JP2916259B2 - Method for oxidative decomposition of organic halogen compounds - Google Patents

Method for oxidative decomposition of organic halogen compounds

Info

Publication number
JP2916259B2
JP2916259B2 JP4508700A JP50870092A JP2916259B2 JP 2916259 B2 JP2916259 B2 JP 2916259B2 JP 4508700 A JP4508700 A JP 4508700A JP 50870092 A JP50870092 A JP 50870092A JP 2916259 B2 JP2916259 B2 JP 2916259B2
Authority
JP
Japan
Prior art keywords
catalyst
organic halogen
exhaust gas
component
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4508700A
Other languages
Japanese (ja)
Inventor
紀一郎 三井
徹 石井
和良 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP4508700A priority Critical patent/JP2916259B2/en
Priority claimed from PCT/JP1992/000552 external-priority patent/WO1992019366A1/en
Application granted granted Critical
Publication of JP2916259B2 publication Critical patent/JP2916259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は焼却炉や各種クリーニング工程などの各種プ
ロセスから発生する排ガスに含有された有機ハロゲン化
合物を酸化分解処理する方法に関し、さらには酸化分解
処理による一酸化炭素の発生を防止し、しかも上記排ガ
スに含まれる窒素酸化物や一酸化炭素も同時に除去でき
る有機ハロゲン化合物の酸化分解処理方法に関するもの
である。
Description: TECHNICAL FIELD The present invention relates to a method for oxidatively decomposing an organic halogen compound contained in exhaust gas generated from various processes such as an incinerator and various cleaning processes, and further relates to a method for oxidizing and decomposing carbon monoxide. The present invention relates to a method for oxidatively decomposing an organic halogen compound, which can prevent the generation of nitrogen oxides and carbon monoxide contained in the exhaust gas at the same time.

背景技術 排ガス等に含まれる有害な有機ハロゲン化合物を処理
する方法としては、800℃以上の温度条件下で直接燃焼
する方法と、活性炭などの吸着剤に吸着させ除外する方
法が知られている。
BACKGROUND ART As methods for treating harmful organic halogen compounds contained in exhaust gas and the like, there are known a method of directly burning under a temperature condition of 800 ° C. or higher, and a method of removing the harmful organic halogen compound by adsorbing it on an adsorbent such as activated carbon.

しかしながら前者の直接燃焼法では多量の燃料を必要
とするので経済的ではないと共に、操作条件によっては
分解時に毒性の強いハロゲン元素が遊離したり、一酸化
炭素が発生するなどの問題を有している。一方、活性炭
などの吸着剤による方法は処理対象物質の濃度によって
吸着効率がばらつき、共存物質によっては吸着効率が阻
害されるという問題が発生している。
However, the former direct combustion method is not economical because it requires a large amount of fuel, and it has problems such as release of highly toxic halogen elements and decomposition of carbon monoxide depending on operating conditions. I have. On the other hand, the method using an adsorbent such as activated carbon has a problem that the adsorption efficiency varies depending on the concentration of the substance to be treated, and the coexisting substance inhibits the adsorption efficiency.

また遷移金属元素の酸化物を触媒として酸化分解する
方法(特開昭51-22699号公報、特開平3-47516号公報)
も開発されており比較的低温度条件で酸化分解処理がで
きるようになったものの、完全酸化率が低いと共に処理
ガス中に有害な一酸化炭素が残存するという問題を有し
ている。
Also, a method of oxidative decomposition using an oxide of a transition metal element as a catalyst (JP-A-51-22699, JP-A-3-47516)
Although it has been developed and can perform oxidative decomposition treatment under relatively low temperature conditions, it has problems that the complete oxidation rate is low and harmful carbon monoxide remains in the processing gas.

本発明は上記事情に着目してなされたものであって、
有害な塩素ガス等を発生させることなく、低温度条件下
で効率よく有機ハロゲン化合物を酸化分解し、さらには
排ガス中に含まれる窒素酸化物や一酸化炭素を同時に除
去できる有機ハロゲン化合物の酸化分解処理方法を提供
しようとするものである。
The present invention has been made focusing on the above circumstances,
Oxidative decomposition of organic halogen compounds that can efficiently oxidize and decompose organic halogen compounds under low temperature conditions without generating harmful chlorine gas, etc., and can simultaneously remove nitrogen oxides and carbon monoxide contained in exhaust gas. It is intended to provide a processing method.

発明の開示 本発明の有機ハロゲン化合物の酸化分解処理方法と
は、触媒A成分としてSi,Ti及びZrよりなる群から選択
される2種以上の金属よりなる複合酸化物を含有し、触
媒B成分としてV,Mo,Sn,Ce及びWよりなる群から選択さ
れる1種または2種以上の金属の酸化物を含有してなる
触媒を用い、150〜600℃の温度条件下で前記排ガスを上
記触媒に接触的に反応させることを要旨とするものであ
る。
DISCLOSURE OF THE INVENTION The oxidative decomposition treatment method of an organic halogen compound according to the present invention comprises a catalyst A component containing a composite oxide composed of two or more metals selected from the group consisting of Si, Ti and Zr; V, Mo, Sn, Ce and W using a catalyst containing one or more metal oxides selected from the group consisting of W, the above exhaust gas under a temperature condition of 150 ~ 600 ℃ The gist of the invention is to make the catalyst react in a catalytic manner.

さらに上記触媒に触媒C成分としてCr,Mn,Fe,Cu,Ru,R
h,Pd,Pt及びAuよりなる群から選択される1種または2
種以上の金属或いは金属酸化物を含有させれば一酸化炭
素の発生を防止でき、また上記排ガスにアンモニアガス
を添加すれば排ガス中に含まれる有機ハロゲン化合物及
び一酸化炭素を酸化分解すると共に窒素酸化物を除去す
ることが可能である。
Further, Cr, Mn, Fe, Cu, Ru, R
one or two selected from the group consisting of h, Pd, Pt and Au
If at least one kind of metal or metal oxide is contained, generation of carbon monoxide can be prevented. If ammonia gas is added to the exhaust gas, organic halogen compounds and carbon monoxide contained in the exhaust gas are oxidized and nitrogen is added. It is possible to remove oxides.

