JP4475239B2 - Manufacturing method of heat sink plate - Google Patents

Manufacturing method of heat sink plate Download PDF

Info

Publication number
JP4475239B2
JP4475239B2 JP2006010587A JP2006010587A JP4475239B2 JP 4475239 B2 JP4475239 B2 JP 4475239B2 JP 2006010587 A JP2006010587 A JP 2006010587A JP 2006010587 A JP2006010587 A JP 2006010587A JP 4475239 B2 JP4475239 B2 JP 4475239B2
Authority
JP
Japan
Prior art keywords
heat sink
sink plate
joining
plate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006010587A
Other languages
Japanese (ja)
Other versions
JP2006187809A (en
Inventor
久宣 岡村
欣也 青田
泰久 青野
▲学▼ 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006010587A priority Critical patent/JP4475239B2/en
Publication of JP2006187809A publication Critical patent/JP2006187809A/en
Application granted granted Critical
Publication of JP4475239B2 publication Critical patent/JP4475239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明はヒートシンク板(パッキングプレート)の製作方法に関し、前記ヒートシンク板に設けられた冷却孔と蓋との接合において、接合による熱ひずみを減少し、平滑かつ、精度の高いヒートシンク板を得るに適した製作方法に関する。   The present invention relates to a method of manufacturing a heat sink plate (packing plate), and is suitable for obtaining a smooth and highly accurate heat sink plate by reducing thermal distortion due to bonding in bonding of a cooling hole and a lid provided in the heat sink plate. Related to the production method.

半導体のヒートシンク板(パッキングプレート)は、シリコンウエハまたはガラス基板などのエッチングまたはスパッタリング工程において、前記ウエハやガラス基板を保持し、かつ効率的な冷却機能が必要である。このため、銅または銅合金またはアルミ合金からなる平滑な板の内部に冷却孔を有し、これを同じ材質からなる蓋で金属的に密閉する構造である。従来、前記ヒートシンク板の冷却孔と蓋との密閉は電子ビーム溶接,拡散接合,ろう付け方法などにより金属的に接合して製作されている。   A semiconductor heat sink plate (packing plate) is required to hold the wafer and the glass substrate and to have an efficient cooling function in an etching or sputtering process of the silicon wafer or the glass substrate. For this reason, it is a structure which has a cooling hole inside the smooth board which consists of copper, a copper alloy, or an aluminum alloy, and seals this metallically with the lid | cover which consists of the same material. Conventionally, the cooling hole and the lid of the heat sink plate are sealed by metal bonding by electron beam welding, diffusion bonding, brazing, or the like.

前記ヒートシンク板は冷却効率を高める必要があり、前記シリコンウエハなどと接触する前記ヒートシンク板の表面は高い平滑精度が必要である。ところが、前記ヒートシンク板に設けられる冷却孔とその蓋との接合は、従来、電子ビーム溶接,レーザ溶接,拡散接合,ろう付けなどが採用されている。しかし、投入熱量の比較的小さい電子ビーム溶接でも接合後は大きな熱ひずみが発生する。このため、接合後の修正作業または機械切削によって平滑にする必要がある。従って、品質,精度さらに接合後のコストの点で問題がある。   The heat sink plate needs to increase the cooling efficiency, and the surface of the heat sink plate in contact with the silicon wafer or the like needs to have high smoothing accuracy. However, conventionally, electron beam welding, laser welding, diffusion bonding, brazing, or the like has been employed for joining the cooling hole provided in the heat sink plate and its lid. However, even in electron beam welding with a relatively small input heat amount, a large thermal strain occurs after joining. For this reason, it is necessary to make it smooth by correction work after joining or by machine cutting. Therefore, there are problems in terms of quality, accuracy, and cost after joining.

前記課題を解決するため、前記ヒートシンク板に設けられた冷却孔と蓋との接合は摩擦攪拌接合法により接合する。前記接合方法は銅またはアルミの融点以下の低温で接合できる。さらに、前記接合は水,オイル,冷却ガスなどの冷却剤の中でまたは接合部近傍及び前記ヒートシンク板全体に前記冷却剤をかけながら接合する。   In order to solve the above problem, the cooling hole provided in the heat sink plate and the lid are joined by a friction stir welding method. The bonding method can be performed at a low temperature below the melting point of copper or aluminum. Further, the joining is performed in a coolant such as water, oil, or a cooling gas, or while applying the coolant to the vicinity of the joint and the entire heat sink plate.

前記摩擦攪拌接合方法は、実質的に前記アルミニウムまたは銅の材質よりも硬い材質の金属棒(ツール)を前記接合部に挿入し、このツールを回転させながら移動するかまたは前記ヒートシンク板自体を移動することによって、前記ツールと前記ヒートシンク板との間で発生する摩擦熱と塑性流動を利用して接合する方法である。これは特公表7−505090号公報(EPO615480B1) で公知である。つまり、前記ツールと接合材との摩擦熱による塑性流動現象を利用したもので、アーク溶接のように接合材を溶かして溶接するものではない。さらに、この摩擦攪拌接合方法は、従来の摩擦溶接方法のように、加工物同士を回転させてその摩擦熱による溶接方法とは異なり、加工物を接合線長方向、つまり、長手方向に連続的に接合材の融点以下の温度で接合できる特徴がある。   In the friction stir welding method, a metal rod (tool) substantially harder than the aluminum or copper material is inserted into the joint and moved while rotating the tool or the heat sink plate itself is moved. This is a method of joining using the frictional heat and plastic flow generated between the tool and the heat sink plate. This is known in Japanese Patent Publication No. 7-505090 (EPO615480B1). That is, it uses a plastic flow phenomenon caused by frictional heat between the tool and the bonding material, and does not melt and weld the bonding material as in arc welding. Furthermore, unlike the conventional friction welding method, the friction stir welding method is different from the welding method in which the workpieces are rotated and the frictional heat is used, and the workpieces are continuously joined in the longitudinal direction of the joining line, that is, in the longitudinal direction. Is characterized in that it can be joined at a temperature below the melting point of the joining material.

前記摩擦攪拌接合方法により接合することにより、銅またはアルミの融点以下の低温で接合できる。このため、従来の電子ビーム溶接などに比べて接合によるひずみが小さく、精度の高いヒートシンク板を製作できる。従って、接合後の修正作業時間が短縮できる。   By joining by the friction stir welding method, joining can be performed at a low temperature below the melting point of copper or aluminum. For this reason, the distortion by joining is small compared with the conventional electron beam welding etc., and a heat sink board with high precision can be manufactured. Therefore, the correction work time after joining can be shortened.

さらに、前記接合方法は水,オイル,冷却ガスなどの冷却剤の中でまたは接合部近傍及び前記ヒートシンク板全体に前記冷却剤をかけながら接合できる。これにより、接合部から数ミリ離れた位置での温度上昇は100℃以下である。このため、接合後のひずみが極限まで減少できる。従って、前記シリコンウエハと接触する面が平滑、かつ、精度並びに信頼性が高いヒートシンク板が低コストで製作できる。   Further, the bonding method can be performed in a coolant such as water, oil, or a cooling gas, or while applying the coolant to the vicinity of the joint and the entire heat sink plate. Thereby, the temperature rise in the position several millimeters away from the junction part is 100 degrees C or less. For this reason, the distortion after joining can be reduced to the limit. Therefore, a heat sink plate having a smooth surface in contact with the silicon wafer and high accuracy and reliability can be manufactured at low cost.

本発明によれば、摩擦攪拌接合によって接合したヒートシンク板は熱ひずみが小さいため、高い品質の半導体用ヒートシンク板は安価に製作できる。特に本発明では水冷しながら接合するため、熱ひずみを極限まで小さくできる。従って、接合後の修正作業も不要となり、安価に製作できる。   According to the present invention, since the heat sink plate joined by friction stir welding has a small thermal strain, a high-quality semiconductor heat sink plate can be manufactured at low cost. In particular, in the present invention, since the joining is performed while cooling with water, the thermal strain can be minimized. Therefore, the correction work after joining is not necessary and can be manufactured at low cost.

(実施例1)
図1は本発明を半導体用のヒートシンク板(パッキングプレート)の接合に実施した場合の上方向から観察のヒートシンク板の構造と接合方法を示す。図2は図1のA−B方向の断面を示す。図1,図2のヒートシンク板1の材質はJIS規格C1020の無酸素銅である。前記ヒートシンク板1には複数の独立した水冷孔2及び冷却水の給排水口3が設けられている。前記水冷孔2は同じ材質の銅板からなる蓋が本発明の摩擦攪拌接合方法により接合される。
Example 1
FIG. 1 shows the structure and bonding method of a heat sink plate observed from above when the present invention is applied to bonding of a heat sink plate (packing plate) for a semiconductor. FIG. 2 shows a cross section in the direction AB of FIG. The material of the heat sink plate 1 in FIGS. 1 and 2 is JIS standard C1020 oxygen-free copper. The heat sink plate 1 is provided with a plurality of independent water cooling holes 2 and cooling water supply / drain ports 3. The water-cooled holes 2 are joined by a friction stir welding method of the present invention with a lid made of a copper plate made of the same material.

本実施例における前記銅板の厚さは15mm、幅は1000mm、長さは1200mm、冷却孔の幅は40mm、高さは10mmである。前記銅板に4個の前記冷却孔が設けられている。   In this embodiment, the copper plate has a thickness of 15 mm, a width of 1000 mm, a length of 1200 mm, a cooling hole width of 40 mm, and a height of 10 mm. Four said cooling holes are provided in the said copper plate.

前記水冷孔2を密閉にする蓋4は、次に示す摩擦攪拌接合により金属的に接合される。前記摩擦攪拌接合に用いる回転ツール5は、前記ヒートシンク板1より硬い例えば工具鋼のような金属製からできている。前記回転ツール5は先端のピン部6と前記ピン部6より太いショルダ部7からなっている。前記ピン部6の全部の長さが接合部に回転した状態で挿入される。ここで、ショルダ部7もわずかに挿入される。次に前記回転ツール5が回転した状態で接合線方向に移動する。このとき、前記水冷孔2の蓋4は、前記回転ツール5と前記ヒートシンク板1との間に生じる摩擦熱と塑性流動現象によって接合される。前記接合方法によって得られる接合部8は、接合欠陥もなく、かつ平滑である。   The lid 4 that seals the water cooling hole 2 is metallicly bonded by friction stir welding as described below. The rotary tool 5 used for the friction stir welding is made of metal such as tool steel which is harder than the heat sink plate 1. The rotary tool 5 includes a pin portion 6 at the tip and a shoulder portion 7 that is thicker than the pin portion 6. The entire length of the pin portion 6 is inserted into the joint portion in a rotated state. Here, the shoulder portion 7 is also inserted slightly. Next, the rotating tool 5 moves in the joining line direction in a rotated state. At this time, the lid 4 of the water cooling hole 2 is joined by frictional heat generated between the rotating tool 5 and the heat sink plate 1 and a plastic flow phenomenon. The joining portion 8 obtained by the joining method is smooth and free from joining defects.

本実施例における前記回転ツール5のピン部6の径は6mm、長さは5mm、ショルダ部7の径は15mm、接合速度は400mm/min、回転数は800rpmである。なお、前記回転ツールは接合進行方向と逆方向に1〜5度の角度で傾斜していることが望ましい。   In this embodiment, the diameter of the pin portion 6 of the rotary tool 5 is 6 mm, the length is 5 mm, the diameter of the shoulder portion 7 is 15 mm, the joining speed is 400 mm / min, and the rotational speed is 800 rpm. The rotating tool is preferably inclined at an angle of 1 to 5 degrees in the direction opposite to the joining progress direction.

前記接合方法は接合のスタート点と終端部は欠陥が発生しやすい。このため、本発明では接合のスタート点と終端部にダミー板9を設け、前記ダミー板9から接合を開始し、ダミー板9の部分で接合を終了する。前記ダミー板は接合後、機械的に除去する。   In the joining method, defects are likely to occur at the start and end of the joining. For this reason, in the present invention, the dummy plate 9 is provided at the starting point and the terminal end of the bonding, the bonding is started from the dummy plate 9, and the bonding is terminated at the dummy plate 9. The dummy plate is mechanically removed after joining.

前記接合方法により接合したヒートシンク板は、従来の電子ビーム溶接で接合した場合に比べてひずみが約半分に減少し、接合後のひずみ修正作業の機械加工時間が半分で済み、コスト低減と品質の向上が実現できる。前記ヒートシンク板は半導体用スパッタリング装置のシリコン基板を保持して冷却するパッキングプレートとして適用される。
(実施例2)
図3は本発明を半導体用のヒートシンク板の接合に実施した場合の上方向から観察のヒートシンク板の構造と接合方法を示す。図4は図3のA−B方向の断面を示す。前記ヒートシンク板の材質はJIS規格1201である。ただし、前記回転ツールの材質と形状,接合条件は同じである。
The heat sink plate joined by the joining method has a strain reduced by about half compared to the case of joining by conventional electron beam welding, and the machining time of the strain correction work after joining can be halved. Improvement can be realized. The heat sink plate is applied as a packing plate for holding and cooling a silicon substrate of a semiconductor sputtering apparatus.
(Example 2)
FIG. 3 shows the structure and joining method of the heat sink plate observed from above when the present invention is applied to joining of heat sink plates for semiconductors. 4 shows a cross section in the direction AB of FIG. The material of the heat sink plate is JIS standard 1201. However, the material, shape and joining conditions of the rotary tool are the same.

本実施例では、前記水冷孔2を機密にするための蓋4の接合は、2個の回転ツールを用いて同時に接合する。まず、AとBの接合部を2個の回転ツールで接合する。次にCとDを同時に、次にEとFを同時に接合する。次にHとGを同時に接合する。前記A−B間,C−D間,E−F間の各間隔は40mmと狭い。このため、接合進行方向に対する前記2つのツールを同時にかつ平行に配置して接合するとお互いのツールはぶつかりまたは接合部の温度が上昇する。従って、2つのツールは接合進行方向に対して一定の間隔(L)を保持して配置されている。   In this embodiment, the lid 4 for keeping the water-cooled hole 2 secret is joined simultaneously using two rotating tools. First, the joining part of A and B is joined with two rotating tools. Next, C and D are bonded simultaneously, and then E and F are bonded simultaneously. Next, H and G are bonded simultaneously. The intervals between A-B, C-D, and EF are as narrow as 40 mm. For this reason, when the two tools with respect to the joining direction are arranged at the same time and in parallel, the tools collide with each other or the temperature of the joint rises. Accordingly, the two tools are arranged with a certain distance (L) with respect to the joining progress direction.

一方、接合部AまたはBと接合部HまたはGは接合部の一部がお互いに交差する接合となる。これにより、前記接合は直線方向だけの接合のため、前記接合装置の構成が簡単となり、かつ安価になる。さらに、前記接合方法は接合のスタート点と終端部は欠陥が発生しやすい。このため、本発明では接合のスタート点と終端部にダミー板9を設け、前記ダミー板9から接合を開始し、ダミー板9の部分で接合を終了する。前記ダミー板は接合後、機械的に除去する。   On the other hand, the junction A or B and the junction H or G are junctions in which part of the junction intersects each other. Thereby, since the said joining is joining only to a linear direction, the structure of the said joining apparatus becomes simple and it becomes cheap. Furthermore, in the joining method, defects are likely to occur at the starting point and the terminal end of the joining. For this reason, in the present invention, the dummy plate 9 is provided at the starting point and the terminal end of the bonding, the bonding is started from the dummy plate 9, and the bonding is terminated at the dummy plate 9. The dummy plate is mechanically removed after joining.

ところで、本実施例では2個のツールを用いて同時に接合するため、摩擦熱も多い。このため、接合部の近傍及びヒートシンク板の全体さらに水冷孔に冷却水を流しながら接合する。本実施例のごとく、冷却しながら接合するため、前記ツールから3mmはなれた前記ヒートシンク板の温度は100℃以下である。このため、接合後のひずみは水冷却しない場合に比べて約半分以下になる。従って、接合後のひずみ修正のための機械加工が不要となる。なお、接合部の近傍に水をかけても接合部の内部は前記ツールの回転及び摩擦熱で内部圧力が大気圧力に比べて高いため、接合部内への水の浸入はない。従って、接合部8に欠陥の発生もなく、機械的特性も低下しない。   By the way, in this embodiment, since two tools are used for simultaneous bonding, there is much frictional heat. For this reason, it joins, flowing cooling water to the vicinity of a junction part, the whole heat sink board, and a water cooling hole. As in this embodiment, the temperature of the heat sink plate, which is 3 mm away from the tool, is 100 ° C. or lower because the bonding is performed while cooling. For this reason, the distortion after joining becomes about half or less compared with the case where water cooling is not carried out. Therefore, machining for correcting the strain after joining becomes unnecessary. Even if water is applied to the vicinity of the joint portion, the inside of the joint portion is higher than the atmospheric pressure due to the rotation and frictional heat of the tool, so that water does not enter the joint portion. Therefore, no defects occur in the joint 8 and the mechanical characteristics do not deteriorate.

前記接合方法により接合したヒートシンク板は、従来の電子ビーム溶接で接合した場合に比べてひずみが約1/10以下に減少する。従って、接合後のひずみ修正作業の機械加工時間が不要となり、コスト低減と品質の向上が実現できる。前記ヒートシンク板は半導体用スパッタリング装置のガラス基板を保持し、冷却するパッキングプレートとして適用される。
(実施例3)
本実施例ではアルミ合金のJIS規格5052に実施した。ヒートシンク板の形状及び接合条件は実施例1と同じであり、本実施例でも実施例1と同様の効果が確認された。
(実施例4)
図5は実施例1の冷却孔,ツール及び接合部を拡大した断面を示す。前記ヒートシンク板1及び蓋4の厚さが他の部分より局部的に厚いことが特徴である。前記局部的に厚い部分の幅(W)は前記回転ツール5のショルダ部7の外径とほぼ同じ程度が望ましい。
The distortion of the heat sink plate joined by the joining method is reduced to about 1/10 or less compared to the case of joining by conventional electron beam welding. Therefore, the machining time for strain correction work after joining is not required, and cost reduction and quality improvement can be realized. The heat sink plate is applied as a packing plate for holding and cooling a glass substrate of a semiconductor sputtering apparatus.
(Example 3)
In this embodiment, the JIS standard 5052 for aluminum alloy was used. The shape and joining conditions of the heat sink plate were the same as in Example 1, and the same effects as in Example 1 were confirmed in this example.
Example 4
FIG. 5 shows an enlarged cross-sectional view of the cooling hole, tool, and joint of Example 1. The heat sink plate 1 and the lid 4 are characterized by being locally thicker than other portions. The width (W) of the locally thick portion is preferably about the same as the outer diameter of the shoulder portion 7 of the rotary tool 5.

一方、局部的な厚さは他の部分より0.3〜3mm 高いことが望ましい。さらに、前記ヒートシンク板1の接合部は前記回転ツール5の先端において、段付きになっていることが望ましい。段付きの部分の幅(D)は前記ツールのピン部の径と同等かそれ以上が望ましい。また、高さ(H)は前記回転ツール5のピン部6の長さと同等か1mm程度大きいことが望ましい。前記接合構造により前記蓋4が安定に固定され、かつ、接合部の先端部に座屈が発生しない。さらに、接合部の表面は凹みも生じない。
(実施例5)
図6は本発明を半導体用のヒートシンク板の接合に実施した場合の上方向から観察のヒートシンク板の構造と接合方法を示す。図7は図6のA−B方向の断面を示す。図6,図7のヒートシンク板1の材質はJIS規格C1020の無酸素銅である。前記ヒートシンク板1には連続した水冷孔2及び冷却水の給排水口3が設けられている。前記水冷孔は同じ材質の銅板からなる蓋4が本発明の摩擦攪拌接合方法により接合される。
On the other hand, the local thickness is preferably 0.3 to 3 mm higher than other parts. Furthermore, it is desirable that the joint portion of the heat sink plate 1 is stepped at the tip of the rotary tool 5. The width (D) of the stepped portion is preferably equal to or greater than the diameter of the pin portion of the tool. The height (H) is preferably equal to or approximately 1 mm larger than the length of the pin portion 6 of the rotary tool 5. The lid 4 is stably fixed by the joint structure, and buckling does not occur at the tip of the joint. Further, the surface of the joint does not dent.
(Example 5)
FIG. 6 shows the structure and bonding method of the heat sink plate observed from above when the present invention is applied to the bonding of the heat sink plate for semiconductor. FIG. 7 shows a cross section in the direction AB of FIG. The material of the heat sink plate 1 in FIGS. 6 and 7 is oxygen-free copper of JIS standard C1020. The heat sink plate 1 is provided with a continuous water cooling hole 2 and a cooling water supply / drain port 3. The water cooling holes are joined by the friction stir welding method of the present invention with the lid 4 made of a copper plate made of the same material.

本実施例における前記ヒートシンク板の厚さは15mm、幅は800mm、長さは1000mm、水冷孔2の幅は50mm、高さは10mmである。   In this embodiment, the heat sink plate has a thickness of 15 mm, a width of 800 mm, a length of 1000 mm, a water cooling hole 2 having a width of 50 mm and a height of 10 mm.

前記水冷孔2を機密にする蓋4は、次に示す摩擦攪拌接合により金属的に接合される。前記摩擦攪拌接合に用いる回転ツールの形状と寸法並びに接合条件は、実施例1と同じである。前記ヒートシンク板に設けられた水冷孔は給水口から排水口まで連続しているため、前記接合も連続的に行われる。ここで、接合が連続的であるため、接合過程において、前記ツールの温度が摩擦熱で400℃以上と高くなる。さらに、摩擦熱で前記ヒートシンク板のひずみも大きくなる。従って、本実施例では前記ツールの一部及び接合部さらにヒートシンク板の全部を水の中に浸して冷却しながら接合する方法を採用した。なお、冷却水は常に20℃以下になるように循環して冷却している。本実施例のごとく、冷却しながら接合するため、前記ツールから2mmはなれた前記ヒートシンク板の温度は100℃以下である。このため、接合後のひずみは水冷却しない場合に比べて約半分以下になる。従って、接合後のひずみ修正のための機械加工が不要となる。   The lid 4 that keeps the water-cooled hole 2 secret is metallicly joined by friction stir welding as described below. The shape and size of the rotary tool used for the friction stir welding and the welding conditions are the same as those in the first embodiment. Since the water cooling holes provided in the heat sink plate are continuous from the water supply port to the drain port, the joining is also performed continuously. Here, since the joining is continuous, in the joining process, the temperature of the tool becomes as high as 400 ° C. or more due to frictional heat. Furthermore, the distortion of the heat sink plate also increases due to frictional heat. Therefore, in this embodiment, a method was adopted in which a part of the tool, the joint portion, and the entire heat sink plate were immersed in water and joined while cooling. The cooling water is circulated and cooled so as to be always 20 ° C. or lower. As in this embodiment, the temperature of the heat sink plate, which is 2 mm away from the tool, is 100 ° C. or lower because the bonding is performed while cooling. For this reason, the distortion after joining becomes about half or less compared with the case where water cooling is not carried out. Therefore, machining for correcting the strain after joining becomes unnecessary.

なお、前記接合方法は接合のスタート点と終端部は欠陥が発生しやすい。このため、本発明では接合のスタート点と終端部にダミー板9を設け、前記ダミー板9から接合を開始し、ダミー板9の部分で接合を終了する。前記ダミー板は接合後、機械的に除去する。   In the bonding method, defects are likely to occur at the start and end of the bonding. For this reason, in the present invention, the dummy plate 9 is provided at the starting point and the terminal end of the bonding, the bonding is started from the dummy plate 9, and the bonding is terminated at the dummy plate 9. The dummy plate is mechanically removed after joining.

前記接合方法により接合したヒートシンク板は、従来の電子ビーム溶接で接合した場合に比べてひずみが約半分に減少し、接合後のひずみ修正作業の機械加工時間が半分で済み、コスト低減と品質の向上が実現できる。前記ヒートシンク板は半導体用スパッタリング装置のシリコン基板を保持冷却するパッキングプレートとして適用される。
(実施例6)
本実施例では外径が500mmの円板からなるヒートシンク板に実施した。冷却孔の構造は実施例5と同じ形状で、かつ連続している。ヒートシンク板の材質と厚さは実施例5と同じである。さらに、接合条件も実施例5と同じである。本実施例でも実施例5と同様の効果が確認された。
The heat sink plate joined by the joining method has a strain reduced by about half compared to the case of joining by conventional electron beam welding, and the machining time of the strain correction work after joining can be halved. Improvement can be realized. The heat sink plate is applied as a packing plate for holding and cooling a silicon substrate of a semiconductor sputtering apparatus.
(Example 6)
In this embodiment, the heat sink plate is a disc having an outer diameter of 500 mm. The structure of the cooling holes is the same shape as in Example 5 and is continuous. The material and thickness of the heat sink plate are the same as in the fifth embodiment. Furthermore, the joining conditions are the same as in Example 5. In this example, the same effect as in Example 5 was confirmed.

本発明の実施例を示す上方向からの観察図である。It is an observation view from the top showing an example of the present invention. 本発明の実施例を示す図1の断面図である。It is sectional drawing of FIG. 1 which shows the Example of this invention. 本発明の実施例を示す上方向からの観察図である。It is an observation view from the top showing an example of the present invention. 本発明の実施例を示す断面図である。It is sectional drawing which shows the Example of this invention. 本発明の実施例を示す断面図である。It is sectional drawing which shows the Example of this invention. 本発明の実施例を示す上方向からの観察図である。It is an observation view from the top showing an example of the present invention. 本発明の実施例を示す断面図である。It is sectional drawing which shows the Example of this invention.

符号の説明Explanation of symbols

1…ヒートシンク板(パッキングプレート)、2…水冷孔、3…給排水口、4…蓋、5…回転ツール、6…ピン部、7…ショルダ部、8…接合部、9…ダミー板。   DESCRIPTION OF SYMBOLS 1 ... Heat sink plate (packing plate), 2 ... Water cooling hole, 3 ... Water supply / drain port, 4 ... Cover, 5 ... Rotating tool, 6 ... Pin part, 7 ... Shoulder part, 8 ... Joint part, 9 ... Dummy board.

Claims (4)

内部に冷却孔を有し、前記冷却孔は蓋で密閉される構造の銅または銅合金またはアルミニウムまたはアルミニウム合金からなるヒートシンク板の製作方法において、前記ヒートシンク板の冷却孔と蓋との密閉は摩擦攪拌接合方法により金属的に接合し、かつ、複数の回転ツールにより同時にまたは接合進行方向に対して、複数の前記ツールの間に一定の距離を設けて接合して製作されることを特徴とするヒートシンク板の製作方法。 In the method of manufacturing a heat sink plate made of copper, copper alloy, aluminum or aluminum alloy, having a cooling hole inside, and the cooling hole is sealed with a lid, the sealing between the cooling hole of the heat sink plate and the lid is a friction It is manufactured by metal joining by a stir welding method, and by joining a plurality of tools at a certain distance at the same time or in a joining progress direction by a plurality of rotating tools. Manufacturing method of heat sink plate. 請求項1記載の接合において、複数の回転ツールはお互いに交差する方向に接合することを特徴とするヒートシンク板の製作方法。   2. The method of manufacturing a heat sink plate according to claim 1, wherein the plurality of rotary tools are joined in a direction crossing each other. 請求項1または2に記載の接合は、水またはオイルまたは不活性ガスのいずれかの冷却板の中でまたは接合部の近傍または全体に前記冷却剤をかけながら接合することを特徴とするヒートシンク板の製作方法。   3. The heat sink plate according to claim 1 or 2, wherein the heat sink plate is joined in the cooling plate of water, oil, or inert gas, or while applying the coolant in the vicinity of or in the whole of the joint portion. How to make. 請求項1または2に記載の接合の開始点または終了点は、冷却孔から離れたヒートシンク板またはダミー部であることを特徴とするヒートシンク板の製作方法。
3. The method of manufacturing a heat sink plate according to claim 1, wherein the joining start point or end point is a heat sink plate or a dummy part separated from the cooling hole.
JP2006010587A 2006-01-19 2006-01-19 Manufacturing method of heat sink plate Expired - Fee Related JP4475239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006010587A JP4475239B2 (en) 2006-01-19 2006-01-19 Manufacturing method of heat sink plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006010587A JP4475239B2 (en) 2006-01-19 2006-01-19 Manufacturing method of heat sink plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000132844A Division JP2001313357A (en) 2000-04-27 2000-04-27 Method for manufacturing heat sink plate, and heat sink structure

Publications (2)

Publication Number Publication Date
JP2006187809A JP2006187809A (en) 2006-07-20
JP4475239B2 true JP4475239B2 (en) 2010-06-09

Family

ID=36795453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006010587A Expired - Fee Related JP4475239B2 (en) 2006-01-19 2006-01-19 Manufacturing method of heat sink plate

Country Status (1)

Country Link
JP (1) JP4475239B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100922043B1 (en) 2007-08-22 2009-10-19 대한소결금속 주식회사 Friction welding method
JP5136072B2 (en) * 2008-01-15 2013-02-06 日本軽金属株式会社 Manufacturing method of liquid cooling jacket
JP5177017B2 (en) * 2009-03-02 2013-04-03 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP5177059B2 (en) * 2009-04-02 2013-04-03 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP5326757B2 (en) * 2009-04-09 2013-10-30 日本軽金属株式会社 Heat transfer plate and heat transfer plate manufacturing method
JP5458684B2 (en) * 2009-06-15 2014-04-02 日本軽金属株式会社 Manufacturing method of structure
JP5267381B2 (en) * 2009-08-19 2013-08-21 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP5567530B2 (en) * 2011-08-19 2014-08-06 日立オートモティブシステムズ株式会社 Friction stir welding structure and power semiconductor device
JP5725098B2 (en) * 2013-08-02 2015-05-27 日本軽金属株式会社 Manufacturing method of liquid cooling jacket
JP5725110B2 (en) * 2013-09-06 2015-05-27 日本軽金属株式会社 Joining method
CN108747224A (en) * 2018-06-21 2018-11-06 合肥工业大学 A kind of preparation method of high strength alumin ium alloy composite material

Also Published As

Publication number Publication date
JP2006187809A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP4475239B2 (en) Manufacturing method of heat sink plate
JP2001313357A (en) Method for manufacturing heat sink plate, and heat sink structure
JP3818084B2 (en) Cooling plate and manufacturing method thereof, and sputtering target and manufacturing method thereof
JP6927067B2 (en) How to manufacture a liquid-cooled jacket
JP2006150454A (en) Cooling plate, manufacturing method thereof, sputtering target and manufacturing method thereof
KR101250708B1 (en) Welding method
WO2016072211A1 (en) Method of manufacturing liquid-cooled jacket and liquid-cooled jacket
WO2019064848A1 (en) Method for producing liquid-cooled jacket
JP6471462B2 (en) Manufacturing method of liquid cooling jacket
US20100314075A1 (en) Cooling plate and manufacturing method therefor
WO2019064849A1 (en) Method for producing liquid-cooled jacket
US11419237B2 (en) Method for manufacturing liquid-cooling jacket
US11654507B2 (en) Method for manufacturing liquid-cooling jacket
CN107876958B (en) Welding fixture and welding method of aluminum alloy product
KR102050939B1 (en) Metho for manufacturing repeater using friction stir welding
CN114243358B (en) Air-tightness metal packaging structure and manufacturing method
JP2000150738A (en) Heat sink and its manufacture
US11311963B2 (en) Method for producing liquid-cooled jacket
JP2011115847A (en) Friction stir welding method and product produced by the method
CN112091343A (en) Brazing method of molybdenum target and back plate
CN114029608B (en) Thick plate friction stir welding method for aluminum and dissimilar metal
JP5690478B2 (en) End tab for welding
JP6991172B2 (en) Sputtering target-backing plate junction
KR100325355B1 (en) A method for brazing WC-Co and tool steel
JP2007301567A (en) Method of manufacturing cooling plate, and cooling plate

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061004

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees