JPH01192183A - Pulse gas laser device - Google Patents

Pulse gas laser device

Info

Publication number
JPH01192183A
JPH01192183A JP1766488A JP1766488A JPH01192183A JP H01192183 A JPH01192183 A JP H01192183A JP 1766488 A JP1766488 A JP 1766488A JP 1766488 A JP1766488 A JP 1766488A JP H01192183 A JPH01192183 A JP H01192183A
Authority
JP
Japan
Prior art keywords
laser
total reflection
optical resonator
reflection mirror
tail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1766488A
Other languages
Japanese (ja)
Inventor
Yukio Kudokoro
之夫 久所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1766488A priority Critical patent/JPH01192183A/en
Publication of JPH01192183A publication Critical patent/JPH01192183A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/104Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation in gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To make the tail of laser rays small even if a large laser output is taken out by a method wherein an optical resonator is made variable in a resonator length synchronizing with a modulation frequency of a discharge tube. CONSTITUTION:When a pulse signal generated in a pulse generator 8 is inputted, a discharge current is impressed on a laser gas discharge tube 1 from a high voltage power source 7 and a pulse discharge is made to occur. Laser rays are resonated from an optical resonator composed of a laser output mirror 4 and a total reflection mirror 5. The total reflection mirror 5 is mounted on a piezoelectric transducer 6, so that it is shifted by half a wavelength when a DC high voltage is applied to the piezoelectric transducer 6 from a drive converter 10. A laser oscillation is made to stop due to the decrease of the optical resonator in a Q value caused by the shift of the total reflection mirror 5 or the change of the optical resonator in a resonator length. The tail of laser rays oscillated when the total reflection mirror 5 is shifted is extremely small as compared with that of laser rays oscillated when the mirror 5 is not shifted.

Description

【発明の詳細な説明】 扱血豆1 本発明はパルスガスレーザ装置に関し、特に放電電流を
チョッピングすることによりパルス発振させる炭酸ガス
レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Handling Blood Bean 1 The present invention relates to a pulsed gas laser device, and particularly to a carbon dioxide laser device that generates pulse oscillation by chopping a discharge current.

良土韮韮 従来、この種の炭酸ガスレーザ装置においては、放電電
流をチョッピングすることによりパルス放電させてレー
ザ光をパルス発振させている。
Nirayoto: Conventionally, in this type of carbon dioxide laser device, a pulse discharge is generated by chopping the discharge current to generate pulse oscillation of laser light.

しかしながら、炭酸ガスレーザ装置の発振過程において
、炭酸ガス分子の上準位(001°)の寿命は通常のガ
ス圧において約11secと長く、パルス放電によるレ
ーザガスの励起を停止した後もゲインが残っており、レ
ーザ発振が停止することなく続いてしまう。
However, in the oscillation process of a carbon dioxide laser device, the lifetime of the upper level (001°) of the carbon dioxide molecule is as long as about 11 seconds at normal gas pressure, and the gain remains even after excitation of the laser gas by pulse discharge is stopped. , the laser oscillation continues without stopping.

このため、第3図(c)に示すように、パルス放電の停
止後にいわゆるテイル(Tail)と呼ばれるレーザ光
の発振がだ、らだらと続く。
Therefore, as shown in FIG. 3(c), after the pulse discharge stops, the oscillation of the laser light, called a tail, continues.

炭酸ガスレーザ装置の場合、炭酸ガスの他に窒素ガスを
混合しており、この窒素分子を放電によりまず励起させ
、励起した窒素分子と炭酸ガス分子との衝突により窒素
分子のエネルギが炭酸ガス分子に移行して炭酸ガス分子
がレーザ上準位に励起されるという過程をとる。
In the case of a carbon dioxide laser device, nitrogen gas is mixed in addition to carbon dioxide gas, and the nitrogen molecules are first excited by electric discharge, and the energy of the nitrogen molecules is transferred to carbon dioxide molecules by collision between the excited nitrogen molecules and carbon dioxide molecules. The process takes place in which carbon dioxide molecules are excited to the upper level of the laser.

この窒素分子は等核2元分子であるので、−旦励起され
てしまうと他の分¥に衝突しないかぎりエネルギを失わ
ない、したがって、窒素ガスの混合比を多(するほど、
レーザ光のテイルは長くなるが、炭酸ガスレーザ装置の
場合には窒素ガス分圧をある程度高くしないと放電の電
気入力が入らない。
Since this nitrogen molecule is a homonuclear binary molecule, once it is excited, it will not lose energy unless it collides with another component. Therefore, the higher the mixing ratio of nitrogen gas, the more
Although the tail of the laser beam becomes longer, in the case of a carbon dioxide laser device, the electric input for discharge cannot be applied unless the nitrogen gas partial pressure is increased to a certain degree.

このなめ、レーザ出力を多く取出すとともにレーザ光の
テイルを小さくしようとするときには、窒素ガス分圧の
コントロールだけでは無理が生ずるという欠点がある。
For this reason, when attempting to extract a large amount of laser output and reduce the tail of the laser beam, there is a drawback that controlling the nitrogen gas partial pressure alone is difficult.

1五0亘旬 本発明は上記のような従来のものの欠点を除去すべくな
されたもので、レーザ出力を多く取出す場合でもレーザ
光のテイルを小さくすることができるパルスガスレーザ
装置の提供を目的とする。
The present invention was made in order to eliminate the above-mentioned drawbacks of the conventional ones, and its purpose is to provide a pulsed gas laser device that can reduce the tail of laser light even when extracting a large amount of laser output. do.

1旦立璽り 本発明によるパルスガスレーザ装置は、光共振器内のレ
ーザガス放電管に変調された放電電流を印加することに
より連続パルス発振を行わせるパルスガスレーザ装置で
あって、前記放を電流の変調周波数に同期して前記光共
振器の共振器長を可変する可変手段を設けたことを特徴
とする。
The pulsed gas laser device according to the present invention is a pulsed gas laser device that performs continuous pulse oscillation by applying a modulated discharge current to a laser gas discharge tube within an optical resonator, and the pulsed gas laser device performs continuous pulse oscillation by applying a modulated discharge current to a laser gas discharge tube in an optical resonator. The present invention is characterized in that a variable means for varying the resonator length of the optical resonator in synchronization with the modulation frequency is provided.

K1男 次に、本発明の一実施例について図面を参照して説明す
る。
K1 Next, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の構成を示す構成図である0
図において、本発明の一実施例による炭酸ガスレーザ装
置は、レーザガス放電管1と、カソード電1ff12と
、7/  Ft4i3と、レーザ出力鏡4と、全反射鏡
5と、圧電変換器(PZT ) 6と、高電圧電源7と
、パルス発生器8と、タイミング回路9と、圧電変換器
駆動用コンバータ(以下駆動用コンバータとする)10
とを含んで構成されている。
FIG. 1 is a configuration diagram showing the configuration of an embodiment of the present invention.
In the figure, a carbon dioxide laser device according to an embodiment of the present invention includes a laser gas discharge tube 1, a cathode electrode 1ff12, 7/Ft4i3, a laser output mirror 4, a total reflection mirror 5, and a piezoelectric transducer (PZT) 6. , a high voltage power supply 7, a pulse generator 8, a timing circuit 9, and a piezoelectric converter driving converter (hereinafter referred to as the driving converter) 10.
It is composed of:

第2図は本発明の一実施例のタイミングチャートである
。第2図(a)はパルス発生器8からのパルス信号を示
し、第2図(b)はレーザガス放電管1に流される放電
電流の波形を示している。
FIG. 2 is a timing chart of one embodiment of the present invention. FIG. 2(a) shows the pulse signal from the pulse generator 8, and FIG. 2(b) shows the waveform of the discharge current flowing through the laser gas discharge tube 1.

また、第2図(c)は全反射鏡5をシフトしないときの
レーザ光の波形を示している。
Moreover, FIG. 2(c) shows the waveform of the laser beam when the total reflection mirror 5 is not shifted.

さらに、第2図(d)は駆動用コンバータ10から圧電
変換器6に供給されるDC高電圧を示し、第2図(e)
は圧電変換器6により全反射鏡5がシフトされたときの
レーザ光の波形を示している。
Further, FIG. 2(d) shows the DC high voltage supplied from the drive converter 10 to the piezoelectric converter 6, and FIG. 2(e)
shows the waveform of laser light when the total reflection mirror 5 is shifted by the piezoelectric transducer 6.

第3図は炭酸ガスレーザの利得曲線と縦モードとの関係
を示す図である。これら第1図〜第3図を用いて本発明
の一実施例の動作について説明する。
FIG. 3 is a diagram showing the relationship between the gain curve of a carbon dioxide laser and the longitudinal mode. The operation of one embodiment of the present invention will be explained using these FIGS. 1 to 3.

パルス発生器8で発生されたパルス信号がタイミング回
路9を介して高電圧電源7の図示せぬ放電コントロール
部に入力されると、放を電流が高電圧電源7からレーザ
ガス放電管1に印加され、レーザガス放電管1内におい
てカソード電極2とアノード電極3とによりパルス放電
が生ずる[第2図(a)、(b)参照]。
When the pulse signal generated by the pulse generator 8 is input to the discharge control section (not shown) of the high voltage power supply 7 via the timing circuit 9, a discharge current is applied from the high voltage power supply 7 to the laser gas discharge tube 1. , a pulse discharge is generated in the laser gas discharge tube 1 by the cathode electrode 2 and the anode electrode 3 [see FIGS. 2(a) and 2(b)].

このとき、レーザガス放電管1ならびに高電圧電源7な
どの放電回路系の有する浮遊容量により、レーザガス放
電管1に流れる放電電流は第2図(b)に示すような波
形となる。
At this time, due to the stray capacitance of the laser gas discharge tube 1 and the discharge circuit system such as the high voltage power supply 7, the discharge current flowing through the laser gas discharge tube 1 has a waveform as shown in FIG. 2(b).

このパルス放電により、レーザ出力鏡4と全反射115
とにより構成された光共振器からレーザ光が発振される
This pulse discharge causes the laser output mirror 4 and the total reflection 115
Laser light is oscillated from an optical resonator configured with.

このとき同時に、パルス発生器8からのパルス信号がタ
イミング回路9を介して駆動用コンバータ10に入力さ
れ、駆動用コンバータ10ではこの信号に応答して圧電
変換器6にDC高電圧を加える。
At the same time, a pulse signal from pulse generator 8 is input to drive converter 10 via timing circuit 9, and drive converter 10 applies a DC high voltage to piezoelectric converter 6 in response to this signal.

全反射鏡5は圧電変換器6にマウントされているので、
駆動用コンバータ10から圧電変換器6へのDC高電圧
の印加により半波長分シフトする。
Since the total reflection mirror 5 is mounted on the piezoelectric transducer 6,
Application of a DC high voltage from the drive converter 10 to the piezoelectric transducer 6 causes a shift by a half wavelength.

この全反射鏡5のシフト、すなわち光共振器の共振器長
の変化により光共振器のQ値が下がってレーザ発振が停
止される。[第2図(d)、(e)参照]。
Due to this shift of the total reflection mirror 5, that is, a change in the resonator length of the optical resonator, the Q value of the optical resonator decreases and laser oscillation is stopped. [See Figures 2(d) and (e)].

したがって、全反射鏡5が圧電変換器6によりシフトさ
れたときのレーザ光[第2図(e)参照]は、全反射鏡
5がシフトされないときのレーザ光〔第2図(c)参照
]に比して極端にテイルが少なくなる。
Therefore, the laser light when the total reflection mirror 5 is shifted by the piezoelectric transducer 6 [see FIG. 2(e)] is different from the laser light when the total reflection mirror 5 is not shifted [see FIG. 2(c)]. There is an extremely small tail compared to .

ここで、全反射鏡5のシフトにより光共振器の共振器長
りをへQ変化させるときには、第3図に示す利得曲線に
おいて、変化させる前の発振周波数ν0に対してΔνだ
けシフトする。
Here, when the resonator length of the optical resonator is changed to Q by shifting the total reflection mirror 5, the gain curve shown in FIG. 3 is shifted by Δv with respect to the oscillation frequency v0 before the change.

このときの発振周波数ν。±Δしにおける利得が発振の
閾値(threshold )よりも小さくなるように
6gを選択すればレーザ発振は停止する。ただし、炭酸
ガスレーザの場合にはただ1つの発振周波数のレーザ発
振ではなく、いくつかの発振周波数が含まれているので
、全ての発振周波数のレーザ発振が停止するわけではな
い、したがって、停止しなかった発振周波数のし−ザ発
振によりレーザ光には僅かながらテイルが残ってしまう
The oscillation frequency ν at this time. If 6g is selected so that the gain at ±Δ is smaller than the oscillation threshold, laser oscillation will be stopped. However, in the case of a carbon dioxide laser, the laser oscillation does not occur at just one oscillation frequency, but includes several oscillation frequencies, so the laser oscillation at all oscillation frequencies does not stop. Due to the laser oscillation of the oscillation frequency, a slight tail remains in the laser beam.

尚、炭酸ガスレーザの場合には、第3図に示したように
、利得幅であるドツプラ幅は約50MHzであり、縦モ
ード間隔C/2LはL=1mとしても150Mhzであ
るので、この利得幅の中には必ず1本の縦モードしか存
在しないことになる。すなわち、Δνは少なくともC/
2Lよりも小さくしてよいので、6gは最大でも士(λ
/2)以下でよいことになる。
In the case of a carbon dioxide laser, as shown in Fig. 3, the Doppler width, which is the gain width, is approximately 50 MHz, and the longitudinal mode interval C/2L is 150 MHz even if L = 1 m, so this gain width There is always only one vertical mode in the image. That is, Δν is at least C/
It can be made smaller than 2L, so 6g is at most 2L (λ
/2) The following is sufficient.

第4図は本発明の他の実施例の構成を示す構成図である
0図にはおいて本発明の他の実施例による炭酸ガスレー
ザ装置は、回折格子11以外は第1図に示した本発明の
一実施例と同様の構成であり、同じ構成部品には同一符
号を付しである。また、それら構成部品の動作も本発明
の一実施例による炭酸ガスレーザ装置の構成部品と同様
である。
FIG. 4 is a block diagram showing the configuration of another embodiment of the present invention. In FIG. The structure is similar to that of the embodiment, and the same components are given the same reference numerals. Further, the operations of these components are also similar to those of the components of the carbon dioxide laser device according to one embodiment of the present invention.

ここで、第2図においては第1図の高電圧電源7と、パ
ルス発生器8と、タイミング回路9と、駆動用コンバー
タ10とを省略しである。
Here, in FIG. 2, the high voltage power supply 7, pulse generator 8, timing circuit 9, and drive converter 10 shown in FIG. 1 are omitted.

炭酸ガスレーザは炭酸ガス分子の多くの振動−回転準位
間の遷移により多数の発振周波数を有している0通常、
金が蒸着された金ミラーの反射鏡により共振器を構成し
、この共振器からレーザ発振させたときには、競合効果
により最も利得の高い10.6μs帯P(20)で発振
する。
Carbon dioxide lasers have many oscillation frequencies due to transitions between many vibrational and rotational levels of carbon dioxide molecules.
A resonator is constituted by a gold reflecting mirror on which gold is vapor-deposited, and when laser oscillation is performed from this resonator, the laser oscillates in the 10.6 μs band P(20) where the gain is highest due to a competitive effect.

しかしながら、共振器内に波長選択素子である回折格子
11を入れることによって、多くの発振周波数の中から
1つを選択して発振させることが可能である。このよう
な場合でも、全反射1i5をシフトさせることによって
、テイルの小さいレーザ光を得ることができる。
However, by inserting the diffraction grating 11, which is a wavelength selection element, into the resonator, it is possible to select one of many oscillation frequencies for oscillation. Even in such a case, a laser beam with a small tail can be obtained by shifting the total reflection 1i5.

第5図はレーザ光のテイルが大きいときと小さいときの
加工特性の差を示す図である0図においては、同じレー
ザ出力(パルス繰返し速度がIKHzで、パルス幅が1
00−のとき)でセラミック(アルミナなど)基板をレ
ーザスクライブ加工したときの加工特性を示しており、
第5図(a)はレーザ光のテイルが大きい場合の加工特
性を示し、第5図(b)はレーザ光のテイルが小さい場
合の加工特性を示している。
Figure 5 shows the difference in processing characteristics when the tail of the laser beam is large and small.
00-) shows the processing characteristics when laser scribing a ceramic (alumina, etc.) substrate.
FIG. 5(a) shows the processing characteristics when the tail of the laser beam is large, and FIG. 5(b) shows the processing characteristics when the tail of the laser beam is small.

レーザ光のテイルが大きい場合には、レーザスクライブ
加工において深さも深く入らないのみでなく、時間軸で
レーザ光のテイルに相当するところが大きく盛り上がっ
ている。これはセラミックがレーザ光の熱で一旦溶融し
てから、ガラス質に再結晶化したものである。
If the tail of the laser beam is large, not only will the laser scribe process not penetrate deeply, but the portion corresponding to the tail of the laser beam will be greatly raised on the time axis. This is a ceramic that is once melted by the heat of the laser beam and then recrystallized into a glassy state.

しかしながら、レーザ光のテイルが小さい場合には、レ
ーザスクライブ加工において深さも深くなり、時間軸で
レーザ光のテイルに相当するところの盛り上がりもあま
り大きくない。
However, when the tail of the laser beam is small, the depth in the laser scribing process becomes deep, and the bulge corresponding to the tail of the laser beam on the time axis is not very large.

上述のようにセラミック基板の表面に大きく盛り上がる
ような加工特性は望むべき姿ではなく、セラミック基板
の表面の盛り上がりは極力少なくしたい、そのためにも
、レーザ光のテイルは小さくすることが肝要なのである
As mentioned above, processing characteristics that cause large bulges on the surface of a ceramic substrate are not desirable, and it is desirable to minimize bulges on the surface of a ceramic substrate, and for this purpose, it is important to minimize the tail of the laser beam.

このように、レーザガス放電管1に印加される放電電流
の変調周波数に同期して、レーザ出力鏡4と全反射鏡5
とからなる光共振器の共振器長を全反射鏡5を圧電変換
器6により可変するようにすることによって、レーザ出
力を多く取出す場合でもレーザ光のテイルを小さくする
ことができる。
In this way, the laser output mirror 4 and the total reflection mirror 5 are synchronized with the modulation frequency of the discharge current applied to the laser gas discharge tube 1.
By varying the resonator length of the optical resonator consisting of the total reflection mirror 5 and the piezoelectric converter 6, the tail of the laser beam can be made small even when a large amount of laser output is extracted.

尚、本発明の一実施例および他の実施例では全反射鏡5
をシフトすることにより光共振器の共振器長を変えたが
、レーザ出力鏡4をシフトして光共振器の共振器長を変
えることも可能である。また、本発明の一実施例および
他の実施例では炭酸ガスレーザ装置について述べたが、
他のパルスガスレーザ装置に適用できることは明白であ
り、これらに限定されない。
Note that in one embodiment and other embodiments of the present invention, the total reflection mirror 5
Although the resonator length of the optical resonator was changed by shifting the laser output mirror 4, it is also possible to change the resonator length of the optical resonator by shifting the laser output mirror 4. Furthermore, in one embodiment and other embodiments of the present invention, a carbon dioxide laser device has been described;
It is obvious that the present invention can be applied to other pulsed gas laser devices, and is not limited thereto.

i匪立素1 以上説明したように本発明によれば、レーザガス放電管
に印加された放電電流の変調周波数に同期して光共振器
の共振器長を可変するようにすることによって、レーザ
出力を多く取出す場合でもレーザ光のテイルを小さくす
ることができるという効果がある。
As explained above, according to the present invention, the resonator length of the optical resonator is varied in synchronization with the modulation frequency of the discharge current applied to the laser gas discharge tube, thereby increasing the laser output. Even when a large amount of laser light is extracted, the tail of the laser beam can be made small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示す構成図、第2図
は本発明の一実施例のタイミングチャート、第3図は炭
酸ガスレーザの利得曲線と縦モードとの関係を示す図、
第4図は本発明の他の実施例の構成を示す構成図、第5
図はレーザ光のテイルが大きいときと小さいときの加工
特性の差を示す図である。 主要部分の符号の説明 1・・・・・・レーグガス放電管 4・・・・・・レーザ出力鏡  5・・・・・・全反射
鏡6・・・・・・圧電変換器(PZT) 7・・・・・・高電圧電源 8・・・・・・パルス発生器
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a timing chart of an embodiment of the present invention, and FIG. 3 is a diagram showing the relationship between the gain curve and longitudinal mode of a carbon dioxide laser.
FIG. 4 is a configuration diagram showing the configuration of another embodiment of the present invention, and FIG.
The figure shows the difference in processing characteristics when the tail of the laser beam is large and when the tail is small. Explanation of symbols of main parts 1... Reig gas discharge tube 4... Laser output mirror 5... Total reflection mirror 6... Piezoelectric transducer (PZT) 7 ...High voltage power supply 8 ...Pulse generator

Claims (1)

【特許請求の範囲】[Claims] (1)光共振器内のレーザガス放電管に変調された放電
電流を印加することにより連続パルス発振を行わせるパ
ルスガスレーザ装置であって、前記放電電流の変調周波
数に同期して前記光共振器の共振器長を可変する可変手
段を設けたことを特徴とするパルスガスレーザ装置。
(1) A pulsed gas laser device that performs continuous pulse oscillation by applying a modulated discharge current to a laser gas discharge tube within an optical resonator, the optical resonator oscillating in synchronization with the modulation frequency of the discharge current. A pulsed gas laser device characterized by being provided with variable means for varying the resonator length.
JP1766488A 1988-01-28 1988-01-28 Pulse gas laser device Pending JPH01192183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1766488A JPH01192183A (en) 1988-01-28 1988-01-28 Pulse gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1766488A JPH01192183A (en) 1988-01-28 1988-01-28 Pulse gas laser device

Publications (1)

Publication Number Publication Date
JPH01192183A true JPH01192183A (en) 1989-08-02

Family

ID=11950120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1766488A Pending JPH01192183A (en) 1988-01-28 1988-01-28 Pulse gas laser device

Country Status (1)

Country Link
JP (1) JPH01192183A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7099365B2 (en) 2001-11-01 2006-08-29 Komatsu, Ltd. Oscillation method and device of fluorine molecular laser
JP2014107349A (en) * 2012-11-26 2014-06-09 Seidensha Electronics Co Ltd Excitable medium gas of carbon dioxide gas laser, carbon dioxide gas laser device, marking device using carbon dioxide gas laser, carbon dioxide gas laser generation method, marking method using carbon dioxide gas laser, and carbon dioxide gas laser light
JP2017130680A (en) * 2017-03-14 2017-07-27 精電舎電子工業株式会社 Carbon dioxide gas laser excitation medium gas, marking device using carbon dioxide gas laser, carbon dioxide gas laser generation method, marking method using carbon dioxide gas laser, and carbon dioxide gas laser source
JP2017216463A (en) * 2017-07-10 2017-12-07 精電舎電子工業株式会社 Carbon dioxide gas laser device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7099365B2 (en) 2001-11-01 2006-08-29 Komatsu, Ltd. Oscillation method and device of fluorine molecular laser
JP2014107349A (en) * 2012-11-26 2014-06-09 Seidensha Electronics Co Ltd Excitable medium gas of carbon dioxide gas laser, carbon dioxide gas laser device, marking device using carbon dioxide gas laser, carbon dioxide gas laser generation method, marking method using carbon dioxide gas laser, and carbon dioxide gas laser light
JP2017130680A (en) * 2017-03-14 2017-07-27 精電舎電子工業株式会社 Carbon dioxide gas laser excitation medium gas, marking device using carbon dioxide gas laser, carbon dioxide gas laser generation method, marking method using carbon dioxide gas laser, and carbon dioxide gas laser source
JP2017216463A (en) * 2017-07-10 2017-12-07 精電舎電子工業株式会社 Carbon dioxide gas laser device

Similar Documents

Publication Publication Date Title
EP1950853B1 (en) Fiber pulse laser apparatus and method of control the same
JP4175544B2 (en) Q-switch method for pulse train generation
US20060181352A1 (en) Radio frequency excitation arrangement
US4864577A (en) Highly repetitively pulsed laser device
KR100639585B1 (en) Laser control method, laser apparatus, laser treatment method used for the same, laser treatment apparatus
JPH01192183A (en) Pulse gas laser device
JP3035613B1 (en) Apparatus and method for pulsed amplification of single mode laser light
US4510606A (en) Silent discharge type pulse laser device
JP2003347636A (en) Q-switched laser apparatus and method for controlling q-switching
JP3131079B2 (en) Q switch CO2 laser device
JPH02260479A (en) Laser oscillator
JPH05110182A (en) Laser oscillator
JP2005045019A (en) Q switch laser device
JPH08191168A (en) Q switch laser device
JPS6115384A (en) Ultrasonic q-switch laser
JPH1197783A (en) Q switched pulse laser driving method
JPS6330791B2 (en)
JP5320616B2 (en) Laser and method of generating pulsed laser radiation
JPH06310795A (en) Q switch method for co2 laser
JP2000252571A (en) Laser marking device
JP2928838B2 (en) Two-wavelength oscillation Q-switched CO2 laser device
JP4137227B2 (en) Laser oscillator
JPH04346484A (en) Pulse laser oscillator
JPH02290090A (en) Q switch laser device
JPH08255945A (en) Q switch laser oscillator