発明を実施するための最良の形態 本発明者らは、触媒A成分としてSi,Ti及びZrよりな
る群から選択される2種以上の金属よりなる複合酸化物
を用い、触媒B成分としてV、Mo,Sn,Ce及びWの酸化物
を用いれば、150〜600℃という低温度条件下でも有機ハ
ロゲン化合物を効率よく酸化分解でき、しかも触媒C成
分としてCr,Mn,Fe,Cu,Ru,Rh,Pd,Pt及びAuよりなる群か
ら選択される1種または2種以上の金属あるいは金属酸
化物を併用すれば一酸化炭素の生成を可及的に抑制でき
るとの知見を得、本発明に想到した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors use a composite oxide composed of two or more metals selected from the group consisting of Si, Ti and Zr as a catalyst A component, and use V, By using oxides of Mo, Sn, Ce and W, organic halogen compounds can be efficiently oxidatively decomposed even under a low temperature condition of 150 to 600 ° C, and Cr, Mn, Fe, Cu, Ru, Rh can be used as a catalyst C component. , Pd, Pt, and Au were found to be able to suppress the production of carbon monoxide as much as possible if used in combination with one or more metals or metal oxides selected from the group consisting of Au. I arrived.

さらに本発明の方法によれば、排ガス中にアンモニア
ガスを添加することにより有機ハロゲン化合物及び一酸
化炭素を酸化分解すると共に窒素酸化物を除去できる。
Further, according to the method of the present invention, by adding ammonia gas to exhaust gas, organic halogen compounds and carbon monoxide can be oxidized and decomposed, and nitrogen oxides can be removed.

以下本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明が対象とする有機ハロゲン化合物とは、その分
子内に少なくとも1個以上のハロゲン原子を有する有機
化合物であればよく、例えば塩化メチル、塩化エチル、
ジクロロエチレン、塩化ビニル等の脂肪族有機塩素化合
物;臭化メチル、臭化メチレン、臭化エチレン、臭化ビ
ニル等の脂肪族有機臭素化合物;モノクロロベンゼン、
ジクロロベンゼン等の芳香族有機塩素化合物;臭化ベン
ジル、臭化ベンジリデン等の芳香族有機臭素化合物;ポ
リ塩化ジベンゾダイオキシン、ポリ塩化ベンゾフラン類
の毒性有機塩素化合物;及びトリクロロフルオロメタ
ン、ジクロロジフルオロメタン等のフロンガス等が例示
できる。
The organic halogen compound targeted by the present invention may be any organic compound having at least one halogen atom in the molecule, such as methyl chloride, ethyl chloride,
Aliphatic organic chlorine compounds such as dichloroethylene and vinyl chloride; aliphatic organic bromine compounds such as methyl bromide, methylene bromide, ethylene bromide and vinyl bromide; monochlorobenzene;
Aromatic organic chlorine compounds such as dichlorobenzene; aromatic organic bromine compounds such as benzyl bromide and benzylidene bromide; toxic organic chlorine compounds such as polychlorinated dibenzodioxins and polychlorinated benzofurans; and trichlorofluoromethane and dichlorodifluoromethane Freon gas and the like can be exemplified.

またPCBや2,4,5−トリクロロフェノキシ酢酸などの固
体有機塩素化合物を無触媒燃焼させる場合において、燃
焼後の排ガスに対し本発明を適用してもよい。
In the case where a solid organic chlorine compound such as PCB or 2,4,5-trichlorophenoxyacetic acid is burned without a catalyst, the present invention may be applied to exhaust gas after burning.

本発明に用いる酸素含有ガスは有機ハロゲン化合物を
酸化させて、有機ハロゲン化合物中の炭素をCO2に転化
し、ハロゲン元素をHCl,HBr,HF等に転化するのに十分な
量の酸素を有するものであればよく、通常の空気或は酸
素濃度を高めた空気を用いればよい。
Oxygen-containing gas used in the present invention is to oxidize the organic halogen compound, the carbon in the organic halogen compound is converted to CO 2, have a sufficient amount of oxygen to convert the halogen element HCl, HBr, in HF or the like Any air may be used, and normal air or air with an increased oxygen concentration may be used.

本発明に用いる触媒A成分としては、少なくともSi,T
i及びZrよりなる群から選択される2種以上の金属より
なる複合酸化物を含有していれば好ましい結果を得るこ
とができ、例えば、チタン−珪素及びチタンージルコニ
ウム等の二元系複合酸化物やチタン−珪素−ジルコニウ
ムなどの三元系複合酸化物等が挙げられる。
The catalyst A component used in the present invention includes at least Si, T
Preferred results can be obtained as long as it contains a composite oxide composed of two or more metals selected from the group consisting of i and Zr. For example, binary composite oxides such as titanium-silicon and titanium-zirconium can be obtained. And ternary composite oxides such as titanium-silicon-zirconium.

これらの二元系あるいは三元系等の複合酸化物は、一
元系酸化物に比べて大きな表面積を有しているので、本
発明方法に係る酸化物分解反応において活性成分である
触媒B成分及び触媒C成分の分散性に優れ活性も高く、
しかも耐酸性にも優れており、処理ガス中に共存するHC
lやSOx等の酸性ガスにもおかされることなく、長期活性
を維持することが可能である。
Since these binary or ternary composite oxides have a large surface area as compared with the single oxide, the catalyst B component, which is an active component in the oxide decomposition reaction according to the method of the present invention, and Excellent dispersibility of catalyst C component and high activity,
In addition, it has excellent acid resistance, and HC coexists in the processing gas.
It is possible to maintain long-term activity without being affected by acidic gases such as l and SOx.

また本発明に係る触媒の組成は、酸化物として触媒A
成分が70〜95重量%、触媒B成分が0.1〜20重量%、触
媒C成分が0.01〜25重量%の範囲であることが好まし
い。触媒B成分が20重量%を超えると触媒強度が弱くな
り長期使用に影響が発生し、一方0.1重量%未満では有
機ハロゲン化合物の分解率が低下するので好ましくな
い。したがって触媒B成分は0.1〜20重量%の範囲が好
ましい。触媒C成分は20重量%を超えると触媒の原料コ
ストが高くなり好ましくなく、一方0.01重量%未満では
一酸化炭素が発生するので、0.1〜20重量%の範囲が好
ましい。尚該触媒を使用することにより発生するHCl,H
F,HBr等は、アルカリ洗浄等の周知の方法によって簡単
に除去できる。
Further, the composition of the catalyst according to the present invention is as follows.
Preferably, the components are in the range of 70-95% by weight, the catalyst B component in the range of 0.1-20% by weight, and the catalyst C component in the range of 0.01-25% by weight. If the amount of the catalyst B component exceeds 20% by weight, the strength of the catalyst will be weakened, and long-term use will be affected. Therefore, the content of the catalyst B component is preferably in the range of 0.1 to 20% by weight. If the amount of the catalyst C component is more than 20% by weight, the raw material cost of the catalyst is increased, which is not preferable. On the other hand, if the amount is less than 0.01% by weight, carbon monoxide is generated. In addition, HCl, H generated by using the catalyst
F, HBr and the like can be easily removed by a known method such as alkali washing.

次に本発明触媒の代表的な調製法を以下に述べる。 Next, a typical method for preparing the catalyst of the present invention will be described below.

チタン−珪素、チタン−ジルコニウム及びチタン−珪
素−ジルコニウム等を含む複合酸化物に、V,W等の触媒
B成分を含む水溶液または酸化物粉体を成形助剤と共に
加えて適当量の水を添加しつつ混合,混練し、押出成形
機でハニカム上に成形する。成形物を50〜120℃で乾燥
後400〜600℃、好ましくは430〜550℃で1〜10時間好ま
しくは2〜6時間空気流中で焼成し成形物を得る。
To a composite oxide containing titanium-silicon, titanium-zirconium and titanium-silicon-zirconium, etc., add an aqueous solution or oxide powder containing a catalyst B component such as V, W, etc. together with a molding aid and add an appropriate amount of water. While mixing, kneading, and forming on a honeycomb by an extruder. The molded product is dried at 50 to 120 ° C. and calcined at 400 to 600 ° C., preferably 430 to 550 ° C. for 1 to 10 hours, preferably 2 to 6 hours, in an air stream to obtain a molded product.

この様にして得られた成形物に、触媒C成分、すなわ
ちRu,Rh,Pd,Pt,Au等の貴金属触媒物質や、Cr,Mn,Fe,Cu
等を金属として又はその酸化物として担持せしめ、完成
触媒が得られる。上記触媒C成分としては、特に周期律
表第VIIIの金属が好ましく用いられるが、中でもRu,Rh,
Pd,Ptが好ましく、またAuも好ましい。
The molded product thus obtained is added to the catalyst C component, that is, a noble metal catalyst substance such as Ru, Rh, Pd, Pt, or Au, or Cr, Mn, Fe, Cu.
Are carried as a metal or an oxide thereof to obtain a finished catalyst. As the catalyst C component, metals of the periodic table VIII are particularly preferably used. Among them, Ru, Rh,
Pd and Pt are preferable, and Au is also preferable.

成形物への触媒C成分の担持方法としては、上記成形
物を触媒C成分水溶液中に常温下1〜5分間浸漬した
後、30〜200℃、好ましくは70〜170℃で乾燥し、ついで
空気中300〜700℃、好ましくは400〜600℃で、焼成すれ
ばよい。
As a method of supporting the catalyst C component on the molded product, the molded product is immersed in an aqueous solution of the catalyst C component at room temperature for 1 to 5 minutes, dried at 30 to 200 ° C, preferably 70 to 170 ° C, and then air The firing may be performed at a temperature of 300 to 700 ° C, preferably 400 to 600 ° C.

触媒形状としては上記のハニカム状にとどまらず、円
柱状、円筒状、板状、リボン状、波板状、パイプ状、ド
ーナツ状、格子状、その他一体化成形されたものなどが
適宜選ばれる。また、コージェライトやムライトなどの
成形担体上に触媒A成分、B成分よりなるスラリーをコ
ーティングし、さらに触媒C成分を含浸して触媒とする
ことも可能である。
The shape of the catalyst is not limited to the above-described honeycomb shape, and may be appropriately selected from a columnar shape, a cylindrical shape, a plate shape, a ribbon shape, a corrugated plate shape, a pipe shape, a donut shape, a lattice shape, and other integrally formed shapes. It is also possible to coat a molded carrier such as cordierite or mullite with a slurry composed of the catalyst A component and the B component, and further impregnate the catalyst C component into a catalyst.

本発明触媒を調製するにあたって用いられる珪素原料
としては、コロイド状シリカ,水ガラス,四塩化珪素な
ど無機性の珪素化合物,及びエチルシリケート類などか
ら選ぶことができる。またチタン原料としては、塩化チ
タン類,水酸化チタン,硫酸チタンなどの無機性チタン
化合物、及び蓚酸チタン,テトライソプロピルチタネー
トなどの有機性チタン化合物などから選ぶことができ、
ジルコニウム源としては、塩化ジルコニウム,オキシ塩
化ジルコニウム,硝酸ジルコニウムなどの無機性のジル
コニウム化合物および蓚酸ジルコニウム,テトライソプ
ロピルジルコネートなどの有機性ジルコニウム化合物な
どから選ぶことができる。
The silicon raw material used in preparing the catalyst of the present invention can be selected from colloidal silica, water glass, inorganic silicon compounds such as silicon tetrachloride, and ethyl silicates. The titanium raw material can be selected from inorganic titanium compounds such as titanium chlorides, titanium hydroxide, and titanium sulfate, and organic titanium compounds such as titanium oxalate and tetraisopropyl titanate.
The zirconium source can be selected from inorganic zirconium compounds such as zirconium chloride, zirconium oxychloride, and zirconium nitrate, and organic zirconium compounds such as zirconium oxalate and tetraisopropyl zirconate.

また触媒B成分の出発原料としては、酸化物,水酸化
物,無機塩類,有機塩類など適宜選択すればよく、アン
モニウム塩,蓚酸塩,硫酸塩またはハロゲン化物などが
例示できる。一方触媒C成分の出発原料としては塩化
物,硝酸塩,有機酸塩,塩化貴金属酸,銅化合物から適
宜選ばれる。
As the starting material of the catalyst B component, oxides, hydroxides, inorganic salts, organic salts and the like may be appropriately selected, and examples thereof include ammonium salts, oxalates, sulfates and halides. On the other hand, the starting material of the catalyst C component is appropriately selected from chlorides, nitrates, organic acid salts, noble metal chloride acids, and copper compounds.

本発明は反応器の形式を限定するものではなく、通常
の固定床,移動床,流動床等の反応器を適用することが
できる。尚、焼却炉排ガス中の有機ハロゲン化合物を対
象とする場合ではダスト分が多く、触媒層が閉塞する恐
れがあり、この様な場合にはダスト量に応じて目開きを
調整できるハニカム状触媒を充填することが好ましい。
In the present invention, the type of the reactor is not limited, and an ordinary reactor such as a fixed bed, a moving bed, or a fluidized bed can be applied. In addition, when the organic halogen compound in the exhaust gas from the incinerator is targeted, the amount of dust is large, and the catalyst layer may be clogged. In such a case, a honeycomb catalyst that can adjust the aperture according to the amount of dust is used. Filling is preferred.

反応温度については150〜600℃の範囲で接触させるこ
とが好ましく、150℃以下では十分な分解効率を得るこ
とができず、600℃以上では助燃剤が増加し経済的では
なくなる。
The reaction temperature is preferably in the range of 150 to 600 ° C. If the temperature is lower than 150 ° C, sufficient decomposition efficiency cannot be obtained.

実施例 実施例1 チタン及び珪素からなる複合酸化物を以下に述べる方
法で調製した。チタン源として以下の組成を有する硫酸
チタニルの硫酸水溶液を用いた。
Examples Example 1 A composite oxide composed of titanium and silicon was prepared by the method described below. An aqueous solution of titanyl sulfate in sulfuric acid having the following composition was used as a titanium source.

TiOSO4(TiO2換算) 250g/リットル 全H2SO4 1100g/リットル 別に水400リットルにアンモニア水(NH3,25%)286リ
ットルを添加し、これにスノーテックス−NCS−30(日
産化学製シリカゾルでSiO2として約30重量%含有)24kg
を加えた。得られた溶液中に、上記硫酸チタニルの硫酸
水溶液153リットルを水300リットルに添加して希釈した
チタン含硫酸水溶液を撹拌下徐々に滴下し、共沈ゲルを
生成した。さらにそのまま15時間放置して静置した。こ
の様にして得られたチタン−珪素からなる複合酸化物の
ゲルを濾過し、水洗後200℃で10時間乾燥した。
TiOSO 4 (TiO 2 equivalent) 250 g / liter Total H 2 SO 4 1100 g / liter Separately, add 286 liters of ammonia water (NH 3 , 25%) to 400 liters of water, and add Snowtex-NCS-30 (Nissan Chemical) sol about 30 wt% content as SiO 2) 24 kg
Was added. To the obtained solution, 153 liters of the above-mentioned aqueous solution of titanyl sulfate in sulfuric acid was added to 300 liters of water, and a diluted aqueous solution of titanium-containing sulfuric acid was gradually added dropwise with stirring to form a coprecipitated gel. Furthermore, it was left as it was for 15 hours. The thus obtained gel of the titanium-silicon composite oxide was filtered, washed with water and dried at 200 ° C. for 10 hours.

次いで550℃で6時間空気雰囲気下で焼成した。得ら
れた粉体の組成はTi:Si=4:1(原子比)で、BET表面積
は185m2/gであった。ここで得られた粉体を以降TS-1と
呼び、この粉体を用いて以下に述べる方法で成形体を調
製した。
Then, it was fired at 550 ° C. for 6 hours in an air atmosphere. The composition of the obtained powder was Ti: Si = 4: 1 (atomic ratio), and the BET surface area was 185 m 2 / g. The powder obtained hereafter was referred to as TS-1 and a molded article was prepared using the powder by the method described below.

モノエタノールアミン0.7リットルを水7リットルと
混合し、これにパラタングステン酸アンモニウム1.03kg
を加え溶解させ、ついでメタバナジン酸アンモニウム1.
14kgを溶解させ均一な溶液とする。さらにこの溶液を上
記TS-1:16kgに加えニーダーで適量の水を添加しつつよ
く混合・混練した後、押し出し成形機で外形80mm角、目
開き3.0mm、肉厚0.7mm、長さ350mmの格子状に成形し
た。次いで60℃で乾燥後、空気流通下において450℃で
5時間焼成した。得られた完成触媒の組成は酸化物とし
ての重量比でTS-1:V2O5:WO3=90:5:5であった。かくし
て得られた触媒を外径23mm角(6セル×6セル),長さ
300mmに切断して反応装置に充填し、下記組成の合成ガ
スを角条件下で流通させた。
0.7 liter of monoethanolamine is mixed with 7 liters of water, and 1.03 kg of ammonium paratungstate is added.
To dissolve, then ammonium metavanadate 1.
Dissolve 14 kg to make a uniform solution. The solution was further mixed and kneaded while adding an appropriate amount of water with a kneader in addition to the above TS-1: 16 kg, and then extruded with an extruder to have an outer shape of 80 mm square, an aperture of 3.0 mm, a wall thickness of 0.7 mm, and a length of 350 mm. It was formed into a lattice. Next, after drying at 60 ° C., it was calcined at 450 ° C. for 5 hours under flowing air. The composition of the obtained completed catalyst was TS-1: V 2 O 5 : WO 3 = 90: 5: 5 in terms of weight ratio as an oxide. The catalyst thus obtained has an outer diameter of 23 mm square (6 cells x 6 cells), length
It was cut into 300 mm and charged into a reactor, and a synthesis gas having the following composition was passed under angular conditions.

1−1 1,1,2,2−テトラクロロエタンの分解 空間速度 2000h-1 ガス濃度 300ppm/air balance 温度条件 250,300,350℃ 1−2 ジクロロベンゼンの分解 空間速度 2000h-1 ガス濃度 300ppm/air balance 温度条件 200,250,300,350℃ 1−3 フロン113の分解 空間速度 2000h-1 ガス濃度 500ppm/air balance 温度条件 300,350,400℃ 上記テストにより得られた結果を第1表に示す。1-1 Decomposition of 1,1,2,2-tetrachloroethane Space velocity 2000h -1 Gas concentration 300ppm / air balance Temperature condition 250,300,350 ℃ 1-2 Decomposition of dichlorobenzene Space velocity 2000h -1 Gas concentration 300ppm / air balance Temperature condition 200,250,300,350 ℃ 1-3 Decomposition of Freon 113 Space velocity 2000h -1 Gas concentration 500ppm / air balance Temperature condition 300,350,400 ℃ Table 1 shows the results obtained by the above test.

尚いずれの場合も処理後ガスにはCl2ガスは検出され
なかった。
In each case, Cl 2 gas was not detected in the post-treatment gas.

実施例2 実施例1で得られたTS-1粉体を用い実施例1と同様の
方法で得られた成形体(TS-1:V2O5:WO3=90:5:5)を、
Ptとして22.1g含む塩化白金水溶液3.0リットルに1分間
浸漬し、次いで100℃で乾燥した後空気流通下において4
50℃で5時間焼成した。得られた触媒のPt担持量は0.25
重量%であった。
Example 2 A compact (TS-1: V 2 O 5 : WO 3 = 90: 5: 5) obtained by using the TS-1 powder obtained in Example 1 and in the same manner as in Example 1 was used. ,
Immersion in 3.0 liters of platinum chloride aqueous solution containing 22.1 g of Pt for 1 minute, followed by drying at 100 ° C.
It was baked at 50 ° C. for 5 hours. The Pt carrying amount of the obtained catalyst was 0.25.
% By weight.

上記触媒を外径23mm角(6セル×6セル),長さ300m
mに切断して反応装置に充填し、実施例1と同じ条件下
で1,1,2,2−テトラクロロエタン,ジクロロベンゼンお
よびフロン113の分解テストを行なった。結果は第2表
に示す。尚いずれの場合も処理後ガスにはCl2ガスは検
出されなかった。
The above catalyst has an outer diameter of 23mm square (6 cells x 6 cells), length 300m
After cutting into m, the reactor was filled and subjected to a decomposition test of 1,1,2,2-tetrachloroethane, dichlorobenzene and Freon 113 under the same conditions as in Example 1. The results are shown in Table 2. In each case, Cl 2 gas was not detected in the post-treatment gas.

実施例3 実施例1で得られたTS-1粉体を用い実施例1と同様の
方法で得られた成形体(TS-1:V2O5:WO3=90:5:5)を、
Pdとして11.0g含む硝酸パラジウム水溶液3.0リットルに
1分間浸漬し、次いで100℃で乾燥した後空気流通下に
おいて500℃で2時間焼成した。得られた触媒のPd担持
量は0.1重量%であった。
Example 3 A molded article (TS-1: V 2 O 5 : WO 3 = 90: 5: 5) obtained by using the TS-1 powder obtained in Example 1 and in the same manner as in Example 1 was used. ,
It was immersed in 3.0 liters of an aqueous palladium nitrate solution containing 11.0 g of Pd for 1 minute, dried at 100 ° C., and then baked at 500 ° C. for 2 hours under flowing air. The amount of Pd supported on the obtained catalyst was 0.1% by weight.

上記触媒を外径23mm角(6セル×6セル),長さ300m
mに切断して反応装置に充填し、実施例1と同一条件下
で、1,1,2,2−テトラクロロエタン,ジクロロベンゼン
及びフロン113の分解テストを行なった。結果は第3表
に示す。尚いずれの場合も処理後ガスにはCl2ガスは検
出されなかった。
The above catalyst has an outer diameter of 23mm square (6 cells x 6 cells), length 300m
The resulting mixture was cut into m, filled into a reactor, and subjected to a decomposition test of 1,1,2,2-tetrachloroethane, dichlorobenzene and Freon 113 under the same conditions as in Example 1. The results are shown in Table 3. In each case, Cl 2 gas was not detected in the post-treatment gas.

実施例4 実施例1で得られたTS-1粉体を用いて、TS-1:V2O5:W
O3=87:8:5(重量比)の成形体を実施例1に準じて作成
した。成形体は80mm角、目開き3.0mm、肉厚0.7mm、長さ
350mmの格子状である。これを硝酸クロム[Cr (NO3)3
・9H2O]170gを3.0リットルの水に溶解した水溶液に1
分間浸漬し、次いで100℃で乾燥した後空気流通下にお
いて500℃で2時間焼成した。得られた触媒のCr2O3とし
ての担持量は0.38重量%であった。
Example 4 Using the TS-1 powder obtained in Example 1, TS-1: V 2 O 5 : W
A molded article of O 3 = 87: 8: 5 (weight ratio) was prepared according to Example 1. The molded body is 80mm square, aperture 3.0mm, wall thickness 0.7mm, length
It is a 350mm grid. Chromium nitrate [Cr (NO 3 ) 3
[9H 2 O] 1 in an aqueous solution of 170 g dissolved in 3.0 liters of water
After immersion for 100 minutes and then drying at 100 ° C., it was baked at 500 ° C. for 2 hours under flowing air. The supported amount of the obtained catalyst as Cr 2 O 3 was 0.38% by weight.

上記触媒を外径23mm角(6セル×6セル),長さ300m
mに切断し反応装置に充填して、実施例1と同条件でジ
クロロベンゼンの分解テストを行なった。結果は第4表
に示す。尚反応中Cl2ガスは検出されなかった。
The above catalyst has an outer diameter of 23mm square (6 cells x 6 cells), length 300m
m and cut into a reactor, and subjected to a decomposition test of dichlorobenzene under the same conditions as in Example 1. The results are shown in Table 4. No Cl 2 gas was detected during the reaction.

実施例5 実施例4と同じ組成・大きさのTS-1:V2O5:WO3=87:
8:5(重量比)の成形体を作成した。これを硝酸マンガ
ン[Mn (NO3)2・6H2O]1370gを3.0リットルの水に溶
解した水溶液に1分間浸漬し、次いで100℃で乾燥した
後空気流通下において500℃で2時間焼成した。得られ
た触媒のMnO2としての担持量は5重量%であった。
Example 5 TS-1: V 2 O 5 : WO 3 = 87 having the same composition and size as Example 4
A molded body of 8: 5 (weight ratio) was prepared. This was immersed in an aqueous solution obtained by dissolving 1370 g of manganese nitrate [Mn (NO 3 ) 2 .6H 2 O] in 3.0 liters of water for 1 minute, then dried at 100 ° C. and then calcined at 500 ° C. for 2 hours under flowing air. . The supported amount of the obtained catalyst as MnO 2 was 5% by weight.

上記触媒を用いて実施例4と同様の方法でジクロロベ
ンゼンの分解テストを行なった。結果は第4表に示す。
尚反応中Cl2ガスは検出されなかった。
Using the above catalyst, a decomposition test of dichlorobenzene was conducted in the same manner as in Example 4. The results are shown in Table 4.
No Cl 2 gas was detected during the reaction.

実施例6 実施例4と同じ組成・大きさのTS-1:V2O5:WO3=87:
8:5(重量比)の成形体を作成した。これを硝酸銅[Cu
(NO3)2・3H2O]1270gを3.0リットルの水に溶解した
水溶液に1分間浸漬し、次いで120℃で乾燥した後空気
流通下において500℃で2時間焼成した。得られた触媒
のCuOとしての担持量は5重量%であった。
Example 6 TS-1: V 2 O 5 : WO 3 = 87 having the same composition and size as Example 4
A molded body of 8: 5 (weight ratio) was prepared. This is converted to copper nitrate [Cu
1270 g of (NO 3 ) 2 .3H 2 O] was immersed in an aqueous solution of 3.0 liters of water for 1 minute, dried at 120 ° C., and calcined at 500 ° C. for 2 hours under flowing air. The supported amount of the obtained catalyst as CuO was 5% by weight.

上記触媒を用いて実施例4と同様の方法でジクロロベ
ンゼンの分解テストを行なった。結果は第4表に示す。
尚反応中Cl2ガスは検出されなかった。
Using the above catalyst, a decomposition test of dichlorobenzene was conducted in the same manner as in Example 4. The results are shown in Table 4.
No Cl 2 gas was detected during the reaction.

実施例7 実施例4と同じ組成・大きさのTS-1:V2O5:WO3=87:
8:5(重量比)の成形体を作成した。これをPdとして22.
0g含む硝酸パラジウム水溶液3.0リットルに1分間浸漬
し、次いで100℃で乾燥した後空気流通下において500℃
で2時間焼成した。得られた触媒のPd担持量は0.25重量
%であった。
Example 7 TS-1: V 2 O 5 : WO 3 = 87 having the same composition and size as Example 4
A molded body of 8: 5 (weight ratio) was prepared. This as Pd 22.
Immersed in 3.0 liters of palladium nitrate aqueous solution containing 0 g for 1 minute, then dried at 100 ° C.
For 2 hours. The amount of Pd supported on the obtained catalyst was 0.25% by weight.

上記触媒を外径23mm角(6セル×6セル),長さ300m
mに切断し反応装置に充填して、一酸化窒素、一酸化炭
素、ジクロロベンゼン及びSO2を含むガスに還元剤とし
てNH3を添加し、一酸化窒素、一酸化炭素及びジクロロ
ベンゼンの同時処理テストを行なった。ガス条件及び反
応条件は下記の通りである。
The above catalyst has an outer diameter of 23mm square (6 cells x 6 cells), length 300m
and filled cut into reactor m, nitrogen monoxide, carbon monoxide, and NH 3 was added as a reducing agent to a gas including dichlorobenzene and SO 2, simultaneous processing of nitric oxide, carbon monoxide and dichlorobenzene Tested. The gas conditions and reaction conditions are as follows.

1.ガス条件 ジクロロベンゼン 30 ppm v/v NO 300 ppm v/v NH3 300 ppm v/v CO 1.0 vol% SO2 100 ppm v/v H2O 10 vol% AIR balance 2.空間速度 2000h-1 3.反応温度 200,250℃ 結果は第5表に示す。1. Gas Conditions dichlorobenzene 30 ppm v / v NO 300 ppm v / v NH 3 300 ppm v / v CO 1.0 vol% SO 2 100 ppm v / v H 2 O 10 vol% AIR balance 2. Space velocity 2000h -1 3. Reaction temperature 200,250 ° C The results are shown in Table 5.

実施例8 水500リットルにオキシ塩化ジルコニウム(ZrOCl2・8
H2O)19.3kgを溶解させ、実施例1で用いたものと同組
成の硫酸チタニルの硫酸水溶液78リットルを添加しよく
混合した。この混合水溶液を約30℃に維持して、よく撹
拌しながらpHが7になるまでアンモニア水を徐々に滴下
し、更に15時間静置した。得られたゲルを瀘化し、水洗
後、200℃で10時間乾燥した。次いで550℃で5時間空気
雰囲気下で焼成し、チタン−ジルコニウム複合酸化物を
得た。得られた複合酸化物粉体の組成はTi:Zr=4:1(原
子比)で、BET表面積は140m2/gであった。ここで得られ
た粉体を以降TZ-1と呼ぶ。このTZ-1を用いて実施例1と
同様にして、TZ-1:V2O5:WO3=90:5:5(重量比)の成形
体(80mm角、目開き3.0mm、肉厚0.7mm、長さ350mmの格
子状)を得た。この成形体を、Ptとして11.0g含む塩化
白金水溶液3リットルに1分間浸漬し、次いで120℃で
乾燥した後、空気流通下において450℃で2時間焼成し
完成触媒を得た。得られた触媒のPt担持量は0.1重量%
であった。
Example 8 Water 500 liters in zirconium oxychloride (ZrOCl 2 · 8
19.3 kg of H 2 O) was dissolved, and 78 liters of an aqueous sulfuric acid solution of titanyl sulfate having the same composition as that used in Example 1 was added and mixed well. While maintaining the mixed aqueous solution at about 30 ° C., ammonia water was gradually added dropwise until the pH reached 7 while stirring well, and the mixture was allowed to stand for further 15 hours. The obtained gel was filtered, washed with water and dried at 200 ° C. for 10 hours. Then, the mixture was fired at 550 ° C. for 5 hours in an air atmosphere to obtain a titanium-zirconium composite oxide. The composition of the obtained composite oxide powder was Ti: Zr = 4: 1 (atomic ratio), and the BET surface area was 140 m 2 / g. The powder obtained here is hereinafter referred to as TZ-1. Using this TZ-1, in the same manner as in Example 1, a molded product of TZ-1: V 2 O 5 : WO 3 = 90: 5: 5 (weight ratio) (80 mm square, mesh opening 3.0 mm, wall thickness) 0.7 mm, length 350 mm). The molded body was immersed in 3 liters of an aqueous solution of platinum chloride containing 11.0 g of Pt for 1 minute, dried at 120 ° C., and calcined at 450 ° C. for 2 hours under flowing air to obtain a completed catalyst. The amount of Pt supported on the obtained catalyst is 0.1% by weight.
Met.

この触媒を実施例7と同様の方法および条件で、一酸
化窒素、一酸化炭素、ジクロロベンゼン及びSO2を含む
ガスに還元剤としてNH3を添加し、一酸化窒素、一酸化
炭素及びジクロロベンゼンの同時処理テストを行なっ
た。結果を第6表に示した。
This catalyst was treated in the same manner and under the same conditions as in Example 7 by adding NH 3 as a reducing agent to a gas containing nitrogen monoxide, carbon monoxide, dichlorobenzene and SO 2 , and then nitric oxide, carbon monoxide and dichlorobenzene were added. Was tested simultaneously. The results are shown in Table 6.

比較例1 3mm角の孔径を持つコージェライトハニカム担体にγ
−アルミナ粉をコーティングし、乾燥,焼成を行なって
触媒支持体を調整し、化学吸着法によって触媒支持体上
にPtを担持し100℃で乾燥した後、空気流通下において4
50℃で2時間焼成して比較触媒を得た。該触媒のPt担持
量は0.25重量%であった。この触媒を用い実施例1と同
条件下で1,1,2,2−テトラクロロエタンとジクロロベン
ゼンの分解テストを行なった。結果は第7表に示す。
Comparative Example 1 A cordierite honeycomb carrier having a pore size of 3 mm square
-Alumina powder is coated, dried and calcined to prepare a catalyst support, Pt is supported on the catalyst support by a chemisorption method, dried at 100 ° C, and then dried under air flow.
Calcination at 50 ° C. for 2 hours gave a comparative catalyst. The Pt carrying amount of the catalyst was 0.25% by weight. Using this catalyst, a decomposition test of 1,1,2,2-tetrachloroethane and dichlorobenzene was performed under the same conditions as in Example 1. The results are shown in Table 7.

比較例2 市販のTiO2粉体(BET表面積30m2/g)10kgに水1.5kgを
加え良く混練した後、押し出し成形機で80mm角、目開き
3.0mm、肉厚0.7mm、長さ350mmの格子状に成形し、60℃
で乾燥後空気流通下において450℃で5時間焼成した。
得られた成形体を、Ptとして14g含む塩化白金水溶液3
リットルに1分間浸漬し、100℃で乾燥後、空気流通下
において450℃で5時間焼成した。得られた触媒のPt担
持量は0.12重量%であった。上記触媒を実施例1と同じ
寸法に切断し、同一条件下で1,1,2,2−テトラクロロエ
タンとジクロロベンゼンの分解テストを行なった。結果
は第8表に示す。
Comparative Example 2 1.5 kg of water was added to 10 kg of commercially available TiO 2 powder (BET surface area: 30 m 2 / g), and the mixture was kneaded well.
Formed into a grid of 3.0mm, 0.7mm thickness, 350mm length, 60 ℃
And calcined at 450 ° C. for 5 hours under flowing air.
Aqueous platinum chloride solution 3 containing 14 g of Pt
It was immersed in a liter for 1 minute, dried at 100 ° C., and baked at 450 ° C. for 5 hours under flowing air. The amount of Pt supported on the obtained catalyst was 0.12% by weight. The catalyst was cut into the same dimensions as in Example 1 and subjected to a decomposition test of 1,1,2,2-tetrachloroethane and dichlorobenzene under the same conditions. The results are shown in Table 8.

比較例3 モノエタノールアミン0.7リットルを水7リットルと
混合し、パラタングステン酸アンモニウム1.03kgを加え
溶解させた後、さらにメタバナジン酸アンモニウム1.14
kgを溶解させ均一溶液とした。この溶液を比較例2で用
いたものと同じTiO2粉体16kgに加え、適量の水を加えつ
つ良く混練し、押し出し成形機で80mm角、目開き3.0m
m、肉厚0.7mm、長さ350mmの格子状に成形し、60℃で乾
燥後空気流通下において450℃で5時間焼成した。得ら
れた触媒の組成は、酸化物として重量比でTiO2:V2O5
WO3=90:5:5であった。この成形体を、Ptとして45g含む
塩化白金水溶液3リットルに1分間浸漬し、100℃で乾
燥後、空気流通下において450℃で5時間焼成した。得
られた触媒のPt担持量は0.31重量%であった。上記触媒
を実施例7と同様の方法および条件で、一酸化窒素、一
酸化炭素、ジクロロベンゼン及びSO2を含むガスに還元
剤としてNH3を添加し、一酸化窒素、一酸化炭素及びジ
クロロベンゼンの同時処理テストを行なった。結果を第
9表に示した。
Comparative Example 3 0.7 liter of monoethanolamine was mixed with 7 liters of water, and 1.03 kg of ammonium paratungstate was added and dissolved, and then ammonium metavanadate 1.14 was further added.
kg was dissolved to obtain a homogeneous solution. This solution was added to 16 kg of the same TiO 2 powder as used in Comparative Example 2 and kneaded well while adding an appropriate amount of water.
m, a thickness of 0.7 mm, and a length of 350 mm were formed into a lattice, dried at 60 ° C., and fired at 450 ° C. for 5 hours under flowing air. The composition of the obtained catalyst is as follows: TiO 2 : V 2 O 5 :
WO 3 = 90: 5: 5. This molded body was immersed in 3 liters of an aqueous solution of platinum chloride containing 45 g of Pt for 1 minute, dried at 100 ° C., and baked at 450 ° C. for 5 hours under flowing air. The amount of Pt supported on the obtained catalyst was 0.31% by weight. The above catalyst was treated in the same manner and under the same conditions as in Example 7 by adding NH 3 as a reducing agent to a gas containing nitrogen monoxide, carbon monoxide, dichlorobenzene and SO 2 , and then adding nitrogen monoxide, carbon monoxide and dichlorobenzene. Was tested simultaneously. The results are shown in Table 9.

産業上の利用可能性 本発明は以上の様に構成されているので、有機ハロゲ
ン化合物を酸化分解処理することができ、さらには一酸
化炭素やハロゲンガス等の有害なガスを副次的に生成す
ることなく、低温度条件下で効率よく有機ハロゲン化合
物を処理できることとなり、しかも排ガス中に含まれる
上記有機ハロゲン化合物と共に、窒素酸化物や一酸化炭
素を除去できる有機ハロゲン化合物の酸化分解処理方法
が提供できることとなった。
INDUSTRIAL APPLICABILITY Since the present invention is configured as described above, it is possible to oxidatively decompose an organic halogen compound and further produce harmful gases such as carbon monoxide and halogen gas as a by-product. The organic halogen compound can be efficiently treated under a low temperature condition without performing, and the oxidative decomposition treatment method of the organic halogen compound capable of removing nitrogen oxides and carbon monoxide together with the organic halogen compound contained in the exhaust gas. It can be provided.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−42015(JP,A) 特開 平3−47516(JP,A) 特開 昭51−22699(JP,A) 特開 平2−229547(JP,A) 特公 平1−14807(JP,B2) 特公 昭57−30532(JP,B2) (58)調査した分野(Int.Cl.6,DB名) B01D 5/86 B01J 23/16,23/64 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-42015 (JP, A) JP-A-3-47516 (JP, A) JP-A-51-22699 (JP, A) JP-A-2- 229547 (JP, A) JP 1-14807 (JP, B2) JP 57-30532 (JP, B2) (58) Fields surveyed (Int. Cl. 6 , DB name) B01D 5/86 B01J 23 / 16,23 / 64

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】排ガス中に含有される有機ハロゲン化合物
を無害化する有機ハロゲン化合物の酸化分解処理方法で
あって、 触媒A成分としてSi,Ti及びZrよりなる群から選択され
る2種以上の金属よりなる複合酸化物を、酸化物として
70〜95重量%含有し、 触媒B成分としてV,Mo,Sn,Ce及びWよりなる群から選択
される1種または2種以上の金属の酸化物を含有してな
る触媒を用い、150〜600℃の温度条件下で前記排ガスを
上記触媒に接触的に反応させることを特徴とする有機ハ
ロゲン化合物の酸化分解処理方法。
1. A method for oxidatively decomposing an organic halogen compound contained in an exhaust gas to detoxify an organic halogen compound, wherein the catalyst A component comprises at least two types selected from the group consisting of Si, Ti and Zr. Complex oxides composed of metals as oxides
A catalyst containing 70 to 95% by weight and containing, as a catalyst B component, an oxide of one or more metals selected from the group consisting of V, Mo, Sn, Ce and W; A method for oxidatively decomposing an organic halogen compound, wherein the exhaust gas is contacted with the catalyst under a temperature condition of 600 ° C.
【請求項2】排ガス中に含有される有機ハロゲン化合物
を無害化する有機ハロゲン化合物の酸化分解処理方法で
あって、 触媒A成分としてSi,Ti及びZrよりなる群から選択され
る2種以上の金属よりなる複合酸化物を、酸化物として
70〜95重量%含有し、 触媒B成分としてV,Mo,Sn,Ce及びWよりなる群から選択
される1種または2種以上の金属の酸化物を、酸化物と
して0.1〜20重量%含有し、 触媒C成分としてCr,Mn,Fe,Cu,Ru,Rh,Pd,Pt及びAuより
なる群から選択される1種または2種以上の金属或いは
金属酸化物を、酸化物として0.01〜25重量%含有してな
る400〜600℃で焼成された触媒を用い、150〜600℃の温
度条件下で前記排ガスを上記触媒に接触的に反応させる
ことを特徴とする有機ハロゲン化合物の酸化分解処理方
法。
2. A method for oxidatively decomposing an organic halogen compound contained in exhaust gas to render the organic halogen compound harmless, wherein the catalyst A component comprises at least two types selected from the group consisting of Si, Ti and Zr. Complex oxides composed of metals as oxides
The catalyst B component contains 0.1 to 20% by weight of an oxide of one or more metals selected from the group consisting of V, Mo, Sn, Ce and W as the catalyst B component. And one or more metals or metal oxides selected from the group consisting of Cr, Mn, Fe, Cu, Ru, Rh, Pd, Pt and Au as the catalyst C component; Oxidative decomposition of an organic halogen compound, wherein the exhaust gas is contacted with the catalyst under a temperature condition of 150 to 600 ° C. using a catalyst which is calcined at 400 to 600 ° C. containing 400% by weight. Method.
【請求項3】排ガスにアンモニアガスを添加して、上記
排ガスに含まれる窒素酸化物及び有機ハロゲン化合物を
除去処理する請求項2記載の有機ハロゲン化合物の酸化
分解処理方法。
3. The method according to claim 2, wherein ammonia gas is added to the exhaust gas to remove nitrogen oxides and organic halogen compounds contained in the exhaust gas.
【請求項4】排ガスにアンモニアガスを添加して、上記
排ガスに含まれる窒素酸化物,一酸化炭素及び有機ハロ
ゲン化合物を除去処理する請求項2記載の有機ハロゲン
化合物の酸化分解処理方法。
4. The method according to claim 2, wherein ammonia gas is added to the exhaust gas to remove nitrogen oxides, carbon monoxide and organic halogen compounds contained in the exhaust gas.
JP4508700A 1991-04-30 1992-04-27 Method for oxidative decomposition of organic halogen compounds Expired - Fee Related JP2916259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4508700A JP2916259B2 (en) 1991-04-30 1992-04-27 Method for oxidative decomposition of organic halogen compounds

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP12846491 1991-04-30
JP3-128464 1991-04-30
PCT/JP1992/000552 WO1992019366A1 (en) 1991-04-30 1992-04-27 Method of oxidative decomposition of organic halogen compound
JP4508700A JP2916259B2 (en) 1991-04-30 1992-04-27 Method for oxidative decomposition of organic halogen compounds

Publications (1)

Publication Number Publication Date
JP2916259B2 true JP2916259B2 (en) 1999-07-05

Family

ID=26464123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4508700A Expired - Fee Related JP2916259B2 (en) 1991-04-30 1992-04-27 Method for oxidative decomposition of organic halogen compounds

Country Status (1)

Country Link
JP (1) JP2916259B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638486B2 (en) 2000-03-08 2003-10-28 Nippon Shokubai Co., Ltd. Catalyst for purification of exhaust gases, production process therefor, and process for purification of exhaust gases
US6716404B2 (en) 1999-12-28 2004-04-06 Nippon Shokubai Co., Ltd. Process for the purification of exhaust gases
US6855304B2 (en) 1999-06-25 2005-02-15 Nippon Shokubai Co., Ltd. Catalyst and process for removing organohalogen compounds

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855304B2 (en) 1999-06-25 2005-02-15 Nippon Shokubai Co., Ltd. Catalyst and process for removing organohalogen compounds
US6716404B2 (en) 1999-12-28 2004-04-06 Nippon Shokubai Co., Ltd. Process for the purification of exhaust gases
US6638486B2 (en) 2000-03-08 2003-10-28 Nippon Shokubai Co., Ltd. Catalyst for purification of exhaust gases, production process therefor, and process for purification of exhaust gases
US6884402B2 (en) 2000-03-08 2005-04-26 Nippon Shokubai Co., Ltd. Catalyst for purification of exhaust gases, production process therefor, and process for purification of exhaust gases

Similar Documents

Publication Publication Date Title
EP0547226B1 (en) Method of oxidative decomposition of organic halogen compound
JP3326836B2 (en) Catalyst body and method for producing catalyst body
JPH064126B2 (en) Exhaust gas purification method
JP4113090B2 (en) Exhaust gas treatment method
KR100456748B1 (en) Catalyst for purification of exhaust gases, production process therefor, and process for purification of exhaust gases
JP2916259B2 (en) Method for oxidative decomposition of organic halogen compounds
JP2916377B2 (en) Ammonia decomposition catalyst and method for decomposing ammonia using the catalyst
JP3828308B2 (en) Purification method for exhaust gas containing organic bromine compounds
JPS6297643A (en) Ozone decomposing catalyst
JP2006320803A (en) Catalyst and method for treating exhaust gas
JP3091820B2 (en) Exhaust gas deodorization and denitration catalyst and deodorization and denitration method using the catalyst
JP3256660B2 (en) Purification method of ammonia-containing exhaust gas
JPH08141398A (en) Catalyst for decomposing ammonia
JP3860734B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP4098698B2 (en) Exhaust gas treatment method
JP2000126601A (en) Decomposition catalyst for organic halogen compound and decomposition method
JP3760090B2 (en) Organohalogen compound decomposition catalyst and method for treating organohalogen compound
JP3739659B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method, and exhaust gas treatment catalyst manufacturing method
JP2982623B2 (en) Detoxification method of ammonia-containing exhaust gas
JP2825343B2 (en) Method for producing catalyst for removing nitrogen oxides
JP3739032B2 (en) Catalyst for removing organic halogen compound, method for producing the same, and method for removing organic halogen compound
JP2619470B2 (en) Catalyst for simultaneous removal of nitrogen oxides and carbon monoxide
JP4098697B2 (en) Exhaust gas treatment method
JP3948060B2 (en) Halogen-containing organic compound combustion removal catalyst and combustion removal method
JPH09276697A (en) Exhaust gas cleaning catalyst and exhaust gas purifying method using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees