shaped laser is output by repeating the formation of the RF electric field with an on / off period in which the laser does not oscillate during the on-period.

また、請求項2の発明は、請求項1において、前記オン期間を1μs、前記オフ期間を1μsとすることを特徴とする。
The invention of claim 2 is characterized in that, in claim 1, the on period is 1 μs and the off period is 1 μs .

また、請求項3の発明は、レーザ発振器の放電電極に接続されたRF電源により、前記放電電極でRF電場を形成することで、パルス状のレーザを出力させ、前記レーザを加工部に照射して加工を行うようにしたCO2レーザ加工装置において、前記RF電源のオン期間とオフ期間とが等しい1回のオンオフ周期で前記RF電場を形成すると共に、前記RF電源の1回のオン期間ではレーザが発振しないオンオフ周期で前記RF電場を形成することを繰り返すことにより1個の前記パルス状のレーザを出力させることを特徴とする。
According to a third aspect of the present invention, an RF electric field is formed by the discharge electrode by an RF power source connected to the discharge electrode of the laser oscillator so that a pulsed laser is output, and the laser beam is irradiated to the processing portion. in CO2 laser processing apparatus that performs processing Te, thereby forming the RF field and the on period and the off period of the RF power source in a single on-off period equal to the laser at one of the on period of the RF power supply One pulsed laser is output by repeating the formation of the RF electric field with an on / off period in which the laser does not oscillate.

レーザのピーク強度のばらつきを小さくすることができるので、加工品質を向上させることができる。
また、レーザの発振周波数を高くすることができるので、加工能率を向上させることができる。
Since the variation in the peak intensity of the laser can be reduced, the processing quality can be improved.
Further, since the laser oscillation frequency can be increased, the processing efficiency can be improved.

以下、本発明を図示の実施の形態に基づいて説明する。
なお、本発明は、RF電場を間欠的に形成して1個のレーザを出力させるようにしている。
Hereinafter, the present invention will be described based on the illustrated embodiments.
In the present invention, an RF electric field is intermittently formed to output one laser.

図1は、本発明に係るレーザの時間的変化を示す図であり、基準レーザ発振器をパルス幅35μs、レーザ発振周期250μs(デューティ14%)で動作させた場合である。なお、横軸は時間、縦軸はエネルギ強度である。また、1個のレーザを出力させるのにRF電場を周期2μs(RF電源6のオン時間1μs、オフ時間1μs)で形成している。   FIG. 1 is a diagram showing a temporal change of a laser according to the present invention, in which a reference laser oscillator is operated with a pulse width of 35 μs and a laser oscillation period of 250 μs (duty 14%). The horizontal axis represents time, and the vertical axis represents energy intensity. Further, an RF electric field is formed with a period of 2 μs (the RF power supply 6 has an on time of 1 μs and an off time of 1 μs) in order to output one laser.

図示の場合、レーザのパルスエネルギは、点線で示す従来の場合に比べて約25%低下する。   In the case shown, the pulse energy of the laser is reduced by about 25% compared to the conventional case indicated by the dotted line.

図2は、本発明によるレーザのピーク強度の時間的な変化を示す図であり、(a)は発振直後、(b)は発振開始から1秒後である。
同図に示されているように、本発明に依れば、発振開始から1秒後におけるピーク強度は、発振直後の90%程度である。したがって、加工形状に大きな差は発生しない。すなわち、本発明に依れば、レーザのパルスエネルギが小さくても良い場合、レーザの発振周波数を4倍にして加工を行うことが可能になり加工能率を従来の4倍にすることができ、しかも加工形状のばらつきが小さい。
2A and 2B are diagrams showing temporal changes in the peak intensity of the laser according to the present invention. FIG. 2A shows a state immediately after oscillation, and FIG. 2B shows one second after the start of oscillation.
As shown in the figure, according to the present invention, the peak intensity one second after the start of oscillation is about 90% immediately after the oscillation. Therefore, a large difference does not occur in the machining shape. That is, according to the present invention, when the pulse energy of the laser may be small, it is possible to perform processing by quadrupling the laser oscillation frequency, and the processing efficiency can be quadrupled compared to the conventional one. In addition, the variation in machining shape is small.

なお、パルス発生時におけるRF電場の形成方法としては、図3(a)に示すように、RF電源6のオン時間13とオフ時間14を1組としてオン時間13とオフ時間14を繰返してもよいし、数種類のオン時間13とオフ時間14を組み合わせる方式、例えば同図(b)に示すように、パルス立上りまでは連続してRF電場を形成し、パルスが立上った後にRF電場を間欠的に形成するようにしてもよい。   Note that, as shown in FIG. 3A, the RF electric field can be formed when a pulse is generated by repeating the on-time 13 and off-time 14 with the on-time 13 and off-time 14 of the RF power source 6 as one set. It is good to combine several types of on-time 13 and off-time 14, for example, as shown in FIG. 5B, an RF electric field is continuously formed until the pulse rises, and the RF electric field is changed after the pulse rises. You may make it form intermittently.

なお、発明者の試験では、(b)に対して(a)に示すスイッチングの方がパルス列全体のピーク強度を揃えることができた。   In the inventor's test, the switching shown in (a) compared with (b) was able to align the peak intensity of the entire pulse train.

また、大きなパルスエネルギを必要とする場合には、従来のRF電場の形成方法、すなわち、レーザを出力する間、連続的にRF電場を形成するようにすればよい。   When a large pulse energy is required, a conventional RF electric field forming method, that is, an RF electric field may be continuously formed during laser output.

また、本発明に依れば、同図(c)に示すように、1個のレーザを出力する場合にRF電源6のオン時間13とオフ時間14の組み合わせを変えることによりパルスエネルギの大きさを制御することができるので、加工品質を向上させることができる。   Further, according to the present invention, as shown in FIG. 3C, the magnitude of the pulse energy is obtained by changing the combination of the on time 13 and the off time 14 of the RF power source 6 when outputting one laser. Therefore, machining quality can be improved.

なお、RF電場の形成を断続させることによりピーク強度を一定にすることができるのは、RF電場間に生成されたプラズマのRF電場から供給されるエネルギを吸収する効率がデューティの大きさに関係なくほぼ一定であるためであると推定される。   The peak intensity can be made constant by intermittently forming the RF electric field because the efficiency of absorbing energy supplied from the RF electric field of the plasma generated between the RF electric fields is related to the magnitude of the duty. It is estimated that this is because it is almost constant.

なお、同一形状の穴を加工する場合、RF電場を間欠的に形成するようにすると、RF電場を連続的に形成する場合に比べて、消費エネルギを小さくできることを確認できた。   In addition, when processing the hole of the same shape, when it was made to form RF electric field intermittently, it has confirmed that energy consumption could be made small compared with the case where RF electric field was formed continuously.

本発明に係るレーザの時間的変化を示す図である。It is a figure which shows the time change of the laser which concerns on this invention. 本発明によるレーザのピーク強度の時間的な変化を示す図である。It is a figure which shows the time change of the peak intensity of the laser by this invention. 本発明に係るRF電場のオンオフ制御方法を示す図である。It is a figure which shows the on-off control method of RF electric field which concerns on this invention. COレーザ発振器の模式図である。It is a schematic diagram of a CO 2 laser oscillator. 従来のレーザの波形を示す図である。It is a figure which shows the waveform of the conventional laser. 従来のレーザ強度の時間的な変化を示す図である。It is a figure which shows the time change of the conventional laser intensity. 従来の制御方法によるレーザパルスの時間的変化を示す図である。It is a figure which shows the time change of the laser pulse by the conventional control method.

符号の説明Explanation of symbols

1 RF電源
4 レーザ
1 RF power supply 4 Laser

Claims (3)

レーザ発振器の放電電極に接続されたRF電源により、前記放電電極でRF電場を形成することで、パルス状のレーザを出力させ、前記レーザを加工部に照射して加工を行うようにしたCO2レーザ加工方法において、
前記RF電源のオン期間とオフ期間とが等しい1回のオンオフ周期で前記RF電場を形成すると共に、前記RF電源の1回のオン期間ではレーザが発振しないオンオフ周期で前記RF電場を形成することを繰り返すことにより1個の前記パルス状のレーザを出力させることを特徴とするCO2レーザ加工方法。
A CO2 laser in which an RF electric field is generated at the discharge electrode by an RF power source connected to the discharge electrode of a laser oscillator, thereby outputting a pulsed laser and irradiating the laser beam onto the processing portion. In the processing method,
The RF electric field is formed in one on / off cycle in which the on period and the off period of the RF power source are equal, and the RF electric field is formed in an on / off cycle in which the laser does not oscillate in one on period of the RF power source. A CO2 laser processing method characterized by outputting one pulsed laser by repeating the above.
前記オン期間を1μs、前記オフ期間を1μsとすることを特徴とする請求項1に記載のCO2レーザ加工方法。   The CO2 laser processing method according to claim 1, wherein the on period is 1 μs and the off period is 1 μs. レーザ発振器の放電電極に接続されたRF電源により、前記放電電極でRF電場を形成することで、パルス状のレーザを出力させ、前記レーザを加工部に照射して加工を行うようにしたCO2レーザ加工装置において、
前記RF電源のオン期間とオフ期間とが等しい1回のオンオフ周期で前記RF電場を形成すると共に、前記RF電源の1回のオン期間ではレーザが発振しないオンオフ周期で前記RF電場を形成することを繰り返すことにより1個の前記パルス状のレーザを出力させることを特徴とするCO2レーザ加工装置。
A CO2 laser in which an RF electric field is generated by the discharge electrode by an RF power source connected to a discharge electrode of a laser oscillator so that a pulsed laser is output and the laser beam is irradiated to the processing portion. In processing equipment,
And forming said RF field and the on period and the off period of the RF power source in a single on-off period equal, the laser forms the RF field in OFF period does not oscillate in one ON period of the RF power supply A CO2 laser processing apparatus that outputs one pulsed laser by repeating the above.
JP2003343340A 2003-10-01 2003-10-01 CO2 laser processing method and laser processing apparatus Expired - Fee Related JP4493967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003343340A JP4493967B2 (en) 2003-10-01 2003-10-01 CO2 laser processing method and laser processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003343340A JP4493967B2 (en) 2003-10-01 2003-10-01 CO2 laser processing method and laser processing apparatus

Publications (2)

Publication Number Publication Date
JP2005103625A JP2005103625A (en) 2005-04-21
JP4493967B2 true JP4493967B2 (en) 2010-06-30

Family

ID=34537344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343340A Expired - Fee Related JP4493967B2 (en) 2003-10-01 2003-10-01 CO2 laser processing method and laser processing apparatus

Country Status (1)

Country Link
JP (1) JP4493967B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8687661B2 (en) * 2012-04-13 2014-04-01 Coherent, Inc. Pulsed CO2 laser output-pulse shape and power control
JP5988903B2 (en) * 2013-03-19 2016-09-07 住友重機械工業株式会社 Laser processing apparatus and laser processing method
JP2019177410A (en) 2018-03-30 2019-10-17 Dgshape株式会社 Processing method, processing system and processing program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218082A (en) * 1990-01-23 1991-09-25 Mitsubishi Electric Corp Carbon dioxide gas laser device
JPH08309571A (en) * 1995-05-19 1996-11-26 Nippon Steel Corp Laser beam machining method for copper alloy
JPH08512429A (en) * 1993-07-03 1996-12-24 イギリス国 Laser equipment
JP2002252402A (en) * 2001-02-21 2002-09-06 Keyence Corp Laser oscillator and its laser pulse control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218082A (en) * 1990-01-23 1991-09-25 Mitsubishi Electric Corp Carbon dioxide gas laser device
JPH08512429A (en) * 1993-07-03 1996-12-24 イギリス国 Laser equipment
JPH08309571A (en) * 1995-05-19 1996-11-26 Nippon Steel Corp Laser beam machining method for copper alloy
JP2002252402A (en) * 2001-02-21 2002-09-06 Keyence Corp Laser oscillator and its laser pulse control method

Also Published As

Publication number Publication date
JP2005103625A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
US7115185B1 (en) Pulsed excitation of inductively coupled plasma sources
US6288499B1 (en) Electromagnetic energy distributions for electromagnetically induced mechanical cutting
US8687661B2 (en) Pulsed CO2 laser output-pulse shape and power control
JP2016059932A (en) Laser processing apparatus and output method of pulse laser beam
KR20160041252A (en) Method and apparatus for generating high power terahertz
US5107510A (en) Apparatus and method for burst-mode operation of a pulsed laser
JP4493967B2 (en) CO2 laser processing method and laser processing apparatus
WO2003107496A1 (en) Laser beam machine and control method of the machine
JP5734158B2 (en) Power supply device for laser processing machine
JP4874561B2 (en) Q-switched laser device
JPH0145225B2 (en)
JP2008194709A (en) Laser beam machining method
JP3445390B2 (en) Marking processing equipment
JP2007507870A (en) Operation method of gas laser device
JPH01185987A (en) Oscillation of pulse laser and apparatus therefor
KR100273959B1 (en) Gas laser beam machine
JPH04249387A (en) Gas laser oscillation device
JPH0730179A (en) Q switched co2 laser device
JP2721887B2 (en) Laser processing equipment
WO2001020730A3 (en) Electric oxygen iodine laser
JPH04346484A (en) Pulse laser oscillator
JPH01192183A (en) Pulse gas laser device
JP2015115399A (en) Laser power supply device and method for controlling laser power supply device
JPH03218082A (en) Carbon dioxide gas laser device
SU1632670A1 (en) Method of plasma treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees