JP4423667B2 - 電流帰還モジュール - Google Patents

電流帰還モジュール Download PDF

Info

Publication number
JP4423667B2
JP4423667B2 JP2004095083A JP2004095083A JP4423667B2 JP 4423667 B2 JP4423667 B2 JP 4423667B2 JP 2004095083 A JP2004095083 A JP 2004095083A JP 2004095083 A JP2004095083 A JP 2004095083A JP 4423667 B2 JP4423667 B2 JP 4423667B2
Authority
JP
Japan
Prior art keywords
voltage
current
load
circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004095083A
Other languages
English (en)
Other versions
JP2005287131A (ja
Inventor
明 前田
Original Assignee
Tdkラムダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdkラムダ株式会社 filed Critical Tdkラムダ株式会社
Priority to JP2004095083A priority Critical patent/JP4423667B2/ja
Publication of JP2005287131A publication Critical patent/JP2005287131A/ja
Application granted granted Critical
Publication of JP4423667B2 publication Critical patent/JP4423667B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

本発明は、電圧帰還回路によりリモートセンシング端子間若しくは出力端子間の電圧の安定化を図る電源装置とは別個に、この電源装置に対して着脱可能に設けられる独立した電流帰還モジュールに関する。
一般に電源装置は、負荷に供給する出力電圧の安定化を図るために電圧帰還回路が設けられている。例えば特許文献1,2には、負荷に出力電圧を供給する出力端子の他に、出力端子から負荷への出力電圧ラインの電圧降下を考慮して一対のリモートセンシング端子を設け、リモートセンシング端子間に取り込まれた電圧を分圧して基準電圧と比較して、その比較結果をパルス幅制御回路にフィードバックすることで、リモートセンシング端子間の電圧を安定に保つ電源装置が開示されている。このような電源装置では、出力電圧ラインの電圧降下が無視できない場合に、リモートセンシング端子と負荷両端との間にリモートセンシング線を接続することで、負荷両端の電圧を一定に保つ制御が行なわれる。
図9は、こうした電圧帰還回路を備えた電源装置の一例を示すものである。同図において、1は出力端子+Vo,−Voに所定の直流出力電圧Voutを供給する電源装置であって、この電源装置1は周知のように、入力端子+Vi,−Vi間の直流入力電圧Vinを出力電圧Voutに変換するDC/DCコンバータ部2と、リモートセンシング端子+S,−S間の電圧を一定に保つようにDC/DCコンバータ部2をフィードバック制御する電圧帰還回路3とにより構成される。このリモートセンシング端子+S,−Sは、出力端子+Vo,−Voから負荷4に至る一対の出力電圧ライン5,6に、リモートセンシング線を介してそれぞれ接続される。
前記DC/DCコンバータ部2は、一次側と二次側とを絶縁するトランス11と、トランス11の一次巻線に入力電圧Vinを断続的に印加するスイッチング素子12と、このスイッチング素子12のスイッチング動作に伴ない、トランス11の二次巻線に誘起される電圧を整流平滑して出力電圧Voutを得る整流平滑回路13とにより構成される。なお、ここではスイッチング素子12のオン時にトランス11の二次側にエネルギーを送り出すフォワード型コンバータを示したが、フライバック型あるいはその他の各種コンバータを用いてもよい。また、トランス11を用いない非絶縁のDC/DCコンバータ部2であってもよい。
一方、電圧帰還回路3は、リモートセンシング端子+S,−S間の電圧を分圧した検出電圧を得る電圧検出回路としての分圧抵抗21,22と、電源装置1内部で生成される第1の動作電圧Vcc1(例えば、DC2.5V)を分圧して基準電圧VREFを得る基準電圧生成回路としての抵抗23,24,25および可変抵抗26と、前記分圧抵抗21,22の接続点に発生する電圧帰還回路3の検出電圧と基準電圧VREFとを比較増幅するオペアンプ27と、このオペアンプ27で得られた検出電圧と基準電圧VREFとの比較結果を、電気的に絶縁して信号伝送するフォトカプラ28と、フォトカプラ28により伝送された前記比較結果に基づき、リモートセンシング端子+S,−S間の電圧を一定に保つようにスイッチング素子11のパルス導通幅を制御するPWM制御回路29とを備えて構成される。また、前記フォトカプラ28は発光素子28Aと受光素子28Bを組み合わせてなり、電源装置1内部で生成される第2の動作電圧Vcc2(例えば、DC6V)と前記オペアンプ27の出力端子との間に、抵抗31,発光素子28Aからなる直列回路が接続される一方で、トランス12の一次側に置かれるPWM制御回路29に受光素子28Bが接続される。
その他、電圧帰還回路3には、この電圧帰還回路3の交流ゲインを決める抵抗34,35と、オペアンプ27の位相補償用のコンデンサ36がそれぞれ設けられる。より具体的には、分圧抵抗21,22の接続点とオペアンプ27の反転入力端子との間に抵抗34が接続され、このオペアンプ27の反転入力端子と出力端子との間に、抵抗35とコンデンサ36との直列回路が接続される。
また、TRIMは可変抵抗26と抵抗24の接続点に接続し、かつリモートセンシング端子−Sとの間にコンデンサ39を接続する電圧可変端子であり、この電圧可変端子TRIMに外部から指令電圧を与えることにより、リモートセンシング端子+S,−S間の電圧ひいては出力電圧Voutを任意に調整することができる。なお、ここでは電圧可変端子TRIMとリモートセンシング端子−Sとの間に外部固定抵抗41を接続し、代わりに同等の機能を有する電圧調整用の可変抵抗42を、別の抵抗43と共にリモートセンシング端子+Sから一方の出力電圧ライン5に至るリモートセンシング線に挿入接続している。
さらに、出力端子+Vo,−Voから負荷4に至る出力電圧ライン5,6間には、電解コンデンサ45,46とダミー抵抗47がそれぞれ接続される。さらに、電解コンデンサ45の一端とダミー抵抗47の一端との間の出力電圧ライン5には、特に電源装置1の並列運転時において、出力端子+Vo側への電流の流れ込みを阻止する出力ダイオード48が挿入接続される。なお、単独の電源装置1から負荷4に電力を供給する場合は、この出力ダイオード48および電解コンデンサ45は不要になる。可変抵抗42および抵抗43を挿入接続したリモートセンシング端子+Sからのリモートセンシング線は、出力電圧ライン5のダミー抵抗47と出力ダイオード48の接続点49に接続される一方で、リモートセンシング端子−Sからのリモートセンシング線は、出力端子−Voに直接接続される。前述のように、電圧帰還回路3はリモートセンシング端子+S,−S間で予め設定された電圧が安定して発生するように、DC/DCコンバータ部2をフィードバック制御するが、この場合は一方のリモートセンシング線に可変抵抗42および抵抗43が挿入接続されていることにより、出力電圧ライン5の接続点49と出力端子−Vo間の電圧を、その設定された電圧よりも高く可変調整することができる。
特開平7‐281771号公報 特開平8−44438号公報
上記構成において、負荷4への電流(負荷電流)が例えば0Aから急に変化するような場合には、この急変する負荷電流ILの量が増えるにしたがって、負荷4の両端間の電圧(負荷電圧)VLの変動量も大きくなる。一例として、出力ダイオード48のカソード側の電圧すなわち負荷電圧VLがDC2.1Vで、±3パーセントの負荷電圧VLの安定度(負荷電圧VLの変動を許容する規格値Vd=±63mV)が要求される負荷4の場合に、負荷電流ILを0Aから100Hzまたは1kHzで急変させたときの、負荷電圧VLの変動特性の測定結果を、図10と図11にそれぞれ示す。
これらの各図からも判るように、特に100Hzの負荷急変時には、負荷電流ILが1Aの段階ですでに規格値Vdの範囲を超えて電圧変動が生じ、負荷4の要求を満たしていないことがわかる。因みに、この100Hzの負荷急変時において、負荷電流ILのピーク値が5Aのときの負荷電圧VLの波形を図12に示す。このときの負荷電圧VLのプラス側最大変動値Vp+は+118mVで、マイナス側最大変動値Vp−は−276mVである。
こうした負荷急変時における負荷電圧VLの変動特性を改善する方法としては、前記ダミー電流47の抵抗値を小さくして、出力ダイオード48のバイアス(ダミー)電流を多くしたり(対策1)、あるいは、抵抗35を調整して電圧帰還回路3の交流ゲインを大きくする(対策2)ことが考えられる。なお、対策1において、ダミー抵抗47の抵抗値を2Ωに変更することにより、出力ダイオード48のバイアス電流を1Aとした場合(対策前は、バイアス電流=0.3mA)に、負荷電流ILを0Aから100Hzまたは1kHzで急変させたときの、負荷電圧VLの変動特性の測定結果を、図3および図4に「対策1」としてそれぞれ示す。併せて図13は、100Hzの負荷急変時において、負荷電流ILのピーク値が5Aのときの負荷電圧VLの波形である。このときの負荷電圧VLのプラス側最大変動値Vp+は+87mVで、マイナス側最大変動値Vp−は−115mVである。
また、前記対策1に対策2をさらに施して、抵抗35を3.6kΩから100kΩに変更した場合に、負荷電流ILを0Aから100Hzまたは1kHzで急変させたときの、負荷電圧VLの変動特性の測定結果を、図3および図4に「対策1+2」としてそれぞれ示す。併せて図11は、100Hzの負荷急変時において、負荷電流ILのピーク値が5Aのときの負荷電圧VLの波形である。このときの負荷電圧VLのプラス側最大変動値Vp+は+65mVで、マイナス側最大変動値Vp−は−115mVである。
図3に示すように、上記対策1では、負荷電流ILを100Hzで急変させたときに、0Aから2.2Aの範囲内であれば、規格値Vd内に負荷電圧VLの変動を抑えることができるが、それ以外の範囲では更なる対策が必要である。また、対策1と2を併用すると、負荷電流ILを100Hzで急変させたときに、0Aから4Aの範囲内であれば、規格値Vd内に負荷電圧VLの変動を抑えることができる。
しかし、出力ダイオード48のバイアス電流を無制限に増やすと、電源装置1の消費電力が増大し、必要な負荷電流ILを負荷4に供給できなくなる懸念を生じる。また、電圧帰還回路3の交流ゲインを大きくして過渡応答を改善する対策2の方法では、定常時においてもゲインが高くなるため、ゲインを高くし過ぎると発振に至る可能性がある。そのため、上記対策1,2の併用だけでは、負荷急変時における負荷電圧の変動特性を十分に改善することができなかった。
また、上記対策1,2以外で、電源装置の内部素子に対し何らかの対策を施そうとすると、電源装置内部でのさらなる設計変更を強いられる。そのため、既存の電源装置にできるだけ手を加えずに、電源装置の負荷急変時における負荷電圧の変動特性を効果的に改善することが求められていた。
そこで本発明は、既存の電源装置にできるだけ手を加えずに、電源装置の負荷急変時における負荷電圧の変動特性を十分に改善することをその目的とする。
本発明の請求項1における電流帰還モジュールは、上記目的を達成するために、負荷に直流出力電圧を供給する出力端子と、この出力端子間の電圧を検出して得た検出電圧と基準電圧とを比較し、この比較結果に基づき出力端子間の電圧を一定に保つように制御する電圧帰還回路とを備えた電源装置に着脱可能に設けられ、前記負荷へ流れる負荷電流に比例した検出信号を出力する電流検出器と、前記電流検出器からの検出信号波形を微分する微分回路と、前記微分回路の後段に直接接続する合成回路とからなる電流帰還回路を内蔵し、負荷電流が緩やかに変動する限り、前記電流帰還回路が前記電圧帰還回路に何も出力せず、前記負荷電流が急変した時には、その負荷電流の変動分に応じて前記微分回路から発生する前記微分出力を前記電圧帰還回路の検出電圧に演算するよう構成される。
上記構成により、電源装置の内部若しくは外部に、この電源装置とは別個の電流帰還モジュールを装着するだけで、負荷電流の急変が電流検出器により検出され、この電流検出器からの検出信号波形の微分出力が電圧帰還回路の検出電圧に例えば加算されるため、電源装置の電圧帰還回路は負荷電流の急変を加味して出力端子間の電圧ひいては負荷電圧を一定に保つように制御を行なうことができる。そのため、出力端子間を流れるダミー電流や、電流帰還回路の交流ゲインを必要以上に増やさなくても、かつ電源装置の内部素子に一切手を加えなくても、電流情報のフィードバックにより負荷急変時における負荷電圧の安定性を改善することができる。また、微分回路は負荷急変時にのみ微分出力を発生し、それ以外の定常時には通常の電圧フィードバックだけとなるため、電圧帰還回路の交流ゲインを高めたのと同様の効果を有するにも拘らず、電圧帰還回路が発振するなどの虞れもない。つまり、負荷変動が比較的少ない定常時には、電流帰還回路が電圧帰還回路から切り離された状態にあって何も出力しないので、電圧帰還回路の交流ゲインを常時大きくした場合であっても、電流帰還回路51からのノイズがトリガとなり電圧帰還回路が発振する懸念を一掃できる。
さらに、こうした負荷急変の際の電流帰還によって改善されるのは、負荷電圧の変動ピーク値だけでなく、変動が収束するまでの時間も短くなる。そのため、早期に負荷電圧の安定を図ることができる。
本発明における請求項2の電流帰還モジュールは、上記目的を達成するために、負荷に直流出力電圧を供給する出力端子と、一対のリモートセンシング端子と、このリモートセンシング端子間の電圧を検出して得た検出電圧と基準電圧とを比較し、この比較結果に基づき前記リモートセンシング端子間の電圧を一定に保つように制御する電圧帰還回路とを備えた電源装置に着脱可能に設けられ、前記負荷へ流れる負荷電流に比例した検出信号を出力する電流検出器と、前記電流検出器からの検出信号波形を微分する微分回路と、前記微分回路の後段に直接接続する合成回路とからなる電流帰還回路を内蔵し、負荷電流が緩やかに変動する限り、前記電流帰還回路が前記電圧帰還回路に何も出力せず、前記負荷電流が急変した時には、その負荷電流の変動分に応じて前記微分回路から発生する前記微分出力を前記電圧帰還回路の検出電圧に演算するよう構成される。
上記構成により、電源装置の内部若しくは外部に、この電源装置とは別個の電流帰還モジュールを装着するだけで、負荷電流の急変が電流検出器により検出され、この電流検出器からの検出信号波形の微分出力が電圧帰還回路の検出電圧に例えば加えられるため、電源装置の電圧帰還回路は負荷電流の急変を加味してリモートセンシング端子間の電圧ひいては負荷電圧を一定に保つように制御を行なう。そのため、出力端子間を流れるダミー電流や、電流帰還回路の交流ゲインを必要以上に増やさなくても、かつ電源装置の内部素子に一切手を加えなくても、電流情報のフィードバックにより負荷急変時における負荷電圧の安定性を改善することができる。また、微分回路は負荷急変時にのみ微分出力を発生し、それ以外の定常時には通常の電圧フィードバックだけとなるため、電圧帰還回路の交流ゲインを高めたのと同様の効果を有するにも拘らず、電圧帰還回路が発振するなどの虞れもない。つまり、負荷変動が比較的少ない定常時には、電流帰還回路が電圧帰還回路から切り離された状態にあって何も出力しないので、電圧帰還回路の交流ゲインを常時大きくした場合であっても、電流帰還回路51からのノイズがトリガとなり電圧帰還回路が発振する懸念を一掃できる。
さらに、こうした負荷急変の際の電流帰還によって改善されるのは、負荷電圧の変動ピーク値だけでなく、変動が収束するまでの時間も短くなる。そのため、早期に負荷電圧の安定を図ることができる。
本発明における請求項3の電流帰還モジュールは、前記合成回路の出力を前記リモートセンシング端子に供給する外部接続端子を備えたことを特徴とする。
このようにすると、電源装置に設けられたリモートセンシング端子に電流帰還モジュールの外部接続端子を接続すれば、電流帰還回路を構成する合成回路の出力を電源装置内部の電圧帰還回路に供給できるので、電流帰還モジュールに対する接続を電源装置の外部で全て行なうことができ、既存の電源装置に一切手を加えずに、負荷電圧の特性を簡単に改善することができる。
本発明の請求項1の電流帰還モジュールによれば、電源装置の内部若しくは外部に、この電源装置とは別個の電流帰還モジュールを装着するだけで、既存の電源装置にできるだけ手を加えずに、電源装置の負荷急変時における負荷電圧の変動特性を十分に改善することができる。
本発明の請求項2の電流帰還モジュールによれば、電源装置の内部若しくは外部に、この電源装置とは別個の電流帰還モジュールを装着するだけで、既存の電源装置にできるだけ手を加えずに、電源装置の負荷急変時における負荷電圧の変動特性を十分に改善することができる。
本発明の請求項3の電流帰還モジュールによれば、電流帰還モジュールに対する接続を電源装置の外部で全て行なうことができ、既存の電源装置に一切手を加えずに、負荷電圧の特性を簡単に改善することができる。
以下、本発明の好ましい実施態様を、添付図面を参照しながら詳細に説明する。尚、図9に示す従来例で説明した箇所と同一部分には同一符号を付し、重複する説明は極力省略する。
回路の全体構成を示す図1において、1は電源装置であり、これは前述のように、入力端子+Vi,−Vi間の直流入力電圧Vinを、出力端子+Vo,−Vo間に所定の出力電圧Voutとして変換出力するDC/DCコンバータ部2と、リモートセンシング端子+S,−S間の電圧を一定に保つようにDC/DCコンバータ部2をフィードバック制御する電圧帰還回路3とにより構成される。なお、電圧帰還回路3は、前記分圧抵抗21,22の両端を出力端子+Vo,−Voに直接接続して、この出力端子+Vo,−Vo間の電圧を一定に保つようにフィードバック制御を行なってもよい。その場合、リモートセンシング端子+S,−Sは不要になる。
本実施例では、負荷急変時における負荷電圧VLの変動を抑制するために、負荷電流ILが変動したときにのみ、その変動分に応じた微分出力を、電圧帰還回路3の電圧検出情報に合成する電流帰還回路51を備えている。この電流帰還回路51は、負荷電流iLを検出する電流検出器52と、電流検出器52により得られた負荷電流iLの検出信号を増幅する増幅回路53と、この増幅回路53で増幅した負荷電流iLの検出信号波形を微分する微分回路54と、微分回路54からの微分出力を分圧抵抗21,22の接続点の電位である電圧帰還回路3の検出電圧に加算する合成回路55とを備えて構成される。
また、電流帰還回路51は電源本体1とは独立した電流帰還モジュール60内に設けられる。この電流帰還モジュール60は、電源本体1の内部若しくは内部に着脱可能に設けられる。
図2は、電流帰還回路51の構成をより具体的に示したものである。同図において、ここでは電流検出器52を除く電流帰還回路51の各構成が、電源装置1に外付けされる別個の電流帰還モジュール60内に収納される。また、61は出力電圧ライン6に挿入接続されたシャント抵抗であり、これは前記電流検出器52に相当するものである。電流検出器52は、出力電圧ライン5,6間ではなく、出力端子−Voとリモートセンシング端子−Sとの間に接続してもよい。この方が、電流検出器52による電圧降下が小さく好ましい。
シャント抵抗61の両端間に発生する負荷電流ILに比例した電圧(検出信号)は、増幅回路53を構成するオペアンプ62および抵抗63〜66によって差動増幅される。より具体的には、負荷4側にあるシャント抵抗61の一端が、抵抗64を介してオペアンプ62の非反転入力端子に接続され、出力端子−Vo側にあるシャント抵抗61の他端が、抵抗63を介してオペアンプ62の反転入力端子に接続され、さらにオペアンプ62の反転入力端子と出力端子間に負帰還用の抵抗65が接続されると共に、抵抗64とオペアンプ62の非反転入力端子との接続点に別の抵抗66の一端が接続され、この抵抗66の他端がマイナス側のリモートセンシング端子−Sと共に電流帰還モジュール60にて接地される。さらに、シャント抵抗61の両端から抵抗63,64の一端に至るラインには、それぞれコンデンサ67,68の一端が接続され、このコンデンサ67,68の他端が接地されている。
オペアンプ62には例えばDC+15Vの動作電圧+Vcc3と、例えばDC−15Vの動作電圧−Vcc3が与えられ、負荷電流ILに比例した電圧が、動作電圧+Vcc3〜−Vcc3の範囲で増幅される。なお、増幅回路53の構成は図2に示すものに限定されない。
増幅回路53の後段にある微分回路54は、この微分回路54からの微分出力の収束時間を調整する時定数調整回路71と、微分出力のレベルを調整するレベル調整回路72とにより構成される。そして、2段のオペアンプ74,75と、オペアンプ62の出力端子とオペアンプ74の非反転入力端子との間に挿入接続するコンデンサ76と、後段のオペアンプ75の反転入力端子と出力端子間に接続する可変抵抗77とにより、オペアンプ75の出力端子から微分出力が得られるようになっている。
時定数調整回路71は、前記オペアンプ74およびコンデンサ76の他に、前記微分出力の収束時間を可変可能な可変抵抗78および固定抵抗79の直列回路を、オペアンプ74の非反転入力端子と接地ラインとの間に接続して構成される。またレベル調整回路72は、前記オペアンプ75および微分出力のレベルを調整可能な可変抵抗77の他に、オペアンプ74の出力端子とオペアンプ75の反転入力端子との間に接続される抵抗80を備え、オペアンプ75の非反転入力端子を接地すると共に、このオペアンプ75に各動作電圧+Vcc3,−Vcc3を供給して構成される。
本実施例における微分回路54は、微分出力の収束時間(時定数)を容易に設定でき、かつ設定した時定数がレベル調整による影響を受けないようにするために、可変抵抗78を備えた時定数調整回路71と、可変抵抗77を備えたレベル調整回路72に別々のオペアンプ74,75を設けている。但し、電流帰還回路51の構成を簡素化するために、微分回路54を一つのオペアンプで構成して、オペアンプの素子数を減らすようにしてもよい。
微分回路54の後段にある合成回路55は、オペアンプ82および抵抗83〜86を備えて構成される。より具体的には、オペアンプ75の出力端子とオペアンプ82の非反転入力端子との間に抵抗83を接続し、オペアンプ82の反転入力端子に抵抗84を接続して接地し、オペアンプ82の反転入力端子と出力端子との間に負帰還用の抵抗85を接続する。さらに、電圧帰還回路3の電圧監視点である出力電圧ライン5の途中にある接続点49を、抵抗86を介してオペアンプ82の非反転入力端子に接続し、このオペアンプ82の出力端子を電圧調整用の可変抵抗42を介してプラス側のリモートセンシング端子+Sに接続して構成される。これにより、接続点49の電圧レベルに微分出力を加えた合成出力が、電圧帰還回路3のリモートセンシング端子+S,−S間に与えられるようになる。なお、合成回路55は微分回路54の微分出力を演算(加算のみならず減算なども含む)するあらゆる構成を含む。
電流帰還モジュール60は、特にリモートセンシング端子+S,−Sを備えた電源本体1との外部での接続を容易にするために、でシャント抵抗61の両端間に接続され、電流検出器52からの検出信号を入力する検出信号入力端子91,92と、マイナス側のリモートセンシング端子−Sが接続され、このリモートセンシング端子−Sを電流帰還モジュール60のフレームグランドに接地する接地端子93と、電圧帰還回路3の電圧監視点である接続点49が接続され、この接続点49の電圧レベルを合成回路55に印加する電圧監視端子94と、合成回路55からの合成出力を、必要に応じて電圧調整用の可変抵抗42を介してプラス側のリモートセンシング端子+Sに供給する外部接続端子95とを備えて構成される。
次に、図3や図4のグラフ並びに図5に示す各部の波形図に基づき、上記構成についてその作用を説明する。なお、図3および図4では、負荷電流ILを0Aからそれぞれ100Hzまたは1kHzで急変させたときに、前記従来例における各対策1,2に本実施例の電流帰還モジュール60を付加した場合の、負荷電流ILと負荷電圧VLとの関係を示している。また図5は、同じく従来例における各対策1,2に本実施例の電流帰還モジュール60を付加した場合であって、負荷電流ILを100Hzで急変させ、かつ負荷電流ILのピーク値が5Aのときの、負荷電圧Vと、微分回路54の微分出力である電流フィードバック量VFBと、負荷電流ILの各波形を、上段より順に示している。
負荷変動が比較的少ない定常時においては、スイッチング素子11のスイッチング動作に伴ない、入力端子+Vi,−Vi間の直流入力電圧Vinがトランス12の一次巻線に断続的に印加され、このトランス12の二次巻線に誘起された電圧が、DC/DCコンバータ部2の出力回路である整流平滑回路13によって整流平滑され、出力端子+Vo,−Vo間に出力電圧Voutが発生する。この出力電圧Voutは、出力電圧ライン5,6間にある電解コンデンサ45,46を充電すると共に、出力ダイオード48を介して負荷4に負荷電圧VLを供給する。
一方、電流帰還モジュール60内の電流帰還回路51は、電流検出器52により負荷電流ILを常時監視しており、負荷電流ILに比例した検出信号を増幅回路53で増幅し、この増幅した検出信号を微分回路54に供給する。しかし、負荷電流ILが緩やかに変動する限りは、微分回路54からパルス状の微分出力は現れず、電流帰還回路51はいわば切り離された状態になる。
電圧帰還回路3は、リモートセンシング端子+S,−S間の電圧レベルが、可変抵抗26などによって予め設定された電圧に安定化するように、スイッチング素子11へのパルス導通幅を制御する。ここで本実施例では、プラス側のリモートセンシング端子+Sから接続点に至るリモートセンシング線に可変抵抗42が挿入接続されているので、この可変抵抗42の抵抗値を適宜調整すれば、プラス側のリモートセンシング端子+Sに繋がる出力電圧ライン5の接続点49と、マイナス側のリモートセンシング端子−Sに繋がる出力端子−Voとの間の電圧レベルを、電圧帰還回路3による予め設定された電圧よりも高く可変することができる。なお、そうした電圧調整を必要としない場合は、可変抵抗42を設けずに直接リモートセンシング線で繋げばよい。
また、リモートセンシング端子+S,−Sはリモートセンシング線により出力電圧ライン5,6のどの位置にも接続できる。そのため、リモートセンシング端子+S,−Sを直接出力端子+Vo,−Voに接続すれば、出力端子+Vo,−Vo間の出力電圧Voutを電圧帰還回路3による予め設定された電圧に保つことができる。これはリモートセンシング端子+S,−Sを備えず、電圧帰還回路3が出力端子+Vo,−Vo間の電圧を監視する構成でも、同様のことがいえる。
いずれにせよ、負荷変動が比較的少ない定常時には、電流帰還回路51が電圧帰還回路3から切り離された状態にあって何も出力しないので、従来の対策2にあるように、抵抗35を調整して電圧帰還回路3の交流ゲインを常時大きくした場合であっても、電流帰還回路51からのノイズがトリガとなり電圧帰還回路3が発振する懸念を一掃できる。また、既存の電圧帰還回路3に電流帰還モジュール60を装着すればよいので、定常時における電圧帰還回路3の内部素子の定数を一切変更する必要がなく、大掛かりな設計変更を回避することができる。
また、定常動作中に負荷電流ILが急変すると、負荷電流ILの急変分に見合う電圧がシャント抵抗61の両端間に発生し、この電圧が電流帰還回路51の増幅回路53にて増幅される。そしてこの場合は、増幅回路53の後段にある微分回路54からパルス状の微分出力が発生し、これが接続点49の電圧レベルに加算されて、リモートセンシング端子+Sに印加される。電圧帰還回路3は、リモートセンシング端子+S,−S間の電圧レベルが過渡的に変動したことを受けて、このリモートセンシング端子+S,−S間の電圧レベルひいては負荷電圧VLが安定化するように、スイッチング素子11のパルス導通幅を制御する。
このように、電流帰還回路51は負荷電流ILが急変する過渡時にのみ、その電流情報であるパルス状の微分出力を接続点49の電圧レベルに加算して、電圧帰還回路3による電圧フィードバックを加速し、それ以外では電流帰還回路51を切り離して、通常の電圧フィードバックのみとするため、電圧帰還回路3の交流ゲインを高めたのと同様の効果を持ちながら発振の心配がない。すなわち、電圧帰還回路3は抵抗35の調整により、定常時において発振が起こらない最大限にまで交流ゲインを高めることができるので、電流帰還モジュール60を装着したことと相俟って、負荷電流ILの急変時において負荷電圧VLを最大限に安定化させることが可能になる。
因みに、負荷急変に対応するためには、電圧帰還回路3の帰還量として電圧値情報の他に電流値情報を加算すればよいが、電流値情報そのものを単に加算しただけでは、制御後における負荷電圧VLに狂いを生じてしまう。その点、本実施例の電流帰還モジュール60に組み込まれる電流帰還回路51は、負荷電流の微分波形をフィードバックして、電流変化の過渡時にだけ電流値の情報を加算しているので、定常時に電圧帰還回路3における制御に何等影響を及ぼさない。
本実施例における電流帰還モジュール60を付加した効果は、図3や図4の測定結果からも明らかである。これらの各図において、「対策1+2+本実施例」は、従来例の対策1,対策2に加え、本実施例における電流帰還モジュール60を付加した測定結果を示しているが、負荷電流ILを100Hzで急変させたときには、0Aから10Aの範囲内で、さらに負荷電流ILを1kHzで急変させたときには、0Aから11Aの範囲内で、規格値Vd内に負荷電圧VLの変動を抑えることができる。また、図5に示す波形図では、対策1,対策2に加えて本実施例における電流帰還回路51を付加することで、負荷電圧VLのプラス側最大変動値Vp+を+22mV、マイナス側最大変動値Vp−を−29mVに改善することができる。またここでは、負荷電流ILの変動時にのみパルス状の電流情報が出力されていることが、電流フィードバック量VFBから読み取れる。
また、こうした電流帰還によって改善されるのは負荷電圧VLのピーク変動値(ピーク値)だけではなく、負荷電圧VLの変動が収束するまでの時間(収束時定数)も短くなる。この傾向は特に負荷電圧VLの低下時(負荷電流ILの立ち上がり時)に顕著で、電流帰還無し時の収束時定数が約1.7mSであったものが、本実施例のような電流帰還回路51を付加することにより約30μsに改善する。この効果は、出力+Vo,−Vo間に接続される電解コンデンサ45,46による変動吸収を容易にさせ、より小さな容量の電解コンデンサ45,46によって、負荷電圧VLの変動を速やかに収束させることができる。
次に、本実施例における電流帰還モジュール60の様々な取付け例を図6〜図8に示す。図6は、出力端子+Vo,−Voのみを備えた電源装置1に対し、電流帰還モジュール60を内蔵した例を示している。電流帰還モジュール60は、電源装置1と別個の独立した筐体により外郭を構成し、その内部に前述の電流検出器52,増幅回路53,微分回路54および合成回路55を備えているが、この場合の電流帰還モジュール60との配線接続は、電源装置1の内部で行なわれる。そのため、電流検出器52および接続点49は、DC/DCコンバータ部2から出力端子+Vo,−Voに至る出力電圧ライン5,6の任意箇所に設けることができる。
図7は、図6と同様に出力端子+Vo,−Voのみを備えた電源装置1に対し、電流帰還モジュール60を外付けした例を示している。電流帰還モジュール60は、電源装置1と接触または非接触に取付けられるが、電流帰還モジュール60を取付けたときに、電流帰還回路51からの合成出力を電圧帰還回路3に取り込むために、電圧帰還回路3と出力端子+Voとを切り離すスイッチ71が設けられる。このスイッチ71は、例えば電流帰還モジュール60を電源装置1に装着したときに、機構的にオフするように構成してもよい。
図8は、出力端子+Vo,−Voおよびリモートセンシング端子+S,−Sを備えた電源装置1に対し、電流帰還モジュールたる電流帰還モジュール60を内蔵した例を示している。この場合、電流検出器52は、DC/DCコンバータ部2から出力端子+Vo,−Voに至る出力電圧ライン5,6の任意箇所に設けることができる。また、リモートセンシング端子+S,−Sに一端を接続するリモートセンシング線の他端は、出力端子+Vo,−Voから負荷4に至る出力電圧ライン5,6の任意箇所に接続できる。これにより、出力電圧ライン5,6の電圧降下を考慮した電圧の安定化を図ることができる。
前記図2は、出力端子+Vo,−Voおよびリモートセンシング端子+S,−Sを備えた電源装置1に対し、電流帰還モジュール60を外付けした例である。図7に示す構成の電源装置1では、電流帰還回路51からの合成出力を電圧帰還回路3にフィードバックするために、電源装置1の外部にある電流帰還モジュール60から電源装置1内部の電圧帰還回路3に何らかの配線を引回さなければならないが、図2示す例では、電源装置1に設けられたリモートセンシング端子+Sを電流帰還モジュール60の外部接続端子95に接続すれば、電流帰還回路51からの合成出力を電圧帰還回路3に簡単にフィードバックすることができる。したがって、電源装置1の内部に一切手を加えずに、本実施例における電流帰還回路60の機能を簡単に付加することができる。
以上のように本実施例の電流帰還モジュール60は、負荷4に直流出力電圧Voutを供給する出力端子+Vo,−Voと、一対のリモートセンシング端子+S,−Sと、このリモートセンシング端子+S,−S間の電圧を検出して得た検出電圧と基準電圧VREFとを比較し、この比較結果に基づき前記リモートセンシング端子+S,−S間の電圧を一定に保つように制御する電圧帰還回路3とを備えた電源装置に着脱自在に設けられ、負荷電流ILに比例した検出信号を出力する電流検出器52と、電流検出器52からの検出信号波形を微分する微分回路54と、微分回路54の後段に直接接続し、この微分回路54からの微分出力を前記電圧帰還回路3の検出電圧(分圧抵抗21,22の接続点の電圧)に演算すなわち加算する合成回路55とからなる電流帰還回路51を内蔵し、負荷電流ILが緩やかに変動する限り、電流帰還回路51が電圧帰還回路3に何も出力せず、負荷電流ILが急変した時には、その負荷電流ILの変動分に応じて微分回路54から発生する微分出力を電圧帰還回路3の検出電圧に演算するよう構成される。
上記構成により、電源装置1の内部若しくは外部に、この電源装置1とは別個の電流帰還モジュール60を装着するだけで、負荷電流ILの急変が電流検出器52により検出され、この電流検出器52からの検出信号波形の微分出力が電圧帰還回路3の検出電圧に加えられるため、電源装置1の電圧帰還回路3は負荷電流の急変を加味してリモートセンシング端子+S,−S間の電圧ひいては負荷電圧VLを一定に保つように制御を行なうことができる。そのため、ダミー抵抗47により出力端子+Vo,−Vo間を流れるダミー電流や、電流帰還回路3の交流ゲインを必要以上に増やさなくても、かつ電源装置1の内部素子に一切手を加えなくても、電流情報のフィードバックにより負荷急変時における負荷電圧VLの安定性を改善することができる。また、微分回路54は負荷急変時にのみ微分出力を発生し、それ以外の定常時には通常の電圧フィードバックだけとなるため、電圧帰還回路3の交流ゲインを高めたのと同様の効果を有するにも拘らず、電圧帰還回路3が発振するなどの虞れもない。
さらに、こうした負荷急変の際の電流帰還によって改善されるのは、負荷電圧VLの変動ピーク値だけでなく、変動が収束するまでの時間も短くなる。そのため、早期に負荷電圧VLの安定化を図ることができる。
またこうした構成では、合成回路55の出力をリモートセンシング端子+Sに供給する外部接続端子95を備えた電流帰還モジュール60であることが好ましい。すなわち、電源装置1に出力端子+Vo,−Voとは別にリモートセンシング端子+S,−Sが設けられていることを利用して、出力端子−Vから負荷4に至る他方の出力電圧ライン6に挿入接続される電流検出器52と、増幅回路53,微分回路54および合成回路55を備えた電流帰還モジュール60とからなる電流帰還モジュール60を、電源装置1の外部に配設し、微分回路54の微分出力と一方の出力電圧ライン5の接続点49に発生する電圧レベルとを加算する合成回路55の合成出力を、接地端子93と外部接続端子95によりリモートセンシング端子+S,−S間に供給するように構成している。こうすれば、電流帰還回路51の全構成(電流検出器52,増幅回路53,微分回路54および合成回路55)とその接続を、独立した電流帰還モジュール60により電源装置1の外部で行なうことができ、既存の電源装置1に一切手を加えずに、負荷電流ILの変動に対する負荷電圧VLの特性を改善することができる。
すなわち、電流帰還モジュール60を電源装置1に外付けすると共に、外部接続端子95をいずれか一方のリモートセンシング端子+Sに接続すれば、電源装置1に設けられたリモートセンシング端子+Sを利用して、電流帰還回路51を構成する合成回路55の出力を電源装置1内部の電圧帰還回路3に供給できるので、電流帰還回路51に対する接続を電源装置1の外部で全て行なうことができ、既存の電源装置1に一切手を加えずに、負荷電圧VLの特性を簡単に改善することができる。
さらに、リモートセンシング端子+S,−Sが設けられていない電源装置1に対しては、出力端子+Vo,−Vo間の出力電圧Voutを分圧抵抗21,22により検出して、その接続点の電位である検出電圧と基準電圧VREFとを比較し、この比較結果に基づき出力端子+Vo,−Vo間の出力電圧Voutを一定に保つように電圧帰還回路3が制御を行なうが、ここでも本実施例における電流帰還回路51を適用できる。その場合は、負荷電流ILに比例した検出信号を出力する電流検出器52と、電流検出器52からの検出信号波形を微分する微分回路54と、微分回路54の後段に直接接続し、この微分回路54からの微分出力を電圧帰還回路3の検出電圧に演算すなわち加算する合成回路55とからなる電流帰還回路51を、電流帰還モジュール60に内蔵し、負荷電流ILが緩やかに変動する限り、電流帰還回路51が電圧帰還回路3に何も出力せず、前記負荷電流ILが急変した時には、その負荷電流ILの変動分に応じて微分回路54から発生する微分出力を電圧帰還回路3の検出電圧に演算するよう構成すればよい。
この場合、電源装置1の内部若しくは外部に、この電源装置1とは別個の電流帰還モジュール60を装着するだけで、負荷電流ILの急変を電流検出器52により検出され、この電流検出器52からの検出信号波形の微分出力が電圧帰還回路3の検出電圧に例えば加算されるため、電源装置1の電圧帰還回路3は負荷電流の急変を加味して出力端子+Vo,−Vo間の出力電圧Voutひいては負荷電圧VLを一定に保つように制御を行なうことができる。そのため、出力端子+Vo,−Vo間を流れるダミー電流や、電流帰還回路3の交流ゲインを必要以上に増やさなくても、電流情報のフィードバックにより負荷急変時における負荷電圧VLの安定性を改善することができる。また、微分回路54は負荷急変時にのみ微分出力を発生し、それ以外の定常時には通常の電圧フィードバックだけとなるため、電圧帰還回路3の交流ゲインを高めたのと同様の効果を有するにも拘らず、電圧帰還回路3が発振するなどの虞れもない。
さらに、こうした負荷急変の際の電流帰還によって改善されるのは、負荷電圧VLの変動ピーク値だけでなく、変動が収束するまでの時間も短くなる。そのため、早期に負荷電圧VLの安定を図ることができる。
なお、本発明は上記実施例に限定されるものではなく、種々の変形が可能である。例えば、電流検出器52としてはシャント抵抗61の代わりにカレントトランスなどを利用してもよい。また、電流帰還回路51における各構成は実施例中のものに限定されず、同等の機能を有する回路構成であればよい。さらに、本発明では直流の出力電圧のみならず、交流の出力電圧を出力端子から供給するUPS(無停電電源装置)などにも適用できる。
本発明の一実施例における電流帰還モジュールおよびその周辺の全体構成を概略的に示すブロック図である。 同上、図1の構成をより具体化した要部の回路図である。 従来例の対策1,2および本実施例において、負荷電流を0Aから100Hzに急変させたときの負荷電圧の変動特性を示すグラフである。 従来例の対策1,2および本実施例において、負荷電流を0Aから1kHzに急変させたときの負荷電圧の変動特性を示すグラフである。 本実施例において、100Hzの負荷急変時における負荷電流が5Aのときの負荷電圧および電流フィードバックの各波形図である。 出力端子のみを有する電源装置に対し、本発明における電流帰還モジュールを内蔵した例を示す概略図である。 出力端子のみを有する電源装置に対し、本発明における電流帰還モジュールを外付けする例を示す概略図である。 出力端子とリモートセンシング端子とを有する電源装置に対し、本発明における電流帰還モジュールを外付けする例を示す概略図である。 従来例を示す電源装置の回路図である。 従来例の対策前において、負荷電流を0Aから100Hzに急変させたときの負荷電圧の変動特性を示すグラフである。 従来例の対策前において、負荷電流を0Aから1kHzに急変させたときの負荷電圧の変動特性を示すグラフである。 従来例において、100Hzの負荷急変時における負荷電流が5Aのときの負荷電圧の波形図である。 従来例の対策1において、100Hzの負荷急変時における負荷電流が5Aのときの負荷電圧の波形図である。 従来例の対策1と対策2を併用した場合において、100Hzの負荷急変時における負荷電流が5Aのときの負荷電圧の波形図である。
1 電源装置
3 電圧帰還回路
4 負荷
52 電流検出器
54 微分回路
55 合成回路
61 電流帰還モジュール
95 外部接続端子
+Vo,−Vo 出力端子
+S,−S リモートセンシング端子

Claims (3)

  1. 負荷に直流出力電圧を供給する出力端子と、この出力端子間の電圧を検出して得た検出電圧と基準電圧とを比較し、この比較結果に基づき出力端子間の電圧を一定に保つように制御する電圧帰還回路とを備えた電源装置に着脱可能に設けられ、
    前記負荷へ流れる負荷電流に比例した検出信号を出力する電流検出器と、
    前記電流検出器からの検出信号波形を微分する微分回路と、
    前記微分回路の後段に直接接続する合成回路とからなる電流帰還回路を内蔵し、
    負荷電流が緩やかに変動する限り、前記電流帰還回路が前記電圧帰還回路に何も出力せず、前記負荷電流が急変した時には、その負荷電流の変動分に応じて前記微分回路から発生する前記微分出力を前記電圧帰還回路の検出電圧に演算するよう構成されることを特徴とする電流帰還モジュール。
  2. 負荷に直流出力電圧を供給する出力端子と、一対のリモートセンシング端子と、このリモートセンシング端子間の電圧を検出して得た検出電圧と基準電圧とを比較し、この比較結果に基づき前記リモートセンシング端子間の電圧を一定に保つように制御する電圧帰還回路とを備えた電源装置に着脱可能に設けられ、
    前記負荷へ流れる負荷電流に比例した検出信号を出力する電流検出器と、
    前記電流検出器からの検出信号波形を微分する微分回路と、
    前記微分回路の後段に直接接続する合成回路とからなる電流帰還回路を内蔵し、
    負荷電流が緩やかに変動する限り、前記電流帰還回路が前記電圧帰還回路に何も出力せず、前記負荷電流が急変した時には、その負荷電流の変動分に応じて前記微分回路から発生する前記微分出力を前記電圧帰還回路の検出電圧に演算するよう構成されることを特徴とする電流帰還モジュール。
  3. 前記合成回路の出力を前記リモートセンシング端子に供給する外部接続端子を備えたことを特徴とする請求項2記載の電流帰還モジュール。
JP2004095083A 2004-03-29 2004-03-29 電流帰還モジュール Expired - Fee Related JP4423667B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004095083A JP4423667B2 (ja) 2004-03-29 2004-03-29 電流帰還モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004095083A JP4423667B2 (ja) 2004-03-29 2004-03-29 電流帰還モジュール

Publications (2)

Publication Number Publication Date
JP2005287131A JP2005287131A (ja) 2005-10-13
JP4423667B2 true JP4423667B2 (ja) 2010-03-03

Family

ID=35184943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095083A Expired - Fee Related JP4423667B2 (ja) 2004-03-29 2004-03-29 電流帰還モジュール

Country Status (1)

Country Link
JP (1) JP4423667B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291006A (ja) * 2008-05-29 2009-12-10 Fujitsu Ltd 電圧変換装置、電圧変換方法、およびデューティ比決定プログラム
JP5267078B2 (ja) * 2008-11-28 2013-08-21 富士通株式会社 スイッチングレギュレータ
JP5420366B2 (ja) * 2009-09-29 2014-02-19 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 電源装置および磁気共鳴イメージング装置
JP6256755B2 (ja) * 2014-01-31 2018-01-10 東芝ライテック株式会社 点灯装置及び照明装置
JP5904245B2 (ja) * 2014-08-28 2016-04-13 Tdk株式会社 電源制御回路および電源装置
DE112018007757T5 (de) * 2018-06-22 2021-03-11 Rohm Co., Ltd. Schaltnetzteil, integrierte halbleiterschaltungseinrichtung und differentialeingangsschaltung

Also Published As

Publication number Publication date
JP2005287131A (ja) 2005-10-13

Similar Documents

Publication Publication Date Title
JP3774788B2 (ja) 力率補償電源装置
KR100801498B1 (ko) 스위칭 제어 회로 및 자려형 dc―dc 컨버터
US9154039B2 (en) Switching power converter with secondary-side dynamic load detection and primary-side feedback and control
TWI410033B (zh) 穩定轉換脈波調變模式之電流式降壓轉換器
KR100418623B1 (ko) 일정전력유지제어회로를가진스위칭모드파워서플라이
US7132818B2 (en) Switching power supply control device and switching power supply
US8536841B2 (en) PWM control circuit of a converter and the control method thereof
US7746673B2 (en) Flyback constant voltage converter having both a PWFM mode and a PWM mode
US8599581B2 (en) Primary-side regulated modulation controller with improved transient response and audile noise
US7170267B1 (en) Switching regulator with average current mode control
JP5109769B2 (ja) スイッチング電源装置
US7936157B2 (en) Switching power supply system
US20100246227A1 (en) Switching power supply
JP4423667B2 (ja) 電流帰還モジュール
JP2011091888A (ja) スイッチング制御回路及びこれを用いたスイッチング電源装置
US8797772B2 (en) Low noise voltage regulator
US20100164453A1 (en) Current mode dc-dc converter
JP4432101B2 (ja) 電源装置
JP5194665B2 (ja) 電源装置
JP4480682B2 (ja) 高圧発生回路
JP2005039975A (ja) 電流共振型コンバータ装置
JP3825979B2 (ja) 画像形成装置
JP2974314B1 (ja) 電源回路
JP6897296B2 (ja) 力率改善回路
KR0170202B1 (ko) 출력 전압변동 보상이 가능한 승압형 콘버터의 역률 보상 회로

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091129

R150 Certificate of patent or registration of utility model

Ref document number: 4423667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees