JP4472704B2 - マイクロ波エネルギーを用いた医療デバイスを製造する方法および装置 - Google Patents

マイクロ波エネルギーを用いた医療デバイスを製造する方法および装置 Download PDF

Info

Publication number
JP4472704B2
JP4472704B2 JP2006529358A JP2006529358A JP4472704B2 JP 4472704 B2 JP4472704 B2 JP 4472704B2 JP 2006529358 A JP2006529358 A JP 2006529358A JP 2006529358 A JP2006529358 A JP 2006529358A JP 4472704 B2 JP4472704 B2 JP 4472704B2
Authority
JP
Japan
Prior art keywords
polymer
raw material
die
extrusion
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006529358A
Other languages
English (en)
Other versions
JP2007501142A (ja
Inventor
ジャン ウェーバー,
スコット シューイ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Boston Scientific Scimed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Scimed Inc filed Critical Boston Scientific Scimed Inc
Publication of JP2007501142A publication Critical patent/JP2007501142A/ja
Application granted granted Critical
Publication of JP4472704B2 publication Critical patent/JP4472704B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • A61M25/1029Production methods of the balloon members, e.g. blow-moulding, extruding, deposition or by wrapping a plurality of layers of balloon material around a mandril
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/02Conditioning or physical treatment of the material to be shaped by heating
    • B29B13/023Half-products, e.g. films, plates
    • B29B13/024Hollow bodies, e.g. tubes or profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • B29C45/14655Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components connected to or mounted on a carrier, e.g. lead frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/13Articles with a cross-section varying in the longitudinal direction, e.g. corrugated pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/14Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • B29C48/865Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/901Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies
    • B29C48/903Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/907Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using adjustable calibrators, e.g. the dimensions of the calibrator being changeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0042Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor without using a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • A61M25/1034Joining of shaft and balloon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • A61M25/1036Making parts for balloon catheter systems, e.g. shafts or distal ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0855Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using microwave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C49/786Temperature
    • B29C2049/7861Temperature of the preform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C49/786Temperature
    • B29C2049/7867Temperature of the heating or cooling means
    • B29C2049/78675Temperature of the heating or cooling means of the heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C2049/788Controller type or interface
    • B29C2049/78805Computer or PLC control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/009Shaping techniques involving a cutting or machining operation after shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/079Auxiliary parts or inserts
    • B29C2949/08Preforms made of several individual parts, e.g. by welding or gluing parts together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/06Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using radiation, e.g. electro-magnetic waves, induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/913Cooling of hollow articles of tubular films externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/66Cooling by refrigerant introduced into the blown article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C49/783Measuring, controlling or regulating blowing pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/258Tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2022/00Hollow articles
    • B29L2022/02Inflatable articles
    • B29L2022/022Balloons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7542Catheters

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Pulmonology (AREA)
  • Hematology (AREA)
  • Toxicology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Description

本発明は、一般的に押出成形医療デバイスに関するものであり、さらに詳細にいえば、マイクロ波エネルギーを用いて血管造影分野で用いられる押出成形医療デバイスを製造する方法に関するものである。
血管形成術は、血管の狭窄部位を拡張するために実行される効果的な医療処置である。このような処置において、血管形成術用バルーンまたはバルーン型カテーテルが狭窄部位へ案内される。バルーンは、部位に到着した後、当該バルーンの中に注入される流体の圧力により膨らまされることにより、その寸法を拡大される。バルーンが膨らまされると血管壁に圧力が加わり、これにより、血管が拡張され、血流に対する抵抗が軽減される。
従来、このバルーンは、高分子材料から製造され、また、ブロー成形手法により成形されていた。さらに具体的にいえば、パリソンとして知られている円柱状またはチューブ状の高分子材料が、内部キャビティが好ましいバルーンの形状を有しているモールドの中に加えられる。次いで、このモールドが加熱され、このモールドの熱がパリソンに伝えられ、このパリソンに流体圧が加えられると、高分子材料がモールドのキャビティの形状へ変形される。次いで、このモールドが冷却されることにより、高分子材料がモールドの形状に硬化される。
通常、モールドは二枚貝デザインで提供される。このデザインでは、モールドの半分はそれぞれ、バルーンを形成する内部キャビティの半分を有している。したがって、製造を促進するために、パリソンの周りをモールドで包むこと、また、製品を容易に取り出すことが可能となる。パリソン自体は、熱い水、油、グリセリン、または他の流体のバスの中にモールド全体を浸けてモールドおよびパリソンを熱伝導により加熱することを可能とすることにより、加熱が可能である。このプロセスに関する一つの問題は、パリソンの加熱が最適ではないことである。熱伝導による加熱は、本質的に、比較的時間のかかるプロセスである。さらに、モールドとパリソンとの間の距離が最も長い中央セクションにおいてパリソンを加熱するには、両端における狭いスペースと比較すると、相当の時間がかかる。したがって、これらの端部セクションにおいてパリソンに沿って軸方向に大量の熱が流れ、高分子材料バルーンの変形が望ましくない部分を加熱する恐れがある。以上のような状況なので、かかるシステムは、通常、パリソンのうちのモールドの外側の領域を冷やし続けるための冷気ジェットの如きある種の冷却機構を用いる必要がある。このようなシステムから生じる一つの問題は、高分子チューブ全体にわたって温度を制御または分布することが困難であるということである。バルーンのサイズがさらに大きい場合には、高分子チューブとモールド壁との間のギャップが大きすぎて十分に速い熱伝達を行うことができないため、熱伝導を向上させるために、モールド内のパリソンとモールドとの間に少量の水が注入されることが多い。しかしながら、この材料によりモールド内でのパリソンの自由な膨張が妨げられていることは明らかである。
さらに、以上のような従来のシステムでは、高分子チューブの軸方向の異なるセクションを異なる温度に加熱することができない。たとえば、異なるセクションを異なる温度に加熱することができれば、バルーンそれ自体に異なる物理的物性を付与することが望まれる場合、たとえば、異なる直径、異なる壁厚などを有する複数の領域、または、異なる温度に加熱する必要がある異なる材料からなる複数の領域を形成することが望まれる場合に好都合である。個々の例として以下のことが挙げられる:バルーン中央セクションからシャフトの方向に向かってバルーンにテーパを設けると、円錐の壁厚がシャフトの方向に向かって大きくなる。このように材料が分布されると、折り畳まれたバルーンの厚みが中央セクションに比べてこれらの円錐セクションで大きくなる。脈管系へのアクセスを向上させるために製品の外形を最小限に抑えるために、円錐セクション内の材料の量を減少させることが好ましい。一つの方法を挙げるとすれば、これらのセクションを薄くするために、モールドプロセスにおいてバルーンの円錐セクションを高温に加熱することである。薄肉化は、軸方向に力が加えられることと、低温の中央セクションに比べて円錐セクションの粘度が低いことが組み合わされる結果によるものである。モールドの一つのセクションを流体バスの上方に維持することによりこのモールド内に低温のセクションを生じさせることが可能であるが、加熱プロセスが遅いため、迅速に温度を変化させることは可能でない。また、高分子チューブが加熱される温度とは異なる温度に金属モールドを設定することは可能でない。したがって、バルーンを取り出す前にモールドを冷やさなければならない。
バルーンに加えて、ステント、ガイドワイヤ、大静脈フィルタ、およびフィルタワイヤの如き医療デバイスの構築においては、接着剤およびポリマーコーティングを硬化させ製造を補助するのに必要な時間が長い。したがって、このような医療デバイスの硬化プロセス、すなわち製造時間を加速するための方法が開発されると好都合である。
血管造影分野における医療製品に用いられるようなポリマー押出成形は多くの固有の問題を有している。一つの問題は、カテーテルチューブの如き医療デバイスが押し出される容量と比較して押出成形ヘッド内の容量が大きいことに起因して、断続的に押し出されている二つのポリマーの間に生じる移行ゾーンが減少することである。また、押出成形装置の壁に沿って生じる剪断力に加えて、ポリマーの弾性力にともなって高い押出成形圧力も存在する。
押出成形に関連する他の問題としては、回転スクリューによる混合と、高剪断力の生成と、押出成形装置の要素の内面を加熱することによる同時熱伝達との組み合わせによってポリマーを均一に加熱するために、押出成形プロセスにおいては、大型の高価かつ複雑な機械が必要となる。また、押出成形バレルおよび押出成形ヘッドの中でのポリマーの処理時間は非常に長い。このような処理時間の延長により、使用中のポリマーおよび押し出された製品または押出成形品の物理的物性が著しく劣化する。
押し出されるポリマー製品の冷却にも問題が存在する。これらの問題としては、冷却用バスの必要な長さ、冷却用バスにより冷却された後に押出成形品を乾燥するためにブロワを備える必要性、および、押し出されているポリマー材料の加熱の延長による影響を最小限に抑えるために加熱された押出成形品のポリマーを迅速に冷却する必要性が挙げられる。
本発明の一つの態様に従って医療デバイスを製造する方法が記載されている。この方法は、露出されたポリマーチューブの方向にマイクロ波エネルギーを案内することと、マイクロ波エネルギーにより加熱されているチューブの一つのセクションを変形させるために、加圧流体をチューブを通して流すことと、変形されたチューブの移動を検出することと、検出中の変形されたチューブが移動すると、マイクロ波エネルギーを案内することおよび加圧流体をチューブを通して流すことを中止することとを含んでいる。
本発明の他の態様にかかる医療機器製造システムが記載されている。このシステムは、マイクロ波エネルギーをワークピース(workpiece)に向かって放射するように構成されたマイクロ波エネルギー供給源と、ワークピースを通して加圧流体を案内するように構成された流体圧力供給源と、ワークピースに関連するパラメータを監視するように構成されたセンサと、センサから信号を受信し、マイクロ波エネルギー供給源および流体圧力供給源へ信号を送信するように構成されたコントローラとを備えている。
本発明の他の態様に従って医療デバイスを一緒に結合する方法が記載されている。この方法は、第一のコンポーネントと第二のコンポーネントとの間に接着剤を堆積させることと、接着剤を挟んで第一のコンポーネントを第二のコンポーネントに係合させることと、第一のコンポーネント、第二のコンポーネント、および接着剤にマイクロ波エネルギーを受けさせることとを含んでいる。
本発明の他の態様によると、マイクロ波場は、ポリマーを押出成形装置のチップおよびダイオリフィスを通すすぐ前の地点においてポリマーを加熱・混合させるための熱供給源として用いられる。さまざまなポリマー材料からなる固形円板は、積層され、押出成形装置内の開口チップ・ダイ連結部の方向に向かって押し出される。チップ・ダイ出口のすぐ前で、熱供給源として働くマイクロ波場が印加される。
本発明の他の態様によると、マイクロ波式押出成形装置に対し連続して供給するプロセスを実現するために、ポリマー円板の山を押す力を中断させることなく、さまざまな物性の新規のポリマー円板が連続して追加される。積層された円板の側面または積層された円板の端部に作用する適切な把持機構および押圧機構により、円板は、マイクロ波熱供給源、押出成形チップ・ダイ連結部の方向に向かって前方に移動することが可能となる。
本発明の他の態様によると、マイクロ波エネルギーは、押出成形チップおよびダイ材料を貫通するマイクロ波ビームを発生させることにより、ポリマー円板に対して印加される。このマイクロ波ビームは、適切なレンズおよびミラーを用いて焦点に合わせることができる。押出成形チップ・ダイは、石英の如きマイクロ波透過性材料から形成されてもよい。
本発明の他の態様によると、押出成形チップ・ダイにおける溶融状態のポリマーの温度は、光学的に検出され、マイクロ波熱供給源へのフィードバックループに用いることにより、ポリマー温度の正確な制御を可能とする。
本発明の他の態様によると、個々のポリマー円板は、最初の段階で、電子モード攪拌としても知られている可変周波数マイクロ波を用いて均一に加熱されるポリマーペレットを用いて調整される。
本発明の他の態様によると、カテーテル製品の最後のハブリングは、カテーテルチューブを形成するプロセス中に分割型モールドプロセスを用いて形成される。
最後に、本発明の他の態様によると、マイクロ波加熱式押出成形用ダイプロセスにより形成中の押し出されたカテーテルチューブ製品を冷却する一つの方法として、冷媒を搬送する銀製の冷却用チューブが開示されている。このようにして形成された押出成形品を冷却するために冷却用バスがさらに用いられてもよい。
本発明のこれらの態様および他の態様ならびに特徴は、添付の図面とともに以下の詳細な説明を理解することによりさらに明らかなものとなる。
図面において同様の参照番号は対応する要素を表している。図1には、本発明の教示に従って構築されたバルーンカテーテル用モールド装置が示され、その全体に対して参照番号20が付与されている。本明細書に記載されるように、装置20は、バルーン型カテーテルおよび血管形成術用バルーンの製造に用いられることが好都合であるが、他の多くのタイプのポリマー製デバイスとともに用いられてもよい。これらのポリマー製デバイスには、限定するわけではないが、コンタクトレンズ、グラフト材、ハブマニフォールドなどの如き他の医療デバイスまたは医療デバイスのコンポーネントが含まれる。
さらに図1を参照すると、上記のシステム20は、マイクロ波エネルギー供給源22と、モールド24と、コントローラまたはプロセッサ26と、温度センサ28と、第一のテンショナ30および第二のテンショナ32とを備えている。このような要素を用いて、装置20は、ワークピース(workpiece)またはパリソン36からバルーン34(図3参照)を形成することができる。さらに具体的にいえば、ポリマー材料からなる管状形状または円筒形状で提供されうるパリソン36は、モールド24内に設けられる。次いで、マイクロ波エネルギー22の供給源は、マイクロ波エネルギーのビームまたはバンド38をモールド24の方向に案内し、このマイクロ波エネルギーがポリマー材料を加熱する。加熱の前、加熱中、または加熱の後、コンプレッサ39からの圧縮空気として供給されうる加圧流体は、ワークピース36に注入・通過させられ、図3に最もよく示されているように、ワークピース36のうちのモールド24内に存在しているとともにマイクロ波エネルギー供給源22により加熱されている部分をモールド24内で膨らませる。
ここで、図2を参照すると、モールド24がさらに詳細に示されている。いうまでもなくモールド24をさまざまな形態で提供してもよいが、一つの実行可能な実施形態では、モールド24が二枚貝式モールドとして提供される。この二枚貝式モールドは、第一の相補的半片40と第二の相補的半片42とを備えている。半片40、42はそれぞれ凹部44を有しており、これらが組み合わされると、一つの完全なモールドキャビティ46を形成する。キャビティ46は、バルーン34の好ましい輪郭をかたち作っている。図示された実施形態では、凹部44は、それぞれ円筒状外面48と、先端および下端を切り取った円錐状表面52a、52bとを備えている。
モールド24は、セラミック材または石英材の如き低誘電体損失特性を備えるマイクロ波透過性材料から製造されることが好ましい。ただし、同様の効果を奏する使用可能な非金属製材料は他にも多くあり、限定するわけではないが、テフロン(登録商標)、窒化ホウ素などが含まれる。モールド24がテフロン(登録商標)または不良な熱導体である他のマイクロ波透過性材料などからなっている場合、マイクロ波ビームの印加により、バルーンを膨らませた後さらにマイクロ波エネルギーを印加し、バルーン温度を熱セット温度まで上昇させることが可能となる。
マイクロ波供給源22に関していえば、900MHzから30GHzまでの範囲内の周波数でマイクロ波エネルギーを放射するように構成されたマグネトロンとして、または20GHzから140GHzまでの範囲内の周波数およびそれに対応する332mm(900MHz)から2.14mm(140GHz)までの範囲内の波長でマイクロ波エネルギーを放射するように構成されたジャイロトロンとして提供されうる。マグネトロンの一般的な周波数は、915MHz、2450MHz、5800MHz、24,125MHzである。ジャイロトロンの一般的な周波数は、20GHzから140GHzまでの範囲内である。これらが、マグネトロンおよびジャイロトロンのために一般的に用いられる周波数範囲であるが、いうまでもなくこれらの範囲の外側に分類されるマイクロ波周波数であっても本発明では適切に用いられうる。図6に示されるように、ジャイロトロンは、カソード54を有する電子銃と、アノード56と、強磁場59の中に浸かった共鳴腔58と、コレクタ60とからなりうる。磁場59は、超伝導用のマグネットまたはソレノイド61により発生されうる。カソード54が励起されると、それにより放出された加速電子が磁場59に入り、相対論的高速度でかつ非常に小さなループで回転し始める。たとえば赤外線に反してマイクロ波エネルギーを用いる利点は、加熱速度が非常に大きいということである。
たとえば、カソード54電位が10キロボルトであり磁場59が12テスラであるマグネトロン入射型電子銃を用いると、電子は、半径が30マイクロメータでありサイクロトロン周波数が330GHzであるらせん形状を描くように回転(gyrate)させられる。磁場59を変更することにより、それに応じた周波数の変更が可能となる。高周波数波を得るために、共鳴キャビティは、その幾何学的サイズが旋回電子により生成される波長の調波とマッチするようにデザインされるべきである。ラジオ周波数(RF)ウインドウ62を通しておよび導波路63により伝送される電磁気はターゲットに搬送されうる。ジャイロトロンシステムの製造会社は、ビームをガウス形状のHe11モードに変換するための内蔵式コンバータを備えたそのようなジャイロトロンを供給する。He11モードに変換されるビームは、低い損失で、円形導波路を通過させられうる。たとえば、マサチューセッツ州ブライトンのインサイトプロダクト社(Insight Product Company of Brighton)がこのようなシステムを提供している。オープンエンド型円形導波路から放射されたHe11モードは、明確な偏光および方向を有する軸対称で幅狭のガウスビームと、ビームの焦点をターゲットに合わせるために金属製ミラーおよびHDPeレンズのような簡易な光学式コンポーネントを利用することを可能とする低サイドローブレベルとを備えている。
ワークピース36の加熱に必要な電力レベルに関していえば、パリソンがペバックス(登録商標)(PebaxR)から製造される場合、ワークピース36を室温から140℃まで上昇させ、バルーンを膨らませるために、必要なエネルギーを以下のように計算することが可能である。ほんの一例として、典型的なパリソンチューブは、たとえば、外径が1mm、内径が0.6mmであり、長さが32mmでありうる。したがって、このチューブの体積は12.8mmである。CP値が1500J/Kg℃、比重が1.1g/cmである場合、パリソンを室温から140℃まで上昇させるために2.54ジュールが必要となる。たとえばインサイトプロダクト社により製造される商用低電力ジャイロトロンは、電子ビーム電圧を最大12kVまで変えることにより出力電力を0.3〜3kWの範囲に連続して調整する24GHz連続波のジャイロトロンを提供し、おおよそ、その波長まで、すなわち12mmまで焦点がぼかされうる。したがって、パリソンがビームの焦点内に置かれると、そのビームの約12分の1がターゲットをヒットすることになる。エネルギーの50%が吸収されると仮定した場合、0.1kWのCW出力電力では、パリソンを加熱するために、2.54ジュール/(100(ジュール)/24)=0.6秒かかることになる。
さらに図1を参照すると、装置20を用いて、マイクロ波エネルギーを利用したバルーンの製造ができるのみでなく、温度センサ28およびプロセッサ26を用いて、フィードバックループを提供し、ワークピース36の加熱温度に基づいたジャイロトロン22の調節ができるようになっている。適切な温度センサとしては、1秒間に約40回の読み取りが行える、ニューポートコーポレーションを介した入手可能なモデル番号OS1592の高速応答型赤外線光ファイバ温度計、またはヘイトロニクスコーポレーション(Heitronics Corporation)からの赤外線温度センサが挙げられる。
ジャイロトロンの電力出力を制御するために、カソード54に対する入力電圧のパルスリンクを調整してもよい。そのようにすることにより、たとえば、10キロワットのジャイロトロンを5ワット以下の平均電力レベルで動作させることが可能となる。端末温度を±2℃(3.6°F)範囲内において制御する必要がある場合、センサの読み取りと読み取りとの間のすべてのパルスに対し、温度上昇は2℃(3.6°F)未満であるべきである。したがって、温度に対してポリマー材料の吸収係数が一定であると仮定すると、20℃と140℃との間において少なくとも60回の読み取りがあるべきである。ヘイトロニクス社のIRセンサの更新周波数は200Hzである。パリソンを120℃上昇させるのに0.6秒かかること、すなわち一秒間に200℃上昇させるという先の計算結果を考慮するとともに、差し当たり、線形に上昇する簡易モデルを前提とすると、IRセンサを200Hzで読み取ることにより精度が1℃となる。このことによって、既存の装置およびセンサを用いて、2秒未満で±2℃の精度でもってパリソンの制御温度を140℃まで上昇させることが非現実的なものでないということが証明される。
他の実施形態では、ジャイロトロンビームは、そのビームのうちのほんの一握りがサンプルに衝突するように、その焦点がぼやかされうる。たとえば、これは円筒状のレンズを用いて行われうる。こうすることにより、温度上昇をさらに小さくしうるし、いったん必要な温度が達成されると、ジャイロトロンを停止しうる。同様に、カソードの電流を削減することによりジャイロトロンの出力電力を削減しうる。さらに他の実施形態では、偏光スプリッタの如き電力スプリッタを用いて50/50での電力分割を可能としうる。このようなスプリッタを三つ直列にすると、電力レベルは12.5%にまで低下されうる。同時に複数のバルーンのブロー成形を行うために50/50分割オペレーションを用いてもよい。また、レーザビームの焦点をぼかすことにより、同時に複数のパリソンを加熱することを可能とする。過剰なエネルギーは、出力先が変更され、負荷水(water load)により吸収される。
ワークピース36にマイクロ波の焦点を合わせてバルーン34全体を均一に加熱するために、図4および図5に記載の実施形態が用いられうる。これらの両方の実施形態では、レンズはビームの焦点合わせをするために用いられる。たとえば、図4に示されているように、ジャイロトロン22の形式で提供されうるマイクロ波供給源は、マイクロ波放射を、導波路63を通して第一のレンズ64に案内する。次いで、この第一のレンズは、収束されたマイクロ波ビームを第二のレンズ66に案内する。第一のレンズがHDPEレンズとして提供されてもよいし、第二のレンズが金属製精密ミラーまたは金属製収束ミラーであってもよい。これらのレンズは、たとえばファランテクノロジを通じて商業的に、容易に入手可能である。バルーンを作る一つの方法は、平行ビームを作り出すために円形状の導波路62の出力部をHDPEレンズの焦点に置き、そのビームを、図4に示されている収束ミラーに案内することである。そのように操作すると、ポリマーチューブの長手方向の電力分布(power distribution)が若干不均一なものとなる。
あるいは、さらに均一な温度分布を達成するために、チューブの一部に沿ってビームを走査させうる。これは、図5に示されているように、光軸に対してある角度、たとえば45°になるとともに、この光軸を中心として回転するミラー上にビームを収束させることにより行われうる。こうすることにより、ビームが光軸に対して垂直な面内で走査させられる。走査ミラーを放物面ミラーの焦点に置くことにより、パリソンに沿った方向にビームを走査させるシステムが構築される。また、これにより、赤外線センサを一体化させる便利な方法が可能となる。マイクロ波は、走査ミラーおよび収束レンズにより、パリソンの小さな部分、たとえば波長の長さ程度の部分に収束される。IR検出器は、パリソンを走査する全長の開始点に対して垂直になるとともに収束するような位置に配置される。
図5に示されているように、第二のレンズ66は回転レンズである。したがって、このレンズは、マイクロ波エネルギーの焦点を収束させるのみでなく、バルーン34の軸方向の長さ全体にわたった移動も可能にする。さらにいえば、第一のレンズ64は放物面レンズまたは放物面ミラーの形式で提供される。マイクロ波ビームは、走査ミラーおよび収束レンズによりパリソンの小さな部分に収束される。赤外線検出器は、パリソンを走査する全長の開始点に対して、垂直な方向に配置され、収束されるようになっている。ビームがパリソンを走査すると同時に、赤外線センサがパリソンを監視する。パリソンのすべてのポイントは同一のエネルギーを受け取っているので、すべてのポイントは同一の加熱温度になる。いったん正しい温度まで加熱すると、パリソンはすぐにモールドの中に引き込まれ、バルーンは膨らまされうる。他の実施形態は、いったんパリソンが上記の温度に達すると、二枚貝式モールドを閉鎖することもありうる。こうすることにより、パリソンを移動させなくてよくなる。パルス式マイクロ波システムの場合、高速のパルス周波数を選択し、二つの隣接するスポット間の重なり合いを顕著なものとしている。CWジャイロトロンの場合、均一な分布が自動的に得られる。なお理解しておかなければいけないことは、加熱操作の後、パリソンをモールドに移動させる間またはモールドを閉鎖する間、温度が低下することである。この温度低下は、低下の程度を監視することによって補償され、移動時間が知られるにつれて、加熱サイクル中のその低下を補償する。また、これは、パリソンに沿って達成される温度分布を可能にする。たとえば、パリソンの特定部分をさらに高温にまで加熱することが望ましい場合、赤外線センサを高温に集中させておき、いったん温度分布の低温部分が達成されると、低温部分を通過するパルスを停止しうる。
図7を参照すると、本発明にかかる方法に従って実行されうる一続きのステップの一例を示すフローチャート図が示されている。図示されているように、第一のステップは、ステップ100により示されているようにモールドの中にパリソンワークピース36を設置することである。所望ならば、このあと、加熱プロセス中にパリソンをテンションのかかった状態に置くことが望ましい場合、ステップ102によりテンショナ30、32を駆動させてもよい。テンショナ30、32は、さまざまな容易に入手可能な形態で提供されうる。これらの形態には、限定するわけではないが、液圧クランプもしくは気圧クランプ、回転マンドレルまたは回転スプールなどが含まれる。いったんテンションのかかった状態になると、ステップ104で示されているようにジャイロトロンを駆動することが可能となり、ジャイロトロンにより発生されるマイクロ波ビームにより、ステップ106により示されているようにパリソンが走査される。この走査中、ステップ108により示されているように、パリソンの温度は断続的に温度センサ28により監視される。ステップ110により示されているように、コントローラ26による決定において、監視された温度が所定の温度に一致するかまたは所定の範囲内である場合、ステップ112で示されているように、パリソンを通して加圧空気を案内するためにコンプレッサ39を駆動しうる。これに代えて、コントローラ26は、温度の読み取り値に基づいてジャイロトロン22の強度(intensity)を調整するアルゴリズムを用いてもよい。このあと、ステップ114により示されているように、パリソンを、モールド24を通して移動させ、同プロセスを再スタートする位置につける。これに代えて、監視された温度が所定の範囲内でない場合には、温度は、そのようなレベルに到達するまで監視され続ける。
図8および図9に示されているさらに他の実施形態では、どのような種類のモールドをも用いることなく医療デバイスを構築しうる。このようなシステムでは、本明細書では宙吹き(free blowing)と呼ばれ、モールドの取り付けおよび取り外しならびにモールドからのワークピースの取り外しに必要な追加の労力を削除することができるので、製造を容易にするとともに促進することが可能となる。さらに具体的にいえば、図に示されているように、多くの点において上述の実施形態と同等であるもののモールドを備えていないシステム122を提供しうる。上述のように、ワークピースまたはパリソン128の方向に向かってエネルギーのビーム126を案内するためにジャイロトロン124または他の供給源またはマイクロ波エネルギーが提供される。ビーム126は、パリソン128全体にわたり前後に走査されてもよいし、またはバルーンカテーテルの一部を形成するバルーン130(図9)の所望の位置などの如き特定の位置へ案内されてもよい。
さらに、モールドなしで医療デバイス20を製造する利点は、パリソン128への自由なアクセスであり、これにより、迅速で完全な温度検出が容易になる。図に示されているように、正確かつ頻繁な温度センサの読み取りを行い、温度信号をコントローラ136へ案内するための温度センサ134(複数の温度センサ)が設けられてもよい。コントローラ136は、いかなる形態のマイクロプロセッサベースのコンピューティングデバイスであってもよいし、またはアナログ式電子システムであってもよい。このコントローラ136は、パリソン128の読み取り温度を比較し、メモリ138に格納されているしきい温度に達すると、流体圧力供給源140に対して信号を送り、図9に示されているようにパリソン128の中に加圧流体の流れを案内すべくなしてある。
ジャイロトロンは電子ビームであるので、ジャイロトロンビーム126のエネルギーを正確にかつ迅速に変調することが可能である。換言すれば、ビーム126をパリソン128全体にわたって掃引する間、ビームの開始位置および停止位置ならびに掃引経路に沿ったエネルギー分布を正確に制御することができる。これは、パリソン128を開始位置と停止位置との間で同一の温度に加熱するための単一のエネルギーレベルであってもよいし、または掃引中にエネルギーを変調することでパリソンに沿う温度分布を発生させてもよい。ワークピースの温度吸収速度はワークピースの温度に対して非線形の関数であるので、ワークピースを任意の所定の温度に到達させることを可能とするためには、温度センサ134およびコントローラ136により提供されるフィードバックループが有効である。たとえばヘイトロニクスコーポレーションにより製造されているモデル番号KT22の如き赤外線パイロメータにあっては、0.1°Kの精度において5ミリ秒未満の応答時間を有しているので好都合である。また、インフラサームYP10(Infratherm YP10)というモデル番号でインパック(Impac)社により製造されている温度センサにあっては、2ミリ秒の応答時間を有しているので使用に適している。さらにいえば、これらのセンサは両方とも、ほとんどのパリソンの直径よりも小さい0.5ミリメートル未満の大きさのスポットにまで焦点を合わすことが可能である。
このようなフィードバックループを用いると、製品を電子ビームで複数回掃引しつつ単一ポイントにおいて製品の温度を監視し、所定の温度を達成したとき加熱プロセスを停止することが可能となる。このようにして、たとえば室温から400℃までの範囲のうちのいずれの温度を一秒未満で達成することが可能となる。KT22型パイロメータを用いると、単一ポイントのみでの測定が可能となり、赤外線ラインスキャナーを用いると、完全な製品に沿って温度を検出することが可能となる。同一エネルギーレベルを用いたマイクロ波ビームにより全体のチューブを走査すれば、チューブに沿った単一ポイントでの温度を測定することは、全体の製品に沿った温度の良い測定結果を得ることを十分にする。たとえマイクロ波ビームのエネルギーをチューブの位置の関数として変更することによりそのチューブに沿った温度分布を形成する場合であっても、最大のエネルギーを受ける単一ポイントでの温度を測定することは、全長に沿った温度の検出を行うことを十分にする。
ここで図9を参照すると、流体圧力供給源140によりワークピース128に流体圧力を加えると、パリソン128の加熱セクション(バルーン130)が膨らむ。これは、ジャイロトロンにより発生された熱により、パリソン128のうちのバルーンとして所望される位置が同パリソン128のその他の位置よりも著しく加熱され弱められているからである。したがって、流体圧力により発生される圧力により、パリソン128のうちの加熱されて弱められたセクションが変形されるとともに、その他の部分が変形されずに留められることが可能となる。
モールドなしでバルーン130を正確に形成するために、少なくとも一つの位置センサ144を設けうる。たとえば、図9に示されているように、バルーン130の所望の寸法に対応してパリソン128から距離αのところにある受光部147にレーザビーム146を案内するように、レーザスキャナーの如き光学式スキャナーを位置づけしてもよい。バルーン130がこの寸法に達すると、同図に示すように、ビーム146が切断され、次いで、位置センサ144が切断を示す信号をコントローラ136へ案内する。この信号を受信すると、コントローラ136は、パリソン128の内側の流体の圧力を下げ、これ以上の膨張を停止するように、流体圧力供給源140またはそれと関連するバルブに対して命令する。他の実施形態では、パリソンのうちの小さな部分を加熱するために収束されたマイクロ波が用いられるだろう。このセクションが膨張すると、距離センサの信号を用いてプロセッサに対して信号が送られ、当該プロセッサはパリソンを軸方向に移動させるかまたはマイクロ波ビームを移動させるだろう。換言すれば、バルーンブロープロセスは、同時に起こるプロセスではなく軸方向に沿った連続プロセスである。同一のバルーンセクションにおいてこれらのプロセスステップを繰り返すことにより、バルーンを段階的なステップで膨張させることが可能となる。
さらに、バルーンがその所望の寸法に到達した場合のパリソン128の硬化を促進させるために冷却源148を設けうる。たとえば、冷却が望ましい場合に、低温の窒素ガス、空気、ヘリウムガス、または同等のものをバルーン130に対して吹き付けてもよい。マイクロ波エネルギーおよび流体圧力の印加を停止するとともに冷却ガスの使用により、ポリマー材料の迅速なセットが促進される。ペバックス(登録商標)および上述のその他の材料以外に、システム122はさまざまな他のタイプの材料とともに用いられうる。これらの他の材料には、限定するわけではないが、ポリイミド、ポリイミド12PEEK(ポリエーテルエーテルケトン)、PTFE(ポリテトラフルオロエチレン)、およびPET(ポリエチレンテレフタレート)、ポリエーテルポリ(2,6−ジメチル1−フェニレン−エーテル)、ポリエーテルケトン、これらの材料の混合物、またはその他の高温もしくは低温ポリマーが含まれる。
また、パリソン128は、バルーンの異なる部分において多種多様の機械的性能を備えているバルーンを形成する目的に従って、二以上のポリマーから押出成形または他の方法で製造されうる。典型的な例としては、「ドッグボーン」タイプのバルーンを製造して、バルーンの中央セクションと動脈血管壁との間において囲まれたスペース内に薬剤を注入することを可能とするために、非従属性中央セクションおよび従属性端部セクションを備えるバルーンを作製することが挙げられる。従属性端部セクションは血管壁とのシーリングを可能とし、非従属性の中央セクションはバルーンと血管壁との間に環状のスペーシングを可能とする。第二のポリマーが第一のポリマーとは異なるガラス転移温度および異なる機械的強度を有している場合、流体圧力の印加により両方のポリマーをバルーン形成に従わせるためには、両方のポリマーを異なる温度へ加熱しなければならない。換言すれば、パリソンの異なるセクションを異なる温度に加熱することができるマイクロ波式加熱プロセスの特徴を利用することにより、二あるいはそれ以上のポリマーを組み合わせたバルーンの設計が可能となる。そのような温度に限定するわけではないが、少なくとも215℃のガラス転移温度を有するポリイミドの如きある種の高強度ポリマーが、高強度を有する薄壁のバルーンを作製する上で好都合であることが本発明者によって見出されている。高いバルーンブロー成形温度が必要となることは、エネルギーの軸方向への流れによって、従来のバルーンブロープロセスを用いてこれらの材料を加工することを可能にする。マイクロ波による加熱スピードは、モールド内において少なくとも25℃/mmのパリソンに沿った温度勾配でバルーンを宙吹きすることを可能にする。他の手段では軸方向のエネルギーの流れのために宙吹きを行うことができないので、それにより、パリソンの軸方向の線に沿ってさらに多くの材料が用いられうるようになる。先に説明したように、加熱スピードは、140℃を超える温度において2秒未満でバルーンをブローすることを可能にし、バルーンブロープロセス中におけるポリマーの熱的劣化を減少させるという利点がある。
図10に示されているさらに他のシステム150では、流体圧力は、ジャイロトロン154によるパリソン152の加熱前および/または加熱中に当該パリソン152中を通って印加される。したがって、パリソン152の材料がその形状の維持を困難とするほど弱くなるしきい温度にパリソン152がいったん到達すると、当該パリソン152は、膨張し、バルーンを形成する。この実施形態は、モールドとともに用いられてもよいし、またはモールドなしで用いられてもよい。流体圧力は、流体圧力供給源159によりパリソン152中を通って印加される。
この実施形態では、ジャイロトロン154の動作を停止し、パリソン152の加熱を中止するための間接的な温度制御として、パリソン152の膨張による当該パリソン152内の流体圧力の低下を用いうる。さらに詳細にいえば、図10に示されているように、パリソン152内の流体圧力を常時監視するために圧力センサ160を設けうる。圧力センサ160は、対応する信号をコントローラ162へ順々に送信する。この流体圧力によってパリソン152を変形してバルーンを形成するのに足りる十分な温度にパリソン152が到達した後、体積が膨張して、パリソン152内の圧力が低下する。結果的に生じた圧力低下は、圧力センサ160からの対応する信号を通じてコントローラ162へと伝達され、そのあと、コントローラ162は、ジャイロトロンまたは他のマイクロ波供給源154の動作を停止するための信号を順々に発信する。加熱が非常に迅速に行われるので、キスラー(Kistler)のモデル番号601Aまたは701Aの如き非常に応答性の良い圧力センサが望ましい。
上述のように、複数の固定レンズおよび/または可動レンズとともに用いて準光学式システムを構築するためのジャイロトロンにより、マイクロ波エネルギーが発生させられうる。しかしながら、他の実施形態では、導波路内にワークピースを置いてもよい。しかしながら、特定の波モードのみが特定の導波路の幾何学形状に適合するので、特定の波モードのみがワークピースに案内されることになり、実質的に非常に不均一な加熱が行われる。したがって、均一な加熱を達成するために、機械的モードのまたは電気的モードの攪拌が適用されることがある。さまざまな従来のマイクロ波加熱器に用いられるような機械的モード攪拌では、好ましい波モードを変更するために導波路の幾何学形状が連続的に変更される。電子モード攪拌(可変周波数)では、ある周波数帯域または周波数領域全体が繰り返してかつ連続して掃引され、同一のモード攪拌効果を奏している。このようなほとんど瞬間的な加熱プロセスにおいて非常に均一な加熱効果を達成するために、モード−攪拌周波数が非常に高くなければならないこと、また、攪拌が波モードの広範囲の分布帯を通して行われなければならないことが明かであり、したがって、通常、電子モード−攪拌がより適切であると考えられている。
以上において具体的に記載されている実施形態では、バルーンカテーテルが製造されている。しかしながら、血管造影法を含むさまざまな他の医療用のデバイスまたはコンポーネントの製造にマイクロ波式加熱を用いてもよいことはいうまでもない。たとえばこれらには、限定するわけではないが、接着剤を用いてマニフォールドをカテーテルシャフトに接続すること、層と層との間における炭素の如きマイクロ波吸収材料を用いて医療デバイスの層を接続すること、または、ステント、フィルタワイヤ、もしくは他のポリマー金属デバイスもしくはポリマーセラミックデバイスの外面に対するポリマーコーティングを硬化させることが含まれる。従来のシステムにおいては、接着剤は室温において硬化させられるのみであり、したがって、製造サイクルが比較的に長くなるか、または接着剤の位置ずれによりプロセスが変えられることが多かった。しかしながら、マイクロ波エネルギーをこの接着剤に印加することにより、硬化時間が著しく減少される。接着剤中に導電性繊維を含ませることにより、このプロセスをさらに加速することができる。非常に適切な導電体は、さまざまな形状および粉体寸法で入手可能なミクロン程度の炭素およびナノ寸法の繊維である。
金属製構造体にポリマーコーティングを硬化させるにあたってこのようなマイクロ波エネルギーを用いるために、可変周波数マイクロ波印加装置を用いることができる。定常波パターンの存在下において過剰電荷が金属製材料に蓄積されることに起因してスパークまたはアークが発生するため、通常、マイクロ波を金属製対象物とともに用いない。しかしながら、可変周波数マイクロ波技術を用いる場合、発生される電界は電子的に攪拌されており、マイクロ波エネルギーはいずれの位置上においても1秒の数分の一を超えて収束された状態でいることはない。したがって、スパークの原因である電荷蓄積のダイナミックスが達成されることがないので、アークを発生させない。このため、可変周波数マイクロ波印加装置内でのステント、フィルタワイヤ、大静脈フィルタ(vena ceva filters)、またはその他の金属製構造体の位置決めを行うことが可能となる。
図11には、本発明に従って構築された一つの実施形態であるマイクロ波式ポリマー押出成形装置が示されており、その全体的が参照番号180により表されている。押出成形装置180は、ロッド支持部材または空気チューブ部材182と、押出成形チップ・ダイ連結部183とを備えている。このチップ・ダイ連結部183は、開放ダイチップ184と、参照番号186により全体が表されているダイとを備えている。ダイ186は、前部ダイブロック部材188と、ダイ支持壁190と、カッターダイ部材192とを備えている。さまざまなダイ部材184、186、188、190、192は、押出成形装置の内側のポリマー材料へマイクロ波エネルギーを到達させて加熱させるために、適切な非金属製マイクロ波透過性材料から形成されることが好ましい。この適切な材料には、バルーンモールド24に関して上述したマイクロ波透過性材料の場合のように、セラミック材料、石英材料、ガラス材料、および非金属材料が含まれる。非金属材料には、限定するわけではないが、テフロン(登録商標)および窒化ホウ素が含まれる。いうまでもなく、所望ならば、特定の用途においてダイチップ184を削除してよい。この場合、ダイ186は、(ダイブロック部材188の)インレット開口部と(ダイ出口開口部185の)アウトレット開口部とを備えた中空構造体として機能する。
一連の固体ポリマー原材料部材、すなわち第一のポリマー材料から形成される固体ポリマー円板194と異なる第二のポリマー材料から形成される固体ポリマー円板196とを交互に積層することにより、チップ・ダイ連結部183のためのポリマー原材料部材からなる圧搾積層体197が形成されている。それぞれのポリマー円板194、196を構成するそれぞれのポリマー材料は、所望の押出成形品205を形成するために選択される異なる物性を有している。押出成形装置180に用いられる適切な材料には、ペバックス(登録商標)に加えて、冷却源148に関してすでに記載しリストアップした他の成形加工可能かつ押出成形加工可能な材料が含まれる。いずれの場合であっても、積層体197は、空気チューブにより支持され、この空気チューブに沿って、(以下で本明細書に記載する)適切な押圧機構により、図11の矢印Aの方向に押出成形装置のダイ180に向かって押されるようになしてある。空気チューブ部材182は、内部を通過する空気の供給を受け、チューブ状押出成形品205の形成を補助すべくなしてある。図11のキャタピラ駆動装置195は、押出成形装置180から押出成形品205を取り出すための手段として動作するようになっている。
図12に示すように、参照番号198により全体的に表されているマイクロ波エネルギー場は、ポリマー円板積層体197に対して印加されるようになっているが、カッターダイ部材192の外側チップ200のちょうど前方の場所とダイ出口開口部185との間の領域のみに印加される。重要なことは、さまざまなダイ部材がマイクロ波透過性材料なので、マイクロ波エネルギー場198から影響を受けない。同様に、マイクロ波エネルギー場198は、これらのさまざまなダイ部材により、妨害されたり、屈折させられたり、または他の変更を受けたりしない。
図11を参照すると、ダイチップ184の方向に向かって押し出されているポリマー円板194、196の外縁の材料は、鋭い外側チップエッジ200によって切断される。この切断による残余分のポリマー材料202は、残余分用開口部204を矢印Bの方向に向かって通って、チップ・ダイ連結部183から排出される。このように、残留分であるポリマー円板194、196は、チップ・ダイ連結部183の基端側(図1の左側)のカッティングエッジ200と係合する直前に(マイクロ波エネルギー場198によって)溶融される。移動する固体円板の積層体197は、その押圧力により、溶融ポリマーをチップ・ダイ連結部183から通過させる。溶融された円板194、196は、チップ・ダイ連結部183において加圧溶融ポリマーの流れを形成し、チップ184およびアウトレット開口部185の方向に向かって移動する。剪断力が小さいため、これらの溶融ポリマーは接合部分においてのみ混合する。いうまでもなく、円錐形状かつ中空のダイチップ184は空気チューブ182の端部と堅固に接続されているので、空気チューブは空気を最端部、すなわちダイチップ184の先端部に直接供給するようになっている。ダイチップ184の先端部の円錐形状とダイ192の円錐形状とを組み合わせることにより、ダイアウトレット開口部185の方向に向かってダイチップ184まわりの分割(split)が狭くなっている(図11および図12の湾曲矢印を参照)。したがって、溶融ポリマーは、ダイチップ184の基端(図11の左端)部のまわりを流れ、ダイアウトレット開口部185から出ていく。カッティングエッジ200の外側寸法をポリマー円板194、196の外側寸法よりも小さくしている目的は、チップおよびダイ開口部185で起きている押出成形工程が溶融ポリマーのバックフローにより妨げられないことを確実にするためである。残余分用開口部204から流出する残余分材料202は、回収され、廃棄される。空気チューブ182から吹き込まれる空気とダイ開口部185とが組み合わされて、押出成形品205のためのチューブ形状が作り出される。
好都合なことに、本発明にかかるマイクロ波式押出成形装置180においては、押出成形装置180内の溶融ポリマー材料の圧力が従来の押出成形装置に通常存在する圧力と比較して非常に小さいことが担保される。事実、ダイチップ開口部184の通路において唯一の圧力ステップが発生し、この圧力ステップは、溶融ポリマーを駆動力(図11の矢印Aを参照)により狭いダイチップ開口部184から通過させることによる圧力上昇により発生する。この駆動力は、キャタピラタイプの駆動ベルト(図14の駆動装置220を参照)、駆動ラム(図15のラム228を参照)、線形サーボモータ(図示せず)、または同等の駆動手段(図示せず)の如き適切な押圧機構により発生される。力センサ(図示せず)を、供給原料積層体197に対して印加される力を記録(register)することができるそのような駆動デバイスの位置に設けることにより、力のパターンおよびレベルの視点から、駆動力を正確に特徴付け、制御することが可能となる。流出速度(流量)、すなわち押出成形チューブ205の寸法は、この駆動力と直接に関連し、時間の経過に対する力のパターンに従う。チップ・ダイ連結部183における溶融ポリマーの粘弾性が原因で、押出成形装置システム全体は、高周波数カットオフフィルタとして機能するものの、従来の押出成形装置と比較して溶融ポリマー材料の体積が小さいため、さらに高いカットオフ周波数が得られる。さらに、押出成形装置内の加熱ポリマー材料の総合的な遷移時間(overall transition time)、すなわちポリマー材料が溶融されてからダイ開口部184より出ていくまでの時間は、従来の押出成形プロセスで知られている時間よりもずっと少ない。というのは、押出成形装置のチップ・ダイ連結部183内でのみ遷移が起きるからである。このことは、原材料円板194、196内のポリマーの各々の物性を本押出成形プロセス全体にわたって比較的に変更することなく留めておけるという重要な利点を有している。
モールド24に関しての先の説明と同様に、マイクロ波式押出成形装置180内でマイクロ波のエネルギー場198を発生させるために、高周波数マイクロ波用準光学式モードを用いることができる。さらに具体的にいえば、マイクロ波供給源207からのマイクロ波エネルギービーム206は、適切なHDPEレンズ208および金属製ミラー210を用いて収束されうる(図12参照)。この結果、適切な幅のマイクロ波エネルギー場198がマイクロ波透過性の押出成形チップ・ダイユニット183を貫通し、ポリマー194、196がマイクロ波場198を通過するときにこれらのポリマーの加熱と溶融とを引き起こす。さらに、光学式センサ212を用いて、マイクロ波場198内のポリマー材料194、196の温度を検出することができる。このあと、適切なフィードバックループ214およびコントローラ215を介して、マイクロ波供給源207は、マイクロ波式押出成形装置180のマイクロ波場198内の温度の正確な制御を可能とするため迅速に調節されうる。
したがって、マイクロ波場198内で印加されるマイクロ波エネルギーを、かなり直接的にかつ即座に変更することが可能なので、マイクロ波場内の円板194、196のポリマーの溶融温度をほとんど瞬時に制御することが可能である。したがって、このことにより、たとえばポリマー円板194、196がチップ・ダイユニット183内のマイクロ波場198を通過する場合であっても、これらのポリマー円板として異なるタイプのポリマー、すなわち溶融温度が異なるポリマーを組み合わせたものを用いることが可能となる。
さらに、血管造影製品および他の医療製品の形成に用いられる「バンプ押出成形」として知られている特定のタイプの押出成形プロセスが存在する。バンプ押出成形プロセス中、チップおよびダイを通過するポリマー溶融物の流出量を変更できる。この変更は、ポリマー溶融物を押出成形ヘッドの中へ送り込む従来の駆動力、すなわちメルト−ポンプまたはスクリュー速度を変更してヘッドにおける圧力変化を引き起こすことにより溶融流出量を増やすことによって実行される。これに代えて、チップ・ダイ連結部183から押出成形品205およびポリマー溶融物を引き出す牽引キャタピラ(図12のキャタピラ駆動装置213を参照)の速度を変更できる。しかしながら、ポリマー溶融物の粘弾性の物性に起因して、駆動モータとチップおよびダイ開口部185との間の溶融ポリマーの体積が大きいことに起因して、またキャタピラ駆動装置213とチップ・ダイ連結部183との間の距離が長いことに起因して、流出流量の変更およびそれに応じたバンプの形成は、従来の押出成形装置を用いると、プロセスが比較的に遅い。しかしながら、本発明を用いると、以下に詳細に記載するように、ポリマー円板194、196の積層体197に対して印加される押出力または駆動力の変更は比較的容易である。
また、いわゆる「バンプ」押出成形プロセスに代えて、いわゆる「回転」押出成形プロセスが望まれる場合、本発明を用いて、代わりの押出成形プロセスを非常に高い回転数で実行することができる。実質的に、独立して回転可能な本発明にかかるマイクロ波式押出成形装置180の三つの部品要素、すなわち空気チューブ部材182の端部に設けられているチップ184、ダイ192、およびポリマー円板の積層体197が存在する。チップ184およびダイ192を反転させることにより、溶融ポリマーを軸に対してある角度で配向することができる。ライン速度(すなわち、チップ・ダイ連結部183からの溶融材料の軸方向の流量)を減少させ、回転速度を同一に留めることにより、配向角度を変更することができる。さらに、ここで、従来の押出成形ヘッドでは不可能であった利用可能な一つの選択肢が存在する。すなわち、チップ184およびダイ192を静止したままにしておきながらまたは円板に対してチップ184およびダイ192を反転させながら、ポリマー円板の積層体197を回転させることができる。円板の積層体197を回転させる結局の効果は、中央ポリマー層の配向が角度を有したものであるということである。チップ184およびダイ192の表面と接触する内側界面層および外側界面層は軸に対してそろえられている。
図13aから図13dには、以上の三つの選択肢が押出成形チューブ205の断面図で表されている。いうまでもなく、これらの図の矢印はポリマーの配向を表しており、ドットは配向が角度を有していないことを表している。図13aは、チップ184の回転により押出成形品205の内側層の配向を示している。いうまでもなく、先に記載したように、ダイチップ184が空気チューブ182に堅固に取り付けられているので、空気チューブを回転させると、ダイチップが回転する。ここで留意すべきことは、図13bは、ダイ184を回転させることにより押出成形品の外側層の配向を示していることである。次に、図13cは、チップ184とダイ192とを相互に反転させることで得られる配向を示している。最後に、図13dでは、円板の積層体197が回転されているときの層の配向を示している。
以上の三つの要素の回転を以下のようにして実現することができる:チップ184が空気チューブ182の後部に接続されており、このチューブがポリマー円板の積層体197の中央を貫通しているので、押出成形ヘッドの後部において空気チューブ182をモータ(図示せず)に接続し、チップ184の回転を可能とすることができる。必要ならば、円板と回転シャフト182との間の摩擦を防止するために、空気チューブ182のうちのポリマー円板194、196が依然として固体である領域の部分のまわりに、囲い込み用の非回転チューブ(図示せず)を追加することができる。しかしながら、モータ(図示せず)が空気チューブ部材182の基端側で接続されると、空気チューブの積層体197に対して新規の個々の円板の供給が困難となる。また、モータがない場合であっても、空気チューブがなんらかの空気供給源(図示せず)に接続される場合、新規の円板を空気チューブに供給することは不可能なこととなる。しかしながら、この問題は、所望ならば、円板を二つの半片に切断することにより、または最初から円板の二つの部分形状をモールド成形することにより解決される。次に、これらの円板の半片196a、196a’(図15参照)を二枚貝のように空気チューブ182のまわりを囲ませ、積層体197を形成することができる。これに代えて、図13eおよび図13fを参照すると、ダイ192の前(すなわち、外)側にさらなる石英製駆動リング187を一体化させ、さらにマイクロ波場198の外側に位置するようにベアリング189を取り付けることにより、外側ダイ192を非常に容易に回転させることができることが示されている。ベアリング189は、固定ダイ支持壁190に対してかつ固定ダイ支持壁190と協働してダイ192の回転を可能とする。このことにより、駆動ベルト191および駆動モータ193の利用の如きまたは駆動歯車(図示せず)の利用の如き従来の方法で、ダイ192を回転することが可能となる。
明らかなように、用いられる構成とは関係なく、本発明により、当該ポリマー円板194、196が適切な押圧機構によりチップ・ダイ連結部183の中へと非常に遅い速度で押し込まれて行く間に、所望に応じて、当該チップ・ダイ連結部183および移動中の当該ポリマー円板194、196をすべて容易に回転することが可能となる。図13gは、円板194、196ならびに関連するチップ部材およびダイ部材の回転を示す、(図12の押出成形装置180の左端から観察した)端面図である。なお、この回転は矢印Rの方向に向かって生じている。説明したように、このような回転は、回転に関与する全質量が非常に小さいため、従来の押出成形プロセス下における通常の押出成形と比べれば、本発明にかかるマイクロ波式押出成形プロセスでは非常に容易である。
製造中の最終的な医療製品および血管造影製品のための最終的な押出成形品の必要要件に応じて、本発明は、無限の組み合わせで結合および押出成形しうる複数のタイプのポリマーを迅速に利用することに適している。すなわち、たとえば図11のポリマー円板194、196のような2つの異なるポリマータイプを用いる代わりに、3,4,またはそれよりも多い数の異なるポリマータイプの原材料円板を用いることができる。さらに、平坦な円板またはリングセクション形状、すなわち図11のポリマー円板194、196のように形成されたポリマー材料を用いる代わりに、異なるポリマーに対して異なる形状を用いることができる。たとえば、ポリマー材料は、パイセクション、正方形セクション、または長方形セクションなどの外周形状を有することが可能である。さらに、厚みの異なるポリマー円板を用いることができる。すなわち、第二のタイプのポリマー円板の厚みが第一のタイプのポリマー円板の厚みよりも2倍あるいはそれ以上に大きくなりうる。
さらに、本発明は、押出成形装置180内の最終的に得られる遷移ゾーンが非常に小さいので、いわゆる「断続的押出成形」プロセスを適用しうるようになっている。この「断続的」押出成形プロセスが米国特許番号第5,622,665号に詳細に記載されているが、いうまでもなく、従来の断続的押出成形プロセスでは、二あるいはそれ以上の溶融ポリマーの押出成形ヘッド中への流入が停止および開始される。このことは、たとえば、押出成形ヘッドの直前においてメルトポンプまたはバルブを開始または停止することにより達成することができる。しかしながら、従来の押出成形ヘッドの内部容積が比較的に大きいので、押出成形ヘッドから一つのポリマーを空にし、次のポリマーに切り換え、そして元のポリマーに戻すためには、非常に時間がかかる。さらに、押出成形チューブ205が小さければ小さいほど、使用中の二つのポリマーの間の遷移ゾーンが長くなる。しかしながら、この遷移ゾーンを非常に短くすることが可能ならば、押出成形チューブ205の固さを軸方向に沿ってすぐに変更することができる。本発明の場合、円板がチップ・ダイ連結部183を通過する少し前になってようやく円板が溶融されるので、マイクロ波式押出成形ヘッド183内の遷移ゾーンが非常に小さい。すなわち、ヘッド183のうちの溶融ポリマーが存在する部分内の容積は、従来の押出成形ヘッドの容積よりも非常に小さいので、遷移ゾーンがもっと小さくなる。
重要なことは、本発明の場合、押出成形「ヘッド」、すなわちチップとダイとが連結されてなるユニット183の総合的なサイズが、(チップ開口部184における)流出容積に対する全径および最終的な断面積について、従来の押出成形装置よりも非常に小さくなるように形成されているということである。このことは、総合的な押出成形圧力が、本発明にかかるチップ・ダイ連結部183の方が従来の機械よりも非常に低いという事実に起因する。第二の理由としては、加熱が押出成形装置の壁により提供されているわけではないので、大きな熱マス(thermal mass)を必要としないことが挙げられる。
いわゆるペバックス(登録商標)ポリマー材料を押出成形する場合、低温、すなわち高粘度において押出成形を行うと、おもにこの材料の押出成形中に軸方向の配向が起きることが原因で、血管造影用のバルーン製品の強度が高くなるということが知られている。しかしながら、粘度が低いため、従来のポリマー押出成形装置では圧力が非常に高いので、その点においてプロセスの限界が明確に存在する。しかしながら、本発明にかかるマイクロ波式押出成形装置にペバックス(登録商標)材料を用いると、プロセス圧力が高くなりすぎることを心配する必要がない。さらに、先に説明したように、剪断力が存在せず熱サイクルが減少するので、ペバックス(登録商標)材料の劣化が減少するという有益な効果と、ペバックス(登録商標)材料がマイクロ波式押出成形装置180内での伝送時間(transmission time)が短いという事実が追加される。したがって、本発明にかかるマイクロ波式押出成形装置は、このようなペバックス(登録商標)材料を用いるのに非常に適している。
図14を参照すると、連続運転用に変形された本発明にかかるマイクロ波式押出成形装置180が示されている。すなわち、バルーンカテーテルおよび他の医療製品ならびに血管造影製品に用いられる押出成形品を形成するための適切な押出成形技術では、押出成形工程は中断無く行われるべきである。したがって、このような連続プロセスを達成するために、連続して、すなわち積層体197を押す外力を中断させることなくポリマー円板194、196を追加していく必要がある。本発明にかかる一つの実施形態では、円板194、196の側面上に設けられるグリップ式駆動機構(gripping drive mechanism)という形態をとる押圧機構を用いることにより、上記の連続運転が実現されている。なお、グリップ式駆動機構の全体が参照番号218で表されている。さらに具体的にいえば、このグリップ機構218はキャタピラ駆動機構220という形態をとることができる。このキャタピラ駆動機構220は、回転供給ローラ224により駆動される回転駆動ベルト222を備えている。この回転駆動ベルト222は、ポリマー円板194、196の最外側(すなわち、図14の左端)に存在するポリマー円板に対して力を連続的に印加させるために協働的に働き、その結果、円板の積層体197がチップとダイとが連結されてなるユニット183の方向に向かって圧縮され、駆動される。これに代えて、他の駆動機構としては、たとえば回転歯車式駆動装置(たとえば、図16n参照)を用いてもよい。いずれの場合であっても、グリップ機構218により、円板からなる積層体197に対して新しい円板を連続的に供給すること、たとえば新しい円板194b(図14)の定期的な挿入が可能となる。
以上の押圧式駆動機構またはグリップ式駆動機構218は、チップ・ダイ連結部183の近傍の溶融ポリマー、たとえば材料194、196の粘弾性が非常に高いという事実を有効に利用することが可能である。すなわち、図15においてグリップ式機構226としてその全体が示されている他の連続駆動機構は、円板の積層体197を一つの円板194の略厚み「T」の距離だけ押すようになっているサーボ駆動ピストン228を備えている。次いで、チップ・ダイ連結部183に向かって前進方向に距離「T」だけ進めた後、サーボ駆動ピストン228は同一の距離「T」だけすぐに待避させられて、形成されたギャップ「G」の中に新しい円板196が横から滑り込むことを可能とする。次いで、ピストン228は、図15の矢印Fの方向に前進駆動力を回復するためにわずかに移動する。サーボモータ(図示せず)を用いることにより、サーボ駆動ピストン228による前進−迅速な後退−迅速な再前進からなる動作を非常に正確にかつ迅速に行わせることができる。さらに、これらの結果生じる、ダイ開口部185において観察されるような圧力の「波紋(ripple)」は、速度が遅く、かつ、溶融ポリマー材料194、196の高い粘弾性による緩衝が存在するため、通常非常に小さい。
図16a〜図16hを参照すると、ポリマー原材料部材を製造する装置が模式的に示されており、その全体が参照番号230により表されている(図16a参照)。装置230は、ポリマーペレット材料234で充填されるホッパ232を備えている。ポリマーペレット材料234は、ホッパ扉233からバレル237に供給される。バレル237は、押圧ピストン236の形態をとる押圧機構と、供給用開口部238とを備えている。いったんホッパ扉233が閉まると(図16b参照)、バレル237から空気を取り出すために真空ポンプ241が用いられる。ピストン236は、前方(右側、図16cの矢印参照)に移動させられ、端壁231に対してペレット234を押圧し、ペレットブロック239を形成する。次いで、収束レンズ245からマイクロ波エネルギー場243を発生させる適切なマイクロ波エネルギー供給源242を熱源として用いて、図16dに示されているように、円板用のモールド240に入る前にバレル237内のペレット材料234を溶融する。次いで、ピストン236は、溶融状態のペレットブロック材料239を、開口部238から円板形状のキャビティ229を有する円板用モールド240の中へと押し出し続けることにより、円板194のような均一形状のポリマーリングまたはポリマー円板を形成する。ここで留意すべきことは、マイクロ波エネルギー供給源242およびレンズ245を(図16dと図16eとで示されているように右側方向に)移動させることができ、これにより、モールド240およびモールド内に現時点で圧入されている溶融ポリマーの全体に対してマイクロ波エネルギー場243を印加し、モールド240を完全に充填するまで、溶融ポリマーを溶融状態に容易に維持することができるということである。いったんここまで終了すると(図16f参照)、マイクロ波エネルギー場243をオフにし、モールドされた部分を冷却し、モールド240から取り除き、ポリマー円板194、196の「ツリー」243(図16g参照)を形成する。このツリー243から個別の円板要素を切り取ることができる(図16h参照)。そのあと、ピストン236およびマイクロ波エネルギー供給源242を後退させ(図16aの左側に戻し)、上記のプロセスステップを繰り返すことにより、このプロセスが繰り返され、さらに他の群の新しいポリマー原材料用円板部材194、196が形成される。
以上のように、モールド24および押出成形チップ・ダイ連結部183と関連しかつそれらと同様に、モールド240に加えて装置230のピストン236およびバレル237を適切な石英、ガラス、テフロン、または他のマイクロ波透過性材料から形成することにより、外部マイクロ波エネルギー場243が、このような材料を通過し、ポリマー材料を溶融することができるようになる。
いうまでもなく、これに代えて、ピストン236およびバレル237それら自体を金属製材料から形成することができる。その場合、ピストン236およびバレル237は導波路となる。この場合、可変周波数マイクロ波を用いることにより、バレル237内において均一な加熱を得ることができる。すなわち、マイクロ波式加熱源242の周波数範囲全体にわたり掃引する手段を用いて、時間の経過とともに複数の異なる波モードを発生させることが可能である。この複数の異なる波モードにより、平均して、バレル内のマイクロ波エネルギーが均一に分布される。これは、「電子モード攪拌」と呼ばれる。
図11のマイクロ波式押出装置180と組み合わせた場合、(ポリマーペレットをポリマー原材料用円板状に形成するために)ポリマー円板形成装置230による上記のマイクロ波加熱を行うことにより、ペレット材料234から原材料用円板194、196に変え、次に、これらの円板からチューブ形状の押出成形品205に変えることが担保される。そして、これらのことは、総合的なマイクロ波によるポリマーの加熱時間が非常に短いということが担保されることにより成り立っている。したがって、本発明は、ペレット溶融およびマイクロ波式押出成形プロセスの両方において用いられるさまざまなポリマー材料の劣化を最小限に抑えるという大きな利点を有している。
図17aでは、マイクロ波式ポリマー溶融、円板形成、およびマイクロ波式押出成形プロセスの全体が、部分ブロック線図形式で示されている。この図では、ポリマー円板がポリマー円板形成装置230を用いてポリマーペレット材料をマイクロ波により溶融することにより形成され、次いで、このようにして形成された円板が、円板の積層体197の形態を有するポリマー原材料として移動され、マイクロ波式押出成形装置180においてマイクロ波により溶融され、押出成形され、ポリマーチューブ押出成形製品205となる。
あるいは、ポリマーペレット材料234からポリマー円板194、196を形成する円板形成装置230を取り除いてもよい。これに代えて、図17b〜17hに示すように、ペレット234をマイクロ波により溶融してから直接にマイクロ波式押出成形装置180へ移動させてもよい。この場合、溶融ポリマー原材料がバレル237を通過した後、この溶融ポリマー原材料を保持するために延長用バレル237を追加され、この溶融ポリマー原材料が少しずつ硬化するにつれ、ポリマーチューブとして、マイクロ波式押出成形装置180の切断ダイセクション192へ供給する。さらに具体的にいえば、この代替方法では、まずペレットを圧縮し、一緒にして溶融し、そして、押出成形ヘッドの方向に向かって移動させるにつれて固まっていく初期ポリマー原材料の最後のセクション、すなわちポリマー原材料の最後尾に供給する。このようにして、ポリマー原材料を制御することができる。すなわち、ポリマーチューブ211となる固化原材料は、当該ポリマーチューブ211の外面をしっかり掴むようになしてある回転歯車219の形態をとる押圧機構により、押出成形ヘッドの方向に連続して搬送される。図17bから明らかなように、ホッパ232を開放し、空のバレル237をペレットで充填することができる。前の溶融ペレットおよびサイクルからの固化ポリマーチューブ211は、連続マイクロ波場217の存在下において、一連の回転歯車219により押出成形ヘッドの方向に搬送される。ポリマーチューブ211を囲む延長バレル237’ は開口部を有しており、この開口部により、回転歯車219の各々に、固化ポリマーチューブ211を搬送するための直接の接触が可能となる。(先に記載したように、)延長バレル237’をマイクロ波透過性材料から形成すると、延長バレル237’の中の原材料を適切なマイクロ波場を用いて加熱することができる。
次いで、図17cに示すように、バレル237に通ずるホッパ蓋237を閉鎖し、真空ポンプ241を用いてバレル237内が真空にされる。ついで、図17dに示されるように、ピストン236を前方に移動させ、延長バレル237’の下流にある固化ポリマーチューブ211に対してペレット234を圧縮する。次いで、図17eに示されているように、第二のマイクロ波場221をオンにする。これにより、バレル237内のペレット234が溶融される。マイクロ波場221は、その余剰の幅により、形成されたばかりの固化ポリマーチューブ211の最終セクションまたは最後尾のセクションも溶融させる。これにより、バレル237内の溶融ペレット234が固化されると、固化ポリマーチューブ211の一部となることが担保される。溶融プロセス中、ポリマー溶融物234内のすべての隙間を確実に消滅させるために、ピストン236が連続して(すなわち、図17eの右側に)押される。回転歯車219は、(ピストン237の)前方向に押す力に対して反対に作用することにより、押出成形ヘッド内から観察されるポリマーチューブ211の総合力を一定にし続けることを確実にする。したがって、押出成形ヘッド内の圧力を安定にするために、トルクセンサ223を回転歯車219に取り付けることが好ましい。もちろん、これに代えて、押出成形装置の内部圧力を測定するために、押出成形ヘッド内にマイクロ波透過性ファイバ圧力センサ(図示せず)が用いられてもよい。
次いで、図17fを参照すると、第二のマイクロ波場221がオフにされ、ピストン236がさらに前進させられ、溶融ポリマー234が押されてチューブ形状に圧縮される。このチューブ形状に圧縮されたものは、ここで、固化ポリマーチューブ211のうちのわずかに溶融されている左側後端部に接続される。次いで、図17gを参照すると、前に固化されたポリマーチューブ211によりポリマー溶融物が冷却され、その間、ピストン236は前方へ駆動され続ける。この冷却プロセスは、たとえば強制冷却空気流(図17gの垂直な矢印を参照)を用いて延長バレル237’を冷却するが如き積極的な冷却によりさらに迅速に行うことができる。これに代えて、ピストン236を中空にして(図示せず)、個々の冷却ステップ中、冷媒を流してもよい。次いで、図17hに示されているように、ポリマーチューブ211に新しく追加された後端部が冷却されると、ピストン236が(この図の左側の位置の方向に)待避させられ、上記のプロセスステップが繰り返される。
溶融ポリマー流234を冷却して再固化チューブ211を形成する理由は、このポリマーの再溶融物を実質的に固形円板の積層体197のように作用させるためである。このように、固形円板の積層体がチップとダイとが連結されてなる領域183に入りマイクロ波場198により溶融されたとき、この固形円板の積層体は、(円板の積層体197の場合と同様に、)マイクロ波場198およびチップ・ダイ連結部183の中において溶融ポリマー流の粘性に比べてより高い粘性を有する。したがって、このことにより、複数の事柄が達成される。すなわち、このことにより、切削ダイ192の周りにおいて溶融材料の好ましくない逆流を防止することが可能となり、さらに、固化ポリマーチューブ211に十分な圧力を蓄積し、チップ・ダイ連結部183内の溶融ポリマー流を流出させ、押出成形品205を形成することが可能となる。
かかる実施形態のさらに他の変形例として、図17iには、第二のタイプのポリマーペレット材料234’を受け取ることを目的とする第二のペレットホッパ232’を備えるように変形されている以外は、図17b〜図17hに関して先に提示・記載されたものと同等の直接ペレット溶融式マイクロ波式押出成形装置およびそのプロセスが示されている。この実施形態の変形例は、二つの異なるかつ相互に溶融されたポリマーペレットタイプ234、234’とともに用いられうる。動作においては、断続的なポリマーパターン227を有する変形固化ポリマーチューブ211’が形成される。このような断続的なポリマーパターン227を有する変形固化ポリマーチューブ211’は、所望に応じて特別な押出成形製品の用途に用いるのに好都合である。
図18aには、その全体が参照番号244により表される回転式駆動装置が示されている。この回転式駆動装置244は、接続された原材料部材194、196をマイクロ波式押出成形装置180中に連続的に搬送するために用いられる。さらに詳細にいえば、変形円板194’、196’を利用する回転式駆動装置244は、一方側に凹型受取用開口部245を備え、真反対の他方側に突出型駆動タブまたは凸型駆動タブ246を備えている。(所望ならば、円形状、三角形状、または他の適切な形状であってもよいが、)図18bには、合わせ対でありかつ対応付けされている受取用開口部245および駆動タブ246が好ましい正方形状で示されている。いうまでもなく、所与の円板部材194’の駆動タブ246は、合わせ対となっている隣接する次の円板部材196’の受取用開口部245と協働的に嵌合すると一緒になってロッキング機構を形成し、それにより、円板の積層体197を一体化ユニットとして移動させ、また、支持ロッド182を中心として個別に回転させる。さらに、図18aおよび図18bの変形ポリマー円板194’、196’は、各円板部材194’、196’の外周面上に形成されたらせん状溝247を備えている。また、図18aにおいて最も分かりやすく記載されているように、走行用レール248は、回転式駆動リング250に隣接して取り付けられた場合には、各円板部材194’、196’の外周面に横方向に形成された対応するU字形状の通路(channel)249内に納まるようになっている。さらに、軸方向に取り付けられているとともにジャーナル軸受251により支持されている回転ネジ式駆動部材250は、対応する円板部材194’、196’のらせん状の駆動ネジ山または溝247と螺合される。このようにすると、いうまでもなく、回転式駆動リング250を回転すると、ロックされている円板部材194’、196’の積層体197が右側(図18aの矢印参照)に移動させられ、これにより、ロックされかつ一体化されている円板の積層体197がマイクロ波式押出成形装置182(図18aに図示せず)の方向に移動される。ロック部材245、246は、U字形状の通路249の場合と同様に、各円板部材194’、196’が作られるときに形成される。いうまでもなく、新しい円板194’、196’の各々は、支持ロッド182上に供給されると、その駆動タブ246を、一つ前の円板の露出している駆動開口部245にロックさせることにより、一体化原材料積層体197の一部としてロックされる。いうまでもなく、原材料用円板194’、196’の各々のロック部材245、246、らせん状溝247、およびU字状チャネル249は、マイクロ波式押出成形装置180の切削ダイ188に入ると切断される。要するに、この連続的な供給装置244は、新しい原材料用の円板を、原材料積層体197の連続的な流れを中断させることなく、当該原材料積層体へそしてマイクロ波式押出成形装置へと供給する好都合な方法を可能にする。
図18cに示されているように、円板194’、196’は他の方法で押出装置180の方向に移動させられうる。すなわち、らせん状溝247および回転式駆動リング装置を有する代わりに、軸方向走行レール248を回転させてもよい(図18dの矢印を参照)。こうすると、軸方向走行レール248がそれに対応するポリマー円板194’’、196’’のU字形状の溝と係合しているので、このような円板も同様に回転する。次いで、参照番号252(図18c参照)により全体が表されている駆動ラムの駆動力により、接続された円板の積層体197がマイクロ波式押出成形装置180の方向に向かって前進させられる。したがって、サーボ駆動システム(図示せず)を用いることにより、ほんの短期間、レール248の回転、すなわちそれにより引き起こされる円板の積層体197の回転を停止および開始し、さらに新しい円板194’’を積層体の後部に供給することが可能となる。好ましくは、そのような円板を多量に供給し、これにより、円板の積層体197を回転させそれらを押出成形装置の方向に移動させることに起因するポリマー原材料の連続的な流れの停止または開始による影響を最小限に抑える。したがって、この回転レール248は、押出成形製品205の総合的な所望の製造品質に応じて円板を回転させる、さらなるもう一つの方法であると考えられている。
図16jに示しているように、さらなる他の形態として、円板の半片196c、196dから形成されるような二部分構成円板が示されている。これらの円板196c、196dは図18aおよび図18bの円板194’、196’からわずかに変形されており、これらの円板の半片196c、196dの各々は、その表面上には少なくとも二つの突出部246’を有し、その裏面上にはそれに対応する受取用開口部245’(図示せず)を有している。図16kは、変形円板194cの(二つの半片のうちの)一つの半片が突出部246’(図示せず)と受取用開口部245’とを備えて形成されていることを示している。したがって、図16lに示されているように、円板半片194c、194dおよび196c、196dは、それぞれ対応する受取用開口部245’とロック用突出部246’とを相互に接続することにより、回転空気支持チューブ182のまわりで結合される。図16lにおいて再度明らかになるように、円板半片の対である194cと194dおよび196cと196dを、空気支持チューブ182に繰り返して取り付けることができ、また、これらの変形円板の積層体197’を(任意の手段により、図示せず)回転させ、マイクロ波式押出成形装置の方向に移動させ、押出成形製品205に対して所望の配向特性を付加させることができる。
さらに、図16mには、一体型の変形円板194eが示されている。この円板194eは、その外周縁部から内側中央開口部201まで延びた貫通スロット199と、対応する外方に隆起した半径方向に配列された埋込バー(filler bar)203とを備えている。変形円板194eを空気支持チューブ182に取り付ける場合、埋込バー203は、次の隣接している変形円板194eの挿入用スロット199の残された空隙を埋めるように働く。このようにして、(一つの円板の埋込バー203が次に隣接している円板194eの空隙を満たしかつ埋め、二つの円板の間の相互接続を形成するので、)空隙のない固形円板の積層体197が形成される。この結果、この円板の積層体を、一体化し、空隙がなくすことができるのみでなく、(図16nに示されているように、任意の駆動車輪を用いて)回転させることができる。したがって、図16nには、マイクロ波式押出成形装置(図16nに図示せず)の方向に向かって回転させ、所望の配向を付与することができる一体型駆動積層体を形成する他の方法がさらに示されている。
押出成形チューブ製品205の如きポリマー押出成形製品が押出成形ダイ開口部184を通過した後、当該ポリマー押出成形製品を適切に冷却しなければならない。しかしながら、ポリマー鎖の配向を固定させるために押出成形チューブを迅速に冷却することを実現する必要性がますます増加している。したがって、図19には、本発明にかかる改良型冷却装置の一つの実施形態の利用が示されている。この改良型冷却装置は、その全体が参照番号254により示されている。さらに詳細にいえば、上述のように、ポリマー材料を押出成形チューブ製品205を押出成形するために、押出成形チップ・ダイヘッド183が用いられる。次いで、この押出成形品205は、迅速に冷却され、血管造影用の医療製品および他の医療製品における使用に望ましい均一のサイズおよび材料特性が達成される。このため、冷却装置254は、まず、冷却バス用液体258を保持する冷却バス用タンク256を備えうる。この冷却バス用液体258は、たとえば水から形成されうる。さらに、冷却装置254は、冷却タンク256の左端壁262に取り付けられる冷却パイプ部材260を備えている。動作において、押出成形チューブ製品205は、冷却パイプ260の基端側開口部264を通って流れさせられる。さらに、適切な冷媒268の供給部267に接続されているインレットパイプ266は、インレット開口部269を通って冷却パイプ260に取り付けられている。冷媒268の適切な材料としては、水素、ヘリウム、および空気が挙げられる。冷水であっても冷媒268として適切でありうる。水素、ヘリウム、および空気も冷却されてよい。
動作において、冷却パイプ装置260は、ポンプを用いて、冷媒268を、当該冷却パイプ装置260を通って、押出成形されたばかりのポリマーチューブ製品205全体にわたり絶え間なく流れさせる。この押出成形品は(図19の左から右の方向に向かって、冷却パイプ260を通り、冷却タンク250へと)移動している。
図19の冷却用チューブ260および押出成形品205を示す拡大断面図である図20から明らかなように、押出成形ポリマーチューブ205の外形と銀製チューブ260の内径との間に小さな空隙が存在する。この小さな空隙はその全体が参照番号270により示されている。この空隙270はたとえば3×10−4m以下でありうる。冷却ガス268(またはこれに代えて冷却水)が流れてチューブ押出成形品205の外面を冷却するように働くのは、この空隙270内においてである。
銀製の材料は水の熱伝導率と比べて616倍高い非常に高い熱伝導率を有しているので、冷却用チューブ260には銀製の材料を用いることが好ましい。さらに、移動中のチューブ押出成形品205を銀製チューブ260と直接接触させることは不可能なので、銀製チューブ260と押出成形チューブ製品205との間の空隙270において、非常に熱伝導性のある冷媒、すなわち冷却ガス268が用いられる。銀製の材料の代わりに、銅製の材料もしくはタングステン製の材料またはこれら三つの材料の内のいずれかまたは全部を混合したものをチューブ260の形成に用いてもよい。また、水は蒸気に変わるので、ヘリウムガス、水素ガス、または空気の如き冷却ガス媒体を用いることが望ましい。ヘリウムガスは、空気に比べて5倍高い熱伝導率を有しており、水素ガスは、空気に比べて6.7倍高い熱伝導率を有している。
図21に示されているように、銀製チューブ260を、タンク256の水槽内(図示せず)に沈めるのみでなく冷却用フィン272を外面に取り付けることにより、改良することができる。銀製の材料が非常に高い熱伝導率を有しているので、フィン272は、銀製チューブ260を、均一な温度、すなわち冷却用バス256内の水の温度とおおむね等しい温度にしておくことを担保する。事実、水を0℃近傍にまで冷却することも可能である。チューブ260および冷却用フィン272(図21a参照)の外側にいわゆるペルチェ素子273を取り付けることによりさらに優れた冷却を行うことができる。(電子冷却を実現する)このペルチェ素子は、外部基準、たとえば室温における手洗器(図示せず)と比較して非常に大きな(50℃以上の)温度差を生じさせることが可能である。したがって、例えばペルチェ素子273の冷却用フィンを通して空気を流すことによってペルチェ素子273の高温側を室温に維持することにより、ペルチェ素子273のうちの接着剤または他の手段により銀製チューブ260に取り付けられる低温側の部分を、−30℃まで、すなわち室温よりも非常に低い温度にまで下げることができる。
本発明にかかる一つの実施形態では、押出成形チューブ205は、約180℃でマイクロ波式押出成形装置180から出ていき、銀製チューブ260に直接入る。水素ガス268は、銀製チューブ260と押出成形チューブ265との間の環状空間または空隙270を通して比較的に低速度で流される。重要なことは、水素ガスが用いられる場合であっても非常に少量のガスしか必要とされないので、爆発の危険性が相対的にほとんどない。
押出成形チューブ製品205の迅速な冷却に影響を与えるために銀製チューブ260を用いる方法は複数存在する。本発明にかかる一つの実施形態では、冷媒268として空気が用いられる。これにより、総合的に冷却システム254の効率が影響を受ける。というのは、水素ガスを代わりに用いることと比較して、上記の効率が7倍下がるからである。すなわち、水素投入を閉鎖し、水素に代えてインレットパイプ266からの伝熱ガスまたは冷却ガス268として空気に切り換えることにより、素早く、必要な冷却距離、すなわち押出成形チューブ205を周囲温度まで冷却するために必要となる距離を相当量変更する(ここでは、伸ばす)ことができる。その一方で、伝熱冷媒として水、すなわち水素ガスまたはヘリウムガスに代えて水を用いる場合、2.8倍速い冷却を達成することができる。
さらに、図22から明らかなように、静止状態に代えて、押出成形ポリマーチューブ205に沿って軸方向に(図22において左から右へ水平に)迅速に移動可能なように、銀製冷却用チューブ260を改良することができる。これは、押出成形チューブ製品205の軸方向に沿って前後に(図22の矢印参照)銀製冷却チューブ260を移動させることが可能なパイプ駆動モータ274を用いることにより実現されうる。
最後に、図23から明らかなように、伝熱/冷却のためのガス268を冷却用バス258内に供給する代わりに、伝熱ガス268を、他方側、すなわち銀製チューブ260の左端かつ押出成形ダイ開口部184の近傍から基端開口部264を通して供給するように、銀製冷却用チューブ260を構成することができる。これは、押出成形チップ・ダイヘッド183と冷却用バス256の左端壁262(図19)との間に存在するほかの空隙または容積を閉鎖することにより実現される。
全体的に見れば、銀製冷却用チューブ260を利用する目的は、図19、図21,図21a、または図23の実施形態で用いられる場合であってもそうでなくとも、冷却用バス256の全長を減少させるのに役立たせることにある。すなわち、銀製冷却用チューブ260を用いてポリマーチューブ押出成形品205に対してさらに冷却を加えることによって、冷却用バス256により押出成形品に対してさらに加えられる必要のある冷却量を減少させることに役立たせ、冷却用バス256の全長を短縮することができる。さらに、いうまでもなく、(冷却ガスまたは冷却空気に関係なく)高濃度の冷媒268とともに銀製冷却用チューブ260を用いることにより、冷却用バス256内での冷却水の全体的な使用を削除してもよい。したがって、このことは、押出成形チューブ205が冷却された後、この押出成形チューブ205から冷却水の膜を取り除くために用いられる通常の乾燥用送風機(図示せず)の必要性を削除させるので好都合である。たとえば、図24には、冷却用バス構造体または冷媒をさらに用いることなく、マイクロ波式押出成形装置ヘッド180から押出成形品205を直接受け取りながら冷却用チューブ260を使用することが示されている。
またいうまでもなく、先に記載した冷却方法の内のいずれを用いた場合であっても、銀製冷却用チューブ260を分割型チューブデザインに従って形成してもよい。すなわち、図25の断面図から明らかなように、チューブ260をその軸方向に沿って半分、すなわち二つのチューブ半片260a、260bに分割してもよい。この分割チューブデザインは、まず押出成形プロセスが開始された後、押出成形品205のまわりに銀製冷却用チューブ260を容易に配置することを可能にする利点と、次に半片260a、260b間に設定された分離間隔に応じて、異なるサイズの押出成形品205を収納することを可能にする利点とを有している。すなわち、チューブ半片260a、260bと押出成形品205との間に狭い空隙270を残すにあたって十分にチューブ半片260a、260bを分離することができる。
いうまでもなく、押出成形されたポリマーを処理する理由で必要な場合、モールドの有無とは関係なく、バルーン部分34を形成するように押出成形チューブ製品205の一部を上述のマイクロ波を用いて加熱することを、この押出成形ポリマーチューブ製品205それ自体の形成とうまく一致させて、容易に開始し、達成することができる。
以上のことから、当業者は、本発明の教示を用いて、効果的にかつ迅速に、ポリマー円板を形成し、このポリマーをマイクロ波エネルギーを用いて押出成形し、この押出成形ポリマー製品を冷却するための装置および方法を開発することが可能であることを容易に理解するであろう。
本発明に対してさまざまな変更を加えることおよび他の構成を用いることが可能であるが、本発明にかかる特定の実施形態の一例を図面に示すとともに詳細に記載した。しかしながら、開示されている特定の一例は、本発明を限定することを意図したものでなく、添付のクレームにより明確にされる本発明の精神および範疇に該当するすべての変更、他の構成、および均等物を網羅することを意図したものである。
本発明の教示に従って構築されるバルーンカテーテルモールド装置を示すブロック図である。 本発明の教示に従って構築されたモールドおよびモールドプロセスを示す断面図である。 本発明の教示に従って構築されるモールド装置の一つの実施形態を示す略図である。 本発明の教示に従って構築されるモールド装置の他の実施形態を示す略図である。 本発明の教示に従って構築されるモールド装置の他の実施形態を示す略図である。 ジャイロトロンの略図である。 本明細書記載の方法に従って実行されうる一続きのステップの一例を示すフローチャート図である。 医療デバイスが過熱されている状態にある、発明の教示に従って構築される医療デバイス製造システムを示す略図である。 医療デバイスが加圧され膨張した状態にあること以外は、図8と同等な略図である。 圧力センサを用いる医療デバイス製造システムを示す略図である。 本発明の教示にかかるマイクロ波式加熱押出成形用ダイ装置を示す断面図である。 関連する制御システムコンポーネントとマイクロ波エネルギー供給源とを模式的にさらに示す、図11と同等の断面図である。 異なる押出成形装置コンポーネントを回転することから得られる溶融ポリマーのさまざまな配向を示すために回転された状況におかれた、ポリマー原材料部材およびチップ・ダイ連結部の端面図である。 異なる押出成形装置コンポーネントを回転することから得られる溶融ポリマーのさまざまな配向を示すために回転された状況におかれた、ポリマー原材料部材およびチップ・ダイ連結部の端面図である。 異なる押出成形装置コンポーネントを回転することから得られる溶融ポリマーのさまざまな配向を示すために回転された状況におかれた、ポリマー原材料部材およびチップ・ダイ連結部の端面図である。 異なる押出成形装置コンポーネントを回転することから得られる溶融ポリマーのさまざまな配向を示すために回転された状況におかれた、ポリマー原材料部材およびチップ・ダイ連結部の端面図である。 溶融ポリマーの角度配向を実現するさまざまなコンポーネントによる回転スキームを示す図である。 溶融ポリマーの角度配向を実現するさまざまなコンポーネントによる回転スキームを示す図である。 溶融ポリマーの角度配向を実現するさまざまなコンポーネントによる回転スキームを示す図である。 ポリマー原材料部材がキャタピラ駆動機構により駆動されるマイクロ波式押出成形装置を示している。 ポリマー原材料の積層体のためのサーボ駆動型ピストン装置を示している。 ポリマー原材料部材形成装置および関連するコンポーネントのさまざまな動作ステージを示す模式図である。 ポリマー原材料部材形成装置および関連するコンポーネントのさまざまな動作ステージを示す模式図である。 ポリマー原材料部材形成装置および関連するコンポーネントのさまざまな動作ステージを示す模式図である。 ポリマー原材料部材形成装置および関連するコンポーネントのさまざまな動作ステージを示す模式図である。 ポリマー原材料部材形成装置および関連するコンポーネントのさまざまな動作ステージを示す模式図である。 ポリマー原材料部材形成装置および関連するコンポーネントのさまざまな動作ステージを示す模式図である。 ポリマー原材料部材形成装置および関連するコンポーネントのさまざまな動作ステージを示す模式図である。 ポリマー原材料部材形成装置および関連するコンポーネントのさまざまな動作ステージを示す模式図である。 さまざまなポリマー原材料部材のデザインおよび関連する回転形態を示す模式図である。 本発明の教示にかかるペレット→ポリマー円板→円板積層体→マイクロ波式押出成形プロセス全体を示す模式図である。 本発明の教示にかかる改良型の、ペレット→溶融ポリマー原材料→マイクロ波式押出成形プロセスを示す模式図である。 本発明の教示にかかる改良型の、ペレット→溶融ポリマー原材料→マイクロ波式押出成形プロセスを示す模式図である。 本発明の教示にかかる改良型の、ペレット→溶融ポリマー原材料→マイクロ波式押出成形プロセスを示す模式図である。 本発明の教示にかかる改良型の、ペレット→溶融ポリマー原材料→マイクロ波式押出成形プロセスを示す模式図である。 本発明の教示にかかる改良型の、ペレット→溶融ポリマー原材料→マイクロ波式押出成形プロセスを示す模式図である。 本発明の教示にかかる改良型の、ペレット→溶融ポリマー原材料→マイクロ波式押出成形プロセスを示す模式図である。 本発明の教示にかかる改良型の、ペレット→溶融ポリマー原材料→マイクロ波式押出成形プロセスを示す模式図である。 図17b〜図17hの改良型プロセスのさらなる改良を示す模式図である。 本発明の教示に従ってポリマー円板とともに用いる回転型駆動装置を示している。 本発明の教示に従ってポリマー円板とともに用いる回転型駆動装置を示している。 本発明の教示に従ってポリマー円板とともに用いる回転型駆動装置を示している。 本発明の教示に従ってポリマー円板とともに用いる回転型駆動装置を示している。 本発明の教示にかかる押出成形装置のための冷却用チューブ装置を示している。 さらなる冷却構造を示す、図19の冷却用チューブ装置を示す拡大図である。 図19の冷却用チューブ装置の改良と冷却タンク装置とを示している。 図19の冷却用チューブ装置のさらなる改良を示している。 図19の冷却用チューブ装置の改良を示している。 図19の冷却用チューブ装置の他の改良を示している。 関連する冷却用バス構造体を備えていない改良型冷却用チューブを示している。 分割チューブ構造を備えた改良型冷却用チューブを示している。

Claims (36)

  1. ポリマー押出成形品を形成するための押出成形装置であって、
    ポリマー原材料の供給部と連通するように構成されているマイクロ波透過性材料から形成される押出成形用ダイと、
    ポリマー原材料を前記押出成形用ダイの方向に向かって押圧するための押圧機構と、
    さらに、前記押出成形用ダイの近傍および内部のうちの一つにおいてポリマー原材料を溶融するために前記押出成形用ダイを貫通して焦点を合わせたマイクロ波エネルギーを供給するように構成されているマイクロ波エネルギー供給源、レンズおよびミラーと、
    前記押出成形用ダイ内で前記マイクロ波エネルギーの温度を正確に制御するために、該押出成形用ダイ内で溶融ポリマー原材料の温度を監視するように構成された光学センサと、フィードバックループと、コントローラとを備えてなる、押出成形装置。
  2. 前記押出成形用ダイがダイブロック部材と切削ダイ部材とを備えており、該切削ダイ部材が、前記押出成形品を形成すべく溶融原材料を押出成形しうるダイ開口部を形成してなる、請求項1記載の押出成形装置。
  3. 前記押出成形用ダイに形成された残余分用開口部を備えており、前記切削ダイ部材がポリマー原材料の外周部分を切断し該残余分用開口部を通して排出するように構成されている、請求項2記載の押出成形装置。
  4. 前記押出成形用ダイに近接して取り付けられる押出成形用チップを備えてなる、請求項1記載の押出成形装置。
  5. 支持可能にポリマー原材料を通って延びるように構成されているとともに、さらに、前記押出成形品をチューブ形状に形成することを補助するために前記ダイまで延びている支持ロッドを備えてなる、請求項4記載の押出成形装置。
  6. 前記支持ロッドが、前記押出成形用チップを支持する空気チューブである、請求項5記載の押出成形装置。
  7. 前記マイクロ波エネルギー供給源が、可変周波数マイクロ波を発生させるように構成されている、請求項1記載の押出成形装置。
  8. 供給ポリマー原材料を備えており、該供給ポリマー原材料が、相互に圧縮された個別のポリマー部材からなる積層体とポリマー材料チューブとのうちの一つを備えてなる、請求項1記載の押出成形装置。
  9. 前記ポリマー部材からなる積層体および前記ポリマー材料チューブのうちの一つが、同一の前記ポリマー原材料からすべて形成されるように構成されている、請求項8記載の押出成形装置。
  10. 前記積層体の前記個別のポリマー部材が、異なる性質を有する二またはそれ以上の異なるポリマー材料のうちの一つからそれぞれ対応して形成されるように構成されている、請求項8記載の押出成形装置。
  11. 前記押出成形用ダイが、石英材料、セラミック材料、ガラス材料、テフロン(登録商標)材料、窒化ホウ素材料、およびこれらの混合物のうちの一つから形成されるように構成されている、請求項1記載の押出成形装置。
  12. 前記ポリマー押出成形品を冷却するために前記ダイ開口部の近傍に形成された冷却用デバイスを備えてなる、請求項1記載の押出成形装置。
  13. 前記冷却用デバイスが、
    (a)冷却用バスと、
    (b)前記押出成形品の通過を可能とするための空隙を有して前記押出成形品のまわりに形成されている冷却用チューブ部材と、
    (c)銀、銅、タングステン、またはこれらの混合物を含む冷却用チューブ部材と、
    (d)前記押出成形品と冷却用チューブ部材との間の空隙に存在する冷媒の供給品と、
    (e)冷却用チューブ部材および冷却用バスの両方を前記押出成形品が通るように、冷却用バスの中に浸けられている冷却用チューブ部材と、
    のうちの一またはそれ以上を備えてなる、請求項12記載の押出成形装置。
  14. ポリマー原材料を押圧するための前記押圧機構が、駆動ラム、キャタピラ駆動ベルト、歯車駆動車輪、およびサーボ駆動装置のうちの一つを含んでなる、請求項1記載の押出成形装置。
  15. ポリマー原材料に印加されている前記駆動力を検出するために前記押圧機構と結合される押圧センサを備えてなる、請求項14記載の押出成形装置。
  16. 溶融ポリマー材料に対して所望の配向特性を付与するための回転手段を備えてなる、請求項1記載の押出成形装置。
  17. 前記回転手段は、
    (a)ダイチップを有する空気チューブが中心に芯合わせされポリマー原材料の供給品を支持しているように構成されている、装着されているとともに中心に芯合わせされている空気チューブおよびダイチップの回転と、
    (b)前記ダイの回転と、
    (c)供給ポリマー原材料の回転と、
    (d)前記ダイの反転と
    のうちの一またはそれ以上を提供するように構成されている、請求項16記載の押出成形装置。
  18. 医療デバイスを製造する方法であって、
    供給ポリマー原材料を提供することと、
    マイクロ波透過性材料からなる押出成形用ダイの中へ前記供給ポリマー原材料を移動することと、
    マイクロ波エネルギーを用いて、前記押出成形用ダイの中で前記原材料を加熱することと、を含んでおり、
    以上により、前記押出成形用ダイから前記原材料が押し出される少なくとも直前に、該原材料を溶融させる、方法。
  19. 前記原材料が前記押出成形用ダイに入る領域の近傍で、残余分用材料として、前記原材料の外周縁部を切断する、請求項18記載の方法。
  20. 前記提供するステップが、
    (a)個別のポリマー部材からなる積層体と、
    (b)ポリマー材料チューブと
    のうちの一またはそれ以上を含む、請求項18記載の方法。
  21. 前記供給原材料を移動することが、前記供給原材料に対して駆動力を印加することを含む、請求項18記載の方法。
  22. 前記駆動力を加えることが、
    (a)前記供給原材料の外縁に沿って力を印加することと、
    (b)前記供給原材料の押出成形用ダイの反対側の端部に対して力を印加することと、
    (c)前記供給原材料に対して前記駆動力を印加することを断続的に中止することによって前記供給原材料に対してさらなる原材料を供給することを可能にすることと、
    (d)前記駆動力を印加するためにキャタピラ駆動式デバイスを用いることと、
    (e)前記駆動力を印加するために駆動ピストンを用いることと
    のうちの一またはそれ以上を含む、請求項21記載の方法。
  23. 前記ダイがダイチップを備えており、前記溶融ポリマー原材料に所望の配向特性を付与するように、前記ダイ、前記ダイチップ、および前記供給ポリマー原材料のうちの一つを回転するステップをさらに含む、請求項18記載の方法。
  24. 前記ダイ、前記ダイチップ、および前記供給ポリマー原材料のうちの一つを反転させるステップをさらに含む、請求項23記載の方法。
  25. 所与の個別のポリマー部材の回転が前記積層体の回転を引き起こすように、相互接続用部材を有するように前記個別のポリマー部材を形成することを含む、請求項20記載の方法。
  26. 前記個別のポリマー部材の各々が二つの合わせ半片として形成される、請求項20記載の方法。
  27. 前記原材料が、円板形状のポリマー部材からなる積層体を含み、さらに
    (a)個々の円板形状のポリマー部材の外周にらせん状の溝を形成し、個々のポリマー部材の該らせん状の溝に対して駆動リングを回転させることにより、前記ポリマー部材からなる積層体を回転させることと、
    (b)前記積層体を前記押出成形用ダイの方向に向かって駆動移動させることを補助するために、個々の円板形状のポリマー部材に形成された外周ノッチを通じて走行レールを提供することと、
    (c)個々の円板形状のポリマー部材に形成された外周ノッチを通じて走行レールを提供し、前記押出成形用ダイの中へ前記積層体を回転移動させるために該走行レールを回転させることと
    のうちの一またはそれ以上を含む、請求項21記載の方法。
  28. 押出成形プロセスに用いるためのポリマー原材料部材を形成することを含む前記提供するステップが、
    マイクロ波エネルギーを用いて前記出発ポリマー原材料を溶融することと、
    個々の原材料供給部材がおおむね均一な形状を有するように溶融された前記原材料を形成することと
    を含む、請求項22記載の方法。
  29. (a)異なるポリマー特性を有する個々の原材料供給部材を形成するため、二つまたはそれ以上の異なるタイプの出発原材料を用いることと、
    (b)円板形状を有する前記個々の原材料供給部材を形成することと、
    (c)外周が丸形状の円板形状を有するように前記個々の原材料供給部材を形成することと、
    (d)略同一の肉厚を有するように前記別々の原材料供給部材を形成することと、
    (e)前記出発ポリマー原材料としてポリマーペレットを用いることと、
    (f)前記出発ポリマー原材料を溶融することが、前記出発ポリマー原材料が入っているマイクロ波透過性材料から形成されたピストン内に前記マイクロ波エネルギーを集結させることを含むことと
    のうちの一またはそれ以上をさらに含む、請求項28記載の方法。
  30. 前記提供するステップが、
    前記出発ポリマー原材料でホッパを充填することと、
    前記出発ポリマー原材料をマイクロ波透過性バレル部材へ輸送することと、
    前記バレル部材から空気を除去することと、
    前記出発ポリマー原材料を圧縮することと、
    圧縮された前記出発ポリマー原材料を前記バレル部材内で溶融するために、該バレル部材にマイクロ波エネルギー場を印加することと、
    おおむね均一な形状を有する個々のポリマー原材料部材を形成するように構成されたモールドの中へ溶融された前記ポリマー材料を圧入することと、
    モールド成形された前記個々のポリマー原材料部材を冷却することとを含む、請求項18記載の方法。
  31. 前記提供するステップが、
    前記出発ポリマー原材料で供給ホッパを充填することと、
    前記出発ポリマー原材料をマイクロ波透過性バレル部材に輸送することと、
    前記バレル部材から空気を除去することと、
    前記出発ポリマー原材料を圧縮することと、
    圧縮された前記出発ポリマー原材料を前記バレル部材内で溶融するために、該バレル部材にマイクロ波エネルギーを印加することと、
    すでに形成され冷却されているポリマー原材料チューブに新しい原材料を追加するために、溶融された前記出発ポリマー原材料を、該チューブの一端に対して圧縮して該チューブの一部とならしめることと、
    圧縮された前記溶融された出発ポリマー原材料を冷却することとを含む、請求項18記載の方法。
  32. 前記供給ホッパ内の前記ポリマー原材料とは異なるポリマー特性を有するさらなるポリマー原材料で第二の供給ホッパを充填することと、ポリマー特性が断続的に変化する原材料チューブを形成するために、各供給ホッパからの原材料を前記バレルへ選択的に輸送することとをさらに含む、請求項31記載の方法。
  33. 押出成形された前記ポリマーを冷却するステップをさらに含む、請求項18記載の方法。
  34. 前記冷却するステップが、
    押出成形された前記デバイスを受け入れるための前記ダイ開口部の近傍に冷却用チューブ部材を設けることと、
    押出成形された前記デバイスを通すために、押出成形された該デバイスと前記冷却用チューブとの間に空隙を形成することと
    を含む、請求項33記載の方法。
  35. (a)前記冷却用チューブ部材が、銀材料、銅材料、タングステン材料、およびこれらの混合物のうちの一つを含むことと、
    (b)前記空隙の中に供給冷媒を流すことと、
    (c)前記冷媒が、水、空気、ヘリウム、水素、およびこれらの混合物のうちの一つを含むことと、
    (d)前記冷却用チューブ部材および冷却用バスの両方を前記押出成形されたデバイスが通るように、前記冷却用チューブ部材を前記冷却用バスに浸けることと、
    (e)前記冷却用チューブ部材の外側に冷却用フィンを形成することと、
    (f)前記冷却用チューブ部材の外側に少なくとも一つのペルチェ冷却ユニットを取り付けることと、
    (g)前記押出成形されたデバイスの軸方向に沿って前記冷却用チューブ部材を移動させることと、
    (h)駆動モータを用いて、前記押出成形されたデバイスの軸方向に沿って前記冷却用チューブ部材を移動させることと、
    (i)前記冷却用チューブ部材が該チューブ部材の軸方向に沿って分割される少なくとも二つの半片から形成されていることと
    のうちの一またはそれ以上を含む、請求項34記載の方法。
  36. 前記提供するステップが、
    ポリマー原材料部材をそれぞれ形成することと、
    前記ポリマー原材料部材からなる積層体を形成することと
    を含んでおり、
    前記移動させるステップが、
    押出成形されたポリマー製医療デバイスを形成するための押出成形用ダイの中に前記原材料部材からなる積層体を供給することと、
    新しい原材料部材を前記積層体に導入することを可能とするために、前記原材料部材からなる積層体の供給を中断することと
    を含む、請求項18記載の方法。
JP2006529358A 2003-01-17 2004-01-14 マイクロ波エネルギーを用いた医療デバイスを製造する方法および装置 Expired - Fee Related JP4472704B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/347,005 US7163655B2 (en) 2002-03-28 2003-01-17 Method and apparatus for extruding polymers employing microwave energy
PCT/US2004/000848 WO2004067262A1 (en) 2003-01-17 2004-01-14 Method and apparatus for manufacturing medical devices employing microwave energy

Publications (2)

Publication Number Publication Date
JP2007501142A JP2007501142A (ja) 2007-01-25
JP4472704B2 true JP4472704B2 (ja) 2010-06-02

Family

ID=32823686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006529358A Expired - Fee Related JP4472704B2 (ja) 2003-01-17 2004-01-14 マイクロ波エネルギーを用いた医療デバイスを製造する方法および装置

Country Status (8)

Country Link
US (2) US7163655B2 (ja)
EP (1) EP1590159B1 (ja)
JP (1) JP4472704B2 (ja)
AT (1) ATE359905T1 (ja)
CA (1) CA2513639A1 (ja)
DE (1) DE602004005964T2 (ja)
ES (1) ES2286592T3 (ja)
WO (1) WO2004067262A1 (ja)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365289B2 (en) * 2004-05-18 2008-04-29 The United States Of America As Represented By The Department Of Health And Human Services Production of nanostructures by curie point induction heating
US8501079B2 (en) 2009-09-14 2013-08-06 Abbott Cardiovascular Systems Inc. Controlling crystalline morphology of a bioabsorbable stent
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US8012402B2 (en) 2008-08-04 2011-09-06 Abbott Cardiovascular Systems Inc. Tube expansion process for semicrystalline polymers to maximize fracture toughness
US20060020330A1 (en) 2004-07-26 2006-01-26 Bin Huang Method of fabricating an implantable medical device with biaxially oriented polymers
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US8268228B2 (en) 2007-12-11 2012-09-18 Abbott Cardiovascular Systems Inc. Method of fabricating stents from blow molded tubing
US9517149B2 (en) 2004-07-26 2016-12-13 Abbott Cardiovascular Systems Inc. Biodegradable stent with enhanced fracture toughness
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
KR100569417B1 (ko) * 2004-08-13 2006-04-07 현대자동차주식회사 마이크로웨이브를 이용한 폐고무분말의 연속식표면개질장치와 이를 이용한 표면개질방법
US8500797B2 (en) * 2004-09-08 2013-08-06 Boston Scientific Scimed, Inc. Medical devices
US7381273B2 (en) * 2005-03-15 2008-06-03 Curingsolutions, Llc Apparatus and method for coating medical devices
GB2429143B (en) * 2005-07-11 2008-02-13 Re18 Ltd Vessel and source of radio frequency electromagnetic radiation, heating apparatus and method of heating a feedstock
DE102005042926B4 (de) * 2005-09-08 2015-02-05 Krones Aktiengesellschaft Verfahren und Vorrichtung zur Steuerung und Regelung einer Hohlkörperherstellungseinheit
US8653482B2 (en) 2006-02-21 2014-02-18 Goji Limited RF controlled freezing
US10674570B2 (en) 2006-02-21 2020-06-02 Goji Limited System and method for applying electromagnetic energy
EP3585135A1 (en) 2006-02-21 2019-12-25 Goji Limited Electromagnetic heating
US8839527B2 (en) 2006-02-21 2014-09-23 Goji Limited Drying apparatus and methods and accessories for use therewith
EP2939816B1 (de) * 2006-05-11 2018-01-31 Krones AG Mikrowellen erwärmungsvorrichtung für kunststoffrohlinge
US8434487B2 (en) 2006-06-22 2013-05-07 Covidien Lp Endotracheal cuff and technique for using the same
FR2902767B1 (fr) * 2006-06-22 2008-09-19 J P B Creations Sa Dispositif de conditionnement d'un produit a base de colle
US20070296125A1 (en) * 2006-06-22 2007-12-27 Joel Colburn Thin cuff for use with medical tubing and method and apparatus for making the same
US8018159B2 (en) * 2007-05-25 2011-09-13 Stc.Unm Magnetron device with mode converter and related methods
US7666342B2 (en) 2007-06-29 2010-02-23 Abbott Cardiovascular Systems Inc. Method of manufacturing a stent from a polymer tube
US9131543B2 (en) 2007-08-30 2015-09-08 Goji Limited Dynamic impedance matching in RF resonator cavity
US20090093794A1 (en) * 2007-10-03 2009-04-09 Tyco Healthcare Group Lp Bolus tube assembly
CN101970197A (zh) * 2007-11-29 2011-02-09 陶氏环球技术公司 控制并优化塑料板材微波加热的方法
EP2647484B1 (en) * 2007-12-11 2016-06-01 Abbott Cardiovascular Systems Inc. Method of fabricating a stent from blow molded tubing
US7602181B1 (en) * 2007-12-13 2009-10-13 The United States Of America As Represented By The United States Department Of Energy Apparatus and method for generating a magnetic field by rotation of a charge holding object
EP2566297B1 (en) 2008-11-10 2016-04-27 Goji Limited Device and method for controlling energy
US8215940B2 (en) * 2009-03-20 2012-07-10 The United States Of America As Represented By The Secretary Of The Army Layer multiplying apparatus
DE102009029815A1 (de) * 2009-06-18 2010-12-30 Endres, Hans-Josef, Prof. Dr.-Ing. Verfahren zur Herstellung und Verarbeitung von polymerhaltigen Materialien und Vorrichtung hierfür
WO2011058537A1 (en) 2009-11-10 2011-05-19 Goji Ltd. Device and method for controlling energy
EP2532372B1 (en) * 2010-02-02 2015-02-25 Terumo Kabushiki Kaisha Bioabsorbable stent
US8370120B2 (en) 2010-04-30 2013-02-05 Abbott Cardiovascular Systems Inc. Polymeric stents and method of manufacturing same
DE102010047223A1 (de) 2010-10-04 2012-04-05 Krones Aktiengesellschaft Vorrichtung und Verfahren zum Erwärmen von Kunststoffvorformlingen
US8786284B2 (en) 2011-01-11 2014-07-22 Bridge12 Technologies, Inc. Integrated high-frequency generator system utilizing the magnetic field of the target application
US20120318435A1 (en) * 2011-06-15 2012-12-20 Castelluci Sr Mark Pool coping and method for fabricating
ITMI20111411A1 (it) * 2011-07-27 2013-01-28 Maurizio Crippa Metodo ed apparato per il riciclaggio mediante depolimerizzazione di materiali polimerici
US9538880B2 (en) * 2012-05-09 2017-01-10 Convotherm Elektrogeraete Gmbh Optical quality control system
US9172829B2 (en) * 2012-07-31 2015-10-27 Makerbot Industries, Llc Three-dimensional printer with laser line scanner
US20140077417A1 (en) * 2012-09-18 2014-03-20 Battelle Memorial Institute Standoff generating devices and processes for making same
DE102013211725A1 (de) * 2013-06-20 2014-12-24 Schott Ag Vorrichtung und Verfahren zum Umformen eines Rohres
GB201315084D0 (en) * 2013-08-23 2013-10-09 Pentaxia Ltd Microwave curing of composite materials
CN104645487B (zh) * 2013-11-21 2021-06-01 上海微创医疗器械(集团)有限公司 医用球囊及其制造方法和球囊扩张导管
US10611098B2 (en) 2014-01-17 2020-04-07 G6 Materials Corp. Fused filament fabrication using multi-segment filament
JP6586274B2 (ja) * 2014-01-24 2019-10-02 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 調理装置、調理方法、調理制御プログラム、および、調理情報提供方法
US9364588B2 (en) 2014-02-04 2016-06-14 Abbott Cardiovascular Systems Inc. Drug delivery scaffold or stent with a novolimus and lactide based coating such that novolimus has a minimum amount of bonding to the coating
US9732480B2 (en) * 2014-05-05 2017-08-15 Daniel John Puffer, SR. Pelletizing system for road surface marking material
US10308816B2 (en) 2014-05-05 2019-06-04 Potters Industries, Llc Coatings for pelletized thermoplastic pavement marking compositions
EP3194148B1 (en) 2014-08-21 2022-03-16 Mosaic Manufacturing Ltd. Series enabled multi-material extrusion technology
EP3280964B1 (en) * 2015-04-09 2019-02-13 Boston Scientific Scimed Inc. Method for drying coated medical devices
US10071521B2 (en) * 2015-12-22 2018-09-11 Mks Instruments, Inc. Method and apparatus for processing dielectric materials using microwave energy
US9947561B2 (en) * 2016-03-07 2018-04-17 Asm Technology Singapore Pte Ltd Semiconductor encapsulation system comprising a vacuum pump and a reservoir pump
US11488775B2 (en) * 2017-07-19 2022-11-01 Essex Furukawa Magnet Wire Usa Llc Systems and methods for forming magnet wire insulation with thermoset material
RU2694462C1 (ru) * 2018-07-05 2019-07-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Способ упрочнения в свч электромагнитном поле крупногабаритных изделий сложной формы из армированных углеродным волокном полимерных композиционных материалов
CN108936775B (zh) * 2018-07-26 2021-11-19 安徽佳谷豆食品有限公司 一种年糕冷却装置
RU192984U1 (ru) * 2019-05-13 2019-10-08 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Устройство для подачи охлаждающей жидкости к медицинскому инструменту
CN111554443B (zh) * 2020-03-27 2021-06-11 铜陵精达特种电磁线股份有限公司 一种peek电磁线的加工工艺
US11148344B1 (en) * 2020-04-21 2021-10-19 Elc Management Llc Blow molding method and apparatus
CN112569885B (zh) * 2020-12-08 2021-09-17 四川大学 一种带反射保护的微波反应装置
CN114606045B (zh) * 2022-03-26 2022-12-16 孚迪斯石油化工(葫芦岛)有限公司 一种润滑油及其制备方法

Family Cites Families (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2703434A (en) * 1951-08-02 1955-03-08 British Celanese Extrusion
BE560504A (ja) * 1956-09-05 1900-01-01
US3874207A (en) * 1957-10-22 1975-04-01 Jerome H Lemelson Extrusion apparatus
US3483597A (en) * 1966-12-23 1969-12-16 Allied Chem Ram extrusion of granular resins
US3620876A (en) * 1969-07-28 1971-11-16 Richard J Guglielmo Sr Liquid electromagnetic adhesive and method of joining materials thereby
ES386002A1 (es) * 1969-12-05 1973-12-01 Hoechst Ag Dispositivo de calibrado exterior de sobrepresion para per-files huecos extruidos de material sintetico termoplastico.
US3957943A (en) * 1971-11-09 1976-05-18 Nippon Gakki Seizo Kabushiki Kaisha Method for producing glass fiber reinforced plastic molded articles with decorative patterns and article produced thereby
US3993529A (en) * 1971-12-09 1976-11-23 Farkas Robert D Apparatus for treating plastic loads
US4040162A (en) * 1973-09-17 1977-08-09 Aisin Seiki Kabushiki Kaisha Method of producing composite extruded aluminum products from aluminum swarf
US4035547A (en) * 1974-02-26 1977-07-12 William C. Heller Bonding element having separate heating and agitating particles
LU69549A1 (ja) * 1974-03-04 1976-02-04
US4143112A (en) * 1974-05-30 1979-03-06 Johnson & Johnson Method for making probe covers for electronic thermometers
US4035598A (en) * 1974-10-22 1977-07-12 Johannes Menschner Maschinenfabrik Gmbh & Co. Kg. Apparatus for thermally treating polymeric workpieces with microwave energy
GB1552129A (en) * 1975-07-16 1979-09-05 Warne Surgical Products Ltd Manufacture of surgical catheters and tubes
FR2402526A1 (fr) * 1977-09-09 1979-04-06 Isobox Barbier Sa Dispositif et procede de moulage de matieres plastiques expansees, par rayonnement ultra-haute frequence
US4339295A (en) * 1978-12-20 1982-07-13 The United States Of America As Represented By The Secretary Of The Department Of Health & Human Services Hydrogel adhesives and sandwiches or laminates using microwave energy
JPS56500363A (ja) 1979-04-05 1981-03-26
FR2477059A1 (fr) * 1980-02-28 1981-09-04 Medicornea Sa Procede de fabrication par moulage de lentilles de contact et lentilles obtenues
CH643481A5 (fr) * 1981-12-21 1984-06-15 Maillefer Sa Dispositif pour le calibrage d'un tube en matiere plastique produit par extrusion.
US4454234A (en) * 1981-12-30 1984-06-12 Czerlinski George H Coated magnetizable microparticles, reversible suspensions thereof, and processes relating thereto
US4407651A (en) * 1982-02-05 1983-10-04 The Continental Group, Inc. Hybrid reheating system and method for polymer preforms
FR2523505A2 (fr) * 1982-03-17 1983-09-23 Medicornea Sa Procede perfectionne pour la fabrication, par moulage, de lentilles de contact et dispositif de mise en oeuvre
US4483341A (en) * 1982-12-09 1984-11-20 Atlantic Richfield Company Therapeutic hypothermia instrument
US4512942A (en) * 1983-06-13 1985-04-23 B. F. Goodrich Company Method and apparatus for vulcanizing hose
US4721589A (en) * 1983-09-22 1988-01-26 Harrel, Inc. Extruder viscosity control system and method
US5720939A (en) * 1985-08-15 1998-02-24 Nycomed Imaging As Method of contrast enhanced magnetic resonance imaging using magnetically responsive-particles
US6203777B1 (en) * 1983-12-21 2001-03-20 Nycomed Imaging As Method of contrast enhanced magnetic resonance imaging using carbohydrate particles
US4672972A (en) * 1984-08-13 1987-06-16 Berke Howard R Solid state NMR probe
US4820466A (en) * 1985-01-31 1989-04-11 Zachariades Anagnostis E Process for obtaining ultra-high modulus products
US4671757A (en) * 1985-06-06 1987-06-09 Beta Raven, Inc. Microwave heating in a pellet mill
FR2583335B1 (fr) * 1985-06-17 1988-04-08 Swisscab E A Schoen Sa Tete d'extrusion a filiere rotative et procede de lubrification de cette tete
US4668262A (en) * 1985-12-30 1987-05-26 Owens-Corning Fiberglas Corporation Protective coating for refractory metal substrates
DE3769480D1 (de) * 1986-01-16 1991-05-29 Micro Denshi Co Ltd Mikrowellenheizvorrichtung.
DE3629995C1 (de) * 1986-09-03 1988-02-18 Reifenhaeuser Masch Anlage fuer das Strangpressen von thermoplastischem Kunststoff
US4764394A (en) * 1987-01-20 1988-08-16 Wisconsin Alumni Research Foundation Method and apparatus for plasma source ion implantation
JPS63182136A (ja) * 1987-01-23 1988-07-27 Tokai Rubber Ind Ltd 繊維補強ゴムホ−スの製造方法
US5154179A (en) * 1987-07-02 1992-10-13 Medical Magnetics, Inc. Device construction and method facilitating magnetic resonance imaging of foreign objects in a body
US4989608A (en) * 1987-07-02 1991-02-05 Ratner Adam V Device construction and method facilitating magnetic resonance imaging of foreign objects in a body
US4860744A (en) * 1987-11-02 1989-08-29 Raj K. Anand Thermoelectrically controlled heat medical catheter
US4930494A (en) * 1988-03-09 1990-06-05 Olympus Optical Co., Ltd. Apparatus for bending an insertion section of an endoscope using a shape memory alloy
GB8813425D0 (en) 1988-06-07 1988-07-13 Hall L D Magnetic resonance imaging
IT1226928B (it) * 1988-07-15 1991-02-22 Savio Spa Dispositivo regolatore della velocita' di avvolgimento del filato nella confezione di rocche coniche in un filatoio a rotore
US4969968A (en) 1988-07-22 1990-11-13 William C. Heller, Jr. Method of inductive heating with an integrated multiple particle agent
US4950239A (en) * 1988-08-09 1990-08-21 Worldwide Medical Plastics Inc. Angioplasty balloons and balloon catheters
US5222543A (en) * 1988-10-28 1993-06-29 James Hardy & Coy. Pty. Limited Microwave curing
US4977886A (en) * 1989-02-08 1990-12-18 Olympus Optical Co., Ltd. Position controlling apparatus
US5057001A (en) * 1989-03-10 1991-10-15 The Carborundum Company Apparatus for making ceramic tubes
US5156785A (en) * 1991-07-10 1992-10-20 Cordis Corporation Extruded tubing and catheters having increased rotational stiffness
JP2984056B2 (ja) * 1989-09-08 1999-11-29 ボストン サイエンティフィック コーポレイション 生理学的低圧力血管形成術
US5421832A (en) * 1989-12-13 1995-06-06 Lefebvre; Jean-Marie Filter-catheter and method of manufacturing same
US5380479A (en) * 1989-12-26 1995-01-10 The Dow Chemical Company Method and apparatus for producing multilayer plastic articles
US5207227A (en) * 1990-03-02 1993-05-04 Powers Alexandros D Multiprobes with thermal diffusion flow monitor
US5095915A (en) * 1990-03-19 1992-03-17 Target Therapeutics Guidewire with flexible distal tip
US5104593A (en) * 1990-03-21 1992-04-14 Joseph Daniel R Method and apparatus for gauging and controlling circumference of extrusion-blown film
US5128504A (en) 1990-04-20 1992-07-07 Metcal, Inc. Removable heating article for use in alternating magnetic field
US6004289A (en) 1990-05-15 1999-12-21 Medtronic Ave, Inc. Multiple layer high strength balloon for dilatation catheter
JP3068638B2 (ja) 1990-09-26 2000-07-24 アイシン精機株式会社 熱操作によるアクチュエータ
US5296272A (en) * 1990-10-10 1994-03-22 Hughes Aircraft Company Method of implanting ions from a plasma into an object
US5352871A (en) * 1991-02-20 1994-10-04 Metcal Inc System and method for joining plastic materials
US5688246A (en) * 1991-04-19 1997-11-18 Biotime, Inc. Microcannula
US5222643A (en) * 1991-08-05 1993-06-29 Platt Vanjanette C Hair treatment servicing container
US5330742A (en) * 1991-08-05 1994-07-19 Mallinckrodt Medical, Inc. Methods and compositions for magnetic resonance imaging
JP2627988B2 (ja) * 1991-08-21 1997-07-09 三菱電線工業株式会社 剛性傾斜型長尺体の製造方法及び製造装置
DE69220902T2 (de) * 1991-12-09 1998-02-12 Philips Electronics Nv Verfahren zum Pressen von Produkten sowie Vorrichtung zum Durchführen des Verfahrens
US6190355B1 (en) * 1992-01-10 2001-02-20 Scimed Life Systems, Inc. Heated perfusion balloon for reduction of restenosis
US5514379A (en) * 1992-08-07 1996-05-07 The General Hospital Corporation Hydrogel compositions and methods of use
US5290266A (en) * 1992-08-14 1994-03-01 General Electric Company Flexible coating for magnetic resonance imaging compatible invasive devices
US5433717A (en) * 1993-03-23 1995-07-18 The Regents Of The University Of California Magnetic resonance imaging assisted cryosurgery
US5411730A (en) * 1993-07-20 1995-05-02 Research Corporation Technologies, Inc. Magnetic microparticles
US5609624A (en) * 1993-10-08 1997-03-11 Impra, Inc. Reinforced vascular graft and method of making same
AU8120694A (en) * 1993-10-18 1995-05-08 Thermold Partners L.P. Method and apparatus for injection molding
US5429583A (en) * 1993-12-09 1995-07-04 Pegasus Medical Technologies, Inc. Cobalt palladium seeds for thermal treatment of tumors
WO1995017452A1 (en) * 1993-12-21 1995-06-29 E.I. Du Pont De Nemours And Company Method for bonding polymeric articles
US5470423A (en) * 1994-01-25 1995-11-28 Board Of Trustees Operating Michigan State University Microwave pultrusion apparatus and method of use
US5817017A (en) * 1994-04-12 1998-10-06 Pharmacyclics, Inc. Medical devices and materials having enhanced magnetic images visibility
US5533985A (en) * 1994-04-20 1996-07-09 Wang; James C. Tubing
US5498311A (en) * 1994-06-15 1996-03-12 Quatro Corporation Process for manufacture of printed circuit boards
US5728079A (en) * 1994-09-19 1998-03-17 Cordis Corporation Catheter which is visible under MRI
DK0783325T3 (da) * 1994-09-27 2000-05-01 Nycomed Imaging As Kontrastmiddel
US5773042A (en) * 1994-10-14 1998-06-30 Kabushiki Kaisha Kobe Seiko Sho Injection molding unit for long fiber-reinforced thermoplastic resin
JP3539645B2 (ja) * 1995-02-16 2004-07-07 株式会社日立製作所 遠隔手術支援装置
US5951513A (en) * 1995-02-24 1999-09-14 Advanced Cardiovascular Systems, Inc. Balloon catheter having non-bonded integral balloon and methods for its manufacture
KR100199837B1 (ko) * 1995-03-22 1999-06-15 전주범 사출성형 몰드 시스템
US5641423A (en) * 1995-03-23 1997-06-24 Stericycle, Inc. Radio frequency heating apparatus for rendering medical materials
US5693376A (en) 1995-06-23 1997-12-02 Wisconsin Alumni Research Foundation Method for plasma source ion implantation and deposition for cylindrical surfaces
US5690109A (en) * 1995-06-23 1997-11-25 Govind; Rakesh Method of destructive, noninvasive hyperpyrexia of tissues and organisms utilizing nuclear magnetic resonance
US5746701A (en) * 1995-09-14 1998-05-05 Medtronic, Inc. Guidewire with non-tapered tip
US5901783A (en) * 1995-10-12 1999-05-11 Croyogen, Inc. Cryogenic heat exchanger
US5744958A (en) * 1995-11-07 1998-04-28 Iti Medical Technologies, Inc. Instrument having ultra-thin conductive coating and method for magnetic resonance imaging of such instrument
DE19542721A1 (de) * 1995-11-16 1997-05-22 Sgl Technik Gmbh Verfahren zur Herstellen von Formkörpern aus Kunststoff-Füllstoff-Mischungen mit einem hohen Gehalt an Füllstoffen
NL1001736C2 (nl) * 1995-11-23 1997-05-27 Cordis Europ Bij magnetische-resonantiebeeldvorming (MRI) zichtbare medische inrichting.
GB9600427D0 (en) * 1996-01-10 1996-03-13 Nycomed Imaging As Contrast media
US5770143A (en) 1996-07-03 1998-06-23 Board Of Trustees Operating Michigan State University Method for liquid thermosetting resin molding using radiofrequency wave heating
US5787959A (en) * 1996-12-02 1998-08-04 General Motors Corporation Gas-assisted molding of thixotropic semi-solid metal alloy
US5775338A (en) * 1997-01-10 1998-07-07 Scimed Life Systems, Inc. Heated perfusion balloon for reduction of restenosis
US6040019A (en) * 1997-02-14 2000-03-21 Advanced Micro Devices, Inc. Method of selectively annealing damaged doped regions
US6023054A (en) * 1997-02-28 2000-02-08 Johnson, Jr.; Robert Harlan High efficiency heating agents
US20010008661A1 (en) * 1997-05-14 2001-07-19 Eugene J. Jung Jr Balloon for a dilation catheter and method for manufacturing a balloon
US6061587A (en) * 1997-05-15 2000-05-09 Regents Of The University Of Minnesota Method and apparatus for use with MR imaging
US6272370B1 (en) * 1998-08-07 2001-08-07 The Regents Of University Of Minnesota MR-visible medical device for neurological interventions using nonlinear magnetic stereotaxis and a method imaging
US6056844A (en) * 1997-06-06 2000-05-02 Triton Systems, Inc. Temperature-controlled induction heating of polymeric materials
AU5107398A (en) 1997-07-11 1999-02-08 Minnesota Mining And Manufacturing Company Method for locally heating a work piece using platens containing rf susceptors
JPH1177787A (ja) * 1997-09-02 1999-03-23 Daikin Ind Ltd 高導電性ポリテトラフルオロエチレンシートの製造方法及び高導電性ポリテトラフルオロエチレン幅広長尺状シート
US6231516B1 (en) * 1997-10-14 2001-05-15 Vacusense, Inc. Endoluminal implant with therapeutic and diagnostic capability
US6176857B1 (en) * 1997-10-22 2001-01-23 Oratec Interventions, Inc. Method and apparatus for applying thermal energy to tissue asymmetrically
CA2219247C (en) * 1997-10-23 2006-12-05 Mold-Masters Limited Injection molding apparatus having a melt bore through the front end of the pin
US6447279B1 (en) * 1998-04-10 2002-09-10 Guill Tool & Engineering Co., Inc. Extrusion die with rotating components
DE19816917A1 (de) * 1998-04-16 1999-10-28 Siemens Ag Verfahren zur räumlich aufgelösten Temperaturüberwachung, Suspension von ferromagnetischen Mikropartikeln und Verwendung dieser Suspension
US6361759B1 (en) * 1998-05-26 2002-03-26 Wisconsin Alumni Research Foundation MR signal-emitting coatings
US5948194A (en) * 1998-06-12 1999-09-07 Ford Global Technologies, Inc. In-line microwave heating of adhesives
DE19954960A1 (de) 1998-12-09 2000-06-15 Henkel Kgaa Klebstoff mit magnetischen Nanopartikeln
US6224536B1 (en) * 1999-02-08 2001-05-01 Advanced Cardiovascular Systems Method for delivering radiation therapy to an intravascular site in a body
CA2371199A1 (en) 1999-04-23 2000-11-02 Carsten Dusterhoft Automated method and device for the non-cutting shaping of a body
US6478911B1 (en) * 2000-09-27 2002-11-12 Guardian Industries Corp. Vacuum IG window unit with edge seal formed via microwave curing, and corresponding method of making the same
US6977103B2 (en) * 1999-10-25 2005-12-20 Boston Scientific Scimed, Inc. Dimensionally stable balloons
US6352779B1 (en) * 1999-11-18 2002-03-05 The Dow Chemical Company Electromagnetically welded composite and the preparation thereof
US6368994B1 (en) * 1999-12-27 2002-04-09 Gyrorron Technology, Inc. Rapid processing of organic materials using short wavelength microwave radiation
US6572813B1 (en) 2000-01-13 2003-06-03 Advanced Cardiovascular Systems, Inc. Balloon forming process
JP2001314390A (ja) 2000-05-10 2001-11-13 Toshiba Corp 磁気共鳴映像装置用カテーテル
US20010054775A1 (en) 2000-05-19 2001-12-27 Bausch & Lomb Incorporated Method for the manufacture of molded polymeric devices using variable frequency microwaves
US6418337B1 (en) * 2000-06-15 2002-07-09 Autolitt Inc. MRI guided hyperthermia surgery
JP5178984B2 (ja) * 2000-07-24 2013-04-10 グレイゼル、ジェフリー 拡張術およびステント術用の補剛バルーン・カテーテル
US6529775B2 (en) * 2001-01-16 2003-03-04 Alsius Corporation System and method employing indwelling RF catheter for systemic patient warming by application of dielectric heating
US6911017B2 (en) 2001-09-19 2005-06-28 Advanced Cardiovascular Systems, Inc. MRI visible catheter balloon

Also Published As

Publication number Publication date
EP1590159A1 (en) 2005-11-02
ATE359905T1 (de) 2007-05-15
JP2007501142A (ja) 2007-01-25
US20030183972A1 (en) 2003-10-02
CA2513639A1 (en) 2004-08-12
DE602004005964D1 (de) 2007-05-31
WO2004067262A1 (en) 2004-08-12
US7163655B2 (en) 2007-01-16
EP1590159B1 (en) 2007-04-18
US7458798B2 (en) 2008-12-02
ES2286592T3 (es) 2007-12-01
US20070102848A1 (en) 2007-05-10
DE602004005964T2 (de) 2008-01-17

Similar Documents

Publication Publication Date Title
JP4472704B2 (ja) マイクロ波エネルギーを用いた医療デバイスを製造する方法および装置
US7056466B2 (en) Method of manufacture medical devices employing microwave energy
JP5227949B2 (ja) プラスチック半加工品用マイクロ波加熱装置およびマイクロ波によるプラスチック半加工品を加熱する方法
US4760228A (en) Microwave heating device
EP1740251A2 (en) Balloon catheters and methods for manufacturing balloons for balloon catheters
WO1988009717A1 (en) Method of heating thermoplastic plastic bottle or preform and method of temperature control of heating member using said heating method
JP2001501553A (ja) ポリマー用マイクロ波加工装置
WO1998014314A9 (en) Microwave processing system for polymers
US3720557A (en) Process for lining conductive tubes with insulating material
JP2020146892A (ja) 成形品製造方法
JP3758233B2 (ja) 熱可塑性樹脂成形品の加熱方法と装置
JP2014113699A (ja) 樹脂加熱溶融装置
JPS5841733B2 (ja) 高分子材料の架橋物中空体の押出成形方法
JP7446599B2 (ja) 樹脂乾燥装置及び樹脂乾燥方法
JPS62294529A (ja) 熱硬化性樹脂の押出成形方法及び装置
WO2019225105A1 (ja) 成形装置、金型および成形品製造方法
JPH07137102A (ja) 射出装置
HU202778B (en) Method and apparatus for low-pressure injection moulding or intruding thermoplasts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees