JP4439855B2 - Cleaning sheet and method for cleaning substrate processing apparatus using the same - Google Patents

Cleaning sheet and method for cleaning substrate processing apparatus using the same Download PDF

Info

Publication number
JP4439855B2
JP4439855B2 JP2003288348A JP2003288348A JP4439855B2 JP 4439855 B2 JP4439855 B2 JP 4439855B2 JP 2003288348 A JP2003288348 A JP 2003288348A JP 2003288348 A JP2003288348 A JP 2003288348A JP 4439855 B2 JP4439855 B2 JP 4439855B2
Authority
JP
Japan
Prior art keywords
cleaning
less
foreign matter
substrate processing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003288348A
Other languages
Japanese (ja)
Other versions
JP2005052784A (en
Inventor
大介 宇圓田
伸明 丸岡
好夫 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2003288348A priority Critical patent/JP4439855B2/en
Publication of JP2005052784A publication Critical patent/JP2005052784A/en
Application granted granted Critical
Publication of JP4439855B2 publication Critical patent/JP4439855B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0028Cleaning by methods not provided for in a single other subclass or a single group in this subclass by adhesive surfaces

Description

本発明は、基板処理装置をクリーニングするためのクリーニングシートとこれを用いた基板処理装置のクリーニング方法に関するものである。   The present invention relates to a cleaning sheet for cleaning a substrate processing apparatus and a method for cleaning a substrate processing apparatus using the same.

半導体、フラットパネルディスプレイ、プリント基板などの製造装置や検査装置など、異物を嫌う各種の基板処理装置では、各搬送系と基板とを物理的に接触させながら搬送する。その際、基板や搬送系に異物が付着していると、後続の基板をつぎつぎに汚染することになるため、定期的に装置を停止して洗浄処理する必要があり、稼動率の低下や多大な労力が必要という問題があった。   In various substrate processing apparatuses that dislike foreign matters, such as manufacturing apparatuses and inspection apparatuses such as semiconductors, flat panel displays, and printed circuit boards, the respective transport systems and the substrate are transported while being physically contacted. At that time, if foreign matter adheres to the substrate or the transport system, subsequent substrates will be contaminated one after another. Therefore, it is necessary to periodically stop the device and perform the cleaning process. There was a problem that a lot of labor was required.

これらの問題を解決するため、基板処理装置内に、クリーニング部材として粘着性物質を固着した基板を搬送して、装置内に付着した異物をクリーニング除去する方法(特許文献1参照)や、板状部材を搬送して基板裏面に付着した異物をクリーニング除去する方法(特許文献2参照)が提案されている。これらの提案方法は、前記の問題を解決する有効な方法であり、とくに前者の粘着性物質を固着した基板を搬送する方法は、後者の方法に比べて、異物の除去性によりすぐれている。   In order to solve these problems, a method of transporting a substrate having an adhesive substance fixed as a cleaning member into a substrate processing apparatus and cleaning and removing foreign substances adhering to the apparatus (see Patent Document 1), A method of cleaning and removing foreign substances adhering to the back surface of a substrate by conveying a member has been proposed (see Patent Document 2). These proposed methods are effective methods for solving the above-described problems. In particular, the former method of transporting a substrate to which an adhesive substance is fixed is superior to the latter method in terms of removing foreign matters.

特開平10−154686号公報(第2〜4頁)JP-A-10-154686 (pages 2 to 4) 特開平11−87458号公報(第2〜3頁)Japanese Patent Laid-Open No. 11-87458 (pages 2 to 3)

半導体デバイスの微細化に伴い、ウエハ表面のみならずウエハ裏面への異物の付着も問題となっている。洗浄工程でウエハ裏面からウエハ表面への異物の乗り移りが起こり、製品歩留まりを低下させるためである。現在、半導体素子の配線幅は0.18μmが主で、これと同じか大きいサイズの異物が付着すると、断線などの不良が起こりやすい。とくに0.2〜1.0μm程度の粒子径をもつ異物が問題となっているが、前記提案方法では、これらの異物を除去する方法として十分ではなかった。   Along with the miniaturization of semiconductor devices, adhesion of foreign matter not only on the wafer surface but also on the wafer back surface has become a problem. This is because foreign matters are transferred from the back surface of the wafer to the front surface of the wafer in the cleaning process, thereby reducing the product yield. At present, the wiring width of the semiconductor element is mainly 0.18 μm, and if a foreign substance having the same or larger size adheres, defects such as disconnection are likely to occur. In particular, foreign matter having a particle diameter of about 0.2 to 1.0 μm is a problem, but the proposed method is not sufficient as a method for removing these foreign matters.

本発明は、このような事情に照らし、基板処理装置内に付着する0.2〜1.0μm程度の粒子径をもつ異物を効率良く除去できるクリーニングシートとこれを用いた基板処理装置のクリーニング方法を提供することを目的としている。   In light of such circumstances, the present invention provides a cleaning sheet capable of efficiently removing foreign matters having a particle diameter of about 0.2 to 1.0 μm adhering to the substrate processing apparatus, and a method for cleaning a substrate processing apparatus using the same. The purpose is to provide.

本発明者らは、上記の目的を達成するために、鋭意検討した結果、クリーニングシートの表面形状を制御し、異物との物理的な接触面積を積極的に増やすことによって、とくに0.2〜1.0μm程度の粒子径をもつ異物を効率良く除去できるクリーニングシートが得られることを知り、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the inventors of the present invention controlled the surface shape of the cleaning sheet and positively increased the physical contact area with foreign matter, in particular from 0.2 to Knowing that a cleaning sheet capable of efficiently removing foreign substances having a particle size of about 1.0 μm can be obtained, the present invention has been completed.

すなわち、本発明は、基板処理装置内に搬送して上記装置内に付着する0.2μm以上1μm未満の粒子径をもつ異物をこれよりも大きな粒子径をもつ異物と共に接触により付着除去するためのクリーニングシートであって、平均表面粗さRaが0.05μm以下であるクリーニング層を有することを特徴とするクリーニングシートに係るものである。

とくに、本発明は、上記のクリーニング層が実質的に粘着力を有しない上記構成のクリーニングシート、支持体の片面に平均表面粗さRaが0.05μm以下であるクリーニング層を有する上記構成のクリーニングシート、クリーニング層の背面側に直接または支持体を介して粘着剤層が設けられている上記構成のクリーニングシートを提供できるものである。
That is, the present invention is a method for adhering and removing foreign matter having a particle diameter of 0.2 μm or more and less than 1 μm adhering to the inside of the substrate processing apparatus by contact with the foreign substance having a larger particle diameter. The present invention relates to a cleaning sheet having a cleaning layer having an average surface roughness Ra of 0.05 μm or less.

In particular, the present invention provides a cleaning sheet having the above-described configuration in which the cleaning layer has substantially no adhesive force, and a cleaning layer having the cleaning layer having an average surface roughness Ra of 0.05 μm or less on one side of the support. It is possible to provide a cleaning sheet having the above-described configuration in which an adhesive layer is provided directly or via a support on the back side of the sheet or cleaning layer.

また、本発明は、搬送部材に上記各構成のクリーニングシートが粘着剤層を介して設けられているクリーニング機能付き搬送部材を提供できるものである。さらに、本発明は、上記のクリーニング機能付き搬送部材を基板処理装置内に搬送することを特徴とする基板処理装置のクリーニング方法を提供できるものである。また、本発明は、上記のクリーニング方法によりクリーニングされた基板処理装置を提供できるものである。   Moreover, this invention can provide the conveyance member with a cleaning function by which the cleaning sheet of each said structure is provided in the conveyance member via the adhesive layer. Furthermore, the present invention can provide a cleaning method for a substrate processing apparatus, which transports the transport member with a cleaning function described above into the substrate processing apparatus. In addition, the present invention can provide a substrate processing apparatus cleaned by the above-described cleaning method.

本明細書において、クリーニング層の「平均表面粗さRa」および「最大表面粗さRmax」は、触針式表面粗さ測定装置(Tencor社製の「P−11」)にて、先端部の曲率が2μmのダイヤモンド製触針を用い、針押し付け力5mg、測定スピード1μm/秒(測定長さ100μm)、サンプリング周期200Hzでデータを取り込んで測定した。「平均表面粗さRa」はカットオフ値25〜80μmとして算出した。   In this specification, “average surface roughness Ra” and “maximum surface roughness Rmax” of the cleaning layer are measured with a stylus type surface roughness measuring device (“P-11” manufactured by Tencor) at the tip. Using a diamond stylus having a curvature of 2 μm, the measurement was performed by acquiring data at a needle pressing force of 5 mg, a measurement speed of 1 μm / second (measurement length of 100 μm), and a sampling period of 200 Hz. “Average surface roughness Ra” was calculated as a cut-off value of 25 to 80 μm.

このように、本発明は、クリーニング層の表面粗さを小さくして、平均表面粗さRaが0.05μm以下となるクリーニングシートを用いたことにより、基板処理装置内に付着する、半導体素子の断線などの不良の原因となりやすい0.2〜1.0μm程度の粒子径をもつ異物を効率良く除去でき、クリーニング効果を大きく向上できる。   As described above, the present invention reduces the surface roughness of the cleaning layer and uses the cleaning sheet having an average surface roughness Ra of 0.05 μm or less. Foreign matter having a particle diameter of about 0.2 to 1.0 μm, which is likely to cause defects such as disconnection, can be efficiently removed, and the cleaning effect can be greatly improved.

本発明におけるクリーニング層は、表面平滑なものほどよく、平均表面粗さRaを0.05μm以下、好ましくは0.01μm以下に設定する。また、最大表面粗さRmaxは0.5μm以下であるのが好ましい。このような表面粗さに設定することにより、以下に述べるように、基板処理装置内に付着する0.2〜1.0μm程度の粒子径をもつ異物を効率良く除去できるという顕著な効果が奏される。   The cleaning layer in the present invention is preferably as smooth as possible, and the average surface roughness Ra is set to 0.05 μm or less, preferably 0.01 μm or less. The maximum surface roughness Rmax is preferably 0.5 μm or less. By setting such a surface roughness, as described below, there is a remarkable effect that foreign matters having a particle diameter of about 0.2 to 1.0 μm adhering to the substrate processing apparatus can be efficiently removed. Is done.

シリコンウエハへの異物の付着機構には、分子間力と静電気力が考えられる。チャックテーブル上の異物にウエハが接触した場合、ウエハと異物とが密接に接触すれば分子間力や静電気力(静電気が異符号の場合)が働き、異物がウエハ側へ付着する。そこで、この異物を除去するために、クリーニング層を接触させるが、その際に、クリーニング層の表面粗さを前記のように設定すると、異物との物理的な接触面積が増大し、とくに0.2〜1.0μm程度の粒子径をもつ異物を効果的に除去できるようになる。   Intermolecular force and electrostatic force can be considered as the adhesion mechanism of the foreign matter on the silicon wafer. When the wafer comes into contact with the foreign matter on the chuck table, if the wafer and the foreign matter come into close contact with each other, intermolecular force or electrostatic force (when static electricity has a different sign) works, and the foreign matter adheres to the wafer side. Therefore, in order to remove the foreign matter, the cleaning layer is brought into contact. At this time, if the surface roughness of the cleaning layer is set as described above, the physical contact area with the foreign matter is increased. Foreign matters having a particle diameter of about 2 to 1.0 μm can be effectively removed.

本発明におけるクリーニング層は、その材質などはとくに限定はないが、紫外線、放射線、熱などの活性エネルギー源によって重合硬化した樹脂層から構成されているのが望ましい。これは、上記の重合硬化により分子構造が三次元網状化して実質的に粘着性がなくなり、搬送時に装置接触部と強く接着することがなく、基板処理装置内を確実に搬送できるクリーニングシートが得られるからである。
上記の重合硬化した樹脂層としては、たとえば、感圧接着性ポリマーに、分子内に不飽和二重結合を1個以上有する化合物(以下、重合性不飽和化合物という)および重合開始剤と、必要により架橋剤などを含ませた硬化型の樹脂組成物を、活性エネルギー源とくに紫外線により硬化したものが挙げられる。
The material of the cleaning layer in the present invention is not particularly limited, but it is preferably composed of a resin layer polymerized and cured by an active energy source such as ultraviolet rays, radiation, or heat. This is because the above-mentioned polymerization and curing results in a three-dimensional network structure that is substantially non-adhesive and does not adhere strongly to the apparatus contact portion during conveyance, thereby obtaining a cleaning sheet that can be reliably conveyed through the substrate processing apparatus. Because it is.
As the above-mentioned polymerization-cured resin layer, for example, a pressure-sensitive adhesive polymer, a compound having at least one unsaturated double bond in the molecule (hereinafter referred to as a polymerizable unsaturated compound) and a polymerization initiator are necessary. And a curable resin composition containing a crosslinking agent by curing with an active energy source, particularly ultraviolet rays.

感圧接着性ポリマーとしては、たとえば、(メタ)アクリル酸および/または(メタ)アクリル酸エステルを主モノマーとしたアクリル系ポリマーが挙げられる。このアクリル系ポリマーの合成にあたり、共重合モノマーとして分子内に不飽和二重結合を2個以上有する化合物を用いたり、合成後のアクリル系ポリマーに分子内に不飽和二重結合を有する化合物を官能基間の反応で化合結合させるなどして、アクリル系ポリマーの分子内に不飽和二重結合を導入してもよい。この導入によりアクリル系ポリマー自体も活性エネルギー源による重合硬化反応に関与させることもできる。   Examples of the pressure-sensitive adhesive polymer include acrylic polymers having (meth) acrylic acid and / or (meth) acrylic acid ester as a main monomer. In synthesizing this acrylic polymer, a compound having two or more unsaturated double bonds in the molecule is used as a copolymerization monomer, or a compound having an unsaturated double bond in the molecule is functionalized in the synthesized acrylic polymer. An unsaturated double bond may be introduced into the molecule of the acrylic polymer, for example, by a chemical bond between the groups. By this introduction, the acrylic polymer itself can be involved in the polymerization curing reaction by the active energy source.

重合性不飽和化合物としては、不揮発性でかつ重量平均分子量が10,000以下の低分子量体であるのがよく、とくに硬化時の三次元網状化が効率良くなされるように、5,000以下の分子量を有しているのが好ましい。
このような重合性不飽和化合物には、フェノキシポリエチレングリコール(メタ)アクリレート、ε−カプロラクトン(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、オリゴエステル(メタ)アクリレートなどがあり、これらの中から、1種または2種以上が用いられる。
The polymerizable unsaturated compound is preferably a non-volatile and low molecular weight material having a weight average molecular weight of 10,000 or less, particularly 5,000 or less so that three-dimensional networking can be efficiently performed during curing. It is preferable to have a molecular weight of
Such polymerizable unsaturated compounds include phenoxy polyethylene glycol (meth) acrylate, ε-caprolactone (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolpropane tri (meth). There are acrylates, dipentaerythritol hexa (meth) acrylates, urethane (meth) acrylates, epoxy (meth) acrylates, oligoester (meth) acrylates, etc., and one or more of these are used.

重合開始剤としては、とくに限定されず、公知のものを使用できる。
たとえば、活性エネルギーに熱を用いる場合は、ペンゾイルパーオキサイド、アゾビスイソブチロニトリルなどの熱重合開始剤、また光を用いる場合は、ベンゾイル、ベンゾインエチルエーテル、シベンジル、イソプロピルベンゾインエーテル、ベンゾフェノン、ミヒラーズケトンクロロチオキサントン、ドデシルチオキサントン、シメチルチオキサントン、アセトフェノンジエチルケタール、ベンジルジメチルケタール、α−ヒドロキシシクロヒキシルフェニルケトン、2−ヒドロキシメチルフェニルプロパン、2,2−ジメトキシ−2−フェニルアセトフェノンなどの光重合開始剤が挙げられる。
It does not specifically limit as a polymerization initiator, A well-known thing can be used.
For example, when heat is used as the active energy, thermal polymerization initiators such as benzoyl peroxide and azobisisobutyronitrile are used. When light is used, benzoyl, benzoin ethyl ether, cibenzyl, isopropyl benzoin ether, benzophenone, Photopolymerization of Larsketone chlorothioxanthone, dodecylthioxanthone, cymethylthioxanthone, acetophenone diethyl ketal, benzyldimethyl ketal, α-hydroxycyclohexyl phenyl ketone, 2-hydroxymethylphenylpropane, 2,2-dimethoxy-2-phenylacetophenone Initiators are mentioned.

上記のクリーニング層は、シリコンウエハ(ミラー面)に対する180度引き剥がし粘着力(JIS Z0237に準じて測定)が0.2N/10mm幅以下、好ましくは0.01〜0.1N/10mm幅程度であるのがよい。このような低粘着ないし非粘着とすることにより、搬送時に装置内の被接触部と接着せず、搬送トラブルを引き起こす心配はない。また、上記のクリーニング層の厚さとしては、とくに限定されないが、通常は5〜100μm程度であるのがよい。   The cleaning layer described above has a 180-degree peeling adhesive force (measured according to JIS Z0237) of 0.2 N / 10 mm width or less, preferably about 0.01 to 0.1 N / 10 mm width to the silicon wafer (mirror surface). There should be. By making such low or non-adhesive, it does not adhere to the contacted part in the apparatus during transportation, and there is no fear of causing a transportation trouble. Further, the thickness of the cleaning layer is not particularly limited, but is usually about 5 to 100 μm.

このように構成されるクリーニング層を前記の表面粗さに設定するには、たとえば、鋳型であるシリコンウエハのミラー面に上記の硬化型の樹脂組成物を塗布し乾燥したのち、重合硬化させることにより、平均表面粗さRaが0.05μm以下、好ましくは0.01μm以下であるクリーニング層を形成できる。また、上記ミラー面を適度にアルカリエッチング処理することで、平均表面粗さRaを任意に制御することもできる。   In order to set the cleaning layer having the above-described surface roughness, for example, the above-mentioned curable resin composition is applied to a mirror surface of a silicon wafer as a mold, dried, and then cured by polymerization. Thus, a cleaning layer having an average surface roughness Ra of 0.05 μm or less, preferably 0.01 μm or less can be formed. Further, the average surface roughness Ra can be arbitrarily controlled by appropriately alkali-etching the mirror surface.

本発明において、クリーニングシートは、上記したクリーニング層単独で構成してもよいし、支持体を使用し、この支持体の片面に上記したクリーニング層を設けるようにしてもよい。また、これらのクリーニングシートを、基板処理装置内に搬送する場合、通常、クリーニングシートをシリコンウエハなどの搬送部材に貼り付けて搬送するのが普通である。このため、上記搬送部材への貼り付けを容易にするため、クリーニング層の背面側に直接または支持体を介して粘着剤層が設けておくのが望ましい。   In the present invention, the cleaning sheet may be composed of the above-described cleaning layer alone, or a support may be used, and the above-described cleaning layer may be provided on one side of the support. Further, when these cleaning sheets are transported into the substrate processing apparatus, the cleaning sheets are usually transported by being attached to a transport member such as a silicon wafer. For this reason, it is desirable to provide an adhesive layer directly or via a support on the back side of the cleaning layer in order to facilitate attachment to the transport member.

支持体は、とくに限定されない。ポリエチレン、ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテンなどのポリオレフィン系フィルムや、ポリ塩化ビニル、塩化ビニル共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリウレタン、エチレン・酢酸ビニル共重合体、アイオノマー樹脂、エチレン・(メタ)アクリル酸共重合体、エチレン・(メタ)アクリル酸エステル共重合体、ポリスチレン、ポリカーボネートなどからなるプラスチックフィルムが挙げられる。
これらの支持体は、その1種または2種以上を組み合わせて使用してもよく、また片面または両面にコロナ処理などの表面処理を施したものであってもよい。支持体の厚さは、通常10〜100μm程度であるのがよい。
The support is not particularly limited. Polyolefin films such as polyethylene, polypropylene, polybutene, polybutadiene, polymethylpentene, polyvinyl chloride, vinyl chloride copolymer, polyethylene terephthalate, polybutylene terephthalate, polyurethane, ethylene / vinyl acetate copolymer, ionomer resin, ethylene Examples of the plastic film include a (meth) acrylic acid copolymer, an ethylene / (meth) acrylic acid ester copolymer, polystyrene, and polycarbonate.
These supports may be used alone or in combination of two or more thereof, or may be one or both surfaces subjected to surface treatment such as corona treatment. The thickness of the support is usually about 10 to 100 μm.

クリーニング層の背面側に直接または支持体を介して設けられる粘着剤層は、シリコンウエハ(ミラー面)に対する180度引き剥がし粘着力が、0.01〜10N/10mm幅、好ましくは0.05〜5N/10mm幅であるのがよい。粘着力が高すぎると、クリーニングシートを基板などの搬送部材から剥離除去する際に、支持体が裂けるおそれがある。また、この粘着剤層の厚さは、とくに限定されないが、通常は5〜100μm、好ましくは10〜50μm程度であるのがよい。   The pressure-sensitive adhesive layer provided directly on the back side of the cleaning layer or via a support has a 180-degree peeling adhesive strength to the silicon wafer (mirror surface) of 0.01 to 10 N / 10 mm width, preferably 0.05 to It should be 5N / 10mm wide. If the adhesive force is too high, the support may be torn when the cleaning sheet is peeled off from the conveying member such as a substrate. The thickness of the pressure-sensitive adhesive layer is not particularly limited, but is usually 5 to 100 μm, preferably about 10 to 50 μm.

このような粘着剤層は、その材料構成について、とくに限定されず、アクリル系やゴム系など通常の粘着剤がいずれも使用できる。中でも、アクリル系の粘着剤として、重量平均分子量が10万以下の成分が10重量%以下であるアクリル系ポリマーを主剤としたものが、とくに好ましく用いられる。上記のアクリル系ポリマーは、(メタ)アクリル酸アルキルエステルを主モノマーとしこれに必要により共重合可能な他のモノマーを加えたモノマー混合物を重合反応させることにより、合成できるものである。   Such a pressure-sensitive adhesive layer is not particularly limited in terms of its material structure, and any ordinary pressure-sensitive adhesive such as acrylic or rubber can be used. Among them, as the acrylic pressure-sensitive adhesive, those mainly composed of an acrylic polymer having a weight average molecular weight of 100,000 or less and a component of 10% by weight or less are particularly preferably used. The above-mentioned acrylic polymer can be synthesized by polymerizing a monomer mixture in which (meth) acrylic acid alkyl ester is used as a main monomer and another monomer copolymerizable as necessary is added thereto.

上記のクリーニング層および粘着剤層には、クリーニングシートを使用するまでの間、表面保護のため、保護フィルムを貼り合わせておくのが望ましい。
この保護フィルムには、とくに限定はない。たとえば、シリコーン系、長鎖アルキル系、フッ素系、脂肪酸アミド系、シリカ系の剥離剤などで剥離処理された、ポリエチレン、ポリプロピレン、ポリブテン、ポリブタジェン、ポリメチルペンテンなどのポリオレフィン、ポリ塩化ビニル、塩化ビニル共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリウレタン、エチレン・酢酸ビニル共重合体、アイオノマー樹脂、エチレン・(メタ)アクリル酸共重合体、エチレン・(メタ)アクリル酸エステル共重合体、ポリスチレン、ポリカーボネートなどからなるプラスチックフィルムが挙げられる。また、ポリエチレン、ポリプロピレンなどのポリオレフィンからなるフィルムは、剥離処理しなくても離型性を有するため、それ単独を保護フィルムとして使用できる。このような保護フィルムの厚さは、通常10〜100μmであるのがよい。
A protective film is preferably bonded to the cleaning layer and the pressure-sensitive adhesive layer in order to protect the surface until the cleaning sheet is used.
There is no limitation in particular in this protective film. For example, polyolefins such as polyethylene, polypropylene, polybutene, polybutadiene, polymethylpentene, polyvinyl chloride, and vinyl chloride that have been stripped with silicone-based, long-chain alkyl-based, fluorine-based, fatty acid amide-based, and silica-based release agents. Copolymer, polyethylene terephthalate, polybutylene terephthalate, polyurethane, ethylene / vinyl acetate copolymer, ionomer resin, ethylene / (meth) acrylic acid copolymer, ethylene / (meth) acrylic acid ester copolymer, polystyrene, polycarbonate A plastic film made up of Moreover, since the film which consists of polyolefins, such as polyethylene and a polypropylene, has releasability even if it does not carry out a peeling process, it can be used as a protective film alone. The thickness of such a protective film is usually 10 to 100 μm.

本発明においては、既述のとおり、クリーニングシートを基板処理装置内に搬送するにあたり、通常、クリーニングシートをその粘着剤層を介して搬送部材に設けることによりクリーニング機能付き搬送部材としておくのがよい。ここで使用する搬送部材は、とくに限定はなく、異物除去の対象となる基板処理装置に応じて、各種の基板が用いられる。具体的には、半導体ウエハ、LCD、PDPなどのフラットパネルディスプレイ用基板、その他コンパクトディスク、MRヘッドなどの基板が挙げられる。   In the present invention, as described above, when the cleaning sheet is conveyed into the substrate processing apparatus, it is usually preferable to provide the cleaning sheet as a conveying member with a cleaning function by providing the cleaning sheet on the conveying member via the adhesive layer. . The transport member used here is not particularly limited, and various types of substrates are used depending on the substrate processing apparatus that is a target for removing foreign matter. Specific examples include substrates for flat panel displays such as semiconductor wafers, LCDs, and PDPs, and other compact disks and MR heads.

本発明においては、基板処理装置内に上記のクリーニング機能付き搬送部材を搬送して上記装置内の被洗浄部位に接触移動させることにより、上記装置内に付着している異物を搬送トラブルを生じることなく簡便かつ確実にクリーニング除去する。とくに、上記の搬送部材として、クリーニング層の平均表面粗さRaが特定値以下に規制された特定のクリーニングシートを貼り合わせたものを用いたことにより、0.2〜1μm程度との粒子径をもつ異物を効果的にクリーニング除去することができる。   In the present invention, the conveyance member with the cleaning function is conveyed into the substrate processing apparatus and moved to contact with the site to be cleaned in the apparatus, thereby causing a trouble in conveying the foreign matter adhering to the apparatus. Easily and reliably remove the cleaning. In particular, as the conveying member, a particle having a particle size of about 0.2 to 1 μm is obtained by using a bonded cleaning sheet in which the average surface roughness Ra of the cleaning layer is regulated to a specific value or less. It is possible to effectively remove and remove foreign matters.

本発明において、クリーニングが行われる基板処理装置としては、とくに限定されず、たとえば、露光装置、レジスト塗布装置、現像装置、アッシング装置、ドライエッチング装置、イオン注入装置、PVD装置、CVD装置などの各種の製造装置や検査装置などが挙げられる。本発明においては、前記のクリーニング方法によりクリーニングされた上記の各基板処理装置を提供できるものである。   In the present invention, the substrate processing apparatus to be cleaned is not particularly limited. For example, various types such as an exposure apparatus, a resist coating apparatus, a developing apparatus, an ashing apparatus, a dry etching apparatus, an ion implantation apparatus, a PVD apparatus, and a CVD apparatus. Manufacturing equipment and inspection equipment. In the present invention, each of the substrate processing apparatuses cleaned by the cleaning method can be provided.

つぎに、本発明の実施例を記載して、より具体的に説明する。
ただし、本発明は以下の実施例にのみ限定されるものではない。なお、以下において、部とあるのは重量部を意味するものとする。
Next, examples of the present invention will be described in more detail.
However, the present invention is not limited only to the following examples. In the following, “parts” means parts by weight.

以下の実施例では、クリーニングシートの評価のため、このシートを搬送部材に設けたクリーニング機能付き搬送部材について、半導体製造用のパターン付きウエハ上異物検査装置(日立DECO社製の「IS2500」)3台(装置A,装置B,装置C)を用い、上記部材の搬送前後でのシリコンウエハ鏡面に付着した異物数をレーザー散乱式異物検査装置(日立DECO製,LS6500)で測定して評価した。
上記の検査装置は、プログラムにより各サイズ別の異物数を測定できる。プログラムの原理は、異物サイズを直接測定するのではなく、標準粒子(ポリスチレン)の散乱強度に対応するサイズを求める。異物サイズは0.2μm以上1μm未満、1μm以上2μm未満、2μm以上3μm未満、3μm以上の4つに区別できる。
In the following examples, for the evaluation of the cleaning sheet, a conveyance member with a cleaning function provided with this sheet on the conveyance member is used as a patterned wafer foreign matter inspection apparatus for semiconductor manufacturing (“IS2500” manufactured by Hitachi DECO) 3 Using a table (apparatus A, apparatus B, apparatus C), the number of foreign substances adhering to the silicon wafer mirror surface before and after the conveyance of the above members was measured and evaluated with a laser scattering type foreign substance inspection apparatus (manufactured by Hitachi DECO, LS6500).
Said inspection apparatus can measure the number of foreign materials according to each size by a program. The principle of the program is that the size corresponding to the scattering intensity of the standard particles (polystyrene) is obtained instead of directly measuring the foreign substance size. The foreign substance size can be classified into four types, 0.2 μm or more and less than 1 μm, 1 μm or more and less than 2 μm, 2 μm or more and less than 3 μm, or 3 μm or more.

本実施例では、装置A(異物検査装置)を用いて、クリーニング評価を行った。
実施例1
アクリル酸2−エチルへキシル75部、アクリル酸メチル20部およびアクリル酸5部からなるモノマー混合物から得たアクリル系ポリマー(重量平均分子量70万)100部に、ポリエチレングリコール200ジメタクリレート(新中村化学社製の商品名「NKエステル4G」)200部、ポリイソシアネート化合物(日本ポリウレタン工業社製の商品名「コロネートL」)3部および光重合開始剤としてベンジルジメチルケタール(チバ・スペシャリティケミカルズ社製の商品名「イルガキュアー651」)3部を、均一に混合して、紫外線硬化型の樹脂組成物を調製した。
In this example, cleaning evaluation was performed using apparatus A (foreign particle inspection apparatus).
Example 1
Polyethylene glycol 200 dimethacrylate (Shin Nakamura Chemical Co., Ltd.) was added to 100 parts of an acrylic polymer (weight average molecular weight 700,000) obtained from a monomer mixture consisting of 75 parts of 2-ethylhexyl acrylate, 20 parts of methyl acrylate and 5 parts of acrylic acid. 200 parts of a product name “NK ester 4G” manufactured by the company, 3 parts of a polyisocyanate compound (trade name “Coronate L” manufactured by Nippon Polyurethane Industry Co., Ltd.), and benzyldimethyl ketal (manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator 3 parts of a trade name “Irgacure 651”) were uniformly mixed to prepare an ultraviolet curable resin composition.

つぎに、この紫外線硬化型の樹脂組成物を、シリコンウエハのミラー面(平均表面粗さRa:0.002μm)に、乾燥後の厚さが15μmとなるようにスピンコーターを用いて塗布した。乾燥機中で溶剤を蒸発させたのち、その上に支持体として厚さが25μmのポリエステルフィルムを貼り合わせた。その後、中心波長365nmの紫外線を積算光量1,000mJ/cm2 照射して、シリコンウエハ上に重合硬化した樹脂層からなるクリーニング層とその上の支持体を有する積層シートを作製した。 Next, this ultraviolet curable resin composition was applied to the mirror surface (average surface roughness Ra: 0.002 μm) of the silicon wafer using a spin coater so that the thickness after drying was 15 μm. After evaporating the solvent in a dryer, a polyester film having a thickness of 25 μm was pasted thereon as a support. Thereafter, an ultraviolet ray having a central wavelength of 365 nm was irradiated with an integrated light amount of 1,000 mJ / cm 2 to produce a laminated sheet having a cleaning layer composed of a resin layer polymerized and cured on a silicon wafer and a support thereon.

これとは別に、温度計、攪拌機、窒素導入管および還流冷却管を備えた内容量が500mlの3つ口フラスコ型反応器内に、アクリル酸2−エチルへキシル73部、アクリル酸n−ブチル10部、N,N−ジメチルアクリルアミド15部およびアクリル酸5部からなるモノマー混合物、重合開始剤として2,2′−アゾビスイソブチロニトリル0.15部、酢酸エチル100部を、全体が200gになるように配合して投入し、窒素ガスを約1時間導入しながら攪拌し、内部の空気を窒素で置換した。その後、内部の温度を58℃にし、この状態で約4時間保持して重合を行い、粘着剤ポリマー溶液を得た。この粘着剤ポリマー溶液100部に、ポリイソシアネート化合物(日本ポリウレタン工業社製の商品名「コロネートL」)3部を、均一に混合して、粘着剤溶液を調製した。   Separately, in a 500 ml three-necked flask reactor equipped with a thermometer, stirrer, nitrogen inlet tube and reflux condenser, 73 parts of 2-ethylhexyl acrylate, n-butyl acrylate A monomer mixture consisting of 10 parts, 15 parts of N, N-dimethylacrylamide and 5 parts of acrylic acid, 0.15 part of 2,2'-azobisisobutyronitrile as a polymerization initiator and 100 parts of ethyl acetate, totaling 200 g Then, the mixture was stirred while introducing nitrogen gas for about 1 hour, and the air inside was replaced with nitrogen. Thereafter, the internal temperature was set to 58 ° C., and the polymerization was carried out in this state for about 4 hours to obtain an adhesive polymer solution. To 100 parts of this pressure-sensitive adhesive polymer solution, 3 parts of a polyisocyanate compound (trade name “Coronate L” manufactured by Nippon Polyurethane Industry Co., Ltd.) was uniformly mixed to prepare a pressure-sensitive adhesive solution.

この粘着剤溶液を、シリコン処理した保護フィルム上に、乾燥後の厚さが15μmとなるように塗布し、溶剤を蒸発させて、粘着剤層を形成した。この粘着剤層面を、前記の方法で作製した積層シートの支持体上に貼り合わせたのち、シリコンウエハから積層品を剥離し、露出するクリーニング層に上記と同様の保護フィルムを貼り合わせた。これによりクリーニング層/支持体/粘着剤層の三層構造からなり、その両面に保護フィルムを有するクリーニングシートAを作製した。   This pressure-sensitive adhesive solution was applied on a silicon-treated protective film so that the thickness after drying was 15 μm, and the solvent was evaporated to form a pressure-sensitive adhesive layer. After sticking this pressure-sensitive adhesive layer surface on the support of the laminated sheet produced by the above method, the laminated product was peeled off from the silicon wafer, and a protective film similar to the above was stuck to the exposed cleaning layer. As a result, a cleaning sheet A having a three-layer structure of cleaning layer / support / adhesive layer and having protective films on both surfaces thereof was produced.

このクリーニングシートAのクリーニング層側の保護フィルムを剥がし、シリコンウエハ(ミラー面)に対する180°引き剥がし粘着力(JIS Z0237に準じて測定)を測定したところ、0.06N/10mmであった。また、このクリーニング層の引張り強さは440Mpaであった。ここで、引張り強さは、試験法JIS K7127に準じて、測定したものである。   The protective film on the cleaning layer side of the cleaning sheet A was peeled off, and the 180 ° peel adhesive strength (measured according to JIS Z0237) on the silicon wafer (mirror surface) was measured to be 0.06 N / 10 mm. The tensile strength of the cleaning layer was 440 Mpa. Here, the tensile strength is measured according to the test method JIS K7127.

つぎに、このクリーニングシートAの粘着剤層側の保護フィルムを剥がして、8インチシリコンウエハのミラー面にハンドローラで貼り付けることにより、クリーニング機能付き搬送部材Aを作製した。このクリーニング機能付き搬送部材Aは、クリーニング層の平均表面粗さRaが0.005μmであった。このクリーニング機能付き搬送部材Aについて、以下のように、クリーニング評価を行った。   Next, the protective film on the pressure-sensitive adhesive layer side of the cleaning sheet A was peeled off and attached to the mirror surface of an 8-inch silicon wafer with a hand roller to prepare a conveying member A with a cleaning function. This conveying member A with a cleaning function had an average surface roughness Ra of the cleaning layer of 0.005 μm. This conveyance member A with a cleaning function was evaluated for cleaning as follows.

まず、レーザー散乱式異物検査装置により、新品の8インチシリコンウエハミラー面の0.2μm以上の異物を測定したところ、4個であった。
この新品のシリコンウエハを、装置A(異物検査装置)に対し、ミラー面を下側にして搬送したのち、レーザー散乱式異物測定装置で0.2μm以上の異物数を測定した結果、サイズ別に、0.2μm以上1μm未満の範囲で9,948個、1μm以上2μm未満の範囲で6,584個、2μm以上3μm未満の範囲で2,781個、3μm以上の範囲で1,470個であり、全体で20,783個(異物数1)であった。
First, the number of foreign matters having a size of 0.2 μm or more on the surface of a new 8-inch silicon wafer mirror was measured by a laser scattering type foreign matter inspection apparatus.
After transporting this new silicon wafer to the device A (foreign particle inspection device) with the mirror surface facing downward, the number of foreign particles of 0.2 μm or more was measured by the laser scattering type particle measuring device. 9,948 in the range of 0.2 μm or more and less than 1 μm, 6,584 in the range of 1 μm or more and less than 2 μm, 2,781 in the range of 2 μm or more and less than 3 μm, 1,470 in the range of 3 μm or more, The total number was 20,783 (number of foreign matter 1).

つぎに、上記の20,783個の異物が付着していた装置Aに、前記のクリーニング機能付き搬送部材Aを搬送したところ、支障なく搬送できた。
その後に、新品の8インチシリコンウエハをミラー面を下側に向けて搬送したのち、再び、レーザー散乱式異物測定装置で0.2μm以上の異物を測定した結果、サイズ別に、0.2μm以上1μm未満の範囲で1,254個、1μm以上2μm未満の範囲で1,534個、2μm以上3μm未満の範囲で798個、3μm以上の範囲で587個であり、全体で4,173個(異物数2)であった。
Next, when the transport member A with the cleaning function was transported to the device A on which the 20,783 foreign substances were adhered, the transport was possible without any problem.
After that, a new 8-inch silicon wafer was transported with the mirror surface facing downward, and again a foreign matter of 0.2 μm or more was measured with a laser scattering type foreign matter measuring apparatus. 1,254 in the range of less than 1, 1534 in the range of 1 μm or more and less than 2 μm, 798 in the range of 2 μm or more and less than 3 μm, 587 in the range of 3 μm or more, and 4,173 in total (number of foreign substances 2).

上記の異物数2と前記の異物数1とから算出した異物除去率は、サイズ別に、0.2μm以上1μm未満の範囲で87%、1μm以上2μm未満の範囲で77%、2μm以上3μm未満の範囲で71%、3μm以上の範囲で60%であり、全体で80%であった。
なお、上記の異物除去率は、下記の式により、求めたものである。
異物除去率=〔1−(異物数2)/(異物数1)〕×100
The foreign matter removal rate calculated from the number of foreign matter 2 and the number of foreign matter 1 is 87% in the range of 0.2 μm or more and less than 1 μm, 77% in the range of 1 μm or more and less than 2 μm, and 77%, 2 μm or more and less than 3 μm. The range was 71%, the range of 3 μm or more was 60%, and the total was 80%.
In addition, said foreign material removal rate is calculated | required by the following formula.
Foreign matter removal rate = [1− (number of foreign matter 2) / (number of foreign matter 1)] × 100

本実施例では、装置B(異物検査装置)を用いて、クリーニング評価を行った。
実施例2
実施例1におけるクリーニング層とその上の支持体を有する積層シートの作製に際し、シリコンウエハ(ミラー面、平均表面粗さRa:0.002μmの)に代えて、アルカリエッチング処理したシリコンウエハ(処理時間3分間、平均表面粗さRa:0.045μm)を用いた以外は、実施例1と同様にして、クリーニングシートBおよびクリーニング機能付き搬送部材Bを作製した。このクリーニング機能付き搬送部材Bは、クリーニング層の平均表面粗さRaが0.042μmであった。このクリーニング機能付き搬送部材Bについて、以下のように、クリーニング評価を行った。
In this example, cleaning evaluation was performed using apparatus B (foreign particle inspection apparatus).
Example 2
In producing a laminated sheet having a cleaning layer and a support thereon in Example 1, instead of a silicon wafer (mirror surface, average surface roughness Ra: 0.002 μm), a silicon wafer subjected to alkali etching (processing time) A cleaning sheet B and a conveying member B with a cleaning function were produced in the same manner as in Example 1 except that the average surface roughness Ra: 0.045 μm was used for 3 minutes. This conveying member B with a cleaning function had an average surface roughness Ra of the cleaning layer of 0.042 μm. This transport member B with a cleaning function was evaluated for cleaning as follows.

まず、レーザー散乱式異物検査装置により、新品の8インチシリコンウエハミラー面の0.2μm以上の異物を測定したところ、4個であった。
この新品のシリコンウエハを、装置B(異物検査装置)に対し、ミラー面を下側にして搬送したのち、レーザー散乱式異物測定装置で0.2μm以上の異物数を測定した結果、サイズ別に、0.2μm以上1μm未満の範囲で10,456個、1μm以上2μm未満の範囲で7,234個、2μm以上3μm未満の範囲で2,485個、3μm以上の範囲で1,389個であり、全体で21,564個(異物数1)であった。
First, the number of foreign matters having a size of 0.2 μm or more on the surface of a new 8-inch silicon wafer mirror was measured by a laser scattering type foreign matter inspection apparatus.
After transporting this new silicon wafer to the device B (foreign particle inspection device) with the mirror surface facing downward, the number of foreign particles of 0.2 μm or more was measured with a laser scattering type particle measuring device. 10,456 in the range from 0.2 μm to less than 1 μm, 7,234 in the range from 1 μm to less than 2 μm, 2,485 in the range from 2 μm to less than 3 μm, 1,389 in the range from 3 μm to 3 μm, The total was 21,564 (number of foreign matter 1).

つぎに、上記の21,564個の異物が付着していた装置Bに、前記のクリーニング機能付き搬送部材Bを搬送したところ、支障なく搬送できた。
その後に、新品の8インチシリコンウエハをミラー面を下側に向けて搬送したのち、再び、レーザー散乱式異物測定装置で0.2μm以上の異物を測定した結果、サイズ別に、0.2μm以上1μm未満の範囲で4,587個、1μm以上2μm未満の範囲で2,787個、2μm以上3μm未満の範囲で879個、3μm以上の範囲で478個であり、全体で8,731個(異物数2)であった。
Next, when the transporting member B with the cleaning function was transported to the device B on which 21,564 foreign substances were adhered, it could be transported without any trouble.
After that, a new 8-inch silicon wafer was transported with the mirror surface facing downward, and again a foreign matter of 0.2 μm or more was measured with a laser scattering type foreign matter measuring apparatus. Less than 4,587, less than 1 μm and less than 2 μm, 2,787, more than 2 μm and less than 3 μm, 879, more than 3 μm and 478, and a total of 8,731 2).

上記の異物数2と前記の異物数1とから、前記の実施例1の場合と同様にして、異物除去率を算出した。その結果は、サイズ別に、0.2μm以上1μm未満の範囲で56%、1μm以上2μm未満の範囲で61%、2μm以上3μm未満の範囲で65%、3μm以上の範囲で66%であり、全体で60%であった。   The foreign matter removal rate was calculated from the above foreign matter number 2 and the above foreign matter number 1 in the same manner as in Example 1. The result is 56% in the range of 0.2 μm or more and less than 1 μm, 61% in the range of 1 μm or more and less than 2 μm, 65% in the range of 2 μm or more and less than 3 μm, and 66% in the range of 3 μm or more. It was 60%.

以下の比較例では、装置C(異物検査装置)を用いて、クリーニング評価を行った。
比較例1
実施例1におけるクリーニング層とその上の支持体を有する積層シートの作製に際し、シリコンウエハ(ミラー面、平均表面粗さRa:0.002μmの)に代えて、アルカリエッチング処理したシリコンウエハ(処理時間10分間、平均表面粗さRa:0.094μm)を用いた以外は、実施例1と同様にして、クリーニングシートCおよびクリーニング機能付き搬送部材Cを作製した。このクリーニング機能付き搬送部材Cは、クリーニング層の平均表面粗さRaが0.091μmであった。このクリーニング機能付き搬送部材Cについて、以下のように、クリーニング評価を行った。
In the following comparative examples, cleaning evaluation was performed using the apparatus C (foreign particle inspection apparatus).
Comparative Example 1
In producing a laminated sheet having a cleaning layer and a support thereon in Example 1, instead of a silicon wafer (mirror surface, average surface roughness Ra: 0.002 μm), a silicon wafer subjected to alkali etching (processing time) A cleaning sheet C and a conveying member C with a cleaning function were produced in the same manner as in Example 1 except that the average surface roughness Ra was 0.094 μm for 10 minutes. In this conveying member C with a cleaning function, the average surface roughness Ra of the cleaning layer was 0.091 μm. This conveyance member C with a cleaning function was subjected to cleaning evaluation as follows.

まず、レーザー散乱式異物検査装置により、新品の8インチシリコンウエハミラー面の0.2μm以上の異物を測定したところ、4個であった。
この新品のシリコンウエハを、装置C(異物検査装置)に対し、ミラー面を下側にして搬送したのち、レーザー散乱式異物測定装置で0.2μm以上の異物数を測定した結果、サイズ別に、0.2μm以上1μm未満の範囲で8,485個、1μm以上2μm未満の範囲で7,472個、2μm以上3μm未満の範囲で2,890個、3μm以上の範囲で1,602個であり、全体で20,449個(異物数1)であった。
First, the number of foreign matters having a size of 0.2 μm or more on the surface of a new 8-inch silicon wafer mirror was measured by a laser scattering type foreign matter inspection apparatus.
After transporting this new silicon wafer to the device C (foreign matter inspection device) with the mirror surface facing downward, the number of foreign matters of 0.2 μm or more was measured with a laser scattering type foreign matter measuring device. 8,485 in the range of 0.2 μm to less than 1 μm, 7,472 in the range of 1 μm to less than 2 μm, 2,890 in the range of 2 μm to less than 3 μm, 1,602 in the range of 3 μm or more, The total number was 20,449 (number of foreign matter 1).

つぎに、上記の20,449個の異物が付着していた装置Cに、前記のクリーニング機能付き搬送部材Cを搬送したところ、支障なく搬送できた。
その後に、新品の8インチシリコンウエハをミラー面を下側に向けて搬送したのち、再び、レーザー散乱式異物測定装置で0.2μm以上の異物を測定した結果、サイズ別に、0.2μm以上1μm未満の範囲で6,480個、1μm以上2μm未満の範囲で4,563個、2μm以上3μm未満の範囲で1,426個、3μm以上の範囲で598個であり、全体で13,067個(異物数2)であった。
Next, when the transport member C with the cleaning function was transported to the apparatus C on which the 20,449 foreign substances were adhered, the transport could be performed without any trouble.
After that, a new 8-inch silicon wafer was transported with the mirror surface facing downward, and again a foreign matter of 0.2 μm or more was measured with a laser scattering type foreign matter measuring apparatus. 6,480 in the range of less than 1,4563 in the range of 1 μm or more and less than 2 μm, 1,426 in the range of 2 μm or more and less than 3 μm, 598 in the range of 3 μm or more, and 13,067 in total ( The number of foreign matters was 2).

上記の異物数2と前記の異物数1とから、前記の実施例1の場合と同様にして、異物除去率を算出した。その結果は、サイズ別に、0.2μm以上1μm未満の範囲で24%、1μm以上2μm未満の範囲で39%、2μm以上3μm未満の範囲で51%、3μm以上の範囲で63%であり、全体で36%であった。この結果から、本比較例では0.2以上3μm未満の範囲、とくに0.2以上1μm未満の範囲の異物の除去性に劣っており、全体の除去率が大きく低下していることがわかる。   The foreign matter removal rate was calculated from the above foreign matter number 2 and the above foreign matter number 1 in the same manner as in Example 1. The result is 24% in the range of 0.2 μm or more and less than 1 μm, 39% in the range of 1 μm or more and less than 2 μm, 51% in the range of 2 μm or more and less than 3 μm, and 63% in the range of 3 μm or more. It was 36%. From this result, it can be seen that in this comparative example, the removal of foreign matters in the range of 0.2 to 3 μm, particularly in the range of 0.2 to 1 μm, is inferior, and the overall removal rate is greatly reduced.

上記の実施例1,2および比較例1のクリーニング評価結果について、下記の表1(異物数1)、表2(異物数2)および表3(異物除去率)に、まとめて示した。
なお、各表中、「Y1」は0.2μm以上1μm未満の範囲の異物、「Y2」は1μm以上2μm未満の範囲の異物、「Y3」は2μm以上3μm未満の範囲の異物、「Y4」は3μm以上の範囲の異物であり,「To」は異物全体である。
The cleaning evaluation results of Examples 1 and 2 and Comparative Example 1 are collectively shown in the following Table 1 (number of foreign matter 1), Table 2 (number of foreign matter 2) and Table 3 (foreign matter removal rate).
In each table, “Y1” is a foreign material in the range of 0.2 μm or more and less than 1 μm, “Y2” is a foreign material in the range of 1 μm or more and less than 2 μm, “Y3” is a foreign material in the range of 2 μm or more and less than 3 μm, “Y4” Is a foreign matter in the range of 3 μm or more, and “To” is the whole foreign matter.

表1
┌────┬───────┬────────────────────────┐
│ │クリーニング層│ 異物数1 (個) │
│ │の平均表面粗さ├────┬────┬────┬────┬────┤
│ │Ra(μm) │ Y1 │ Y2 │ Y3 │ Y4 │ To │
├────┼───────┼────┼────┼────┼────┼────┤
│実施例1│ 0.005 │ 9,948 │ 6,584 │ 2,781 │ 1,470 │ 20,783 │
│実施例2│ 0.042 │ 10,456 │ 7,234 │ 2,485 │ 1,389 │ 21,564 │
├────┼───────┼────┼────┼────┼────┼────┤
│比較例1│ 0.091 │ 8,485 │ 7,472 │ 2,890 │ 1,602 │ 20,449 │
└────┴───────┴────┴────┴────┴────┴────┘
Table 1
┌────┬───────┬────────────────────────┐
│ │Cleaning layer│ Number of foreign matter 1 (pieces) │
│ │ average surface roughness ├────┬────┬────┬────┬────┤
│ │Ra (μm) │ Y1 │ Y2 │ Y3 │ Y4 │ To │
├────┼───────┼────┼────┼────┼┼────┼────┤
│Example 1 │ 0.005 │ 9,948 │ 6,584 │ 2,781 │ 1,470 │ 20,783 │
│Example 2│ 0.042 │ 10,456 │ 7,234 │ 2,485 │ 1,389 │ 21,564 │
├────┼───────┼────┼────┼────┼┼────┼────┤
│Comparative Example 1│ 0.091 │ 8,485 │ 7,472 │ 2,890 │ 1,602 │ 20,449 │
└────┴───────┴────┴────┴────┴┴────┴────┘

表2
┌────┬───────┬────────────────────────┐
│ │クリーニング層│ 異物数2 (個) │
│ │の平均表面粗さ├────┬────┬────┬────┬────┤
│ │Ra(μm) │ Y1 │ Y2 │ Y3 │ Y4 │ To │
├────┼───────┼────┼────┼────┼────┼────┤
│実施例1│ 0.005 │ 1,254 │ 1,534 │ 798 │ 587 │ 4,173 │
│実施例2│ 0.042 │ 4,587 │ 2,787 │ 879 │ 478 │ 8,731 │
├────┼───────┼────┼────┼────┼────┼────┤
│比較例1│ 0.091 │ 6,480 │ 4,563 │ 1,426 │ 598 │ 13,067 │
└────┴───────┴────┴────┴────┴────┴────┘
Table 2
┌────┬───────┬────────────────────────┐
│ │Cleaning layer│ Number of foreign objects 2 (pieces) │
│ │ average surface roughness ├────┬────┬────┬────┬────┤
│ │Ra (μm) │ Y1 │ Y2 │ Y3 │ Y4 │ To │
├────┼───────┼────┼────┼────┼┼────┼────┤
│Example 1 │ 0.005 │ 1,254 │ 1,534 │ 798 │ 587 │ 4,173 │
│Example 2│ 0.042 │ 4,587 │ 2,787 │ 879 │ 478 │ 8,731 │
├────┼───────┼────┼────┼────┼┼────┼────┤
│Comparative Example 1│ 0.091 │ 6,480 │ 4,563 │ 1,426 │ 598 │ 13,067 │
└────┴───────┴────┴────┴────┴┴────┴────┘

表3
┌────┬───────┬────────────────────────┐
│ │クリーニング層│ 異物除去率 (%) │
│ │の平均表面粗さ├────┬────┬────┬────┬────┤
│ │Ra(μm) │ Y1 │ Y2 │ Y3 │ Y4 │ To │
├────┼───────┼────┼────┼────┼────┼────┤
│実施例1│ 0.005 │ 87 │ 77 │ 71 │ 60 │ 80 │
│実施例2│ 0.042 │ 56 │ 61 │ 65 │ 66 │ 60 │
├────┼───────┼────┼────┼────┼────┼────┤
│比較例1│ 0.091 │ 24 │ 39 │ 51 │ 63 │ 36 │
└────┴───────┴────┴────┴────┴────┴────┘
Table 3
┌────┬───────┬────────────────────────┐
│ │Cleaning layer│ Foreign matter removal rate (%) │
│ │ average surface roughness ├────┬────┬────┬────┬────┤
│ │Ra (μm) │ Y1 │ Y2 │ Y3 │ Y4 │ To │
├────┼───────┼────┼────┼────┼┼────┼────┤
│Example 1│ 0.005 │ 87 │ 77 │ 71 │ 60 │ 80 │
│Example 2│ 0.042 │ 56 │ 61 │ 65 │ 66 │ 60 │
├────┼───────┼────┼────┼────┼┼────┼────┤
│Comparative Example 1│ 0.091 │ 24 │ 39 │ 51 │ 63 │ 36 │
└────┴───────┴────┴────┴────┴┴────┴────┘

上記の結果から、本発明のように、クリーニング層の平均表面粗さRaを0.05μm以下、とくに0.01μm以下に設定することにより、基板処理装置に付着する0.2〜1μm程度の異物を効率良く除去でき、異物除去効果の大きいクリーニングシートおよびクリーニング方法を提供できるものであることがわかる。
From the above results, as in the present invention, by setting the average surface roughness Ra of the cleaning layer to 0.05 μm or less, particularly 0.01 μm or less, foreign matter of about 0.2 to 1 μm adhering to the substrate processing apparatus. It can be seen that it is possible to provide a cleaning sheet and a cleaning method that can efficiently remove the particles and have a large foreign matter removing effect.

Claims (7)

基板処理装置内に搬送して上記装置内に付着する0.2μm以上1μm未満の粒子径をもつ異物をこれよりも大きな粒子径をもつ異物と共に接触により付着除去するためのクリーニングシートであって、平均表面粗さRaが0.05μm以下であるクリーニング層を有することを特徴とするクリーニングシート。

A cleaning sheet for removing foreign matter having a particle diameter of 0.2 μm or more and less than 1 μm that is transported into a substrate processing apparatus and adhered to the apparatus together with foreign substances having a larger particle diameter by contact , A cleaning sheet comprising a cleaning layer having an average surface roughness Ra of 0.05 μm or less.

クリーニング層は実質的に粘着力を有しない請求項1に記載のクリーニングシート。   The cleaning sheet according to claim 1, wherein the cleaning layer has substantially no adhesive force. 支持体の片面に平均表面粗さRaが0.05μm以下であるクリーニング層を有する請求項1または2に記載のクリーニングシート。   The cleaning sheet according to claim 1, wherein the cleaning sheet has a cleaning layer having an average surface roughness Ra of 0.05 μm or less on one side of the support. クリーニング層の背面側に直接または支持体を介して粘着剤層が設けられている請求項1〜3のいずれかに記載のクリーニングシート。   The cleaning sheet according to any one of claims 1 to 3, wherein an adhesive layer is provided directly or via a support on the back side of the cleaning layer. 搬送部材に請求項4に記載のクリーニングシートが粘着剤層を介して設けられているクリーニング機能付き搬送部材。   A conveyance member with a cleaning function, wherein the cleaning sheet according to claim 4 is provided on the conveyance member via an adhesive layer. 請求項5に記載のクリーニング機能付き搬送部材を基板処理装置内に搬送することを特徴とする基板処理装置のクリーニング方法。   6. A method for cleaning a substrate processing apparatus, comprising transporting the transport member with a cleaning function according to claim 5 into the substrate processing apparatus. 請求項6に記載のクリーニング方法によりクリーニングされた基板処理装置。
A substrate processing apparatus cleaned by the cleaning method according to claim 6.
JP2003288348A 2003-08-07 2003-08-07 Cleaning sheet and method for cleaning substrate processing apparatus using the same Expired - Lifetime JP4439855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003288348A JP4439855B2 (en) 2003-08-07 2003-08-07 Cleaning sheet and method for cleaning substrate processing apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003288348A JP4439855B2 (en) 2003-08-07 2003-08-07 Cleaning sheet and method for cleaning substrate processing apparatus using the same

Publications (2)

Publication Number Publication Date
JP2005052784A JP2005052784A (en) 2005-03-03
JP4439855B2 true JP4439855B2 (en) 2010-03-24

Family

ID=34367020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003288348A Expired - Lifetime JP4439855B2 (en) 2003-08-07 2003-08-07 Cleaning sheet and method for cleaning substrate processing apparatus using the same

Country Status (1)

Country Link
JP (1) JP4439855B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101941005A (en) * 2010-07-27 2011-01-12 清华大学 Eraser device and processing method thereof as well as method for cleaning by using device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1942519A4 (en) 2005-10-25 2010-11-10 Nitto Denko Corp Cleaning sheet, transfer member provided with cleaning function, and method for cleaning substrate processing apparatus
JP4919337B2 (en) * 2005-10-25 2012-04-18 日東電工株式会社 Cleaning sheet, conveying member with cleaning function, and cleaning method for substrate processing apparatus
CN104204954B (en) 2012-04-02 2016-05-11 Asml荷兰有限公司 Fume measuring method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101941005A (en) * 2010-07-27 2011-01-12 清华大学 Eraser device and processing method thereof as well as method for cleaning by using device
CN101941005B (en) * 2010-07-27 2013-08-21 清华大学 Eraser device and processing method thereof as well as method for cleaning by using device

Also Published As

Publication number Publication date
JP2005052784A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP3987720B2 (en) Cleaning sheet and method for cleaning substrate processing apparatus using the same
WO2004048008A1 (en) Cleaning sheet and method for cleaning substrate processing apparatus
JP4718667B2 (en) Cleaning sheet
JP4439855B2 (en) Cleaning sheet and method for cleaning substrate processing apparatus using the same
JP2000312862A (en) Cleaning sheet
JP2005286261A (en) Transfer member having cleaning function and method of cleaning substrate processing apparatus
JP2005032971A (en) Cleaning method of substrate processing apparatus
JP3740004B2 (en) Cleaning sheet and substrate processing apparatus cleaning method using the same
JP4456666B2 (en) Cleaning sheet, conveying member with cleaning function, and method for cleaning substrate processing apparatus using them
JP2001198075A (en) Cleaning sheet
JP3981243B2 (en) Conveying member with cleaning function and cleaning label sheet used therefor
JP2005268483A (en) Manufacturing method of conveying member with cleaning function, its manufacturing device, and the cleaning method of substrate processing device
JP4248018B2 (en) Cleaning sheet and cleaning method for substrate processing apparatus
JP4316105B2 (en) Cleaning sheet
JP3701881B2 (en) Cleaning sheet and method for cleaning substrate processing apparatus using the same
JP2005270553A (en) Cleaning sheet and method for cleaning substrate processing apparatus
JP4593935B2 (en) Conveying member with cleaning function and method for cleaning substrate processing apparatus
JP2004174315A (en) Cleaning sheet and cleaning method of substrate treating apparatus
JP4406156B2 (en) Cleaning method for substrate processing apparatus and cleaning sheet used therefor
JP2003142370A (en) Method for cleaning apparatus with reticle in contact
JP4280120B2 (en) Cleaning sheet and method for cleaning substrate processing apparatus using the same
JP4130087B2 (en) How to remove particles
JP2002018377A (en) Cleaning sheet and method for cleaning substrate treating device by using the sheet
JP2001131508A (en) Cleaning sheet
JP2002214271A (en) Cleaning member and method for cleaning electrical continuity inspection device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4439855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160115

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term