JP4457420B2 - Manufacturing method of chip resistor - Google Patents

Manufacturing method of chip resistor Download PDF

Info

Publication number
JP4457420B2
JP4457420B2 JP36263498A JP36263498A JP4457420B2 JP 4457420 B2 JP4457420 B2 JP 4457420B2 JP 36263498 A JP36263498 A JP 36263498A JP 36263498 A JP36263498 A JP 36263498A JP 4457420 B2 JP4457420 B2 JP 4457420B2
Authority
JP
Japan
Prior art keywords
resistor
insulating substrate
electrode
chip resistor
glass frit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36263498A
Other languages
Japanese (ja)
Other versions
JP2000188202A5 (en
JP2000188202A (en
Inventor
尚継 米田
尚弘 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP36263498A priority Critical patent/JP4457420B2/en
Publication of JP2000188202A publication Critical patent/JP2000188202A/en
Publication of JP2000188202A5 publication Critical patent/JP2000188202A5/ja
Application granted granted Critical
Publication of JP4457420B2 publication Critical patent/JP4457420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種電子機器に使用されるチップ抵抗器、特に低抵抗値を目的とするチップ抵抗器の製造方法に関するものである。
【0002】
【従来の技術】
従来のチップ抵抗器としては、特開平1−719422号公報に開示されたものが知られている。
【0003】
以下、従来のチップ抵抗器について、図面を参照しながら説明する。
【0004】
図7は、従来のチップ抵抗器の断面図である。
【0005】
図7において、1は絶縁基板である。2は一対の上面電極で、絶縁基板1の上面の両端部に設けられている。3は一対の裏面電極で、絶縁基板1の下面の両端部に設けられている。4は抵抗体で、一対の上面電極2間に位置し、且つ一対の上面電極2の一部分と電気的に接続されるように設けられている。5は保護膜で、一対の上面電極2の一部と抵抗体4とを覆うように設けられている。6は側面電極で、絶縁基板1の端面に位置し、且つ上面電極2の一部と裏面電極3の一部とを電気的に接続させるように設けられている。また、この側面電極6の表面にはニッケルめっき7が形成され、さらにこのニッケルめっき7の表面には低融点金属めっき8が形成されている。
【0006】
図8は従来のチップ抵抗器における上面電極2と裏面電極3及び抵抗体4がパターン印刷されたシート状の絶縁基板を示す上面図である。
【0007】
図8において、9は分割用の縦溝、10は分割用の横溝で、この横溝10と前記縦溝9は各々シート状の絶縁基板11に複数設けられ、縦溝9と横溝10とで区画された領域が1個のチップ抵抗器に相当する。また、シート状の絶縁基板11の上面に、横方向に隣り合う各領域が電気的に接続されるように縦溝9の両側に跨り、且つ縦方向の各領域が電気的に独立するように横溝10の両側に跨らないように上面電極2が設けられている。さらに、この上面電極2の縦溝9を跨る部分に切欠部12が形成されている。なお、裏面電極3(図示せず)はシート状の絶縁基板11の下面に、上面電極2と対向するように設けられている。また抵抗体4は、縦方向に隣り合う領域に跨らないように、且つ各領域内において一対の上面電極2間に、上面電極2の一部分と電気的に接続されるように設けられている。
【0008】
以上のように構成された従来のチップ抵抗器について、以下にその製造方法を図面を参照しながら説明する。
【0009】
図9(a)〜(c)及び図10(a)〜(c)は従来のチップ抵抗器の製造方法を示す工程図である。
【0010】
まず、図9(a)に示すように、シート状の絶縁基板11の上面に、横方向に隣り合う各領域が電気的に接続されるように縦溝9の両側に跨り、且つ縦方向の各領域が電気的に独立するように横溝10の両側に跨らないように上面電極2を設ける。このとき、上面電極2の縦溝9を跨る部分に切欠部12を形成する。また裏面電極3(図示せず)を、シート状の絶縁基板11の下面に上面電極2と対向するように設け、上面電極2と裏面電極3をそれぞれ焼成する。
【0011】
次に、図9(b)に示すように、抵抗体4を縦方向に隣り合う領域に跨らないように、且つ各領域内において一対の上面電極2間に上面電極2の一部分と電気的に接続されるように設けて焼成する。
【0012】
次に、図9(c)に示すように、上面電極2の上部に測定端子を当てて上面電極2間の抵抗値を測定しながら所望の抵抗値となるようにレーザ光を用いてトリミングを行う。13はそのトリミング跡である。
【0013】
次に、図10(a)に示すように、上面電極2の一部と抵抗体4とを覆うように保護膜5を設けて焼成する。
【0014】
次に、図10(b)に示すように、縦溝9に沿ってシート状の絶縁基板11を短冊状に分割し、上面電極2と裏面電極3とを電気的に接続するように側面電極6を設けて焼成する。
【0015】
最後に、図10(c)に示すように、縦溝9に沿って短冊状の絶縁基板14を個片状に分割する。そして、この個片状の絶縁基板15において、側面電極6の表面にニッケルめっき7(図示せず)を形成し、さらにニッケルめっき7の表面には、低融点金属めっき8(図示せず)を形成する。その後、完成したチップ抵抗器の抵抗値を個片の状態で再度測定して分類選別を行い、従来のチップ抵抗器を製造するものである。
【0016】
なお、図11は上記のようにして得られた従来の個片状のチップ抵抗器の上面図である(保護膜5、ニッケルめっき7、低融点金属めっき8は図示せず)。
【0017】
【発明が解決しようとする課題】
以上のように構成された従来のチップ抵抗器は、絶縁基板1の上面に直接上面電極2を形成しているため、特に抵抗体4として金属成分の多い材料(低抵抗材料)を使用した場合、抵抗体4中の導電粒子と上面電極2中の導電粒子との金属結合性を向上させる目的でガラスフリットの少ない、あるいはガラスフリットを含まない材料で上面電極2を形成したときは、上面電極2が接着強度の役目をするガラスフリットの少ない、あるいはガラスフリットを含まない材料で形成されているため、上面電極2と絶縁基板1が接する部分は極端に接着強度が弱くなり、すぐに上面電極2が絶縁基板1から剥離してしまうという課題を有していた。
【0018】
本発明は上記従来の課題を解決するもので、ガラスフリットの少ない、あるいはガラスフリットを含まない材料で上面電極を形成した場合でも、上面電極が絶縁基板から剥離してしまうのを防止できるチップ抵抗器の製造方法を提供することを目的とするものである。
【0019】
【課題を解決するための手段】
上記目的を達成するために本発明のチップ抵抗器の製造方法は、分割用の縦溝と横溝をそれぞれ複数設けて1個のチップ抵抗器に相当する領域が連続して区画されているシート状の絶縁基板上に、横方向に並ぶ全領域が電気的に接続されるように前記縦溝の両側に跨り、且つ縦方向の各領域が電気的に独立するように前記横溝の両側に跨らず、さらに前記縦溝を跨る部分に切欠部を有するガラスフリットを含む低抵抗の金属材料からなる抵抗体を形成する工程と、縦方向に隣り合う領域には跨らないように、かつ各領域内において横方向に対向するように前記抵抗体の上面の両端部にガラスフリットの少ない、あるいはガラスフリットを含まない材料からなる上面電極を形成する工程とからなるもので、この製造方法によれば、接合の役目をするガラスフリットの少ない、あるいはガラスフリットを含まない材料で上面電極を形成した場合でも、上面電極が絶縁基板から剥離してしまうのを防止できるとともに、トリミングの際における横方向に隣り合う領域の抵抗値の影響も小さく抑えることができるものである。
【0020】
【発明の実施の形態】
本発明の請求項1に記載の発明は、分割用の縦溝と横溝をそれぞれ複数設けて1個のチップ抵抗器に相当する領域が連続して区画されているシート状の絶縁基板上に、横方向に並ぶ全領域が電気的に接続されるように前記縦溝の両側に跨り、且つ縦方向の各領域が電気的に独立するように前記横溝の両側に跨らず、さらに前記縦溝を跨る部分に切欠部を有するガラスフリットを含む低抵抗の金属材料からなる抵抗体を形成する工程と、縦方向に隣り合う領域には跨らないように、かつ各領域内において横方向に対向するように前記抵抗体の上面の両端部にガラスフリットの少ない、あるいはガラスフリットを含まない材料からなる上面電極を形成する工程とからなるもので、この製造方法によれば、絶縁基板の上面に直接抵抗体を形成し、さらにこの抵抗体の上面に上面電極を形成するようにしているため、抵抗体と絶縁基板とは抵抗体中のガラスフリットによって強固に接合されることになり、そして接合の役目をするガラスフリットの少ない、あるいはガラスフリットを含まない材料で上面電極を形成した場合でも、抵抗体中の導電粒子と上面電極中の導電粒子との金属結合性が向上するため、抵抗体と上面電極とは強固に接合されることになり、これらにより、上面電極が絶縁基板から剥離してしまうのを防止することができる。また、抵抗体の縦溝を跨る部分に切欠部を設けているため、抵抗体の印刷時におけるペーストの分割用の溝への流れ込みによる隣り合う縦方向の抵抗体同士のつながりを防止することができるとともに、抵抗体の縦溝を跨る部分の幅も狭くなって、横方向に隣り合う領域同士をつなぐ部分の抵抗値も高くなるため、トリミングの際における横方向に隣り合う領域の抵抗値の影響も小さく抑えることができ、これにより、絶縁基板の分割前後での抵抗値変化がほとんどなくなるため、歩留まりが良くなるという作用を有するものである。
【0021】
(参考例)
以下、本発明の参考例を示すチップ抵抗器について、図面を参照しながら説明する。
【0022】
図1は本発明の参考例を示すチップ抵抗器の断面図である。
【0023】
図1において、21は絶縁基板である。22は抵抗体で、絶縁基板21の上面に設けられ、且つ銅ニッケル合金などの低抵抗の金属材料にガラスフリットを含有させたものからなる。23は一対の上面電極で、抵抗体22の上面の両端部に設けられ、ガラスフリットの少ない、あるいはガラスフリットを含まない材料からなり、且つ銀や銅などの低抵抗の金属からなる。24は一対の裏面電極で、絶縁基板21の下面の両端部に設けられ、且つ銀や銅などの低抵抗の金属からなる。25は保護膜で、一対の上面電極23の一部と抵抗体22とを覆うように設けられ、且つガラスを主成分とするものからなる。26は側面電極で、絶縁基板21の端面に位置し、且つ上面電極23の一部と裏面電極24の一部とを電気的に接続させるように設けられている。また、この側面電極26は銀や銅などの低抵抗の金属からなる導電粉体に、ガラスまたは結合性樹脂などを含有させたもので構成されている。さらに、この側面電極26の表面にはニッケルめっき27が形成され、さらにまたニッケルめっき27の表面には、スズ、はんだなどの低融点金属めっき28が形成されている。
【0024】
図2は本発明の参考例を示すチップ抵抗器における上面電極23と裏面電極24及び抵抗体22がパターン印刷されたシート状の絶縁基板の上面図である。
【0025】
図2において、29は分割用の縦溝、30は分割用の横溝で、この横溝30と前記縦溝29は各々シート状の絶縁基板31に複数設けられ、縦溝29と横溝30とで区画された領域が1個のチップ抵抗器に相当する。また、シート状の絶縁基板31の上面に、横方向に並ぶ全領域が電気的に接続されるように縦溝29の両側に跨り、且つ縦方向の各領域が電気的に独立するように横溝30の両側に跨らないように抵抗体22が設けられている。また、上面電極23は、縦方向に隣り合う領域には跨らないように、且つ各領域内において横方向に対向するように抵抗体22の上面の両端部に、シート状の絶縁基板31と接しないように設けられている。なお、裏面電極24(図示せず)は、シート状の絶縁基板31の下面に上面電極23と対向するように設けられている。
【0026】
以上のように構成された本発明の参考例を示すチップ抵抗器について、以下にその製造方法を図面を参照しながら説明する。
【0027】
図3(a)〜(c)及び図4(a)〜(c)は本発明の参考例を示すチップ抵抗器の製造方法を示す工程図である。
【0028】
まず、図3(a)に示すように、シート状の絶縁基板31の上面に、横方向に並ぶ全領域が電気的に接続されるように縦溝29の両側に跨り、且つ縦方向の各領域が電気的に独立するように横溝30の両側に跨らないように抵抗体22を設けて焼成する。
【0029】
次に、図3(b)に示すように、上面電極23を縦方向に隣り合う領域に跨らないように、且つ各領域内において横方向に対向するように抵抗体22の上面の両端部に、シート状の絶縁基板31と接しないように設ける。また、裏面電極24(図示せず)を、シート状の絶縁基板31の下面に上面電極23と対向するように設け、上面電極23と裏面電極24をそれぞれ焼成する。
【0030】
次に、図3(c)に示すように、上面電極23の上部に測定端子を当てて上面電極23間の抵抗値を測定しながら所望の抵抗値となるようにレーザ光を用いてトリミングを行う。32はそのトリミング跡である。
【0031】
次に、図4(a)に示すように、上面電極23の一部と抵抗体22を覆うように保護膜25を設けて焼成する。
【0032】
次に、図4(b)に示すように、縦溝29に沿ってシート状の絶縁基板31を短冊状に分割し、上面電極23と裏面電極24とを電気的に接続するように側面電極26を設けて焼成する。
【0033】
最後に、図4(c)に示すように、縦溝29に沿って短冊状の絶縁基板33を個片状に分割する。そして、この個片状の絶縁基板34において、側面電極26の表面にニッケルめっき27(図示せず)を形成し、さらにニッケルめっき27の表面には、低融点金属めっき28(図示せず)を形成する。その後、完成したチップ抵抗器の抵抗値を個片の状態で再度測定して分類選別を行い、本発明の参考例を示すチップ抵抗器を製造するものである。
【0034】
上記したように本発明の参考例を示すチップ抵抗器においては、絶縁基板21の上面に直接ガラスフリットを含む金属材料からなる抵抗体22を形成し、さらにこの抵抗体22の上面にガラスフリットの少ない、あるいはガラスフリットを含まない材料からなる上面電極23を設けているため、抵抗体22と絶縁基板21とは抵抗体22中のガラスフリットによって強固に接合されることになり、そして接合の役目をするガラスフリットの少ない、あるいはガラスフリットを含まない材料で上面電極23を形成した場合でも、抵抗体22中に含まれる銅ニッケル合金などの導電粒子と上面電極23に含まれる銀などの低抵抗の導電粒子との金属結合性が向上するため、抵抗体22と上面電極23とは強固に接合されることになり、これらにより、上面電極23が絶縁基板21から剥離してしまうのを防止できるという効果が得られる。
【0035】
(実施の形態1)
以下、本発明の実施の形態1におけるチップ抵抗器について、図面を参照しながら説明する。
【0036】
図5(a)は本発明の実施の形態1におけるチップ抵抗器の断面図、図5(b)は同チップ抵抗器の上面図(保護膜25、ニッケルめっき27、低融点金属めっき28は図示せず)である。
【0037】
図6は本発明の実施の形態1のチップ抵抗器における上面電極23と裏面電極24及び抵抗体22がパターン印刷されたシート状の絶縁基板の上面図である。
【0038】
本発明の実施の形態1におけるチップ抵抗器が上記本発明の参考例を示すチップ抵抗器と異なる点は、図5(a)(b)においては、抵抗体22の両端に、また図6においては、抵抗体22の縦溝29を跨る部分に、それぞれ切欠部35を設けた点であり、他の構成および製造方法は同じなので説明を省略し、同一の符号を付ける。
【0039】
上記本発明の参考例を示すチップ抵抗器のように、シート状の絶縁基板31の上面に形成されている抵抗体22が単なる棒状(切欠部35が設けられていないもの)であると、特に抵抗体22として金属成分の多い材料(低抵抗材料)を使用した場合、上面電極23の焼成時に上面電極23と抵抗体22の相互拡散が起きて、上面電極23部分の抵抗値が抵抗体22の抵抗値に近づくため、四端子法でのトリミング時に行う抵抗値測定時において横方向に隣り合う領域の抵抗値の影響を受けてしまうとともに、抵抗体22の印刷時にペーストが分割用の溝へ流れ込むことによって隣り合う縦方向の抵抗体22同士がつながる。これにより、シート状の絶縁基板31を個片に分割した後、抵抗値が変化して歩留まりが悪くなる。
【0040】
これに対して、上記本発明の実施の形態1における構成においては、抵抗体22の縦溝29を跨る部分に切欠部35を設けているため、抵抗体22の縦溝29を跨る部分の幅が狭くなり、これにより、横方向に隣り合う領域同士をつなぐ部分の抵抗値が高くなるため、トリミングの際に横方向に隣り合う領域の抵抗値の影響を小さく抑えることができるとともに、抵抗体22の印刷時にペーストが分割用の溝へ流れ込むことによって隣り合う縦方向の抵抗体22同士がつながることを防止できる。この結果、絶縁基板31の分割前後での抵抗値変化がほとんどなくなるため、歩留まりが良くなるという効果が得られる。
【0041】
また、絶縁基板21の両端部に抵抗体22が存在するため、側面電極26の強度が向上するという効果も期待できる。
【0042】
なお、上記本発明の実施の形態1においては、抵抗体22に設けられた切欠部35の形状を凸状としているが、V字状としても同様の効果が得られる。
【0043】
【発明の効果】
以上のように本発明のチップ抵抗器の製造方法は、分割用の縦溝と横溝をそれぞれ複数設けて1個のチップ抵抗器に相当する領域が連続して区画されているシート状の絶縁基板上に、横方向に並ぶ全領域が電気的に接続されるように前記縦溝の両側に跨り、且つ縦方向の各領域が電気的に独立するように前記横溝の両側に跨らず、さらに前記縦溝を跨る部分に切欠部を有するガラスフリットを含む低抵抗の金属材料からなる抵抗体を形成する工程と、縦方向に隣り合う領域には跨らないように、かつ各領域内において横方向に対向するように前記抵抗体の上面の両端部にガラスフリットの少ない、あるいはガラスフリットを含まない材料からなる上面電極を形成する工程とからなるもので、この製造方法によれば、絶縁基板の上面に直接抵抗体を形成し、さらにこの抵抗体の上面に上面電極を形成するようにしているため、抵抗体と絶縁基板とは抵抗体中のガラスフリットによって強固に接合されることになり、そして接合の役目をするガラスフリットの少ない、あるいはガラスフリットを含まない材料で上面電極を形成した場合でも、抵抗体中の導電粒子と上面電極中の導電粒子との金属結合性が向上するため、抵抗体と上面電極とは強固に接合されることになり、これらにより、上面電極が絶縁基板から剥離してしまうのを防止することができる。また、抵抗体の縦溝を跨る部分に切欠部を設けているため、抵抗体の印刷時におけるペーストの分割用の溝への流れ込みによる隣り合う縦方向の抵抗体同士のつながりを防止することができるとともに、抵抗体の縦溝を跨る部分の幅も狭くなって、横方向に隣り合う領域同士をつなぐ部分の抵抗値も高くなるため、トリミングの際における横方向に隣り合う領域の抵抗値の影響も小さく抑えることができ、これにより、絶縁基板の分割前後での抵抗値変化がほとんどなくなるため、歩留まりが良くなるという優れた効果を有するものである。
【図面の簡単な説明】
【図1】 本発明の参考例を示すチップ抵抗器の断面図
【図2】 同チップ抵抗器における上面電極と裏面電極及び抵抗体がパターン印刷されたシート状の絶縁基板の上面図
【図3】 (a)〜(c)同チップ抵抗器の製造方法の前半を示す工程図
【図4】 (a)〜(c)同チップ抵抗器の製造方法の後半を示す工程図
【図5】 (a)本発明の実施の形態1におけるチップ抵抗器の断面図
(b)同チップ抵抗器の上面図
【図6】 同チップ抵抗器における上面電極と裏面電極及び抵抗体がパターン印刷されたシート状の絶縁基板の上面図
【図7】 従来のチップ抵抗器の断面図
【図8】 同チップ抵抗器における上面電極と裏面電極及び抵抗体がパターン印刷されたシート状の絶縁基板の上面図
【図9】 (a)〜(c)同チップ抵抗器の製造方法の前半を示す工程図
【図10】 (a)〜(c)同チップ抵抗器の製造方法の後半を示す工程図
【図11】 同チップ抵抗器の上面図
【符号の説明】
21 絶縁基板
22 抵抗体
23 上面電極
29 縦溝
30 横溝
31 シート状の絶縁基板
35 切欠部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chip resistor used for various electronic devices, and more particularly to a method for manufacturing a chip resistor for the purpose of low resistance.
[0002]
[Prior art]
As a conventional chip resistor, the one disclosed in JP-A-1-719422 is known.
[0003]
Hereinafter, a conventional chip resistor will be described with reference to the drawings.
[0004]
FIG. 7 is a cross-sectional view of a conventional chip resistor.
[0005]
In FIG. 7, reference numeral 1 denotes an insulating substrate. Reference numeral 2 denotes a pair of upper surface electrodes, which are provided at both ends of the upper surface of the insulating substrate 1. Reference numeral 3 denotes a pair of back electrodes, which are provided at both ends of the lower surface of the insulating substrate 1. A resistor 4 is provided between the pair of upper surface electrodes 2 and is electrically connected to a part of the pair of upper surface electrodes 2. A protective film 5 is provided so as to cover a part of the pair of upper surface electrodes 2 and the resistor 4. A side electrode 6 is located on the end face of the insulating substrate 1 and is provided so as to electrically connect a part of the top electrode 2 and a part of the back electrode 3. A nickel plating 7 is formed on the surface of the side electrode 6, and a low melting point metal plating 8 is formed on the surface of the nickel plating 7.
[0006]
FIG. 8 is a top view showing a sheet-like insulating substrate on which a top electrode 2, a back electrode 3 and a resistor 4 are printed in a pattern in a conventional chip resistor.
[0007]
In FIG. 8, 9 is a vertical groove for division, 10 is a horizontal groove for division, and a plurality of the horizontal grooves 10 and the vertical grooves 9 are provided on the sheet-like insulating substrate 11. The region thus obtained corresponds to one chip resistor. Moreover, it straddles both sides of the vertical groove 9 so that each region adjacent in the horizontal direction is electrically connected to the upper surface of the sheet-like insulating substrate 11, and each region in the vertical direction is electrically independent. The upper surface electrode 2 is provided so as not to straddle both sides of the lateral groove 10. Further, a notch 12 is formed in a portion of the upper surface electrode 2 across the vertical groove 9. The back electrode 3 (not shown) is provided on the lower surface of the sheet-like insulating substrate 11 so as to face the upper electrode 2. In addition, the resistor 4 is provided so as not to straddle regions adjacent in the vertical direction and to be electrically connected to a part of the upper surface electrode 2 between the pair of upper surface electrodes 2 in each region. .
[0008]
A manufacturing method of the conventional chip resistor configured as described above will be described below with reference to the drawings.
[0009]
9A to 9C and FIGS. 10A to 10C are process diagrams showing a conventional method for manufacturing a chip resistor.
[0010]
First, as shown in FIG. 9A, the upper surface of the sheet-like insulating substrate 11 straddles both sides of the vertical groove 9 so that the regions adjacent in the horizontal direction are electrically connected to each other and extends in the vertical direction. The top electrode 2 is provided so as not to straddle both sides of the lateral groove 10 so that each region is electrically independent. At this time, the notch 12 is formed in the portion of the upper surface electrode 2 across the vertical groove 9. Further, the back electrode 3 (not shown) is provided on the lower surface of the sheet-like insulating substrate 11 so as to face the upper electrode 2, and the upper electrode 2 and the back electrode 3 are fired respectively.
[0011]
Next, as shown in FIG. 9B, the resistor 4 is electrically connected to a part of the upper surface electrode 2 between the pair of upper surface electrodes 2 so as not to straddle the regions adjacent to each other in the vertical direction. It is provided so as to be connected to the substrate and fired.
[0012]
Next, as shown in FIG. 9C, trimming is performed using a laser beam so that a desired resistance value is obtained while measuring the resistance value between the upper surface electrodes 2 by placing a measurement terminal on the upper surface electrode 2. Do. Reference numeral 13 denotes the trimming trace.
[0013]
Next, as shown in FIG. 10A, a protective film 5 is provided so as to cover a part of the upper surface electrode 2 and the resistor 4, and is fired.
[0014]
Next, as shown in FIG. 10B, the sheet-like insulating substrate 11 is divided into strips along the longitudinal grooves 9, and the side electrodes are electrically connected to the top electrode 2 and the back electrode 3. 6 is fired.
[0015]
Finally, as shown in FIG. 10C, the strip-shaped insulating substrate 14 is divided into individual pieces along the longitudinal grooves 9. In the individual insulating substrate 15, nickel plating 7 (not shown) is formed on the surface of the side electrode 6, and low melting point metal plating 8 (not shown) is further formed on the surface of the nickel plating 7. Form. After that, the resistance value of the completed chip resistor is measured again in the state of individual pieces and classified and sorted to manufacture a conventional chip resistor.
[0016]
FIG. 11 is a top view of the conventional individual chip resistor obtained as described above (the protective film 5, nickel plating 7, and low melting point metal plating 8 are not shown).
[0017]
[Problems to be solved by the invention]
In the conventional chip resistor configured as described above, the upper electrode 2 is formed directly on the upper surface of the insulating substrate 1, and therefore, when the material having a large metal component (low resistance material) is used as the resistor 4. When the upper surface electrode 2 is formed of a material that has little glass frit or does not contain glass frit for the purpose of improving the metal bond between the conductive particles in the resistor 4 and the conductive particles in the upper surface electrode 2, 2 is made of a material with little glass frit that plays the role of adhesive strength or does not contain glass frit, the portion where the upper surface electrode 2 and the insulating substrate 1 are in contact with each other has extremely weak adhesive strength, and the upper surface electrode is immediately 2 had the subject that it will peel from the insulated substrate 1. FIG.
[0018]
The present invention solves the above-mentioned conventional problems, and even when the upper surface electrode is formed of a material with little glass frit or no glass frit, the chip resistor can prevent the upper surface electrode from peeling from the insulating substrate. It aims at providing the manufacturing method of a vessel .
[0019]
[Means for Solving the Problems]
In order to achieve the above object, the chip resistor manufacturing method of the present invention is a sheet-like structure in which a plurality of dividing vertical grooves and horizontal grooves are provided, and a region corresponding to one chip resistor is continuously partitioned. On both sides of the vertical groove so that all the regions arranged in the horizontal direction are electrically connected to each other and on the both sides of the horizontal groove so that the vertical regions are electrically independent. In addition, a step of forming a resistor made of a low-resistance metal material including a glass frit having a notch in a portion straddling the longitudinal groove, and each region so as not to straddle adjacent regions in the longitudinal direction And forming a top surface electrode made of a material with little glass frit or no glass frit at both ends of the upper surface of the resistor so as to face in the horizontal direction. , The role of joining That less glass frit, or a material that does not contain glass frit even when forming the upper electrode, it is possible to prevent the upper surface electrodes peel off from the insulating substrate, the resistance of the region laterally adjacent to definitive during trimming The influence of the value can also be kept small .
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention is provided on a sheet-like insulating substrate in which a plurality of vertical grooves and horizontal grooves for division are provided and a region corresponding to one chip resistor is continuously partitioned. It straddles both sides of the vertical groove so that all the regions arranged in the horizontal direction are electrically connected, and does not straddle both sides of the horizontal groove so that each region in the vertical direction is electrically independent. A step of forming a resistor made of a low-resistance metal material including a glass frit having a notch in a portion straddling the substrate, and a laterally opposite direction in each region so as not to straddle adjacent regions in the vertical direction And forming a top surface electrode made of a material with little glass frit or no glass frit at both ends of the top surface of the resistor. According to this manufacturing method, the top surface of the insulating substrate is formed on the top surface of the insulating substrate. Forming a resistor directly, In addition, since the upper surface electrode is formed on the upper surface of the resistor, the resistor and the insulating substrate are strongly bonded by the glass frit in the resistor, and the glass frit serving as a bonding member is bonded. Even when the top electrode is formed of a material that contains little or no glass frit, the metal bond between the conductive particles in the resistor and the conductive particles in the top electrode is improved, so the resistor and the top electrode are strong. As a result, the upper surface electrode can be prevented from being peeled off from the insulating substrate. In addition, since the notched portion is provided in the portion across the vertical groove of the resistor, it is possible to prevent the adjacent vertical resistors from being connected to each other due to the flow of the paste into the groove for dividing the paste during printing of the resistor. In addition, the width of the portion across the vertical groove of the resistor is narrowed, and the resistance value of the portion connecting the regions adjacent in the horizontal direction is also increased, so the resistance value of the region adjacent in the horizontal direction at the time of trimming is increased . The influence can also be suppressed to a small extent, and as a result, there is almost no change in resistance value before and after the division of the insulating substrate, so that the yield is improved.
[0021]
(Reference example)
Hereinafter, a chip resistor showing a reference example of the present invention will be described with reference to the drawings.
[0022]
FIG. 1 is a cross-sectional view of a chip resistor showing a reference example of the present invention.
[0023]
In FIG. 1, 21 is an insulating substrate. Reference numeral 22 denotes a resistor, which is provided on the upper surface of the insulating substrate 21 and is made of a low resistance metal material such as a copper nickel alloy containing glass frit. Reference numeral 23 denotes a pair of upper surface electrodes, which are provided at both ends of the upper surface of the resistor 22 and are made of a material with little glass frit or no glass frit, and made of a low resistance metal such as silver or copper. A pair of back electrodes 24 are provided at both ends of the lower surface of the insulating substrate 21 and are made of a low resistance metal such as silver or copper. A protective film 25 is provided so as to cover a part of the pair of upper surface electrodes 23 and the resistor 22, and is mainly composed of glass. A side electrode 26 is located on the end surface of the insulating substrate 21 and is provided so as to electrically connect a part of the top electrode 23 and a part of the back electrode 24. The side electrode 26 is composed of a conductive powder made of a low-resistance metal such as silver or copper and containing glass or a binding resin. Further, a nickel plating 27 is formed on the surface of the side electrode 26, and a low melting point metal plating 28 such as tin or solder is formed on the surface of the nickel plating 27.
[0024]
FIG. 2 is a top view of a sheet-like insulating substrate on which a top electrode 23, a back electrode 24, and a resistor 22 are printed in a chip resistor according to a reference example of the present invention.
[0025]
In FIG. 2, reference numeral 29 denotes a dividing vertical groove, and reference numeral 30 denotes a dividing horizontal groove. A plurality of the horizontal grooves 30 and the vertical grooves 29 are provided on the sheet-like insulating substrate 31, and the vertical grooves 29 and the horizontal grooves 30 are partitioned. The region thus obtained corresponds to one chip resistor. In addition, the horizontal groove is formed on the upper surface of the sheet-like insulating substrate 31 so as to straddle both sides of the vertical groove 29 so that all the regions arranged in the horizontal direction are electrically connected and so that the vertical regions are electrically independent. A resistor 22 is provided so as not to straddle both sides of 30. Further, the upper surface electrode 23 is formed on the both ends of the upper surface of the resistor 22 with the sheet-like insulating substrate 31 so as not to straddle the regions adjacent to each other in the vertical direction and to face in the horizontal direction in each region. It is provided not to touch. The back electrode 24 (not shown) is provided on the lower surface of the sheet-like insulating substrate 31 so as to face the upper electrode 23.
[0026]
With respect to the chip resistor configured as described above and showing a reference example of the present invention, a manufacturing method thereof will be described below with reference to the drawings.
[0027]
3 (a) to 3 (c) and FIGS. 4 (a) to 4 (c) are process diagrams showing a manufacturing method of a chip resistor showing a reference example of the present invention.
[0028]
First, as shown in FIG. 3A, the upper surface of the sheet-like insulating substrate 31 is straddled on both sides of the vertical groove 29 so that all the regions aligned in the horizontal direction are electrically connected to each other in the vertical direction. The resistor 22 is provided and fired so as not to straddle both sides of the lateral groove 30 so that the regions are electrically independent.
[0029]
Next, as shown in FIG. 3B, both end portions of the upper surface of the resistor 22 so as not to straddle the region adjacent to the upper surface electrode 23 in the vertical direction and to face each other in the horizontal direction in each region. In addition, it is provided so as not to contact the sheet-like insulating substrate 31. Further, a back electrode 24 (not shown) is provided on the bottom surface of the sheet-like insulating substrate 31 so as to face the top electrode 23, and the top electrode 23 and the back electrode 24 are fired respectively.
[0030]
Next, as shown in FIG. 3C, trimming is performed using a laser beam so as to obtain a desired resistance value while measuring the resistance value between the upper surface electrodes 23 by placing a measurement terminal on the upper surface electrode 23. Do. Reference numeral 32 denotes the trimming trace.
[0031]
Next, as shown in FIG. 4A, a protective film 25 is provided so as to cover a part of the upper surface electrode 23 and the resistor 22, and is baked.
[0032]
Next, as shown in FIG. 4B, the sheet-like insulating substrate 31 is divided into strips along the longitudinal grooves 29, and the side electrodes are connected so as to electrically connect the top electrode 23 and the back electrode 24. 26 is fired.
[0033]
Finally, as shown in FIG. 4C, the strip-shaped insulating substrate 33 is divided into individual pieces along the longitudinal grooves 29. In the individual insulating substrate 34, nickel plating 27 (not shown) is formed on the surface of the side electrode 26, and low melting point metal plating 28 (not shown) is further formed on the surface of the nickel plating 27. Form. After that, the resistance value of the completed chip resistor is measured again in the state of individual pieces and classified and sorted to manufacture a chip resistor showing a reference example of the present invention.
[0034]
As described above, in the chip resistor showing the reference example of the present invention, the resistor 22 made of a metal material including glass frit is directly formed on the upper surface of the insulating substrate 21, and the glass frit is further formed on the upper surface of the resistor 22. Since the upper surface electrode 23 made of a material containing little or no glass frit is provided, the resistor 22 and the insulating substrate 21 are firmly bonded by the glass frit in the resistor 22, and the role of bonding Even when the upper surface electrode 23 is formed of a material that contains little glass frit or does not contain glass frit, conductive particles such as a copper nickel alloy contained in the resistor 22 and low resistance such as silver contained in the upper surface electrode 23 Therefore, the resistor 22 and the upper surface electrode 23 are firmly bonded to each other. , The effect is obtained that the upper surface electrodes 23 can be prevented from being separated from the insulating substrate 21.
[0035]
(Embodiment 1)
Hereinafter, the chip resistor according to the first embodiment of the present invention will be described with reference to the drawings.
[0036]
5A is a cross-sectional view of the chip resistor according to the first embodiment of the present invention, and FIG. 5B is a top view of the chip resistor (the protective film 25, nickel plating 27, and low melting point metal plating 28 are illustrated). Not shown).
[0037]
FIG. 6 is a top view of a sheet-like insulating substrate on which the top electrode 23, the back electrode 24, and the resistor 22 are printed in the chip resistor according to the first embodiment of the present invention.
[0038]
The chip resistor in the first embodiment of the present invention is different from the chip resistor showing the reference example of the present invention in FIGS. 5A and 5B at both ends of the resistor 22 and in FIG. Is a point in which a notch 35 is provided in each portion across the vertical groove 29 of the resistor 22, and the other configurations and manufacturing methods are the same, so the description is omitted and the same reference numerals are given.
[0039]
When the resistor 22 formed on the upper surface of the sheet-like insulating substrate 31 is just a rod (not provided with the notch 35), like the chip resistor showing the reference example of the present invention, When a material having a large metal component (low resistance material) is used as the resistor 22, mutual diffusion of the upper surface electrode 23 and the resistor 22 occurs during firing of the upper surface electrode 23, and the resistance value of the upper surface electrode 23 portion becomes the resistance 22. Therefore, when the resistance value is measured at the time of trimming by the four-terminal method, it is affected by the resistance value of the region adjacent in the horizontal direction, and the paste is divided into the dividing grooves when the resistor 22 is printed. Adjacent vertical resistors 22 are connected by flowing. Thereby, after the sheet-like insulating substrate 31 is divided into pieces, the resistance value changes and the yield deteriorates.
[0040]
On the other hand, in the configuration according to the first embodiment of the present invention, since the notch 35 is provided in the portion across the vertical groove 29 of the resistor 22, the width of the portion across the vertical groove 29 of the resistor 22. As a result, the resistance value of the portion connecting the adjacent regions in the horizontal direction becomes high, so that the influence of the resistance value of the adjacent region in the horizontal direction can be reduced during trimming, and the resistor It is possible to prevent the adjacent vertical resistors 22 from being connected to each other by the paste flowing into the dividing grooves when printing 22. As a result, there is almost no change in the resistance value before and after the division of the insulating substrate 31, so that the yield is improved.
[0041]
In addition, since the resistors 22 are present at both ends of the insulating substrate 21, an effect that the strength of the side electrode 26 is improved can be expected.
[0042]
In the first embodiment of the present invention, the shape of the notch 35 provided in the resistor 22 is convex, but the same effect can be obtained even when the shape is V-shaped.
[0043]
【The invention's effect】
As described above, the chip resistor manufacturing method of the present invention is a sheet-like insulating substrate in which a plurality of dividing vertical grooves and horizontal grooves are provided, and regions corresponding to one chip resistor are continuously partitioned. Furthermore, it straddles both sides of the vertical groove so that all the regions arranged in the horizontal direction are electrically connected, and does not straddle both sides of the horizontal groove so that the vertical regions are electrically independent. A step of forming a resistor made of a low-resistance metal material including a glass frit having a notch in a portion straddling the longitudinal groove, and a lateral portion in each region so as not to straddle adjacent regions in the longitudinal direction. And forming a top surface electrode made of a material with little glass frit or no glass frit at both end portions of the top surface of the resistor so as to face each other. According to this manufacturing method, the insulating substrate Direct resistance on top of Forming a, since as further to form an upper electrode on the upper surface of the resistor, the resistor and the insulating substrate will be strongly bonded by glass frit in the resistor, and the role of bonding Even when the upper surface electrode is formed of a material that contains little glass frit or does not contain glass frit, the metal bond between the conductive particles in the resistor and the conductive particles in the upper surface electrode is improved. Are firmly bonded to each other, whereby the upper surface electrode can be prevented from peeling from the insulating substrate . In addition, since the notched portion is provided in the portion across the vertical groove of the resistor, it is possible to prevent the adjacent vertical resistors from being connected to each other due to the flow of the paste into the groove for dividing the paste during printing of the resistor. In addition, the width of the portion across the vertical groove of the resistor is narrowed, and the resistance value of the portion connecting the regions adjacent in the horizontal direction is also increased, so the resistance value of the region adjacent in the horizontal direction at the time of trimming is increased . effect can also be reduced, thereby, for dividing the resistance value change before and after the insulating substrate is hardly, and has an excellent effect that the yield is improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a chip resistor showing a reference example of the present invention. FIG. 2 is a top view of a sheet-like insulating substrate on which a top electrode, a back electrode and a resistor are printed. (A) to (c) Process diagram showing the first half of the chip resistor manufacturing method. FIG. 4 (a) to (c) Process diagram showing the latter half of the chip resistor manufacturing method. a) Cross-sectional view of the chip resistor according to the first embodiment of the present invention (b) Top view of the chip resistor FIG. 6 is a sheet-like pattern on which the top electrode, the back electrode, and the resistor of the chip resistor are printed. FIG. 7 is a cross-sectional view of a conventional chip resistor. FIG. 8 is a top view of a sheet-like insulating substrate on which a top electrode, a back electrode, and a resistor are printed. 9) (a) to (c) of the manufacturing method of the same chip resistor Process diagram showing the first half [FIG. 10] (a) to (c) Process diagram showing the second half of the manufacturing method of the chip resistor [FIG. 11] Top view of the chip resistor [Explanation of symbols]
21 Insulating substrate 22 Resistor 23 Upper surface electrode 29 Vertical groove 30 Horizontal groove 31 Sheet-like insulating substrate 35 Notch

Claims (1)

分割用の縦溝と横溝をそれぞれ複数設けて1個のチップ抵抗器に相当する領域が連続して区画されているシート状の絶縁基板上に、横方向に並ぶ全領域が電気的に接続されるように前記縦溝の両側に跨り、且つ縦方向の各領域が電気的に独立するように前記横溝の両側に跨らず、さらに前記縦溝を跨る部分に切欠部を有するガラスフリットを含む低抵抗の金属材料からなる抵抗体を形成する工程と、縦方向に隣り合う領域には跨らないように、かつ各領域内において横方向に対向するように前記抵抗体の上面の両端部にガラスフリットの少ない、あるいはガラスフリットを含まない材料からなる上面電極を形成する工程とからなるチップ抵抗器の製造方法。  All regions arranged in the horizontal direction are electrically connected on a sheet-like insulating substrate in which a plurality of dividing vertical grooves and horizontal grooves are provided and regions corresponding to one chip resistor are continuously partitioned. A glass frit that extends across both sides of the vertical groove and does not cross over both sides of the horizontal groove so that each region in the vertical direction is electrically independent, and further has a notch in the portion straddling the vertical groove. A step of forming a resistor made of a low-resistance metal material, and both ends of the upper surface of the resistor so as not to straddle adjacent regions in the vertical direction and to face each other in the horizontal direction in each region A method of manufacturing a chip resistor comprising a step of forming an upper surface electrode made of a material with little glass frit or no glass frit.
JP36263498A 1998-12-21 1998-12-21 Manufacturing method of chip resistor Expired - Fee Related JP4457420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36263498A JP4457420B2 (en) 1998-12-21 1998-12-21 Manufacturing method of chip resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36263498A JP4457420B2 (en) 1998-12-21 1998-12-21 Manufacturing method of chip resistor

Publications (3)

Publication Number Publication Date
JP2000188202A JP2000188202A (en) 2000-07-04
JP2000188202A5 JP2000188202A5 (en) 2006-01-12
JP4457420B2 true JP4457420B2 (en) 2010-04-28

Family

ID=18477361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36263498A Expired - Fee Related JP4457420B2 (en) 1998-12-21 1998-12-21 Manufacturing method of chip resistor

Country Status (1)

Country Link
JP (1) JP4457420B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4741355B2 (en) * 2005-11-30 2011-08-03 ローム株式会社 Chip-type electronic components

Also Published As

Publication number Publication date
JP2000188202A (en) 2000-07-04

Similar Documents

Publication Publication Date Title
US5683566A (en) Method of manufacting an SMD resistor
JP4138215B2 (en) Manufacturing method of chip resistor
US7326999B2 (en) Chip resistor and method for manufacturing same
KR20080031982A (en) Chip resistor and method for producing the same
JP2000077205A (en) Resistor and its manufacturing method
JP4457420B2 (en) Manufacturing method of chip resistor
JP2000188202A5 (en)
JP3848245B2 (en) Chip resistor
US20070096864A1 (en) Surface mount composite electronic component and method for manufacturing same
JP3838560B2 (en) Chip resistor having low resistance value and manufacturing method thereof
JP3167968B2 (en) Manufacturing method of chip resistor
JP4875327B2 (en) Manufacturing method of chip resistor
JP3767084B2 (en) Resistor manufacturing method
JP4081873B2 (en) Resistor and manufacturing method thereof
JPH02224202A (en) Manufacture of chip-type fixed resistor
JPH0963805A (en) Square chip resistor
JP3353037B2 (en) Chip resistor
JP3557762B2 (en) Multiple chip resistor and mounting board for mounting it
JPH0513201A (en) Square chip resistance
JP3323140B2 (en) Chip resistor
JPH0131283B2 (en)
JP2006019669A (en) Resistor of low resistance using cladding material, and manufacturing method
JP2000216012A (en) Manufacture of surface mounting detection resistor
JP2011159682A (en) Method of manufacturing chip-type resistor
JP4526117B2 (en) Chip resistor having low resistance value and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051116

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees