JP4487861B2 - 内燃機関用排気ガス浄化装置 - Google Patents

内燃機関用排気ガス浄化装置 Download PDF

Info

Publication number
JP4487861B2
JP4487861B2 JP2005171101A JP2005171101A JP4487861B2 JP 4487861 B2 JP4487861 B2 JP 4487861B2 JP 2005171101 A JP2005171101 A JP 2005171101A JP 2005171101 A JP2005171101 A JP 2005171101A JP 4487861 B2 JP4487861 B2 JP 4487861B2
Authority
JP
Japan
Prior art keywords
combustion engine
internal combustion
exhaust gas
concentration
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005171101A
Other languages
English (en)
Other versions
JP2006342768A (ja
Inventor
学 吉留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005171101A priority Critical patent/JP4487861B2/ja
Priority to DE102006000283.0A priority patent/DE102006000283B4/de
Publication of JP2006342768A publication Critical patent/JP2006342768A/ja
Application granted granted Critical
Publication of JP4487861B2 publication Critical patent/JP4487861B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • F02D41/1467Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

本発明は、内燃機関(エンジン)の排気ガスに含まれる排気微粒子(PM)をディーゼルパティキュレートフィルタ(以下、「DPF」という。)により凝集し、捕集する内燃機関用排気ガス浄化装置において、排気ガス浄化装置の故障、特に、DPFの溶損、亀裂などの異常の有無を判断できる内燃機関用排気ガス浄化装置に関する。
内燃機関の排気ガスに含まれる排気微粒子(PM)の処理が大きな課題となっている。特に、DPFを備える排気系において、排気微粒子(PM)の過堆積や後噴射過大による温度の異常な上昇によりDPFの溶損や亀裂が生じる虞がある。つまり、DPFの正常時におけるPMを補足する所定数値の隙間(大小サイズの隙間部を有しており、特に大サイズの上限値は所定値に設定される)として設定された多数個の通気孔群に対して、少なくとも一部の領域にて前記した所定数値の隙間を外れる隙間拡大する事態が生じてしまうことから、DPFとしての充分な機能が働かず、排気ガス規制値を超える排気微粒子(PM)を排出してしまうこととなる。このため、DPFの異常については早期に且つ高い精度で発見する必要がある。
従来技術としては、DPF下流の排気温度が異常に高温になったことを検出する方法、或いは、DPF前後の排気圧力の差が通常よりも小さくなったことを検出する方法などが採用されているが、いずれも、運転条件、環境条件によって通常値にバラツキが生じ、検出精度、検出頻度の点で不十分であった。
一方、特許文献1には、排気ガス中のO2濃度によりEGR制御或いは燃料噴射量制御を行う内燃機関の制御装置において、酸素濃度センサーで検出されるO2濃度データに代えて、吸入空気量、吸入空気圧、燃料噴射量などの内燃機関運転条件情報に基づいて算出した排気ガス中のO2濃度を用いてEGR制御或いは燃料噴射量制御を行うことにより、排気ガスが酸素濃度センサーに到達するまでの時間差や酸素濃度センサー自体の化学反応の遅れによる、特に加速・減速時の制御精度の低下を改善する技術が開示されているが、内燃機関運転条件情報に基づいて算出した排気ガス中のO濃度をDPFの異常の有無の判断に応用することについては何等記載されていないし示唆されてもいない。
また、特許文献2には、後噴射により未燃炭化水素をNOx触媒に供給するシステムにおいて、酸素濃度センサーにより検出されたO2濃度によりEGR制御或いは燃料噴射量制御を行う内燃機関用排気浄化装置が開示されており、特に、後噴射された未燃炭化水素が酸素濃度センサーに付着して燃焼することにより検出O2濃度が実際の排気ガス中のO2濃度より低下した値となってしまうため、酸素濃度センサー補正手段によりこれを補正した上でEGR制御或いは燃料噴射量制御を行う技術である。特許文献2においては、排気ガス中の未燃炭化水素が酸素濃度センサーに付着して燃焼することにより酸素濃度センサーで検出される検出O2濃度が実際の排気ガス中のO2濃度より低下した値となってしまうという現象が記載されているものの、後述するような本発明がこの現象を応用してDPFの溶損や亀裂などの異常の有無を判断するということについては、何等記載されていないし示唆されてもいない。
特開2002−327634号公報 特開平10−205384号公報
本発明は、上記の従来技術が有する問題点を改良しようとするものであり、DPFの異常の有無についての検出精度或いは検出頻度の面で問題がある、DPF下流の排気温度が異常に高温になったことを検出する方法やDPF前後の排気圧力の差が通常よりも小さくなったことを検出する方法ではなく、特に、DPFの溶損、亀裂などの異常の際に、DPF下流へ通常よりも多めの排気微粒子(PM)などが流出し、その流出した排気微粒子(PM)などがDPFの下流に配設した酸素濃度センサーに付着して燃焼することにより検出O2濃度が大きく低下することに着目し、この低下した検出O2濃度を検出することにより、DPFの異常を簡単且つ確実に判断する高性能な内燃機関用排気ガス浄化装置を実現しようとするものである。
請求項1の内燃機関用排気ガス浄化装置は、内燃機関の排気通路にDPFとその下流に配設された酸素濃度センサーとを備えた内燃機関用排気ガス浄化装置において、前記酸素濃度センサーにより検出された排気ガス中の検出O2濃度に基づき、前記DPFにおける、PMを補足するように設定された設定隙間を外れて隙間拡大する異常の有無を判断する判断手段を備え、前記判断手段は、内燃機関運転条件情報から計算される排気ガス中の予想最小O 2 濃度と前記酸素濃度センサーにより検出された排気ガス中の前記検出O 2 濃度との差値を算出する算出手段を有し、前記算出手段により算出された前記差値に基づいて、前記異常の有無を判断する判断手段であることを特徴とするものである。
本発明は、このように構成されているので、従来の、DPF下流の排気温度が異常に高温になったことを検出する方法、或いは、DPF前後の排気圧力の差が通常よりも小さくなったことを検出する方法に比較して、酸素濃度センサーにより検出された排気ガス中の検出O2濃度の低下状況を判断するのみで、DPFの亀裂などの異常の有無を、簡単且つ確実に判断できるという効果を奏するものである。すなわち、内燃機関運転条件が時々刻々変化しても、変化する内燃機関運転条件情報から計算される排気ガス中の予想最小O 2 濃度に対してその時点の酸素濃度センサーにより検出された排気ガス中の検出O 2 濃度との差値によりDPFの亀裂などの異常の有無を判断できるので、十分な検出精度、更には十分な検出頻度で簡単にDPFの異常を判断できる。
請求項2の発明のように、好ましくは、前記算出手段は、前記予想最小O2濃度を、前記内燃機関運転条件情報から計算される排気ガス中の予想O2濃度と、前記内燃機関運転条件情報から計算される、前記DPFの正常作動時における排気ガス中の前記酸素濃度センサーへ付着して燃焼する可能性のある物質の前記DPF下流へ通過する総量が燃焼することとした予想最大O2減少量との差値として算出することを特徴とする。
本発明は、このように構成されているので、内燃機関運転条件の変化に対応して予想最小O2濃度を常に安全サイドで正確に計算することができるので、検出精度の一層の向上が期待できるものである。特に、酸素濃度センサーへ付着して燃焼する物質はDPF下流へ通過する物質総量の一部であるが、予想最小O2濃度を、内燃機関運転条件情報から計算される排気ガス中の予想O2濃度と、DPFの正常作動時における排気ガス中の酸素濃度センサーへ付着して燃焼する可能性のある物質のDPF下流へ通過する総量が付着して燃焼するものと仮定した予想最大O2減少量との差値としているので、内燃機関運転条件の変化に対応して予想最小O2濃度を常に安全サイドで正確に計算することができるので、検出精度の一層の向上が期待できるものである。
請求項3の発明のように、好ましくは、前記判断手段は、前記内燃機関運転条件情報から計算される排気ガス中の予想排気微粒子(PM)発生量に応じて設定される、前記予想最小O2濃度と前記検出O2濃度との差値の異常判断閾値に基づいて前記異常の有無を判断する判断手段であることを特徴とする。
本発明は、このように構成されているので、内燃機関運転条件が時々刻々変化することにより大きく変化する排気微粒子(PM)の発生量に応じてDPFの異常判断のための閾値を設定していることにより、DPFの異常判断の精度の著しい向上に寄与するという効果を奏するものである。
次に、図1〜図3に基づき本発明の実施形態を説明する。
図1は、内燃機関(ディーゼルエンジン)のシステム全体を示す全体構成図である。1は内燃機関であり、インジェクタ2より高圧燃料が燃焼室3に噴射される。4は吸気通路であり、5は排気通路である。吸気通路4の上流側にはエアフロメータ7が配設され、吸気通路4内にはスロットル8が配設され、その下流には吸気通路4内の吸気圧或いは吸気温を検出する吸気圧センサー9及び吸気温センサー10が配設されている。排気通路5にはDPF6が配設され、その下流には排気ガス中のO2濃度を検出する酸素濃度センサー12が配設されている。なお、コンプレッサーなどは図から省略されている。
エアフロメータ7、吸気圧センサー9、吸気温センサー10及び酸素濃度センサー12で検出される各種の空気系の内燃機関運転条件情報は、内燃機関全体のシステムを制御するエレクトロニックコントロールユニット16(以下、「ECU16」という。)に常時出力されている。また、上記センサーの外に、内燃機関1の回転角に同期して信号を出力する回転角センサー11、内燃機関1の冷却水の水温を検出する水温センサー13、アクセルペダル15の踏み込み量からアクセル開度を検出するアクセル開度センサー14が配設されており、それぞれのセンサーから検出された内燃機関運転条件情報はECU16に出力される。なお、ECU16からは、各種内燃機関運転条件情報に基づき算出される燃料噴射量情報が内燃機関1に出力され、この情報に基づきインジェクタ2から燃焼室3内に燃料が噴射される。燃料噴射量情報は内燃機関運転条件情報の重要な要素の一つを構成する。
図2は、本発明によりDPFの異常の有無を判断するためのフローチャートである。図2に基づいて、DPFの異常の有無の診断の流れを説明する。
始めにステップ(以下、「S」という。)1でECU16において各種内燃機関運転条件情報に基づいて排気ガス中の予想O2濃度Aを算出する。具体的には、燃焼室3に流入する酸素量から燃焼室3内で消費する消費酸素量を引いた残存酸素量を算出し、それを燃焼室に流入する空気量及び燃料量の和で除することにより算出できる。なお、EGR方式を採用している場合には、還流する排気ガスの割合、その中に占める酸素量などのデータを考慮して算出する。
次に、S2では、DPF6が正常に作動している場合の酸素濃度センサー12へ付着する排気微粒子(PM)及び未撚炭化水素の燃焼に伴う予想最大O2減少量BをECU16において算出する。そのためには、排気微粒子(PM)及び未撚炭化水素が前記ディーゼルパティキュレートフィルタの処理後にさらに下流へ通過する総量を計算してその全てが酸素濃度センサー12へ付着して燃焼すると仮定した場合の予想最大O2減少量Bを各種内燃機関運転条件情報に基づいて計算する必要がある。排気ガス中の排気微粒子(PM)の発生量については、燃料噴射量、空気系の各種情報、内燃機関1の回転数などに基づいて計算される。また、排気ガス中に発生する未燃炭化水素については、これはNOx触媒に供給するための後噴射に伴うものが中心であり、後噴射燃料量、燃焼室に流入する空気量及び主噴射燃料量などから排気ガス中に含まれる未燃炭化水素の割合或いは単位量が計算される。
以上により計算された排気微粒子(PM)及び未撚炭化水素の発生量について、DPF6の処理能力に基づく経験値を勘案して、さらにDPF6下流へ通過していく排気微粒子(PM)及び未撚炭化水素の総量を計算する。これらの総量がすべて酸素濃度センサー12へ付着して燃焼すると仮定した場合の酸素消費量を計算して予想最大O2減少量Bとする。
S3では、計算上予想される酸素濃度センサー12の位置における予想最小O2濃度CをECU16において算出する。これは、C=A―Bの式で計算される。
S4では、酸素濃度センサー12により検出された排気ガス中の検出O2濃度とS3で算出された予想最小O2濃度Cとの差値を算出し、差値がマイナスの場合即ち検出O2濃度が予想最小O2濃度Cを下回る場合はS5においてDPF6に異常があるものと仮判定される。一方で、差値がプラスの場合即ち検出O2濃度が予想最小O2濃度Cを上回る場合はS12においてDPF6に異常はないものと判定され、直接診断終了へ移行する。
DPF6に異常があるものと仮判定されるとS6に移行して、本診断或いは精密検査を行うこととなる。さらに精密に診断を行う理由は、何らかの事情で内燃機関における酸素消費が異常に高くなる場合があり、また失火などによっても過剰な未燃炭化水素が排出する可能性があるからである。
ここで、S6以下の精密診断のステップの説明に入る前に、精密診断の概要を説明する。まず、酸素濃度センサー12への通電を停止してセンサー12の温度を低下させる。このため、DPFに亀裂などがあるとDPF下流へ大量に通過する排気微粒子(PM)及び未燃炭化水素はセンサー12に付着して燃焼せずに堆積していくこととなる。このような状態で一定時間経過した後にセンサー12に再度通電すると堆積していた排気微粒子(PM)及び未燃炭化水素が燃焼することにより大量に酸素を消費して検出O2濃度が大幅に低下することとなる。ここで、仮判定と同様に、検出O2濃度と予想最小O2濃度Cとを比較して、検出O2濃度が予想最小O2濃度Cを仮判定以上に大きく下回っていれば最終的にDPF6に異常があるものと判定されることとなる。なお、さらに判定の精度を向上させる必要がある場合には、燃料無噴射時に再通電を行うようにすれば、予想最小O2濃度Cが大気濃度で置き換えられるので、判定をより安定したものにすることができる。
S6では、酸素濃度センサー12への通電を停止してよいかどうかが判断される。酸素濃度センサー12からの出力により直接内燃機関1の制御を行うシステムの場合には、通電停止が直ちに内燃機関1の制御に影響を及ぼすため、S6における判断が重要となる。したがって、内燃機関1の運転条件が制御対象範囲外になった場合に通電停止が許可される。例えば、酸素濃度センサー12からの出力によりEGR制御を行っている場合には、高回転或いは高負荷領域の運転条件になってEGRが停止している場合に通電停止が許可される。さらに、全運転条件下で酸素濃度センサー12からの出力により直接内燃機関1の制御を行うシステムの場合には、制御状態を、例えば、EGR停止或いはEGRバルブの開度固定などの安全側にオープン制御を行った上で通電停止を許可することとすればよい。当然のことながら、これはあくまで仮判定によって異常の可能性が高いと予測された場合に限る処置であり、常時このような処置を行うわけではない。
通電停止の許可があった場合にはS7で酸素濃度センサー12への通電を停止し、通電停止の許可が出ない場合には再度S6の最初に戻り通電停止の判断をやり直すこととなる。
次に、S8において通電停止のまま所定時間を経過してよいかの判断を行う。これはS6の判断と同様で、内燃機関1の制御その他の事由で酸素濃度センサー12への通電を所定時間継続して停止してよいかどうかの判断がなされる。通電停止のまま所定時間を経過してよい場合にはS9に移行して酸素濃度センサー12へ再度通電され、許可されない場合は再度S6の最初に戻り通電停止の判断からやり直すこととなる。
S10では、仮判定と同様に、再度検出された検出O2濃度と予想最小O2濃度Cとを比較して、検出O2濃度が予想最小O2濃度Cを仮判定以上に大きく下回っていれば最終的にDPFに異常があるものと判定されることとなる。具体的には、再度検出された検出O2濃度と後述する異常判断閾値即ち予想最小O2濃度Cから一定の判定マージンを控除した値との差値を計算し、差値がマイナスの場合即ち検出O2濃度が異常判断閾値を下回る場合はS11においてDPF6に異常があるものとの判定が確定し、診断が終了する。一方で、差値がプラスの場合即ち検出O2濃度が異常判断閾値を上回る場合はS13においてDPF6に異常はないものと判定され、DPF異常との仮判定はキャンセルされて診断終了へ移行する。
ところで、DPF6が正常に作動している場合でも、排気ガス中の排気微粒子(PM)の発生量が多い場合には、酸素濃度センサー12への通電を所定時間停止しておけば一定量の排気微粒子(PM)が酸素濃度センサー12に付着することとなる。このため、排気ガス中の排気微粒子(PM)の発生量の多少にかかわらず常に再度検出された検出O2濃度が予想最小O2濃度Cを下回っていればDPF6に異常ありと判断していては排気微粒子(PM)の発生量が多い場合には判断を誤る場合が生じてしまう。したがって、再度検出された検出O2濃度が予想最小O2濃度Cを常に一定範囲以上下回っている場合のみDPFに異常があると判断するほうが合理的である。即ち、予想最小O2濃度Cから一定の判定マージンを控除した異常判断閾値を設定することが望ましい。しかも、異常判断閾値は、内燃機関1の運転条件により、即ち、発生する排気微粒子(PM)の量に対応してそれぞれ適切な値を設定することが最も好ましい。
具体的には、予め実験データを取得することにより、排気微粒子(PM)発生量とそれに対応した異常判断閾値との関係のマップを作成しておいてECU16に入力しておく。ECU16では内燃機関運転条件情報から排気微粒子(PM)発生量を常時計算し、マップにより排気微粒子(PM)発生量に対応して設定されている異常判断閾値と検出O2濃度との差値を計算するように構成する。
図3は、本発明の各種データの相互関係に基づきDPFの異常の有無を判断するイメージ図である。図3の左側から右側へ時系列に、DPFの状態、内燃機関の状態、酸素濃度センサー検出O2濃度、予想最小O2濃度、酸素濃度センサーの通電状態のそれぞれが変化している。図3の中央付近で、DPFに異常が発生し、DPFの亀裂から大量に通過し始めた排気微粒子(PM)及び未撚炭化水素が酸素濃度センサーに付着して燃焼するために酸素濃度センサー検出O2濃度が下降する。やがて検出O2濃度が予想最小O2濃度を下回った時点でDPF異常の仮判定がなされる。その後、酸素濃度センサーへの通電を所定期間停止する。その間に酸素濃度センサーには排気微粒子(PM)及び未撚炭化水素が順次堆積していく。所定期間経過後再び酸素濃度センサーに通電すると、一時酸素濃度センサーにおける燃焼がなかったために高い位置に戻っていた検出O2濃度が、堆積していた排気微粒子(PM)及び未撚炭化水素が燃焼することにより、急激に下降して異常判定閾値を下回ることになる。この時点でDPFの異常の判定が確定する。
本発明の内燃機関用排気ガス浄化装置は、以上説明したとおり、内燃機関の排気通路にDPFとその下流に配設された酸素濃度センサーとを備え、内燃機関運転条件情報から計算される排気ガス中の予想最小O2濃度と酸素濃度センサーにより検出された排気ガス中の検出O2濃度との差値を算出し、且つ予想最小O2濃度を、内燃機関運転条件情報から計算される排気ガス中の予想O2濃度と、内燃機関運転条件情報から計算される、DPFの正常作動時における排気ガス中の酸素濃度センサーへ付着して燃焼する可能性のある物質のDPF下流へ通過する総量が燃焼することとした予想最大O2減少量との差値として算出する算出手段を有し、この算出手段により算出された差値に基づいて、且つ、内燃機関運転条件情報から計算される排気ガス中の予想排気微粒子(PM)発生量に応じて設定される、予想最小O2濃度と検出O2濃度との差値の異常判断閾値に基づいてDPFの亀裂などの異常の有無を判断する判断手段を備えていることを特徴とするものである。
本発明は、このように構成されているので、従来の、DPF下流の排気温度が異常に高温になったことを検出する方法、或いは、DPF前後の排気圧力の差が通常よりも小さくなったことを検出する方法に比較して、酸素濃度センサーにより測定された排気ガス中の検出O2濃度の低下状況を判断するのみで、DPFの亀裂などの異常の有無を、簡単且つ確実に判断できるものである。
また、内燃機関運転条件が時々刻々変化しても、変化する内燃機関運転条件情報から計算される排気ガス中の予想最小O2濃度に対してその時点の酸素濃度センサーにより検出された排気ガス中の検出O2濃度との差値によりDPFの異常の有無を判断することとなり、しかも、常に内燃機関運転条件の変化に対応して予想最小O2濃度を常に安全サイドで正確に計算することができるので、十分な検出精度、更には十分な検出頻度で簡単にDPFの異常の有無を判断できるという効果を奏するものである。
内燃機関(ディーゼルエンジン)の制御システムを示す全体構成図である。 本発明によりDPFの異常の有無を判断するためのフローチャートである。 本発明の各種データの相互関係に基づきDPFの異常の有無を判断するイメージ図である。
符号の説明
1 内燃機関(エンジン)
2 インジェクタ
3 燃焼室
4 吸気通路
5 排気通路
6 DPF
7 エアフロメータ
8 スロットル
9 吸気圧センサー
10 吸気温センサー
11 回転角センサー
12 酸素濃度センサー
13 冷却水温センサー
14 アクセル開度センサー
15 アクセルペダル
16 ECU

Claims (3)

  1. 内燃機関の排気通路にディーゼルパティキュレートフィルタとその下流に配設された酸素濃度センサーとを備えた内燃機関用排気ガス浄化装置において、
    前記酸素濃度センサーにより検出された排気ガス中の検出O2濃度に基づき、前記ディーゼルパティキュレートフィルタにおける、PMを補足するように設定された設定隙間を外れて隙間拡大する異常の有無を判断する判断手段を備え
    前記判断手段は、内燃機関運転条件情報から計算される排気ガス中の予想最小O 2 濃度と前記酸素濃度センサーにより検出された排気ガス中の前記検出O 2 濃度との差値を算出する算出手段を有し、
    前記算出手段により算出された前記差値に基づいて、前記異常の有無を判断する判断手段であることを特徴とする内燃機関用排気ガス浄化装置。
  2. 前記算出手段は、前記予想最小O2濃度を、前記内燃機関運転条件情報から計算される排気ガス中の予想O2濃度と、前記内燃機関運転条件情報から計算される、前記ディーゼルパティキュレートフィルタの正常作動時における排気ガス中の前記酸素濃度センサーへ付着して燃焼する可能性のある物質の前記ディーゼルパティキュレートフィルタ下流へ通過する総量が燃焼することとした予想最大O2減少量との差値として算出することを特徴とする請求項1に記載の内燃機関用排気ガス浄化装置。
  3. 前記判断手段は、前記内燃機関運転条件情報から計算される排気ガス中の予想排気微粒子(PM)発生量に応じて設定される、前記予想最小O2濃度と前記検出O2濃度との差値の異常判断閾値に基づいて前記異常の有無を判断する判断手段であることを特徴とする請求項1または2に記載の内燃機関用排気ガス浄化装置。
JP2005171101A 2005-06-10 2005-06-10 内燃機関用排気ガス浄化装置 Expired - Fee Related JP4487861B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005171101A JP4487861B2 (ja) 2005-06-10 2005-06-10 内燃機関用排気ガス浄化装置
DE102006000283.0A DE102006000283B4 (de) 2005-06-10 2006-06-09 Abgasreinigungsvorrichtung mit Dieselpartikelfilter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005171101A JP4487861B2 (ja) 2005-06-10 2005-06-10 内燃機関用排気ガス浄化装置

Publications (2)

Publication Number Publication Date
JP2006342768A JP2006342768A (ja) 2006-12-21
JP4487861B2 true JP4487861B2 (ja) 2010-06-23

Family

ID=37440139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005171101A Expired - Fee Related JP4487861B2 (ja) 2005-06-10 2005-06-10 内燃機関用排気ガス浄化装置

Country Status (2)

Country Link
JP (1) JP4487861B2 (ja)
DE (1) DE102006000283B4 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007059523B4 (de) * 2007-12-11 2012-03-01 Continental Automotive Gmbh Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
JP5083228B2 (ja) * 2009-01-19 2012-11-28 トヨタ自動車株式会社 燃料噴射制御装置
DE102017211024B4 (de) * 2017-06-29 2019-06-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur Aktivierung einer Diagnose eines Partikelfilters einer Brennkraftmaschine
JP7035749B2 (ja) 2018-04-11 2022-03-15 トヨタ自動車株式会社 内燃機関の失火検出装置
JP7209753B2 (ja) * 2021-01-28 2023-01-20 本田技研工業株式会社 内燃機関の制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4139325C1 (en) * 1991-11-29 1993-01-07 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De Function monitoring soot filter in exhaust pipe of IC engine
JP3991292B2 (ja) * 1996-11-22 2007-10-17 株式会社デンソー 内燃機関の排気浄化装置及び排気浄化方法
JP4284906B2 (ja) * 2001-02-28 2009-06-24 株式会社デンソー 内燃機関の制御装置
DE10218218A1 (de) * 2002-04-24 2003-11-06 Bosch Gmbh Robert Vorrichtung und Verfahren zur Feststellung einer Fehlfunktion eines Filters
JP2005090324A (ja) * 2003-09-16 2005-04-07 Toyota Motor Corp 内燃機関の排気浄化システム

Also Published As

Publication number Publication date
DE102006000283B4 (de) 2015-02-12
DE102006000283A1 (de) 2006-12-14
JP2006342768A (ja) 2006-12-21

Similar Documents

Publication Publication Date Title
EP1905991B1 (en) Control method of exhaust gas purification system and exhaust gas purification system
US8845783B2 (en) Failure detection apparatus and failure detection method for a particulate filter
US7325395B2 (en) Exhaust gas purification device of internal combustion engine
JP4709220B2 (ja) パティキュレートフィルタの再生方法
WO2010073511A1 (ja) 排気浄化装置の再生不良診断方法
JP2004211650A (ja) エンジンの排気ガス浄化装置
JP5007845B2 (ja) 内燃機関の排気浄化装置
JP4692436B2 (ja) 内燃機関の排気浄化システム
JP4487861B2 (ja) 内燃機関用排気ガス浄化装置
EP1582707B1 (en) Inspection system of particulate filter regeneration system
JP2005201119A (ja) 内燃機関の排気浄化装置
JP2005240719A (ja) フィルタの再生時期検出装置およびフィルタの再生制御装置
JP6219713B2 (ja) 液量検出装置
US11536209B2 (en) Control device, engine, and control method of engine
US20090211235A1 (en) Exhaust gas purifying apparatus for internal combustion engine
JP2007016722A (ja) エンジンの排気浄化装置
JP2011094570A (ja) 内燃機関の排気浄化装置
JP2008138537A (ja) 内燃機関の排気浄化装置
JP2010090708A (ja) 内燃機関の制御装置
JP2017083288A (ja) フィルタの故障検出装置、粒子状物質検出装置
JP5366015B2 (ja) 内燃機関の排気浄化装置
JP4248415B2 (ja) 内燃機関の排気浄化システム
JP4894569B2 (ja) 温度センサの故障診断装置
JP2005163652A (ja) 排気浄化装置
JP2009127495A (ja) 内燃機関のフィルタ故障検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees