JP4445659B2 - Exhaust gas treatment catalyst - Google Patents

Exhaust gas treatment catalyst Download PDF

Info

Publication number
JP4445659B2
JP4445659B2 JP2000338922A JP2000338922A JP4445659B2 JP 4445659 B2 JP4445659 B2 JP 4445659B2 JP 2000338922 A JP2000338922 A JP 2000338922A JP 2000338922 A JP2000338922 A JP 2000338922A JP 4445659 B2 JP4445659 B2 JP 4445659B2
Authority
JP
Japan
Prior art keywords
catalyst
organic halogen
oxide
halogen compound
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000338922A
Other languages
Japanese (ja)
Other versions
JP2002136870A (en
Inventor
秀行 坪井
直樹 八田
和代 藤澤
伸靖 神田
明 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2000338922A priority Critical patent/JP4445659B2/en
Publication of JP2002136870A publication Critical patent/JP2002136870A/en
Application granted granted Critical
Publication of JP4445659B2 publication Critical patent/JP4445659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は排ガス処理触媒、特に有機ハロゲン化合物分解触媒に関し、さらに詳しくは都市ごみ焼却炉、産業廃棄物焼却炉、化学プラント、製鉄所などから発生する排ガス中に含まれる人体に有害な有機ハロゲン化合物、特にダイオキシン類、およびハロベンゼン類、ハロフェノール類などのダイオキシン前駆体等の有機ハロゲン化合物を分解、除去する触媒に関する。ここでダイオキシン類とは、ポリハロジベンゾ−パラ−ジオキシンおよびポリハロジベンゾフランおよびコプラナ−ポリハロビフェニルの総称である。
【0002】
【従来の技術】
従来、都市ごみ焼却炉等の排ガスに含有される有機ハロゲン化合物の処理には、活性炭による吸着除去や触媒による分解除去が行われている。このうち触媒による方法では、脱硝触媒の酸化能力を利用して従来の脱硝触媒をそのまま、または酸化能を調整するなど一部改良して有機塩素化合物の酸化分解触媒として使用し、同時脱硝触媒として用いている例が知られている。
また特許第2633316号公報には、酸化チタン担体に五酸化バナジウムと三酸化タングステンを担持させた触媒を用いてポリ塩素化ジベンゾダイオキシンおよび/またはポリ塩素化ジベンゾフランを分解する技術が開示されている。
【0003】
特表平01−500330号公報(刊行物1という)には、触媒の存在下加熱することによって炭素原子4ないし8個を有するポリハロゲン化シクロアルキル化合物および少なくとも炭素原子5個を有するポリハロゲン化芳香族化合物を分解する方法が開示され、その際触媒を固定床の形で周期律表Ia、Ib、IIa、IIb、IIIa、IVa、IVb、VIb、VIIbまたはVIIIb族の元素の酸化物またはそれらの混合物(族の標記は原文のまま)を使用し、前記触媒との緊密な接触下、酸素および水の存在下加熱し、200℃ないし550℃で処理する方法が開示されている。
【0004】
特開平04−118027号公報(刊行物2という)には、焼却炉から排出された排ガスを所定温度で触媒と接触させることによって前記排ガス中に含有されているポリ塩化ジベンゾダイオキシン、ポリ塩化ジベンゾフランを前記排ガス中から除去する際に、前記触媒として少なくともTiO2 、Al2 3 およびSiO2 を含有する酸化物からなる基体の表面上に、Pt、Pd、Ru、Mn、Cu、CrおよびFeからなる群より選択された少なくとも1種の金属またはその酸化物を担持させてなる触媒を使用し、前記排ガスを150℃〜350℃の温度で処理する方法が開示されている。
【0005】
特開平06−063357号公報(刊行物3という)には、有機ハロゲン化合物を含有する排ガスを処理する浄化装置において、強酸点を有する有機ハロゲン化合物分解触媒を充填した触媒分解装置と、有機ハロゲン化合物の分解により発生したハロゲン化水素ガスを除去する洗浄塔とを有する、有機ハロゲン化合物を含む排ガスの処理装置において、有機ハロゲン化合物分解触媒としてSi、Al、Ti、Zr、B、Nb、Cr、Ga、Mo、W、Y、Cu、Sr、La、Fe、MnおよびPから選ばれる1種または2種以上の金属の酸化物に、Cu、Fe、Co、Ni、Mn、Pt、Pd、Rh、Au、Ag、Ir、W、Mo、V、Cd、SnおよびPbから選ばれる1種または2種以上の金属を担持した触媒を用いる技術が開示されている。
【0006】
【発明が解決しようとする課題】
触媒を利用した有機ハロゲン化合物の分解処理には、これまでアンモニア等を還元剤として用いる脱硝触媒をそのまま、または一部改良して用いて有機ハロゲン化合物とNOxを同時除去する方法が知られているが、この場合、触媒自体は両者の同時処理を前提に設計、製作されたものであり、有機ハロゲン化合物の接触酸化分解の目的に必ずしも最適化されたものではない。
【0007】
前記刊行物1には、触媒種として周期律表Ia、Ib、IIa、IIb、III a、IVa、IVb、VIb、VII bもしくはVIIIb族の元素の金属の酸化物またはそれらの混合物を用いる技術が記載され(族の標記は原文のまま)、具体例としてNaK、、Mg、Ca、Ba、Zn、Ni、Pb、Ti、Cu、Fe、Al、Pt、V、W、Mo、Rh、Crまたはそれらの酸化物、炭酸塩、またはケイ酸塩で好結果が得られることが記載されている。しかしながら、実施例では触媒種としてCu、Zn、ZnO、Ni、NiO、Cr、Cr2 3 、CuO、Fe、Fe2 3 、Fe3 4 、Al、Pt、PbO、Rh、Mo2 3 、CuO−Cr2 O/SiO2 、Pt/Al2 3 、Pd/Al2 3 などについて記載されているのみで、請求項中のすべての組合わせの中で最も活性の高い触媒種に関する記載および示唆は一切なされていない。また、刊行物1には触媒を構成する粒子の形状、性状に関する記載も全くない。
【0008】
前記刊行物2には、触媒として少なくともTiO2 、Al2 3 およびSiO2 を含有する酸化物からなる基体の表面上に、Pt、Pd、Ru、Mn、Cu、CrおよびFeからなる群より選択された少なくとも1種の金属またはその酸化物を担持させてなる触媒を使用する技術が開示されているが、その実施例にはムライトを含む酸化物の表面にTiO2 が被覆されたTiO2 の含有量が60wt%である基体にPtを担持させた触媒のみが示されており、請求項中のすべての組合わせの中で最も好適にダイオキシン類を分解除去できる触媒種に関する記載および示唆は一切なされていない。また、同刊行物2には、触媒を構成する粒子の形状・性状に関する記載も全くない。
【0009】
前記刊行物3には、処理対象の例として四塩化炭素、クロロホルム、クロロエチレン、1,1,1−トリクロロエタン、1,2−ジクロロエタン、テトラクロロエチレン、トリクロロエチレン、クロロエチレン、ジクロロメタン、トリクロロフルオロメタン、ジクロロジフルオロメタン、1,1,2−トリクロロ−1,2,2トリフルオロエタン、臭化メチルが明細書中に挙げられているとおり、炭素数1〜2の脂肪族ハロゲン化炭化水素の処理に対して好適化された技術ではあるものの、炭素数3以上の有機ハロゲン化合物または芳香族を含む有機ハロゲン化合物等の処理技術に関する記載・示唆は一切なされていない。また、同刊行物3には、請求項で開示されている触媒のうちダイオキシン類の分解処理に最も好適な触媒種に関する記載および示唆は一切なく、明細書中にはCo担持H型モルデナイト、Fe担持H型モルデナイト、W担持チタニア・ジルコニア複合酸化物、Pd担持チタニア・ジルコニア複合酸化物、Cr担持チタニア・ジルコニア複合酸化物などが記載されているが、どの触媒種が最も高性能であるかに関する知見は一切明らかにされていない。また、同刊行物3には、触媒を構成する粒子の形状・性状に関する記載も全くない。
【0010】
上述のように、ダイオキシン分解触媒に関して幾つかの技術が開示されているものの、触媒性能の高い触媒種の具体的な特定はいまだなされていないのが現状である。また、触媒を構成する粒子がどのような形状、性状の場合に高活性であるかについても具体的にはいまだ明らかにされていないのが現状である。
本発明の課題は、焼却炉等から排出される排ガス中の有機ハロゲン化合物、特に塩素化および臭素化ダイオキシン類を分解、除去するために好適な触媒を提供することにある。
【0011】
【課題を解決するための手段】
本願で特許請求される発明は以下のとおりである。
(1)Ti酸化物からなる担体と、該担体上に担持される触媒成分とを有し、前記触媒成分は、主に有機ハロゲン化合物を分解する活性点を与える成分として、Cr、Co、FeおよびCuのうち少なくとも1種の金属の酸化物を触媒全体の5重量%以上、主に有機ハロゲン化合物を吸着する吸着点を与える成分として、Mo酸化物を触媒全体の5重量%以上含むことを特徴とする排ガス処理触媒。
【0012】
)主に有機ハロゲン化合物を分解する活性点を与える前記成分、および主に有機ハロゲン化合物を吸着する吸着点を与える前記成分が、ともに平均粒径1μm以下の微細な粒子を基本構成要素として含まれることを特徴とする()記載の排ガス処理触媒。
【0013】
本発明で処理対象は、都市ごみ焼却炉等から発生する有機ハロゲン化合物含有排ガス、特にダイオキシン類およびハロベンゼン類、ハロフェノール類などのダイオキシン類前駆体等の1環もしくは多環の芳香族有機塩素化合物および芳香族有機臭素化合物等の有機ハロゲン化合物を含有する排ガスである。
【0014】
本発明において、主に有機ハロゲン化合物を分解する活性点を与える成分であるCr、Co、Fe、Cuの酸化物の担持量は、触媒全体の5wt%以上、好ましくは触媒全体の10wt%以上である。担持量が1wt%未満の場合には充分な触媒性能が得られない。本発明において、主に有機ハロゲン化合物を吸着する吸着点を与える成分としては、Mo酸化物があげられる。これらの金属酸化物種の担持量は、触媒全体の5wt%以上、好ましくは触媒全体の10wt%以上である。1wt%未満では充分な触媒性能が得られない。担体としては、活性種および吸着点を増加させるために金属酸化物種を高分散化できるものが望ましく、Ti、Si、Zr、Alの酸化物およびこれらの複合酸化物が中でも好適である。硫黄酸化物被毒対策の面からは、特に酸化チタン担体が適当である。
【0015】
なお、触媒は一般に主触媒(触媒活性物質)、助触媒(主触媒の活性、選択性などを高めるもの)、および担体から構成される。本件においては、主に有機ハロゲン化合物を分解する活性点を与える金属酸化物種が主触媒であり、主に有機ハロゲン化合物を吸着する吸着点を与える金属酸化物種が助触媒になっている。ここで担体とは、主触媒の特性(触媒の活性、選択性、寿命、機械強度など)を高める作用を持ち、かつ担体自体は活性を示さないか少なくとも主触媒よりも活性が低い物質であり、助触媒よりも含有量が多い成分である(触媒学会編「触媒講座第5巻、触媒設計」、1985、講談社)。また、主触媒、助触媒、担体は、後述の触媒調製法の如何によらず、調製された触媒におけるそれぞれの構成化学種の機能、含有量、分布状態などに基づいて区別される。
【0016】
触媒の調製は、混練法、含浸法、共沈法、ゾル−ゲル法などの手法による。混練法の場合には平均粒径が1μm以下の、好ましくは0.1μm以下の、さらに好ましくは0.01μm以下の原料粒子を用い、担体および主に有機ハロゲン化合物を分解する活性点を与える金属酸化物種および主に有機ハロゲン化合物を吸着する吸着点を与える酸化物種とを成形助剤、バインダ等の各種添加剤とともに混練し、成形、焼成して触媒の調製を行う。主に有機ハロゲン化合物を分解する活性点を与える金属酸化物種および主に有機ハロゲン化合物を吸着する吸着点を与える酸化物種は、焼成時に酸化物に変化するような原料物質、例えばこれらの金属(または金属酸イオン)の水酸化物、ハロゲン化物、アンモニウム塩、硫酸塩、炭酸塩、アルコキシド、アセチルアセトナート等の錯化合物でもよい。
【0017】
含浸法の場合には、担体として平均粒径が1μm以下の、好ましくは0.1μm以下の、さらに好ましくは0.01μm以下の原料粒子かまたはその成形体を用い、主に有機ハロゲン化合物を分解する活性点を与える金属酸化物種および主に有機ハロゲン化合物を吸着する吸着点を与える酸化物種を含浸する。含浸は、焼成時に酸化物に変化するような原料物質、例えばこれらの金属(または金属酸イオン)の水酸化物、ハロゲン化物、アンモニウム塩、硫酸塩、炭酸塩、酢酸塩、アルコキシド、アセチルアセトナート等の錯化合物などの溶液を用いて行う。含浸の順序は、先に主に有機ハロゲン化合物を分解する活性点を与える金属酸化物種を担体に含浸したあと主に有機ハロゲン化合物を吸着する吸着点を与える酸化物種を含浸する方法、先に主に有機ハロゲン化合物を吸着する吸着点を与える酸化物種を担体に含浸したあと主に有機ハロゲン化合物を分解する活性点を与える金属酸化物種を含浸する方法、主に有機ハロゲン化合物を分解する活性点を与える金属酸化物種および主に有機ハロゲン化合物を吸着する吸着点を与える酸化物種を同時に含浸する方法がある。
【0018】
共沈法の場合には、担体成分の水溶液と主に有機ハロゲン化合物を分解する活性点を与える成分の水溶液および/または主に有機ハロゲン化合物を吸着する吸着点を与える成分の水溶液を混合し、沈澱剤を加えて共沈澱を作成し、その後洗浄、乾燥、成形し、焼成を行う。この方法では、主に有機ハロゲン化合物を分解する活性点を与える成分の水溶液か、主に有機ハロゲン化合物を吸着する吸着点を与える成分のどちらかを担持し、後に別の方法でもう残りの成分を担持することもできる。
【0019】
さらに、主に有機ハロゲン化合物を分解する活性点を与える成分、主に有機ハロゲン化合物を吸着する吸着点を与える成分、および/または担体成分を単独または同時にゾル−ゲル法を利用して調製することもできる。ゾル−ゲル法では、それぞれの成分の金属アルコキシド、またはアセチルアセトナートなどの錯体を所定有機溶媒に所定量溶かしたゾル状溶液に、所定量の酸またはアルカリおよび水を添加してゲル状高分子を形成させ、これを成形後焼成して目的酸化物を調製する。本触媒調製に当たっては、主に有機ハロゲン化合物を分解する活性点を与える成分、主に有機ハロゲン化合物を吸着する吸着点を与える成分、および/または担体成分をゾル状溶液段階において所定割合であらかじめ混合しておき、これをゲル化成形・焼成する方法や、前二者のゾル状混合溶液を担体成分に含浸させてからゲル化・焼成する方法、ゾル−ゲル法によってそれぞれの酸化物微粒子を単独に調製し、これらを混練・成形・焼成する方法などがある。
【0020】
【作用】
本発明者は、触媒反応の初期過程であるダイオキシン分子の触媒表面への吸着現象に着目し、多数の実験研究を行った。結果、ダイオキシン分子の触媒表面への吸着サイトの数が多い触媒がダイオキシン分解に高活性であることを見出した。ダイオキシン分子の触媒表面への吸着サイトの数を増加させるための手法として、主に有機ハロゲン化合物を分解する活性点を与える金属酸化物種とは別の、主に有機ハロゲン化合物を吸着する吸着点を与える酸化物種を利用することを想到し、これにより前記公知例とは異なる、ダイオキシン類の分解に非常に好適な触媒の開発に成功した。
【0021】
特に、吸着点に吸着した有機ハロゲン化合物が効率よく活性サイトで分解されるためには、吸着点が活性点の近傍にあるほうが好適であることに着目し、触媒を非常に微細な粒径を持った基本構成要素から構成することにより、ダイオキシン類の分解に非常に高活性な触媒を得ることに成功した。
以下に、その詳細を説明する。
【0022】
ダイオキシン分子の触媒による酸化分解の反応は、通常の触媒反応過程と同様、まずダイオキシン分子が触媒表面に吸着することから始まる。したがって、触媒のダイオキシン分解性能を向上させるためには、触媒活性点自体の高活性化と同時に、触媒表面の吸着点へのダイオキシン分子の吸着能の向上が必須である。すなわち、触媒表面へ吸着するダイオキシン分子数を増加させることにより、反応の次段階である触媒活性点でのダイオキシン分解反応の頻度が向上し、全体の触媒性能が向上する。吸着点は、ダイオキシン分子のような芳香族化合物の場合は、金属酸化物表面の水酸基またはルイス酸点である場合が多く、したがって1つには表面に水酸基の多い金属酸化物種を用いることにより触媒表面へ吸着するダイオキシン分子数を増加させることができる。表面水酸基の多い金属酸化物種としては、酸化物種として高い価数(5価または6価)を取り得る金属種、特にMoが最適であった。本発明の触媒は、このように活性点とは別にダイオキシン分子を吸着するサイトがふえているので、分解反応の次のステップである活性点での酸化分解の頻度を高くすることができるため、全体として触媒性能が向上したものと推察される。
【0023】
本発明では、特に触媒成分が平均粒径1μm以下の、好ましくは平均粒径0.1μm以下の、さらに好ましくは平均粒径0.01μm以下の微細な基本構成要素からなることにより、ダイオキシン分子を吸着する吸着点がダイオキシン分子を分解する活性点の近傍に形成されるため、吸着されたダイオキシン分子が確実に活性サイトで分解処理されることになり、結果として非常に高活性な触媒を得ることができる。
【0024】
なお、本発明で用いるMoの酸化物は、有機ハロゲン化合物を分解する活性も同時に有している。しかしながら、その単独の分解活性は、本発明で指定した主に有機ハロゲン化合物を分解する活性点を与える成分であるCr、Co、Fe、Cuに較べると低いことがわかった。したがって、本発明の触媒における有機ハロゲン化合物の分解の多くはこれらCr、Co、Fe、Cuの金属酸化物の活性点が担っており、一方、Moは、主に有機ハロゲン化合物を吸着する吸着点を与える成分として用いている。
【0025】
【発明の実施の形態】
触媒の調製
触媒は、酸化チタンを担体としてこれに触媒活性種を混練法で担持し、成型・焼成して調製した。具体的には以下のとおりである。原料となる金属酸化物粉末は、市販の粉末試薬(酸化チタンTiO2 は和光純薬社製、型番207−11121アナターゼ型、酸化コバルトCo3 4 は関東化学社製、型番08120−08、酸化鉄Fe2 3 は関東化学社製、型番20074、酸化銅CuOは関東化学社製、型番07503−08、酸化マンガンMnO2 は和光純薬社製、型番135−09685、酸化バナジウムV2 5 は和光純薬社製、型番226−00125、酸化ニオブは関東化学社製、型番28157−08、酸化タンタルは関東化学社製、型番40004−08、酸化モリブデンは和光純薬社製、型番136−09012、酸化タングステンは和光純薬社製、型番205−10262、酸化リンP2 5 は和光純薬社製、型番163−02342)を用い、調製する前に各試薬を遊星ボールミルで平均粒径が1μm以下になるよう粉砕・整粒してこれを出発原料とした。ただし、リンの担持はリン酸チタニウムを用いて行うこともできる。主に有機ハロゲン化合物を分解する活性点を与える活性種の担持量(wt%)および主に有機ハロゲン化合物を吸着する吸着点を与える酸化物種の担持量(wt%)は各実施例中に示したとおりである。成型性を向上させるため、シランカップリング剤(信越シリコーン社製KBM603)で担体の表面処理を行った。その他、バインダとしてメチルセルロース10g、可塑剤としてグリセリンを15g、滑剤としてステアリン酸エマルジョンを2g、蒸留水19〜32gを添加した。成型、焼成の手順は、まず酢酸またはアンモニア水によって所定のpHに調整した水溶液にシランカップリング剤を入れて撹拌し、その後24時間室温下で静置する。この静置した液と所定の重量比に配合した原料金属酸化物をホモジナイザーで混合し、混合液を80℃で水分がなくなるまで乾燥させる。その後、粉砕分級してからバインダ等の各種添加剤および蒸留水を混合し、混練の後再び静置した。一定時間静置した後、さらに再度混練してから成形した。成形は押出し治具を用いてヌードル状(ペンシル状)に成形した。成形後、再び乾燥させた後、酸素雰囲気下で所定温度で所定時間焼成して調製した。
【0026】
触媒の性能評価
以上のようにして得られた触媒を下記のように評価した。
固定床流通式マイクロリアクターを用い、反応温度200℃でW/F0.017(g・min/ml)、反応ガスは指標物質濃度300ppm 、酸素濃度10%、窒素バランスとして有機ハロゲン化合物の分解に対する触媒の性能評価試験を行った。
【0027】
ここでは有機ハロゲン化合物の一例として、ダイオキシン類の代替指標物質となるo−クロロフェノール(実施例1〜4)を用いた。用いた指標物質については、稲葉ら:第8回廃棄物学会研究発表会講演論文集p558、神田ら:平成9年度触媒学会研究発表会講演予稿集p114、田中ら:日本機械学会第8回環境光学総合シンポジウム’98講演論文集p182などの研究から、ダイオキシン類と分解特性が類似することが明らかになっている。触媒性能はF式で示す指標物質の分解除去率を指標とした。
分解除去率=(指標物質初期濃度−指標物質残留濃度)/指標物質初期濃度
【0028】
実施例
(担体:酸化チタン、活性種:酸化クロム、指標物質:o−クロロフェノール)担体として酸化チタン、主に有機ハロゲン化合物を分解する活性点を与える成分として酸化クロム(5wt%)を用い、主に有機ハロゲン化合物を吸着する吸着点を与える成分として酸化モリブデンを添加した場合および比較例として主に有機ハロゲン化合物を吸着する吸着点を与える成分を添加しない場合の触媒性能評価試験結果を表1に示す。試験結果から、実施例においては比較例よりも触媒性能が向上しており、酸化クロムと酸化モリブデンの組み合わせの場合に触媒性能向上が著しいことがわかる。
【0029】
【表1】

Figure 0004445659
【0030】
実施例
(担体:酸化チタン、活性種:酸化コバルト、指標物質:o−クロロフェノール)担体として酸化チタン、主に有機ハロゲン化合物を分解する活性点を与える成分として酸化コバルト(5wt%)を用い、主に有機ハロゲン化合物を吸着する吸着点を与える成分として酸化モリブデンを添加した場合および比較例として主に有機ハロゲン化合物を吸着する吸着点を与える成分を添加しない場合の触媒性能評価試験結果を表2に示す。試験結果から、実施例においては比較例よりも触媒性能が向上しており、酸化コバルトと酸化モリブデンの組み合わせの場合に触媒性能向上が著しいことがわかる。
【0031】
【表2】
Figure 0004445659
【0032】
実施例
(担体:酸化チタン、活性種:酸化鉄、指標物質:o−クロロフェノール)担体として酸化チタン、主に有機ハロゲン化合物を分解する活性点を与える成分として酸化鉄(5wt%)を用い、主に有機ハロゲン化合物を吸着する吸着点を与える成分として酸化モリブデンを添加した場合および比較例として主に有機ハロゲン化合物を吸着する吸着点を与える成分を添加しない場合の触媒性能評価試験結果を表3に示す。試験結果から、実施例においては比較例よりも触媒性能が向上しており、酸化鉄と酸化モリブデンの組み合わせの場合に触媒性能向上が著しいことがわかる。
【0033】
【表3】
Figure 0004445659
【0034】
実施例
(担体:酸化チタン、活性種:酸化銅、指標物質:o−クロロフェノール)担体として酸化チタン、主に有機ハロゲン化合物を分解する活性点を与える成分として酸化銅(5wt%)を用い、主に有機ハロゲン化合物を吸着する吸着点を与える成分として酸化モリブデンを添加した場合および比較例3として主に有機ハロゲン化合物を吸着する吸着点を与える成分を添加しない場合の触媒性能評価試験結果を表4に示す。試験結果から、実施例においては比較例よりも触媒性能が向上しており、酸化銅と酸化モリブデンの組み合わせの場合に触媒性能向上が著しいことがわかる。
【0035】
【表4】
Figure 0004445659
【0040】
実施例5〜9
(活性点の担持量、指標物質:o−クロロフェノール、担体:酸化チタン、活性種:酸化クロム、吸着補助種、酸化モリブデン)担体として酸化チタン、主に有機ハロゲン化合物を分解する活性点を与える成分として酸化クロム(0.1〜40wt%)を用い、主に有機ハロゲン化合物を吸着する吸着点を与える成分として酸化モリブデン(10wt%)を添加した場合の触媒性能評価試験結果を表5に示す。試験結果から、活性点となる金属酸化物種が触媒全体の5wt%以上の場合、特に10wt%以上の場合に高活性で、1wt%未満では触媒性能が低いことがわかる。
【0041】
【表5】
Figure 0004445659
【0046】
実施例10
(担体:酸化チタン、活性種:酸化クロム、指標物質:o−ブロモフェノール)担体として酸化チタン、主に有機ハロゲン化合物を分解する活性点を与える成分として酸化クロム(5wt%)を用い、主に有機ハロゲン化合物を吸着する吸着点を与える成分として酸化モリブデンを添加した場合および比較例として主に有機ハロゲン化合物を吸着する吸着点を与える成分を何も添加しない場合の触媒性能評価試験結果を表6に示す。試験結果から、指標物質がo−ブロモフェノールの場合においても、実施例において比較例よりも触媒性能が向上しており、酸化モリブデンの場合に触媒性能向上が著しいことがわかる。この結果から本発明は有機臭素化合物の分解にも有効であることがわかった。
【0047】
【表6】
Figure 0004445659
【0049】
【発明の効果】
本発明によれば、焼却炉等から排出される排ガス中の有機ハロゲン化合物、特にそのうちのダイオキシン類を非常に高効率に分解、除去する触媒を提供することができる。
特に都市ごみ焼却炉などの排ガス中に含まれる有機塩素化合物(塩素化ダイオキシン類、塩素化ベンゼン類、塩素化フェノール類)、家電製品などの廃プラスチックの焼却処理設備排ガスに含まれる有機臭素化合物(臭素化ダイオキシン類、臭素化ベンゼン類、臭素化フェノール類)の無害化処理に有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas treatment catalyst, particularly an organic halogen compound decomposition catalyst, and more particularly, an organic halogen compound harmful to human bodies contained in exhaust gas generated from municipal waste incinerators, industrial waste incinerators, chemical plants, steelworks, etc. In particular, the present invention relates to a catalyst for decomposing and removing organic halogen compounds such as dioxins and dioxin precursors such as halobenzenes and halophenols. Dioxins here are a general term for polyhalodibenzo-para-dioxins, polyhalodibenzofurans and coplanar-polyhalobiphenyls.
[0002]
[Prior art]
Conventionally, in the treatment of organic halogen compounds contained in exhaust gas from municipal waste incinerators, adsorption removal with activated carbon and decomposition removal with a catalyst are performed. Of these, the catalyst-based method uses a conventional denitration catalyst as it is by utilizing the oxidation capability of the denitration catalyst, or is used as an oxidative decomposition catalyst for organochlorine compounds with some modifications such as adjusting the oxidation capability. Examples of use are known.
Japanese Patent No. 2633316 discloses a technique for decomposing polychlorinated dibenzodioxin and / or polychlorinated dibenzofuran using a catalyst in which vanadium pentoxide and tungsten trioxide are supported on a titanium oxide support.
[0003]
JP-A-01-500330 (referred to as Publication 1) discloses a polyhalogenated cycloalkyl compound having 4 to 8 carbon atoms and a polyhalogenated compound having at least 5 carbon atoms by heating in the presence of a catalyst. Disclosed is a method for decomposing aromatic compounds, wherein the catalyst is in the form of a fixed bed in the periodic table Ia, Ib, IIb, IIIa, IVa, IVb, VIb, VIIb or VIIIb elements or In which in the intimate contact with the catalyst is heated in the presence of oxygen and water and treated at 200 ° C to 550 ° C.
[0004]
Japanese Patent Laid-Open No. 04-118027 (referred to as Publication 2) discloses polychlorinated dibenzodioxins and polychlorinated dibenzofurans contained in the exhaust gas by contacting the exhaust gas discharged from the incinerator with a catalyst at a predetermined temperature. When removing from the exhaust gas, Pt, Pd, Ru, Mn, Cu, Cr, and Fe are formed on the surface of the substrate made of an oxide containing at least TiO 2 , Al 2 O 3 and SiO 2 as the catalyst. There is disclosed a method of treating the exhaust gas at a temperature of 150 ° C. to 350 ° C. using a catalyst on which at least one metal selected from the group or an oxide thereof is supported.
[0005]
Japanese Patent Application Laid-Open No. 06-063357 (referred to as Publication 3) discloses a catalytic decomposition apparatus filled with an organic halogen compound decomposition catalyst having a strong acid point in a purification apparatus for treating exhaust gas containing an organic halogen compound, and an organic halogen compound. In a treatment apparatus for exhaust gas containing an organic halogen compound, having a cleaning tower for removing hydrogen halide gas generated by decomposition of Si, Al, Ti, Zr, B, Nb, Cr, Ga as an organic halogen compound decomposition catalyst , Mo, W, Y, Cu, Sr, La, Fe, Mn, and one or more metal oxides selected from P, Cu, Fe, Co, Ni, Mn, Pt, Pd, Rh, Disclosed is a technique using a catalyst supporting one or more metals selected from Au, Ag, Ir, W, Mo, V, Cd, Sn and Pb. That.
[0006]
[Problems to be solved by the invention]
As a method for decomposing an organic halogen compound using a catalyst, a method for removing an organic halogen compound and NOx at the same time by using a denitration catalyst using ammonia or the like as a reducing agent as it is or with a partial improvement is known. However, in this case, the catalyst itself is designed and manufactured on the premise of simultaneous treatment of both, and is not necessarily optimized for the purpose of catalytic oxidative decomposition of an organic halogen compound.
[0007]
In the publication 1, a technique using a metal oxide of a group element of the periodic table Ia, Ib, IIa, IIb, IIIa, IVa, IVb, VIb, VIIb or VIIIb as a catalyst species or a mixture thereof. As described in the original text, with specific examples NaK, Mg, Ca, Ba, Zn, Ni, Pb, Ti, Cu, Fe, Al, Pt, V, W, Mo, Rh, Cr or It is described that good results are obtained with these oxides, carbonates or silicates. However, in the examples, Cu, Zn, ZnO, Ni, NiO, Cr, Cr 2 O 3 , CuO, Fe, Fe 2 O 3 , Fe 3 O 4 , Al, Pt, PbO, Rh, Mo 2 O are used as catalyst species. 3 , CuO—Cr 2 O / SiO 2 , Pt / Al 2 O 3 , Pd / Al 2 O 3, etc., and the most active catalyst species among all combinations in the claims There is no mention or suggestion regarding. Further, Publication 1 has no description regarding the shape and properties of the particles constituting the catalyst.
[0008]
The publication 2 includes a group consisting of Pt, Pd, Ru, Mn, Cu, Cr and Fe on the surface of a substrate made of an oxide containing at least TiO 2 , Al 2 O 3 and SiO 2 as a catalyst. a technique of using at least one metal or a catalyst composed by supporting the oxide selected are disclosed, TiO 2 where TiO 2 is coated on the surface of the oxide containing mullite to that embodiment Only the catalyst having Pt supported on a substrate having a content of 60 wt% is shown, and the description and suggestion regarding the catalyst species that can decompose and remove dioxins most preferably among all combinations in the claims are as follows: Not done at all. Further, the publication 2 has no description regarding the shape and properties of the particles constituting the catalyst.
[0009]
In the publication 3, as examples of treatment objects, carbon tetrachloride, chloroform, chloroethylene, 1,1,1-trichloroethane, 1,2-dichloroethane, tetrachloroethylene, trichloroethylene, chloroethylene, dichloromethane, trichlorofluoromethane, dichlorodifluoro For the treatment of aliphatic halogenated hydrocarbons having 1 or 2 carbon atoms, as methane, 1,1,2-trichloro-1,2,2 trifluoroethane, methyl bromide are mentioned in the specification. Although it is an optimized technique, there is no description or suggestion regarding a processing technique of an organic halogen compound having 3 or more carbon atoms or an organic halogen compound containing an aromatic. Further, in the publication 3, there is no description or suggestion regarding the most suitable catalyst species for the decomposition treatment of dioxins among the catalysts disclosed in the claims, and in the specification, Co-supported H-type mordenite, Fe Supported H-type mordenite, W-supported titania / zirconia composite oxide, Pd-supported titania / zirconia composite oxide, Cr-supported titania / zirconia composite oxide, etc. are described. No knowledge has been revealed. Further, the publication 3 has no description regarding the shape and properties of the particles constituting the catalyst.
[0010]
As described above, although several techniques have been disclosed for dioxin decomposition catalysts, the specific situation of catalyst species having high catalytic performance has not yet been made. In addition, the shape and properties of the particles constituting the catalyst are not yet clearly clarified as to the shape and properties of the particles.
An object of the present invention is to provide a catalyst suitable for decomposing and removing organic halogen compounds, particularly chlorinated and brominated dioxins, in exhaust gas discharged from an incinerator or the like.
[0011]
[Means for Solving the Problems]
The invention claimed in the present application is as follows.
(1) T i and the carrier consisting of oxides, and a catalyst component carried on the carrier, said catalyst component, as a component providing mainly active sites of decomposing an organic halogen compound, Cr, Co, Fe and Cu, at least one metal oxide catalyst overall 5 wt% or more of the mainly organic halogen compound as a component providing a suction point for adsorbing, to include Mo oxide catalyst as a whole 5 wt% or more An exhaust gas treatment catalyst characterized by.
[0012]
( 2 ) The component that mainly provides an active site for decomposing an organic halogen compound and the component that mainly provides an adsorption point for adsorbing an organic halogen compound are mainly composed of fine particles having an average particle size of 1 μm or less. The exhaust gas treatment catalyst according to ( 1 ), which is contained.
[0013]
The object to be treated in the present invention is a monocyclic or polycyclic aromatic organochlorine compound such as dioxins precursors such as dioxins and dioxins such as dihalogens and halophenols generated from municipal waste incinerators, etc. And exhaust gas containing an organic halogen compound such as an aromatic organic bromine compound.
[0014]
In the present invention, the loading amount of oxides of Cr, Co, Fe, and Cu, which are components that mainly provide active sites for decomposing organic halogen compounds, is 5 wt% or more of the entire catalyst, preferably 10 wt% or more of the entire catalyst. It is. When the supported amount is less than 1 wt%, sufficient catalyst performance cannot be obtained. In the present invention, is mainly the organic halogen compound is minute growth gives an adsorption point is adsorbed, Mo oxides. The supported amount of these metal oxide species is 5 wt% or more of the whole catalyst, preferably 10 wt% or more of the whole catalyst. If it is less than 1 wt%, sufficient catalyst performance cannot be obtained. As the carrier, one that can highly disperse the metal oxide species in order to increase the active species and the adsorption point is desirable, and oxides of Ti, Si, Zr, Al, and composite oxides thereof are particularly preferable. From the viewpoint of sulfur oxide poisoning countermeasures, a titanium oxide carrier is particularly suitable.
[0015]
The catalyst is generally composed of a main catalyst (catalytically active substance), a cocatalyst (which increases the activity and selectivity of the main catalyst), and a support. In this case, a metal oxide species that mainly provides an active site for decomposing an organic halogen compound is a main catalyst, and a metal oxide species that mainly provides an adsorption point for adsorbing an organic halogen compound is a promoter. Here, the carrier is a substance that has the effect of enhancing the characteristics of the main catalyst (catalyst activity, selectivity, lifetime, mechanical strength, etc.) and that the support itself does not show activity or at least lower activity than the main catalyst. It is a component with a higher content than the cocatalyst (edited by the Catalysis Society of Japan, "Catalyst Course Vol. 5, Catalyst Design", 1985, Kodansha). In addition, the main catalyst, the cocatalyst, and the carrier are distinguished based on the function, content, distribution state, and the like of each constituent chemical species in the prepared catalyst, regardless of the catalyst preparation method described later.
[0016]
The catalyst is prepared by a method such as a kneading method, an impregnation method, a coprecipitation method, or a sol-gel method. In the case of the kneading method, a metal that provides an active site for decomposing a carrier and mainly an organic halogen compound using raw material particles having an average particle diameter of 1 μm or less, preferably 0.1 μm or less, more preferably 0.01 μm or less. A catalyst is prepared by kneading an oxide species and an oxide species mainly providing an adsorption point for adsorbing an organic halogen compound together with various additives such as a molding aid and a binder, molding and firing. Metal oxide species that mainly provide an active site for decomposing organic halogen compounds and oxide species that mainly provide an adsorption point for adsorbing organic halogen compounds are source materials that change into oxides upon firing, such as these metals (or (Metal acid ion) hydroxides, halides, ammonium salts, sulfates, carbonates, alkoxides, acetylacetonates, and other complex compounds.
[0017]
In the case of the impregnation method, raw material particles having an average particle diameter of 1 μm or less, preferably 0.1 μm or less, more preferably 0.01 μm or less, or a molded product thereof are used as a carrier, and organic halogen compounds are mainly decomposed. Impregnated with a metal oxide species providing an active site and an oxide species providing an adsorption point mainly for adsorbing an organic halogen compound. Impregnation is a raw material that changes to an oxide upon firing, such as hydroxides, halides, ammonium salts, sulfates, carbonates, acetates, alkoxides, acetylacetonates of these metals (or metal acid ions). And using a solution of a complex compound such as The order of impregnation is a method of impregnating a metal oxide species that mainly gives an active site for decomposing an organic halogen compound on a support and then impregnating an oxide species that mainly gives an adsorption point for adsorbing an organic halogen compound. A method of impregnating a carrier with an oxide species that provides an adsorption point for adsorbing an organic halogen compound, and then impregnating a metal oxide species that mainly provides an active site for decomposing the organic halogen compound, mainly an active site for decomposing the organic halogen compound. There is a method of simultaneously impregnating a metal oxide species to be provided and an oxide species to mainly provide an adsorption point for adsorbing an organic halogen compound.
[0018]
In the case of the coprecipitation method, an aqueous solution of a carrier component and an aqueous solution of a component mainly providing an active site for decomposing an organic halogen compound and / or an aqueous solution of a component mainly providing an adsorption point for adsorbing an organic halogen compound are mixed, A coprecipitate is prepared by adding a precipitating agent, and then washed, dried, shaped and fired. In this method, either an aqueous solution of a component that mainly provides an active site for decomposing an organic halogen compound or a component that mainly provides an adsorption point for adsorbing an organic halogen compound is supported, and the remaining components are later treated by another method. Can also be supported.
[0019]
Furthermore, a component that mainly provides an active site for decomposing an organic halogen compound, a component that mainly provides an adsorption point for adsorbing an organic halogen compound, and / or a carrier component are prepared by using a sol-gel method alone or simultaneously. You can also. In the sol-gel method, a gel polymer is obtained by adding a predetermined amount of acid or alkali and water to a sol solution in which a predetermined amount of a metal alkoxide or a complex such as acetylacetonate is dissolved in a predetermined organic solvent. Is formed and fired after forming to prepare the target oxide. In preparing the catalyst, components that mainly provide an active site for decomposing an organic halogen compound, components that mainly provide an adsorption point for adsorbing an organic halogen compound, and / or a carrier component are mixed in advance at a predetermined ratio in a sol solution stage. In addition, a method of gelling and baking this, a method of gelling and baking after impregnating the former sol-like mixed solution into a carrier component, and each oxide fine particle alone by a sol-gel method And then kneading, forming and firing these.
[0020]
[Action]
The inventor conducted a number of experimental studies focusing on the adsorption phenomenon of dioxin molecules on the catalyst surface, which is the initial stage of the catalytic reaction. As a result, it was found that a catalyst having a large number of adsorption sites of dioxin molecules on the catalyst surface is highly active in dioxin decomposition. As a technique for increasing the number of adsorption sites of dioxin molecules on the catalyst surface, an adsorption point that mainly adsorbs organic halogen compounds, which is different from the metal oxide species that gives active sites that mainly decompose organic halogen compounds, is used. By conceiving the use of the oxide species to be provided, the inventors have succeeded in developing a catalyst very suitable for the decomposition of dioxins, which is different from the above known examples.
[0021]
In particular, in order for the organic halogen compound adsorbed at the adsorption point to be efficiently decomposed at the active site, it is preferable that the adsorption point is in the vicinity of the active point. By constructing it from the basic constituents, we have succeeded in obtaining a highly active catalyst for the decomposition of dioxins.
The details will be described below.
[0022]
The catalytic oxidative decomposition reaction of dioxin molecules begins with the adsorption of dioxin molecules on the catalyst surface, as in the normal catalytic reaction process. Therefore, in order to improve the dioxin decomposition performance of the catalyst, it is essential to improve the adsorption ability of dioxin molecules to the adsorption point on the catalyst surface simultaneously with the high activation of the catalyst active point itself. That is, by increasing the number of dioxin molecules adsorbed on the catalyst surface, the frequency of the dioxin decomposition reaction at the catalyst active point, which is the next stage of the reaction, is improved, and the overall catalyst performance is improved. In the case of an aromatic compound such as a dioxin molecule, the adsorption point is often a hydroxyl group or Lewis acid point on the surface of the metal oxide, and one of them is a catalyst by using a metal oxide species having many hydroxyl groups on the surface. The number of dioxin molecules adsorbed on the surface can be increased. As a metal oxide species having a large surface hydroxyl group, a metal species capable of taking a high valence (pentavalent or hexavalent) as an oxide species, particularly Mo, was most suitable. Because the catalyst of the present invention, that since this way flute sites to adsorb separately dioxin molecules with active sites, it is possible to increase the frequency of the oxidative decomposition at the active sites, which is the next step in the decomposition reaction, It is presumed that the catalyst performance was improved as a whole.
[0023]
In the present invention, in particular, the catalyst component is composed of fine basic components having an average particle size of 1 μm or less, preferably an average particle size of 0.1 μm or less, and more preferably an average particle size of 0.01 μm or less. The adsorbing point that is adsorbed is formed near the active point that decomposes the dioxin molecule, so that the adsorbed dioxin molecule is surely decomposed at the active site, and as a result, a highly active catalyst is obtained. Can do.
[0024]
The Mo oxide used in the present invention also has an activity of decomposing an organic halogen compound. However, it has been found that the single decomposition activity is lower than that of Cr, Co, Fe, and Cu, which are components that provide an active site for mainly decomposing organic halogen compounds specified in the present invention. Therefore, most of the decomposition of the organic halogen compounds in the catalyst of the present invention is carried out by the active sites of these metal oxides of Cr, Co, Fe, and Cu, while Mo is an adsorption that mainly absorbs the organic halogen compounds. Used as a component that gives points.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Preparation of catalyst The catalyst was prepared by loading titanium oxide as a carrier with a catalytically active species supported by a kneading method, molding and firing. Specifically, it is as follows. The metal oxide powder used as a raw material is a commercially available powder reagent (titanium oxide TiO 2 manufactured by Wako Pure Chemical Industries, model 207-111121 anatase type, cobalt oxide Co 3 O 4 manufactured by Kanto Chemical Co., model 08120-08, oxidized. Iron Fe 2 O 3 is manufactured by Kanto Chemical Co., model number 20074, copper oxide CuO is manufactured by Kanto Chemical Co., model number 07503-08, manganese oxide MnO 2 is manufactured by Wako Pure Chemical Industries, model number 135-09985, vanadium oxide V 2 O 5 Is manufactured by Wako Pure Chemical Industries, model number 226-00125, niobium oxide is manufactured by Kanto Chemical Co., model number 28157-08, tantalum oxide is manufactured by Kanto Chemical Co., model number 40004-08, molybdenum oxide is manufactured by Wako Pure Chemical Industries, model number 136- 09012, tungsten oxide manufactured by Wako Pure Chemical Industries, Ltd., model number 205-10262, phosphorus oxide P 2 O 5 is manufactured by Wako Pure Chemical Industries, Ltd., model number 163-02342) used, the preparation The average particle size of each reagent in the planetary ball mill did this by crushing and sizing so as to be 1μm or less and starting material before. However, the loading of phosphorus can also be performed using titanium phosphate. The supported amount of active species (wt%) that mainly provides an active site for decomposing organic halogen compounds and the supported amount of oxide species (wt%) that mainly provide an adsorption point for adsorbing organic halogen compounds are shown in each example. That's right. In order to improve the moldability, the carrier was surface-treated with a silane coupling agent (KBM603 manufactured by Shin-Etsu Silicone). In addition, 10 g of methylcellulose as a binder, 15 g of glycerin as a plasticizer, 2 g of stearic acid emulsion as a lubricant, and 19 to 32 g of distilled water were added. In the molding and firing procedures, first, a silane coupling agent is added to an aqueous solution adjusted to a predetermined pH with acetic acid or aqueous ammonia, and the mixture is stirred and then allowed to stand at room temperature for 24 hours. This standing liquid and the raw material metal oxide blended at a predetermined weight ratio are mixed with a homogenizer, and the mixed liquid is dried at 80 ° C. until there is no water. Thereafter, after pulverization and classification, various additives such as a binder and distilled water were mixed, and the mixture was allowed to stand again after kneading. After standing for a certain period of time, the mixture was further kneaded and molded. Molding was performed in a noodle shape (pencil shape) using an extrusion jig. After molding, it was dried again and then prepared by firing at a predetermined temperature for a predetermined time in an oxygen atmosphere.
[0026]
Catalyst Performance Evaluation The catalyst obtained as described above was evaluated as follows.
Using fixed bed flow type microreactor, reaction temperature is 200 ° C, W / F is 0.017 (g · min / ml), reaction gas is an indicator substance concentration of 300ppm, oxygen concentration is 10%, nitrogen balance is a catalyst for decomposition of organic halogen compounds A performance evaluation test was conducted.
[0027]
Here, as an example of the organic halogen compound, o-chlorophenol (Examples 1 to 4 ) serving as an alternative indicator substance for dioxins was used. Regarding the indicator substances used, Inaba et al .: Proceedings of the 8th Annual Meeting of the Waste Society, p558, Kanda et al .: Proceedings of the 1997 Annual Meeting of the Catalysis Society of Japan, p114, Tanaka et al .: 8th Environment of the Japan Society of Mechanical Engineers Studies such as the Optical Comprehensive Symposium '98 Lecture Proceedings p182 reveal that the decomposition characteristics are similar to those of dioxins. The catalyst performance was determined by the decomposition removal rate of the index substance shown by Formula F as an index.
Decomposition removal rate = (Indicator substance initial concentration−Indicator substance residual concentration) / Indicator substance initial concentration [0028]
Example 1
(Carrier: titanium oxide, active species: chromium oxide, indicator substance: o-chlorophenol) Titanium oxide is mainly used as a carrier, and chromium oxide (5 wt%) is mainly used as a component that gives an active site for mainly decomposing organic halogen compounds. Table 1 shows the results of a test for evaluating the catalyst performance when molybdenum oxide is added as a component that gives an adsorption point for adsorbing an organic halogen compound, and when no component that gives an adsorption point that mainly adsorbs an organic halogen compound is added as Comparative Example 1. Show. From the test results, in Example 1 has improved catalytic performance than Comparative Example 1, it can be seen that catalyst performance is improved significantly in the case of a combination of chromium oxide molybdenum oxide.
[0029]
[Table 1]
Figure 0004445659
[0030]
Example 2
(Carrier: titanium oxide, active species: cobalt oxide, indicator substance: o-chlorophenol) Titanium oxide is mainly used as a carrier, and cobalt oxide (5 wt%) is mainly used as a component that provides an active site for decomposing organic halogen compounds. Table 2 shows catalyst performance evaluation test results when molybdenum oxide is added as a component that provides an adsorption point for adsorbing an organic halogen compound and when Comparative Example 1 is not used when a component that provides an adsorption point that mainly adsorbs an organic halogen compound is not added. Show. From the test results, in Example 2 has improved catalytic performance than Comparative Example 2, it can be seen that catalyst performance is improved significantly in the case of a combination of cobalt oxide molybdenum oxide.
[0031]
[Table 2]
Figure 0004445659
[0032]
Example 3
(Carrier: titanium oxide, active species: iron oxide, indicator substance: o-chlorophenol) Titanium oxide is mainly used as a carrier, and iron oxide (5 wt%) is mainly used as a component that provides an active site for decomposing organic halogen compounds. Table 3 shows the catalyst performance evaluation test results when molybdenum oxide is added as a component that provides an adsorption point for adsorbing an organic halogen compound and when Comparative Example 3 is not used when a component that provides an adsorption point that mainly adsorbs an organic halogen compound is not added. Show. From the test results, in the third embodiment has improved catalytic performance than Comparative Example 3, it can be seen that catalyst performance is improved significantly in the case of a combination of iron oxide molybdenum oxide.
[0033]
[Table 3]
Figure 0004445659
[0034]
Example 4
(Carrier: Titanium oxide, active species: copper oxide, indicator substance: o-chlorophenol) Titanium oxide is mainly used as a carrier, and copper oxide (5 wt%) is mainly used as a component that gives an active site for decomposing organic halogen compounds. Table 4 shows the catalyst performance evaluation test results when molybdenum oxide is added as a component that gives an adsorption point for adsorbing an organic halogen compound and when Comparative Example 3 is not used when a component that gives an adsorption point that mainly adsorbs an organic halogen compound is not added. Show. From the test results, in Example 4 has improved catalytic performance than Comparative Example 4, it can be seen that catalyst performance is improved significantly in the case of a combination of copper oxide molybdenum oxide.
[0035]
[Table 4]
Figure 0004445659
[0040]
Examples 5-9
(Supported amount of active site, indicator substance: o-chlorophenol, carrier: titanium oxide, active species: chromium oxide, adsorption assisting species, molybdenum oxide) Gives active site to decompose titanium oxide as a carrier, mainly organic halogen compounds Table 5 shows the catalyst performance evaluation test results when chromium oxide (0.1 to 40 wt%) is used as a component and molybdenum oxide (10 wt%) is added as a component that mainly provides an adsorption point for adsorbing organic halogen compounds. . From the test results, it can be seen that when the metal oxide species as the active site is 5 wt% or more of the whole catalyst, particularly when it is 10 wt% or more, the activity is high, and when it is less than 1 wt%, the catalyst performance is low.
[0041]
[Table 5]
Figure 0004445659
[0046]
Example 10
(Carrier: titanium oxide, active species: chromium oxide, indicator substance: o-bromophenol) Titanium oxide is mainly used as a carrier, and chromium oxide (5 wt%) is mainly used as a component that provides an active site for decomposing organic halogen compounds. Table 6 shows catalyst performance evaluation test results when molybdenum oxide is added as a component that provides an adsorption point for adsorbing an organic halogen compound and when no component that mainly provides an adsorption point for adsorbing an organic halogen compound is added as a comparative example. Shown in From the test results, it can be seen that even when the indicator substance is o-bromophenol, the catalyst performance is improved in the examples as compared with the comparative example, and the catalyst performance is significantly improved in the case of molybdenum oxide . From this result, it was found that the present invention is also effective for decomposing organic bromine compounds.
[0047]
[Table 6]
Figure 0004445659
[0049]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the catalyst which decomposes | disassembles and removes the organic halogen compound in the waste gas discharged | emitted from an incinerator etc. especially the dioxins among them very efficiently can be provided.
Organochlorine compounds (chlorinated dioxins, chlorinated benzenes, chlorinated phenols) contained in exhaust gas from municipal waste incinerators, etc., and organic bromine compounds contained in exhaust gas from waste plastic incineration equipment such as home appliances ( It is useful for detoxifying brominated dioxins, brominated benzenes, brominated phenols).

Claims (2)

i酸化物からなる担体と、該担体上に担持される触媒成分とを有し、前記触媒成分は、主に有機ハロゲン化合物を分解する活性点を与える成分として、Cr、Co、FeおよびCuのうち少なくとも1種の金属の酸化物を触媒全体の5重量%以上、主に有機ハロゲン化合物を吸着する吸着点を与える成分として、Mo酸化物を触媒全体の5重量%以上含むことを特徴とする排ガス処理触媒。A carrier comprising a T i oxides, and a catalyst component carried on the carrier, said catalyst component, as a component providing mainly active sites of decomposing an organic halogen compound, Cr, Co, Fe and Cu Among them, at least one oxide of a metal is 5% by weight or more of the whole catalyst, and as a component for providing an adsorption point for mainly adsorbing an organic halogen compound, Mo oxide is contained by 5% by weight or more of the whole catalyst. Exhaust gas treatment catalyst. 主に有機ハロゲン化合物を分解する活性点を与える前記成分、および主に有機ハロゲン化合物を吸着する吸着点を与える前記成分が、ともに平均粒径1μm以下の微細な粒子を基本構成要素として含まれることを特徴とする請求項記載の排ガス処理触媒。The component that mainly provides an active site for decomposing an organic halogen compound and the component that mainly provides an adsorption point for adsorbing an organic halogen compound both include fine particles having an average particle size of 1 μm or less as basic constituent elements. The exhaust gas treatment catalyst according to claim 1 .
JP2000338922A 2000-11-07 2000-11-07 Exhaust gas treatment catalyst Expired - Fee Related JP4445659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000338922A JP4445659B2 (en) 2000-11-07 2000-11-07 Exhaust gas treatment catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000338922A JP4445659B2 (en) 2000-11-07 2000-11-07 Exhaust gas treatment catalyst

Publications (2)

Publication Number Publication Date
JP2002136870A JP2002136870A (en) 2002-05-14
JP4445659B2 true JP4445659B2 (en) 2010-04-07

Family

ID=18814067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000338922A Expired - Fee Related JP4445659B2 (en) 2000-11-07 2000-11-07 Exhaust gas treatment catalyst

Country Status (1)

Country Link
JP (1) JP4445659B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596944B2 (en) * 2005-03-24 2010-12-15 水澤商事株式会社 Combustion exhaust gas treatment method
EP3603799A4 (en) * 2018-05-11 2020-12-23 Murata Manufacturing Co., Ltd. Organic matter decomposition catalyst, organic matter decomposition aggregate, and organic matter decomposition device
CN112642429B (en) * 2019-10-12 2023-06-06 中国石油化工股份有限公司 Impregnating solution and preparation method thereof, catalyst and preparation method and application thereof, and waste gas treatment method
CN114768836A (en) * 2022-04-19 2022-07-22 浙江师范大学 Catalyst for catalytic oxidation of dichloromethane and preparation method thereof

Also Published As

Publication number Publication date
JP2002136870A (en) 2002-05-14

Similar Documents

Publication Publication Date Title
JPH05317717A (en) Catalyzer and preparation of catalyzer
WO2021128658A1 (en) Hydrolysis-oxidation two-stage process and device for degrading chlorinated volatile organic compounds
JP4445659B2 (en) Exhaust gas treatment catalyst
KR100533877B1 (en) Catalyst for Removing Aromatic Halogenated Compounds Comprising Dioxin, Carbon Monoxide, and Nitrogen Oxide and Use Thereof
Tajima et al. Decomposition of chlorofluorocarbons on W/TiO2–ZrO2
KR100506813B1 (en) Mn oxide catalyst for decomposing ozone and the method therefor
KR20040082246A (en) Preparation of fine metal oxides for antimicrobial and deodorization
JP4445660B2 (en) Exhaust gas treatment catalyst
KR100402430B1 (en) Catalyst for decomposition of toxic pollutants and producing process thereof
JP3212577B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JP2005034677A (en) Catalyst for treating exhaust gas and method for treating exhaust gas
JP4909473B2 (en) Exhaust gas treatment catalyst
JP3546766B2 (en) Deodorizing catalyst
JP2005262175A (en) Catalyst and method for treating exhaust gas
JP2005034678A (en) Catalyst for treating exhaust gas and method for treating exhaust gas
JP2001038206A (en) Catalyst for treating exhaust gas and method and apparatus for treating exhaust gas
JP3734645B2 (en) Catalyst for decomposing chlorinated organic compound and method for decomposing chlorinated organic compound
JP2000126601A (en) Decomposition catalyst for organic halogen compound and decomposition method
JP2916259B2 (en) Method for oxidative decomposition of organic halogen compounds
JP2004050032A (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2982623B2 (en) Detoxification method of ammonia-containing exhaust gas
JP2000042409A (en) Catalyst for decomposing organochlorine compound and treatment of combustion exhaust gas
KR101132187B1 (en) Method for preparing a metal oxide catalyst for deodorization
JP3538984B2 (en) Decomposition method of chlorinated organic compounds
JP3785558B2 (en) Organochlorine compound removal catalyst and organochlorine compound removal method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees