JP4468153B2 - テラヘルツイメージング装置およびテラヘルツイメージング方法 - Google Patents

テラヘルツイメージング装置およびテラヘルツイメージング方法 Download PDF

Info

Publication number
JP4468153B2
JP4468153B2 JP2004369572A JP2004369572A JP4468153B2 JP 4468153 B2 JP4468153 B2 JP 4468153B2 JP 2004369572 A JP2004369572 A JP 2004369572A JP 2004369572 A JP2004369572 A JP 2004369572A JP 4468153 B2 JP4468153 B2 JP 4468153B2
Authority
JP
Japan
Prior art keywords
terahertz
light
electro
optic crystal
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004369572A
Other languages
English (en)
Other versions
JP2006177716A (ja
Inventor
洋道 赤堀
護 宇佐見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tochigi Nikon Corp
Nikon Corp
Original Assignee
Tochigi Nikon Corp
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tochigi Nikon Corp, Nikon Corp filed Critical Tochigi Nikon Corp
Priority to JP2004369572A priority Critical patent/JP4468153B2/ja
Publication of JP2006177716A publication Critical patent/JP2006177716A/ja
Application granted granted Critical
Publication of JP4468153B2 publication Critical patent/JP4468153B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、テラヘルツイメージング装置およびテラヘルツイメージング方法に関する。
テラヘルツ光を使用した各種測定装置では、概ね0.01×1012〜100×1012ヘルツ(0.01〜100テラヘルツ)の周波数領域のパルス光を試料に照射して、試料からの透過光または反射光をテラヘルツ光の電場強度として検出することにより、試料の電気的特性や成分濃度などを測定することができる。ビーム断面積の大きなテラヘルツ光を試料に一括照射すると、その照射領域のテラヘルツ光の電場強度分布に由来する画像を取得することができる。特許文献上に開示されているものは、2次元電気光学サンプリングと呼ばれる手法により試料の画像を生成している。この手法は、試料からの透過テラヘルツ光または反射テラヘルツ光をZnTe結晶などの電気光学結晶上の所定領域に結像させるとともに、その所定領域にプローブ光ビームを照射し、透過または反射テラヘルツ光によってプローブ光ビームが変調される度合いを読み出すものである(例えば、特許文献1参照)。
特表2000−514549号公報(第10項、第10頁、図15)
2次元電気光学サンプリングには、テラヘルツ光の電場強度に検出感度が高いZnTe結晶が最もよく用いられる。しかし、ZnTe結晶のテラヘルツ光検出特性は、空間的に均一ではない。すなわち、結晶中には、テラヘルツ光の検出感度が異なる部分、テラヘルツ光の検出感度が著しく低い部分、或いは検出不能な部分が存在する。従って、試料の特性を正確に反映する画像が得られないという問題がある。
請求項1に係る発明のテラヘルツイメージング装置は、テラヘルツ光を試料へ照射するテラヘルツ光照射手段と、試料から発する透過テラヘルツ光または反射テラヘルツ光が照射される電気光学結晶と、電気光学結晶を移動させる移動機構と、電気光学結晶の透過テラヘルツ光または反射テラヘルツ光が照射される領域にプローブ光を照射するプローブ光照射手段と、電気光学結晶から射出されるプローブ光を撮像する撮像手段と、移動機構により、電気光学結晶上の透過テラヘルツ光または反射テラヘルツ光が照射される領域を変え、その異なる領域を用いて撮像されたプローブ光の複数の画像から試料の透過テラヘルツ画像または反射テラヘルツ画像を生成する画像処理手段とを備えることを特徴とする。
請求項2に係る発明のテラヘルツイメージング装置は、テラヘルツ光を試料へ照射するテラヘルツ光照射手段と、試料から発する透過テラヘルツ光または反射テラヘルツ光が照射される電気光学結晶と、電気光学結晶を移動させる移動機構と、電気光学結晶の透過テラヘルツ光または反射テラヘルツ光が照射される領域にプローブ光を照射するプローブ光照射手段と、移動機構により移動中の電気光学結晶から射出されるプローブ光を所定時間蓄積して撮像する撮像手段とを備えることを特徴とする。
請求項3に係る発明は、請求項1または2のテラヘルツイメージング装置において、レーザ光源からのレーザ光をテラヘルツ光照射手段へ導く光とプローブ光照射手段へ導く光とに分岐する分岐光学素子を有することを特徴とする。
請求項4に係る発明は、請求項1〜3のいずれかのテラヘルツイメージング装置において、移動機構は、電気光学結晶を透過テラヘルツ光または反射テラヘルツ光が照射される面と平行に並進移動させることを特徴とする。
請求項5に係る発明は、請求項1〜3のいずれかのテラヘルツイメージング装置において、移動機構は、電気光学結晶を透過テラヘルツ光または反射テラヘルツ光が照射される面と平行に所定の振動数と振幅で振動させることを特徴とする。
請求項6に係る発明は、請求項1〜3のいずれかのテラヘルツイメージング装置において、移動機構は、電気光学結晶を透過テラヘルツ光または反射テラヘルツ光が照射される面と平行な面内で回転移動させることを特徴とする。
請求項7に係る発明は、請求項6のテラヘルツイメージング装置において、撮像手段は、電気光学結晶の結晶軸に基づいて所定強度以上のプローブ光が撮像されるように決定された位置で、撮像することを特徴とする。
請求項8に係る発明は、請求項6のテラヘルツイメージング装置において、移動機構は、電気光学結晶を回転揺動させ、撮像手段は、回転揺動する電気光学結晶からのプローブ光を所定時間蓄積して撮像することを特徴とする。
請求項9に係る発明のテラヘルツイメージング方法は、テラヘルツパルス光を試料へ照射する工程と、試料から発する透過テラヘルツ光または反射テラヘルツ光が結像される電気光学結晶上の領域へプローブ光を照射する工程と、電気光学結晶上の透過テラヘルツ光または反射テラヘルツ光が結像する領域を移動する移動工程と、移動工程により移動された電気光学結晶の異なる領域からのプローブ光を2次元的に撮像する撮像工程と、撮像工程で撮像した異なる領域からの複数の画像から試料のテラヘルツ画像を生成する画像生成工程とを有することを特徴とする。
請求項10に係る発明のテラヘルツイメージング方法は、テラヘルツパルス光を試料へ照射する工程と、試料から発する透過テラヘルツ光または反射テラヘルツ光が結像される電気光学結晶上の領域へプローブ光を照射する工程と、電気光学結晶上の透過テラヘルツ光または反射テラヘルツ光が結像する領域を移動する移動工程と、移動工程により移動中の電気光学結晶からのプローブ光を2次元的に撮像する撮像工程とを有することを特徴とする。
本発明によれば、電気光学結晶の検出感度の低い部分、あるいは検出不能な欠陥部分などに起因する測定結果に悪影響を及ぼす画像情報を低減して試料の正確な画像を取得することができる。
以下、本発明によるテラヘルツイメージング装置について図1〜5を参照しながら説明する。
〈第1の実施の形態〉
図1は、本発明の第1の実施の形態によるテラヘルツイメージング装置を模式的に示す全体構成図である。図2は、図1に示すテラヘルツイメージング装置の要部を示す斜視図である。図1,2では、同じ構成部品には同一符号を付し、XYZ直交座標で方向を表わす。
図1において、テラヘルツイメージング装置100は、レーザパルス光L1を放射するレーザ光源10と、テラヘルツパルス光T1を発生するテラヘルツ光発生素子17と、後に詳述するが、試料Sの物性情報を含むテラヘルツパルス光T2およびプローブ光としてのレーザパルス光L3が照射されるZnTe結晶板20と、ZnTe結晶板20上に形成される光画像を電気信号に変換するCCDカメラ27と、ZnTe結晶板20を移動させる移動機構30と、制御・演算装置40とを備える。また、テラヘルツイメージング装置100は、レーザパルス光L3をZnTe結晶板20へ導く光路上に偏光子25を、ZnTe結晶板20とCCDカメラ27との間の光路上に検光子26を備える。
第1の実施の形態のテラヘルツイメージング装置100では、制御・演算装置40は、レーザ光源10、CCDカメラ27およびZnTe結晶板20を移動させる移動機構30と電気的に接続されている。制御・演算装置40は、レーザ光源10によるレーザパルス光L2の放射タイミングや、テラヘルツパルス光T1を試料Sに照射する照射タイミングを制御する。なお、これらの放射タイミングや照射タイミングは、制御・演算装置40から制御せず、レーザ光源10のトリガー信号で制御しても構わない。制御・演算装置40は、ZnTe結晶板20を透過したレーザパルス光L3の画像をCCDカメラ27で取得するタイミングを制御し、また、移動機構30によるZnTe結晶板20上の結像領域の移動を制御する。なお、図示を省略しているが、可動鏡14を駆動する駆動機構も制御・演算装置40が制御し、可動鏡14もレーザ光源10,移動機構30,CCDカメラ27と同期をとってその移動位置が変更される。
ZnTe結晶板20の位置を設定して、テラヘルツパルス光T1の照射タイミングとCCDカメラ27の画像取得タイミングを同期させ、2つの結像領域において画像データを取得する。具体的には、可動鏡14を所定の位置で固定し、テラヘルツパルス光T1を1パルス出射させ、その1パルスに同期させてCCDカメラ27を駆動してZnTe結晶板20上の光画像を蓄積する。この動作を、可動鏡14をずらして所定回数繰り返し行うことにより、時系列2次元画像を得ることができる。なお、CCD27の感度などに起因してS/N比が悪い場合は、可動鏡14を所定の位置で固定し、テラヘルツパルス光T1を複数パルス出射させ、その1パルス目でCCDカメラ27による蓄積を開始し、最終パ
ルス目で蓄積を終了すればよい。
レーザ光源10から放射されたレーザパルス光L1は、反射鏡11で反射され、ビームスプリッタ12で2つのレーザパルス光L2,L3に分割される。レーザ光源10としては、例えば、フェムト秒パルスレーザが用いられる。レーザパルス光L1は、中心波長が近赤外領域のうちの780〜800nm程度、繰り返し周期が1kHzから100MHzのオーダー、パルス幅が10〜150fs程度の直線偏光のパルス光である。
ビームスプリッタ12で分割された一方のレーザパルス光L2は、反射鏡13a,13bを経て、x方向に移動可能であって、2枚もしくは3枚の平面反射鏡からなる可動鏡14へ入射する。レーザパルス光L2は、可動鏡14の移動距離に応じて光路長が変えられ、光学系15に入射する。
レーザパルス光L2は、光学系15により所定ビーム径を有する平行光となり、反射鏡16で反射されてテラヘルツ光発生素子17へ入射する。テラヘルツ光発生素子17としては、大口径光スイッチ素子(GaAs基板)、ZnTe結晶、GaSe結晶などが使用される。テラヘルツ光発生素子17は、0.01THz〜100THzの周波数領域のテラヘルツパルス光T1を出射する。テラヘルツパルス光T1は、試料Sの2次元領域を透過し、試料Sの物性情報を含むテラヘルツパルス光T2となる。その物性情報は、以下に述べるように電場強度として検出される。
ビーム状のテラヘルツパルス光T2は、結像レンズ18およびペリクルビームスプリッタ19を介してZnTe結晶板20の表面に垂直入射し、結像する。結像領域は、ZnTe結晶板20表面の一部分であり、本実施の形態では、ZnTe結晶板20の表面上で結像領域を移動させるために、移動機構30によりZnTe結晶板20をその表面と平行に移動させる。この移動は、並進移動であり、結像領域を移動させても像と結晶軸の方位関係は変わらない。
ZnTe結晶板20にテラヘルツパルス光T2が入射すると、テラヘルツパルス光T2の電場によりZnTe結晶板20に複屈折変化が生じる。この現象は、ポッケルス効果により生じるものである。ZnTe結晶板20の結像領域にプローブ光を照射すると、プローブ光には、結像領域内の各部位の複屈折率に応じた偏光状態の変化が生じ、このプローブ光による像を検光子26を介してCCDカメラ27で撮像することにより試料の画像が得られる。プローブ光は以下の光路でZnTe結晶板20に入射する。
ビームスプリッタ12で分割された他方のレーザパルス光L3がプローブ光である。レーザパルス光L3は、反射鏡21,22,23を順次経由してビームエキスパンダ24でビーム径が拡張された後に、偏光子25によりほぼ完全な直線偏光の光となり、ペリクルビームスプリッタ19により反射されてZnTe結晶板20表面に入射する。このとき、レーザパルス光L3の入射領域は結像領域にほぼ一致している。
直線偏光光であるレーザパルス光L3は、ZnTe結晶板20を透過し、その透過光の偏光状態は、テラヘルツパルス光T2の電場によるZnTe結晶板20の複屈折変化に応じて楕円偏光となる。すなわち、結像領域におけるテラヘルツパルス光T2の電場強度分布は、直線偏光からのズレとしてZnTe結晶板20を通過したレーザパルス光L3が担っている。従って、ZnTe結晶板20の結像領域に入射するレーザパルス光L3の偏光方向と直角な偏光方向の光のみを透過するように検光子26を配設し、検光子26を通過した偏光成分の光を検出することにより、テラヘルツパルス光T2の電場強度を測定することができる。そして、検光子26を通過した偏光成分の光をCCDカメラ27で撮像することにより、テラヘルツパルス光T2の電場強度分布を反映する画像を取得することができる。
このようにテラヘルツパルス光T2の電場強度分布を反映する光は、CCDカメラ27の撮像素子27aで電気信号に変換され、各画素からの電気信号は、A/D変換された後に制御・演算装置40に取り込まれる。すなわち、テラヘルツパルス光T2の電場強度分布に応じた電気信号が制御・演算装置40に入力され、2次元画像データとして記憶される。この画像データに基づいて、後述するようにして、試料の電気的特性や不純物濃度の分布等を表す2次元画像が生成される。
ここで、時系列テラヘルツイメージジング法による二次元画像の取得法について説明する。周知の時系列テラヘルツ光分光法と同様に、レーザパルス光L2の光路に配設される可動鏡14を不図示の駆動機構によってx方向に移動させ、レーザパルス光L2の光路長を変化させる。この結果、レーザパルス光L2がテラヘルツ光発生素子17へ到達する時間が遅延し、テラヘルツパルス光T1が発生するタイミングを遅らせることができる。遅延時間を少しづつ変更しながら、テラヘルツパルス光T2の電場強度により複屈折変化が生じたZnTe結晶板20を通過したレーザパルス光L3の像を、検光子26を介してCCDカメラ27で撮像し、時系列テラヘルツイメージングを行う。そして、後述するように、撮像素子27aの個々の画素毎に、これらの遅延時間毎に取得されたデータを継ぎ合わせて成る時系列波形データについてフーリエ変換を行い、1枚の画像分のデータを取得する。
次に、図2も参照して具体的な測定手順を説明する。図2を参照すると、ZnTe結晶板20上の結像領域A1にテラヘルツパルス光T2による像が結像し、同時に結像領域A1にレーザパルス光L3が入射している。先ずこの位置で、1回目のリファレンス測定とサンプル測定を行う。すなわち、試料Sを介さずにテラヘルツパルス光T2を直接に結像領域A1に結像させてリファレンス画像データを取得する。次いで、試料Sを測定光路に挿入して1回目のサンプル画像データを取得する。1回目のリファレンス測定とサンプル測定では、上述したように、可動鏡14を所定距離ずつずらしてそれぞれN枚の画像データを取得する。
次に、移動機構30によりZnTe結晶板20をその表面と平行に、つまりX−Z面に平行なM方向に並進移動させ、テラヘルツパルス光T2を結像領域A1とは異なる結像領域A2に結像させる。試料Sは、テラヘルツパルス光T1の光路上に挿入したまま動かさない。この位置で2回目のサンプル測定を行い、続いて試料Sをテラヘルツパルス光T1の光路から外して2回目のリファレンス測定を行う。この場合も、1回目と同様にそれぞれN枚の画像データを取得する。すなわち、1回目のリファレンス測定、1回目のサンプル測定、2回目のサンプル測定、2回目のリファレンス測定の順に測定する。このような手順で測定を行うと、試料S挿入時の位置的な誤差をなくすことができ、また、1回目と2回目のサンプル測定を続けて行うので、テラヘルツパルス光T1の強度の時間的変化による誤差も小さくすることができる。
1回目のサンプル測定により得られた結像領域A1のN枚の画像データと2回目のサンプル測定により得られた結像領域A2のN枚の画像データは、試料Sの同一領域の画像データである。従って、ZnTe結晶板20のテラヘルツ光検出感度が空間的に均一であれば、これら2つの画像は同じである。しかし、実際のZnTe結晶板20には、テラヘルツ光検出感度が低い、あるいは検出不能な欠陥部分が存在することがあり、この場合、この感度の悪い部分の影響を除去することが必要である。
そこで、制御・演算装置40に記憶した結像領域A1のN枚の画像データと結像領域A
2のN枚の画像データの平均値演算を行う。以下詳細に説明する。
1回目のリファレンス測定では画像データRD1〜RD1が、2回目のリファレンス測定では画像データRD2〜RD2が、1回目のサンプル測定では画像データSD1〜SD1が、2回目のサンプル測定では画像データSD2〜SD2がそれぞれ順に取得される。これらN枚の画像データは所定時間毎に取得した画像データであり、各画素のN個の時系列波形データについてそれぞれフーリエ変換することにより、各画素毎の振幅強度スペクトルデータを得る。具体的には、N枚のリファレンス画像データRD1〜RD1とRD2〜RD2に対して、各画素毎に上述したフーリエ変換を行い、2つのリファレンスデータの平均値RDA〜RDAを算出する。同様に、N枚のサンプル画像データSD1〜SD1とSD2〜SD2に対して、各画素毎に上述したフーリエ変換を行い、2つのサンプルデータの平均値SDA〜SDAを算出する。さらに、各画素毎に、サンプルデータの平均値をリファレンスデータの平均値で除算し、各画素毎のサンプル画像データとリファレンス画像データとの比を試料Sの振幅強度スペクトルとし、その2次元画像データを生成する。2次元画像データから所定の理論式を用いて、試料Sの2次元画像を取得する。2次元画像データは制御・演算装置40に記憶され、また、2次元画像は不図示のディスプレイに表示される。
第1の実施の形態のテラヘルツイメージング装置100では、このような平均値演算により、ZnTe結晶板20に欠陥などがあっても適正な画像を得ることができる。例えば、結像領域A1の画像中にZnTe結晶板20の欠陥部分に起因する点像が形成されたとしても、結像領域A2の画像中でその点像に対応する位置(撮像素子27a中の画素)に欠陥のない像が形成されれば、2つの画像を平均化することにより、ZnTe結晶板20の結晶欠陥に伴う不均一性が緩和された画像を取得できる。なお、結像領域A1とA2とは、ZnTe結晶板20の表面上において、別の領域であってもよいし、部分的に重なり合っていてもよい。また、3つ以上の結像領域で光画像を撮像してもよい。
〈第2の実施の形態〉
図3は、本発明の第2の実施の形態によるテラヘルツイメージング装置を説明する部分斜視図であり、図2に相当する図である。本実施の形態のテラヘルツイメージング装置200も、図1および図2に示される第1の実施の形態によるテラヘルツイメージング装置100と基本的な構成は同様であるので、相違点を主として説明する。図3においても、図1,2と同じ構成部品には同一符号を付し、XYZ直交座標で方向を表わす。第2の実施の形態のテラヘルツイメージング装置200は、ZnTe結晶板20を往復振動させながらCCD27で2次元画像を取得するものである。
第2の実施の形態のテラヘルツイメージング装置200では、制御・演算装置40は、レーザ光源10、CCDカメラ27およびZnTe結晶板20を移動させる振動機構31と電気的に接続されている。第1の実施の形態のテラヘルツイメージング装置100と相違する点は、並進移動機構30に代えて振動機構31を使用する点である。この相違に伴い、レーザ光源10から出射されるレーザパルス光L1によりテラヘルツパルス光T1とプローブ光L3が30パルス出射される間、振動機構31は、ZnTe結晶板20を振動させるとともに、CCDカメラ27はその間、ZnTe結晶板20で変化した偏光成分の光を蓄積する。ZnTe結晶板20の振動により、結像領域A4、A5およびその中間を含む長円の範囲がテラヘルツパルス光T1とプローブ光L3が照射される領域となる。
具体的には、可動鏡14を所定の位置で固定し、レーザ光L1によりテラヘルツパルス光T1とプローブ光L3を30パルス出射させ、その間、CCDカメラ27によりZnTe結晶板20と検光子26を通過したプローブ光L3の光を蓄積する。この動作を、可動鏡14の位置を少しずつずらして所定回数繰り返し行うことにより、時系列2次元画像データを取得する。
第2の実施の形態によるテラヘルツイメージング装置200でも、上述したようにリファレンス測定とサンプル測定をそれぞれ2回行い、1回目のリファレンス測定による画像データRD1〜RD1と、2回目のリファレンス測定による画像データRD2〜RD2と、1回目のサンプル測定による画像データSD1〜SD1と、2回目のサンプル測定による画像データSD2〜SD2とをそれぞれ順に取得する。なお、上述したとおり、第2の実施の形態によるテラヘルツイメージング装置200では、上記4回の測定の各々において、レーザパルス光L1を30パルス発生させ、その間にCCD27で画像を蓄積することにより1枚の画像データを取得する。そして、可動鏡14の位置をN回変更してN枚の画像データを生成する。その後のデータ処理、すなわち、各画素毎のフーリエ変換、平均化により2次元画像データを生成する手法は第1の実施の形態と同様であり、説明を省略する。
本実施の形態のテラヘルツイメージング装置200も、第1の実施の形態によるテラヘルツイメージング装置100と同様の作用効果を奏する。本実施の形態では、テラヘルツパルス光T1とプローブ光L3を30パルス出射している間、ZnTe結晶板20を振動させているので、結晶の不均一性に起因する画像の不均一性を除去することができる。従って、リファレンス測定とサンプル測定をそれぞれ2回行わずに、1回づつ行うだけでもよい。
〈第3の実施の形態〉
図4は、本発明の第3の実施の形態によるテラヘルツイメージング装置を説明する部分斜視図であり、図2に相当する図である。本実施の形態のテラヘルツイメージング装置300も、第1および2の実施の形態によるテラヘルツイメージング装置100,200と基本的な構成は同様であるので、相違点を主として説明する。図4においても、図1〜3と同じ構成部品には同一符号を付し、XYZ直交座標で方向を表わす。
図4に示されるテラヘルツイメージング装置300では、第1の実施の形態のテラヘルツイメージング装置100の並進移動機構30を回転機構32に置き換えている。本実施の形態では、ZnTe結晶板20の回転軸Cがテラヘルツパルス光T2の光軸と平行であり、ZnTe結晶板20を回転機構32により回転軸C廻りに回転(Rで示す)できる構成となっている。そして、テラヘルツイメージング装置300では、結像領域A6,A7のそれぞれでリファレンス測定とサンプル測定を行い、第1および第2の実施の形態と同様に、各画素毎のフーリエ変換、平均化処理を行った上で2次元画像データを生成する。
結像領域A6とA7について説明する。図示されるように、結像領域A6にテラヘルツパルス光T2による像が結像し、同時にレーザパルス光L3が入射しているとき、ZnTe結晶板20の結晶軸の向きをX方向に平行とし、これを説明の便宜上、+x方向とする。この位置からZnTe結晶板20を180°回転させると、結像領域A7がテラヘルツパルス光T2の光路に挿入され、この状態での結晶軸の向きは、−x方向となる。実際には結晶軸の向きに+方向と−x方向の区別はないので、このような180°回転の場合は、ZnTe結晶板20上の結像領域が変わっただけで、検出感度などの作用は同等である。すなわち、結像領域A6でもA7でも所定強度以上の画像信号を取得することができる。
なお、結像領域A6とA7は、ZnTe結晶板20の表面上において、別の領域であってもよいし、部分的に重なり合っていてもよい。また、電気光学結晶の種類によっては、結晶軸の方位以外にテラヘルツ光に対する検出感度が良好な方位をもつものがある。その方位が例えば結晶軸と角度θ°であるとすると、電気光学結晶をx方向からθ°回転させた回転位置に設定して、測定を行ってもよい。上記のようにZnTe結晶板20を使用する場合は、結像領域A7はA6に対して180度の回転角度位相を有しているが、使用する電気光学結晶の特性に応じて、結像領域A6とA7との回転角度位相を決定すればよい。つまり、所定強度以上の透過像または反射像が形成される角度であれば、0度と180度に限定されない。
本実施の形態のテラヘルツイメージング装置300も、第1および第2の実施の形態によるテラヘルツイメージング装置100,200と同様の作用効果を奏する。
本実施の形態では、結像領域A6とA7の2箇所へZnTe結晶板20をステップ的に回転移動させて測定するものであったが、図6に示すように、揺動軸Dの廻りにZnTe結晶板20を揺動させながら測定することもできる。すなわち、揺動軸Dの廻りにZnTe結晶板20を揺動させて結像領域をA8〜A9の間で連続的に変更する。そして、第2の実施の形態と同様に、ZnTe結晶板20を揺動させながら、テラヘルツパルス光T1とプローブ光L3を30パルス出射する間にCCDカメラ27で画像を蓄積して画像データを取得する。その後の画像データ処理などは第2の実施の形態と同様である。
以上説明したように、本発明のテラヘルツイメージング装置は、電気光学結晶にテラヘルツ光検出感度が低い部分などが存在していても、電気光学結晶を移動させる、つまり電気光学結晶上の結像領域を変えることにより、試料Sの特性を反映する画像(試料像)を得ることに特徴がある。例えば、第1〜第3の実施の形態では、透過型のテラヘルツイメージング装置について説明したが、反射型のテラヘルツイメージング装置にも本発明を適用できる。反射型のテラヘルツイメージング装置によるリファレンス測定は、予め反射特性が判明している基準物体を試料挿入位置に設置して行う。また、並進移動や回転移動による像形成領域のステップ的な位置変更および位置決めと、直進運動や揺動運動により像形成領域の連続的な移動、すなわち振動とを例示したが、その他の運動により、電気光学結晶板上での像形成領域を変更させてもよい。さらに、ZnTe結晶板20を移動させる代わりに、テラヘルツパルス光T2を移動させてZnTe結晶板20上での結像位置を変更してもよい。
特許請求の範囲と実施の形態による構成要素の対応関係を説明する。レーザ光源10,テラヘルツ光発生素子17などがテラヘルツ光照射手段に、レーザパルス光L3の光路にあるビームスプリッタ12からペリクルビームスプリッタ19までがプローブ光照射手段に、ZnTe結晶板20が電気光学結晶に、CCD27が撮像手段に、並進移動機構30,振動機構31,回転機構32が移動機構にそれぞれ対応する。また、結像領域A6および結像領域A7に結像する時のZnTe結晶板20の位置が、電気光学結晶の結晶軸に基づいて所定以上の強度を有する位置である。
本発明の第1の実施の形態に係るテラヘルツイメージング装置を模式的に示す全体構成図である。 図1のテラヘルツイメージング装置の要部を概略的に示す部分斜視図である。 本発明の第2の実施の形態に係るテラヘルツイメージング装置の要部を概略的に示す部分斜視図である。 本発明の第3の実施の形態に係るテラヘルツイメージング装置の要部を概略的に示す部分斜視図である。 本発明の第3の実施の形態に係るテラヘルツイメージング装置の変形例である。
符号の説明
10:レーザ光源
17:テラヘルツ光発生素子
19:ペリクルビームスプリッタ
20:ZnTe結晶板
25:偏光子
26:検光子
27:CCDカメラ
30:移動機構
31:振動機構
32:回転機構
40:制御・演算装置
100,200,300:テラヘルツイメージング装置
A1,A2,A4〜A9:結像領域
L1〜L3:レーザパルス光
T1,T2:テラヘルツパルス光
S:試料

Claims (10)

  1. テラヘルツ光を試料へ照射するテラヘルツ光照射手段と、
    前記試料から発する透過テラヘルツ光または反射テラヘルツ光が照射される電気光学結晶と、
    前記電気光学結晶を移動させる移動機構と、
    前記電気光学結晶の透過テラヘルツ光または反射テラヘルツ光が照射される領域にプローブ光を照射するプローブ光照射手段と、
    前記電気光学結晶から射出されるプローブ光を撮像する撮像手段と、
    前記移動機構により、前記電気光学結晶上の透過テラヘルツ光または反射テラヘルツ光が照射される領域を変え、その異なる領域を用いて撮像された前記プローブ光の複数の画像から前記試料の透過テラヘルツ画像または反射テラヘルツ画像を生成する画像処理手段とを備えることを特徴とするテラヘルツイメージング装置。
  2. テラヘルツ光を試料へ照射するテラヘルツ光照射手段と、
    前記試料から発する透過テラヘルツ光または反射テラヘルツ光が照射される電気光学結晶と、
    前記電気光学結晶を移動させる移動機構と、
    前記電気光学結晶の透過テラヘルツ光または反射テラヘルツ光が照射される領域にプローブ光を照射するプローブ光照射手段と、
    前記移動機構により移動中の電気光学結晶から射出されるプローブ光を所定時間蓄積して撮像する撮像手段とを備えることを特徴とするテラヘルツイメージング装置。
  3. 請求項1または2に記載のテラヘルツイメージング装置において、
    レーザ光源からのレーザ光を前記テラヘルツ光照射手段へ導く光と前記プローブ光照射手段へ導く光とに分岐する分岐光学素子を有することを特徴とするテラヘルツイメージング装置。
  4. 請求項1〜3のいずれか一項に記載のテラヘルツイメージング装置において、
    前記移動機構は、前記電気光学結晶を前記透過テラヘルツ光または反射テラヘルツ光が照射される面と平行に並進移動させることを特徴とするテラヘルツイメージング装置。
  5. 請求項1〜3のいずれか一項に記載のテラヘルツイメージング装置において、
    前記移動機構は、前記電気光学結晶を前記透過テラヘルツ光または反射テラヘルツ光が照射される面と平行に所定の振動数と振幅で振動させることを特徴とするテラヘルツイメージング装置。
  6. 請求項1〜3のいずれか一項に記載のテラヘルツイメージング装置において、
    前記移動機構は、前記電気光学結晶を前記透過テラヘルツ光または反射テラヘルツ光が照射される面と平行な面内で回転移動させることを特徴とするテラヘルツイメージング装置。
  7. 請求項6に記載のテラヘルツイメージング装置において、
    前記撮像手段は、前記電気光学結晶の結晶軸に基づいて所定強度以上の前記プローブ光が撮像されるように決定された位置で、撮像することを特徴とするテラヘルツイメージング装置。
  8. 請求項6に記載のテラヘルツイメージング装置において、
    前記移動機構は、前記電気光学結晶を回転揺動させ、
    前記撮像手段は、前記回転揺動する電気光学結晶からの前記プローブ光を所定時間蓄積して撮像することを特徴とするテラヘルツイメージング装置。
  9. テラヘルツパルス光を試料へ照射する工程と、
    前記試料から発する透過テラヘルツ光または反射テラヘルツ光が結像される電気光学結晶上の領域へプローブ光を照射する工程と、
    前記電気光学結晶上の前記透過テラヘルツ光または反射テラヘルツ光が結像する領域を移動する移動工程と、
    前記移動工程により移動された前記電気光学結晶の異なる領域からの前記プローブ光を2次元的に撮像する撮像工程と、
    前記撮像工程で撮像した異なる領域からの複数の画像から前記試料のテラヘルツ画像を生成する画像生成工程とを有することを特徴とするテラヘルツイメージング方法。
  10. テラヘルツパルス光を試料へ照射する工程と、
    前記試料から発する透過テラヘルツ光または反射テラヘルツ光が結像される電気光学結晶上の領域へプローブ光を照射する工程と、
    前記電気光学結晶上の前記透過テラヘルツ光または反射テラヘルツ光が結像する領域を移動する移動工程と、
    前記移動工程により移動中の前記電気光学結晶からの前記プローブ光を2次元的に撮像する撮像工程とを有することを特徴とするテラヘルツイメージング方法。
JP2004369572A 2004-12-21 2004-12-21 テラヘルツイメージング装置およびテラヘルツイメージング方法 Expired - Fee Related JP4468153B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004369572A JP4468153B2 (ja) 2004-12-21 2004-12-21 テラヘルツイメージング装置およびテラヘルツイメージング方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004369572A JP4468153B2 (ja) 2004-12-21 2004-12-21 テラヘルツイメージング装置およびテラヘルツイメージング方法

Publications (2)

Publication Number Publication Date
JP2006177716A JP2006177716A (ja) 2006-07-06
JP4468153B2 true JP4468153B2 (ja) 2010-05-26

Family

ID=36731970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004369572A Expired - Fee Related JP4468153B2 (ja) 2004-12-21 2004-12-21 テラヘルツイメージング装置およびテラヘルツイメージング方法

Country Status (1)

Country Link
JP (1) JP4468153B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058918A (ja) * 2006-09-01 2008-03-13 Semiconductor Res Found テラヘルツ電磁波発生方法及び分光・イメージング測定装置
JP5291983B2 (ja) * 2008-05-12 2013-09-18 浜松ホトニクス株式会社 テラヘルツ波周波数分解イメージング装置
CN102169076B (zh) * 2010-12-16 2012-10-31 西北工业大学 检测碲化物半导体晶体中富Te相的装置及方法
WO2013077097A1 (ja) * 2011-11-25 2013-05-30 学校法人慶應義塾 偏波解析装置、偏波解析方法、物性測定装置、及び物性測定方法
WO2021118315A1 (ko) * 2019-12-11 2021-06-17 (주)미래컴퍼니 테라헤르츠파를 이용한 검사 시스템

Also Published As

Publication number Publication date
JP2006177716A (ja) 2006-07-06

Similar Documents

Publication Publication Date Title
US9658054B2 (en) Optical measuring apparatus
US7092093B2 (en) Polarization bearing detection type two-dimensional light reception timing detecting device and surface form measuring device using the same
JP4403272B2 (ja) 分光計測方法及び分光計測装置
JP4468153B2 (ja) テラヘルツイメージング装置およびテラヘルツイメージング方法
JP2002303574A (ja) テラヘルツ光装置及びこれの調整方法
KR20160096550A (ko) 광조사 장치
KR101581534B1 (ko) 고속 결함 검출 시스템
JP5700527B2 (ja) 分析装置および分析方法
JP2003035613A (ja) 光透過性物質の残留応力検査装置
JP4255586B2 (ja) 試料検査装置
JP4307321B2 (ja) 動的形状測定装置
JP2009204373A (ja) 光投影装置および三次元形状測定装置
CN111033228A (zh) 检测设备和检测方法
KR100676629B1 (ko) 레이저 초음파 검사장치에서 적응형 신호획득장치 및 그획득방법
JP2006119099A (ja) 周期可動物の変位測定装置
JP2004286533A (ja) 高さ測定方法及びその装置
JPH11142322A (ja) 複屈折測定装置及び複屈折測定方法
JP3500215B2 (ja) 電圧測定装置
JP5291983B2 (ja) テラヘルツ波周波数分解イメージング装置
JP2942002B2 (ja) 面形状測定装置
JP2006300664A (ja) フーリエ分光装置,測定タイミング検出方法
JP2004077223A (ja) 光ヘテロダイン干渉計
JPH10170334A (ja) 振動測定装置
JP2001343222A (ja) 三次元形状計測方法及び装置
US9417281B1 (en) Adjustable split-beam optical probing (ASOP)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100224

R150 Certificate of patent or registration of utility model

Ref document number: 4468153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160305

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees