JP4422977B2 - 低温液化ガス気化装置及びその運転方法 - Google Patents

低温液化ガス気化装置及びその運転方法 Download PDF

Info

Publication number
JP4422977B2
JP4422977B2 JP2003119702A JP2003119702A JP4422977B2 JP 4422977 B2 JP4422977 B2 JP 4422977B2 JP 2003119702 A JP2003119702 A JP 2003119702A JP 2003119702 A JP2003119702 A JP 2003119702A JP 4422977 B2 JP4422977 B2 JP 4422977B2
Authority
JP
Japan
Prior art keywords
heat
heat medium
low
liquefied gas
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003119702A
Other languages
English (en)
Other versions
JP2004324761A (ja
Inventor
潤一 中川
龍生 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Kobe Steel Ltd
Original Assignee
Chugoku Electric Power Co Inc
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Kobe Steel Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2003119702A priority Critical patent/JP4422977B2/ja
Publication of JP2004324761A publication Critical patent/JP2004324761A/ja
Application granted granted Critical
Publication of JP4422977B2 publication Critical patent/JP4422977B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、LNG等の低温液化ガスを加温して気化させるための低温液化ガス気化装置及びその運転方法に関するものである。
【0002】
【従来の技術】
従来、熱交換器を用いてLNG等の低温液化ガスを気化させる装置として、下記特許文献1に示されるものが知られている。
【0003】
この装置は、前記熱交換器と冷熱利用施設との間で熱媒体を循環させるとともに、当該熱交換器に前記低温液化ガスを流入させることにより、この低温液化ガスを前記熱媒体と熱交換させて加温、気化させるものである。具体的に、前記熱交換器として例えばフィンチューブ型のものを用いる場合には、その伝熱管内に前記低温液化ガスを流し、その周囲の領域(胴内領域)に前記熱媒体を流して前記伝熱管内で前記低温液化ガスを気化させるという運転方法が一般に行われる。
【0004】
【特許文献1】
特開平11−344276号公報(第6頁,図1)
【0005】
【発明が解決しようとする課題】
前記特許文献1記載の装置では、伝熱管の表面に熱媒体が着氷するおそれがあり、その着氷厚みが許容範囲を超えると良好な運転が阻害されることになる。特に、前記熱媒体として安価で粘性や比熱に優れた水を用いた場合には、前記特許文献1に記載されているような凝固温度の低いアルコール水等を用いた場合に比べて、着氷の問題はより深刻となる。
【0006】
このような着氷を抑止する方法として、前記熱媒体の温度を上げることが考えられるが、その場合、着氷を確実に回避するためには余裕をみて熱媒体の温度を必要以上に高くしなければならず、低温液化ガスの気化冷熱を好ましい温度で利用するのが困難となり、効率の高い運転は望めない。
【0007】
また、前記特許文献1には、前記熱交換器から排出される熱媒体の温度を測定して当該温度に基づき低温液化ガスの供給流量を調節することが記載されているが、当該熱媒体の温度を測定するだけでは熱交換器内の着氷状態を加味した運転を行うことは不可能である。しかも、専ら低温液化ガスの供給流量を操作することで温度調節をするものであるため、低温液化ガスの気化運転を安定して行うことができないという欠点がある。
【0008】
なお、特開2001−263592号公報には、いわゆるオープンラック型のLNG気化装置において、海水に蒸気を吹き付けて加温した熱媒体をLNG配管に散布するとともに、当該熱媒体の温度を測定してその測定値に基づいて前記蒸気の供給流量をフィードバック制御することにより、当該熱媒体の温度を一定に保つようにしたものが開示されているが、ここに開示されている方法によっても、気化装置内で不意に生じた着氷現象に対して迅速に対応することはできず、その着氷状態に応じた適正な制御を行うことはきわめて困難である。
【0009】
本発明は、このような事情に鑑み、熱交換器における伝熱管表面での着氷を確実に抑止しながら、効率の高い運転を行うための技術の提供を目的とする。
【0010】
【課題を解決するための手段】
前記課題を解決するための手段として、本発明は、胴内に伝熱管が挿通され、当該伝熱管内を流れる低温液化ガスと前記胴内の熱媒体との間で熱交換を行わせることにより前記伝熱管内の低温液化ガスを気化させる気化用熱交換器と、前記胴内に熱媒体を流すための熱媒体供給手段とを備えた低温液化ガス気化装置を運転するための方法であって、前記伝熱管に当該伝熱管表面の着氷状態を測定する着氷状態測定手段を設け、この着氷状態測定手段の測定値に基づいて前記気化用熱交換器への前記熱媒体による供給熱量を調節するとともに、前記気化用熱交換器の伝熱管から排出されるガスの温度を測定し、その測定値が一定以下の場合には前記着氷状態測定手段の測定値にかかわらず前記気化用熱交換器への前記熱媒体による供給熱量を増やすものである。
【0011】
この運転方法によれば、前記熱媒体の温度を必要以上に高めることなく、効率の高い運転を維持しながら、伝熱管上の着氷が過度に進行するのを確実に回避することができる。加えて、前記ガス温度は、熱媒体温度に比べて熱交換器内変化に対する追従性が高いため、当該ガス温度の測定により着氷の進行を先取的に把握してより迅速な対応をすることが可能になる。
【0012】
前記熱媒体供給手段は、例えば気化用熱交換器にポンプを接続しただけのものでもよいが、前記気化用熱交換器の胴内と冷熱利用設備との間で前記熱媒体を循環させるものであって、前記胴から排出される熱媒体を前記冷熱利用設備に導いて当該冷熱利用設備で昇温した熱媒体を前記胴内へ還元するものであれば、低温液化ガスとの熱交換により熱媒体に蓄えられた冷熱を有効利用することができる。
【0013】
その場合、前記胴内から排出される熱媒体の一部を抜き出して加温手段により加温してから前記胴内に導かれる熱媒体に合流させるとともに、前記着氷状態測定手段の測定値に基づいて前記加温手段による前記熱媒体への供給熱量を調節するようにすれば、熱媒体の流量を増やすことなく、適正な熱量調節ができる。また、循環する熱媒体全量に対して加温を施す場合に比べ、より小規模の加温手段で前記熱媒体の加温を行うことができる。
【0014】
前記熱媒体による供給熱量の調節は、前記着氷状態のみに基づいて行ってもよいが、さらに、前記気化用熱交換器の伝熱管から排出されるガスの温度を測定し、その測定値が一定以下の場合には前記着氷状態測定手段の測定値にかかわらず前記気化用熱交換器への前記熱媒体による供給熱量を増やすようにすることが好ましい。前記ガス温度は、熱媒体温度に比べて熱交換器内変化に対する追従性が高いため、当該ガス温度の測定により着氷の進行を先取的に把握してより迅速な対応をすることが可能になる。
【0015】
さらに、胴内に伝熱管が挿通されて当該伝熱管内を流れるガスと前記胴内の熱媒体との間で熱交換を行わせることにより前記伝熱管内のガスを加温するガス加温用熱交換器の当該伝熱管に前記気化用熱交換器で気化されたガスを流すことにより当該ガスを加温させるとともに、前記気化用熱交換器の伝熱管から排出されるガスの温度の測定値が一定以下の場合には前記ガス加温用熱交換器への前記熱媒体による供給熱量を増やすようにすれば、前記ガス加温用熱交換器の運転によって排出ガスをさらに適正な温度まで昇温させることができるとともに、このガス加温用熱交換器に対しても、前記気化用熱交換器の伝熱管から排出されるガスの温度の測定値に基づいて適正な供給熱量の調節を実現できる。
【0016】
前記着氷状態測定手段の配設位置については適宜設定可能であるが、特に着氷の生じ易い箇所、具体的には、前記伝熱管の入口箇所、前記伝熱管内で前記低温液化ガスが沸騰する箇所の少なくとも一方の箇所における着氷状態を測定する位置に設けるのが、より有効である。
【0017】
また本発明は、胴内に伝熱管が挿通され、当該伝熱管内を流れる低温液化ガスと前記胴内の熱媒体との間で熱交換を行わせることにより前記伝熱管内の低温液化ガスを気化させる気化用熱交換器と、前記胴内に熱媒体を流すための熱媒体供給手段とを備えた低温液化ガス気化装置を運転するための方法であって、前記伝熱管に当該伝熱管表面の着氷状態を測定する着氷状態測定手段を設け、この着氷状態測定手段の測定値が予め定められた許容範囲を超える場合に前記気化用熱交換器の運転を停止してこの気化用熱交換器とは別の予備熱交換器により前記低温液化ガスの気化を続けるものである。
【0018】
この方法によれば、気化用熱交換器内での着氷状態が過度に進行する前に適正なタイミングで予備熱交換器への運転切替をすることができる。
【0019】
その場合、前記予備熱交換器を前記気化用熱交換器よりも高温領域で運転することにより、当該予備熱交換器での着氷をより確実に抑止することが可能になる。
【0020】
また、前記予備熱交換器の使用を開始する際、前記運転を停止した気化用熱交換器の胴内にある熱媒体を前記予備熱交換器の胴内に導入するようにすれば、当該熱媒体のもつ冷熱を有効に利用して予備熱交換器を効率良く始動させることができる。
【0021】
また本発明は、胴内に伝熱管が挿通され、当該伝熱管内を流れる低温液化ガスと前記胴内の熱媒体との間で熱交換を行わせることにより前記伝熱管内の低温液化ガスを気化させる気化用熱交換器と、前記胴内に熱媒体を流すための熱媒体供給手段とを備えた低温液化ガス気化装置において、前記伝熱管に設けられ、当該伝熱管表面の着氷状態を測定する着氷状態測定手段と、この着氷状態測定手段の測定値に基づいて前記気化用熱交換器への前記熱媒体による供給熱量を調節する供給熱量調節手段とを備え、前記熱媒体供給手段は、前記気化用熱交換器の胴内と冷熱利用設備との間で前記熱媒体を循環させる通路であって前記胴から排出される熱媒体を前記冷熱利用設備に導いて当該冷熱利用設備で昇温した熱媒体を前記胴内へ還元するための熱媒体循環通路と、前記胴内から排出される熱媒体の一部を抜き出して前記胴内に導かれる熱媒体に合流させるバイパス通路と、このバイパス通路を流れる熱媒体を加温する加温手段とを含み、前記供給熱量調節手段は少なくとも前記加温手段による前記熱媒体への供給熱量を調節する動作を行うものであり、更に、前記バイパス通路に前記熱媒体を流すバイパス許容状態と当該バイパス通路に前記熱媒体が流れるのを阻止するバイパス阻止状態とに切替えられるバイパス切替手段を備えたものである。
【0023】
この装置において、前記バイパス切替手段として、例えば加温手段による加温が行われる場合には前記バイパス切替手段を前記バイパス許容状態にして加温を行う一方、前記加温手段による加温が行われない場合には前記バイパス切替手段を前記バイパス阻止状態にすることにより、前記気化用熱交換器から排出される熱媒体の冷熱をより有効に利用することが可能になる。
【0024】
また本発明は、胴内に伝熱管が挿通され、当該伝熱管内を流れる低温液化ガスと前記胴内の熱媒体との間で熱交換を行わせることにより前記伝熱管内の低温液化ガスを気化させる気化用熱交換器と、前記胴内に熱媒体を流すための熱媒体供給手段とを備えた低温液化ガス気化装置において、前記伝熱管に設けられ、当該伝熱管表面の着氷状態を測定する着氷状態測定手段と、この着氷状態測定手段の測定値に基づいて前記気化用熱交換器への前記熱媒体による供給熱量を調節する供給熱量調節手段と、前記気化用熱交換器の伝熱管から排出されるガスの温度を測定する排出ガス温度測定手段を備え、前記排出ガス温度測定手段の測定値が一定以下の場合には前記着氷状態測定手段の測定値にかかわらず前記気化用熱交換器への前記熱媒体による供給熱量を増やすように前記供給熱量調節手段が構成されたものです
この装置において、前記熱媒体供給手段としては、前記気化用熱交換器の胴内と冷熱利用設備との間で前記熱媒体を循環させる通路であって前記胴から排出される熱媒体を前記冷熱利用設備に導いて当該冷熱利用設備で昇温した熱媒体を前記胴内へ還元するための熱媒体循環通路と、前記胴内から排出される熱媒体の一部を抜き出して前記胴内に導かれる熱媒体に合流させるバイパス通路と、このバイパス通路を流れる熱媒体を加温する加温手段とを含み、前記供給熱量調節手段は少なくとも前記加温手段による前記熱媒体への供給熱量を調節する動作を行うものが、好適である。
さらに、前記バイパス通路に前記熱媒体を流すバイパス許容状態と当該バイパス通路に前記熱媒体が流れるのを阻止するバイパス阻止状態とに切替えられるバイパス切替手段を備えるようにすれば、例えば加温手段による加温が行われる場合には前記バイパス切替手段を前記バイパス許容状態にして加温を行う一方、前記加温手段による加温が行われない場合には前記バイパス切替手段を前記バイパス阻止状態にすることにより、前記気化用熱交換器から排出される熱媒体の冷熱をより有効に利用することが可能になる。
【0025】
さらに、胴内に伝熱管が挿通されて当該伝熱管内に前記気化用熱交換器で気化されたガスが流されることにより当該ガスと前記胴内の熱媒体との間で熱交換を行わせて前記伝熱管内のガスを加温するガス加温用熱交換器と、前記排出ガス温度測定手段による測定値が一定以下の場合に前記ガス加温用熱交換器への前記熱媒体による供給熱量を増やすガス加温側供給熱量調節手段とを備えれば、前記気化用熱交換器のみならず、前記ガス加温用熱交換器に対しても適正な供給熱量調節を行うことができる。
【0026】
【発明の実施の形態】
図1は、単一の気化用熱交換器10を用いて低温液化ガス(ここではLNG)の気化を行う装置の例を示したものである。
【0027】
図2に示すように、前記気化用熱交換器10は、閉空間を構成する胴12を備え、この胴12の頂部の両端に配管が接続可能な熱媒体入口13A及び熱媒体出口13Bが設けられている。
【0028】
胴12内には一方向に並ぶ複数枚のじゃま板14が配置されている。具体的には、前記胴12の頂部側に接するじゃま板14と底部側に接するじゃま板14とが交互に並んでいて熱媒体の蛇行通路を構成しており、その蛇行通路の一端に前記熱媒体入口13Aが、他端に熱媒体出口13Bが設けられている。
【0029】
前記胴12内には、前記各じゃま板14を貫くように伝熱管16が配設されている。この伝熱管16は、前記胴12の長手方向(図例では水平方向)に往復するように蛇行する形状を有し、その下端がLNG入口ヘッダ18Aに接続され、上端がNG出口ヘッダ18Bに接続されている。両ヘッダ18A,18Bは前記胴12の側壁から側方に突出し、LNG入口ヘッダ18AにはLNG供給配管が接続され、NG出口ヘッダ18BにはNG排出配管が接続されるようになっている。
【0030】
従って、この熱交換器10内においては、前記熱媒体入口13Aから胴12内に供給された熱媒体(例えば水)がじゃま板14間を蛇行するように流れて熱媒体出口13Bから排出される一方、LNG入口へッド18Aから伝熱管16内にLNGが供給されてこのLNGが前記熱媒体と熱交換することにより伝熱管16内で蒸発(気化)し、さらに加温されてNGとしてNG出口へッド18Bから排出されるようになっている。
【0031】
なお、本発明において気化用熱交換器の具体的な構造は問わず、少なくとも伝熱管内に低温液化ガスが導入されてその周囲の熱媒体と熱交換可能なものであれば広く適用が可能である。また、気化対象となる低温液化ガスもLNGに限らず、例えばLPG、LN2、LO2、LArなどの気化にも適用が可能である。
【0032】
図1に示すように、この気化装置は、前記気化用熱交換器10の胴12内と適当な冷熱利用設備(例えば空調機)18との間で熱媒体を循環させる熱媒体循環通路20を備えている。具体的には、冷熱利用設備18から排出される熱媒体を前記気化用熱交換器10の熱媒体入口13Aを通じて前記胴12内に導入するための配管22と、当該胴12内で冷却された熱媒体を前記熱媒体出口13Bから導出して前記冷熱利用設備18へ導く配管24とを備え、前記配管22の途中には熱媒体を循環させるためのポンプ26が設けられている。そして、前記胴12から前記配管24を通じて前記冷熱利用設備18に供給された熱媒体の冷熱が当該冷熱利用設備18で消費され、これにより冷却された熱媒体が前記配管22を通じて前記胴12内に戻されるようになっている。
【0033】
さらに、この気化装置では、前記冷熱利用設備18をバイパスして前記配管24と配管22とを接続するバイパス配管(バイパス通路)28が設けられている。このバイパス配管28と配管22との合流部分には三方切替弁からなるバイパス切替弁(バイパス切替手段)29が設けられ、このバイパス切替弁29の開閉により、配管24を流れる熱媒体の一部が前記バイパス配管28を通じて配管22にバイパスされる状態と、当該バイパスが阻止される状態とに切替えられるようになっている。
【0034】
前記バイパス配管28の途中には、同配管28によりバイパスされる熱媒体を加温するための加温手段30が設けられている。この加温手段30は、そのバイパスされる熱媒体と当該熱媒体を加温するための加温熱源(例えば蒸気)とを熱交換させるための加温器32を備え、さらに、この加温器32への加温熱源の供給流量を調節するための供給弁34を備えている。
【0035】
なお、この加温手段30としては、前記熱交換型の加温器32のほか、例えば電熱ヒータの適用も可能である。
【0036】
さらに、この装置の特徴として、前記気化用熱交換器10の伝熱管16の表面には、その伝熱管表面における着氷状態を測定するための着氷状態測定センサ36が設けられている。この着氷状態測定センサ36としては、例えば特開平6−294564号公報に示されるように着氷厚さを連続的に測定するものでもよいし、特許第3319363号公報に示されるように温度センサの測定値を利用するものでもよい。要は、着氷状態を把握するためのパラメータ(伝熱管温度も含む。)を測定値として出力できるものであればよい。
【0037】
この着氷状態測定センサ36の配設箇所は適宜選定可能であるが、伝熱管16において着氷が生じ易い箇所、具体的には、最もLNG温度が低い入口箇所やLNGが沸騰する箇所に設定するのが好ましい。例えば、図3(a)に示すようにLNGが比較的低圧の状態で運転される場合であって当該LNGが伝熱管16の入口箇所で蒸発する場合には、当該入口箇所の着氷状態を測定可能な領域(図2及び図3(a)では破線19で囲まれる領域)に前記着氷状態測定センサ36を配設するのが好ましく、図3(b)に示すようにLNGが比較的高圧の状態で運転される場合であって当該LNGが伝熱管16の途中箇所で蒸発する場合には、当該蒸発が生じる箇所の着氷状態を測定可能な領域(図2及び図3(b)では破線19′で囲まれる領域)または入口箇所の着氷状態を測定可能な領域に前記着氷状態測定センサ36を配設するのが好ましい。また、双方の領域に配設するようにしてもよい。
【0038】
このような着氷状態測定センサ36のほか、この装置には、前記熱交換器10のNG出口配管を流れるNG温度を測定する温度センサ(排出ガス温度測定センサ)37や、配管22を通じて胴12内に流入する熱媒体温度(すなわち熱媒体入口温度)を測定する温度センサ38、前記加温手段30の下流側におけるバイパス配管28内の熱媒体温度を測定する温度センサ39が設けられ、以上の温度センサ36〜39の測定信号が演算器40に入力されるようになっている。
【0039】
この演算器40は、マイクロコンピュータ等を含み、前記各温度センサ36〜39の測定信号に基づいて前記加温熱源供給弁34及びバイパス切替弁29を操作するための信号を出力するものであり、供給熱量調節手段及びバイパス制御手段としての機能を有するものである。
【0040】
次に、前記演算器40が行う演算制御動作と、これに伴う装置全体の作用とを、図4のフローチャートも併せて参照しながら説明する。
【0041】
まず、運転開始にあたっては、前記加温熱源供給弁34及びバイパス切替弁29をそれぞれ閉止する(図4のステップS1)。この状態で、冷熱利用設備18から排出された熱媒体は配管22を通じて気化用熱交換器10の胴12内に導入され、伝熱管16内を流れるLNGと熱交換することにより当該LNGを蒸発させ、さらに加温させる。これにより熱媒体自身は冷却され、当該熱媒体の全量が配管24を通じて冷熱利用設備18に戻され、その冷熱が利用される。
【0042】
このとき、前記伝熱管16の表面温度はLNGの蒸発潜熱及び顕熱によって著しく降下するため、その表面で熱媒体が凝固して着氷が生ずる。特に、熱媒体として水等のように凝固温度が高いものが使用される場合には、比較的早期に着氷が成長する。この着氷状態は着氷状態測定センサ(例えば氷厚みセンサや温度センサ)による検出・演算動作によって測定され(図4のステップS2)、その測定値が所定範囲から逸脱した時点(氷厚みセンサの測定値が設定値以上となった時点または温度センサの測定値が設定値以下となった時点;ステップS3でNO)で、前記熱媒体を加温する操作が開始される。
【0043】
具体的に、演算器40は、前記測定値から伝熱管16上の着氷量を演算し(ステップS4)、その実際の着氷量と、前記測定値について予め設定された設定値から算出される着氷量とに基づき、加温熱源を供給すべき量、すなわち、熱媒体に供給すべき熱量を演算する(ステップS5)。
【0044】
具体的に、着氷状態測定センサ36の測定値から演算される実際の着氷厚み量をDice、当該着氷厚み量について予め設定された量をDset、伝熱管16の外径をDo、伝熱管長をLとすると、実際の着氷厚み量の過剰分Viceは次式
Vice=π・L・[(Dice−Dset)・(Dice+Dset+Do)]
で表され、この着氷厚み量の過剰分Viceを解消するのに必要な投入熱量Qinは次式により算出することができる。
【0045】
Qin=Vice・ρice・Hice/T
ここで、ρiceは氷密度、Hiceは氷凝固潜熱、Tは投入時間である。
【0046】
次に、演算器40は、バイパス切替弁29を開いてバイパス許容状態にするとともに(ステップS6)、加温器32に対する加温熱源の供給流量を前記投入熱量Qinに基づいて設定し(ステップS7)、その供給流量に対応した開度で供給弁34を開弁する(ステップS8)。これにより、加温器32に加温熱源が供給され、この加温熱源と熱媒体(バイパスされる熱媒体)との熱交換により当該熱媒体が昇温してからバイパス切替弁29で配管22内の熱媒体と合流する。このように、気化用熱交換器10の胴12内から排出される熱媒体の一部が配管24から抜き出されて加温手段30により加温された後に配管22の熱媒体と合流することにより、前記胴12内に戻される熱媒体の温度が高められ、最低限の投入熱量で有効な着氷抑止が実現される。
【0047】
このとき、前記加温器32への加温熱源の供給形態(すなわち供給弁34の開弁形態)としては、図5(a)の実線に示すように、短時間で着氷厚み量(同図一点鎖線)を減少させるべく前記投入熱量Qinを一度に投入するようにしてもよいが、この場合には応答遅れによって同図二点鎖線に示す(気化用熱交換器10の)熱媒体入口温度ひいては熱媒体出口温度や出口ガス温度(NG出口温度)が必要以上に上昇してしまうおそれがある。これに対し、同図(b)の実線に示すように、供給弁34を繰り返し開閉して加温熱源を断続的に投入したり、予め制限されたレベルで予め決められた時間だけ加温熱源を供給したりするようにすれば、前記熱媒体入口温度ひいては熱媒体出口温度や出口ガス温度の過度の上昇を抑止することが可能である。
【0048】
このような加温熱源の投入の有無は、着氷厚みのみに基づいて決定してもよいのであるが、図4に示す例では、温度センサ38により測定される熱媒体入口温度も監視し、当該温度が予め設定された値を超える場合には(ステップS9でYES)、当該温度が当該設定値以下となるまで供給弁34及びバイパス切替弁29を閉止して加温熱源の投入を中断するようにしている(ステップS10,S11)。
【0049】
また、着氷厚みが許容範囲内にある場合でも(ステップS3でYES)、温度センサ37により測定されるNG温度(ステップS12)が予め設定された設定値以下である場合には(ステップS13でNO)、その出口温度と設定値との差とNG流量とから不足分の熱量を演算して(ステップS14)これを補うべく前記と同じ要領で加温熱源を投入するようにする(ステップS6〜S8)。
【0050】
なお、ここにいう「不足分の熱量」Qsは、予め設定された熱量Qsetと実際に気化用熱交換器10で交換された熱量Qactとの差であり、かつ、これらの熱量Qset,Qactは、温度センサ37の測定温度をTact、これについての設定温度をTset、NGの重量流量をWとすると、
Qset={Hout(Tset,P)−Hin(T,P)}・W
Qact={Hout(Tact,P)−Hin(T,P)}・W
(ただしH(T,P)は温度T、圧力Pでの比エンタルピを示す。)
で表されるから、前記の「不足分の熱量」Qsは、次式に基づいて算出することができる。
【0051】
Figure 0004422977
ここで、CpはNGの定圧比熱である。
【0052】
このように、着氷厚みの測定値だけでなくNG温度によっても加温熱源の投入量を調節することにより、着氷に対してより迅速な対応をとることが可能になる。すなわち、NG温度は熱媒体温度に比べて追従性が高いため、その測定値を監視することによって気化用熱交換器10での着氷の成長及びこれに伴う気化性能の低下を予測することができるのである。その一方、着氷厚みもNG温度も許容範囲に収まっている場合には(ステップS13でYES)、供給弁34及びバイパス切替弁29をともに閉じて加温熱源は投入しないようにする(ステップS1)。
【0053】
なお、図1では、バイパス配管28に流れる熱媒体を加温することにより気化用熱交換器10への供給熱量を増やすようにしているが、本発明はこれに限らず、例えば図6(a)に示すように熱水等からなる加温熱源を供給弁34′を通じて配管22内の熱媒体に合流させるようにしたり、同図(b)に示すように蒸気等からなる熱媒体を供給弁34′を通じて伝熱管16の特定部分(着氷が生じ易い部分が好ましい)に吹き付けたりしてもよく、いずれの場合も前記供給弁34′の開度調節によって投入熱量をコントロールすることができる。
【0054】
ただし、加温熱源を配管22内に直接導入する場合には、その導入分と同量の熱媒体をライン中のいずれかの箇所から抜き出す必要があり、また、配管22の途中に加温器32を設けるようにした場合にはこれに熱媒体が流れる量が多いために加温器32を構成する熱交換器が大きくなってしまう不都合があるのに対し、図1に示すようにバイパス配管28の途中に加温手段30を設けるようにすれば、全体の流量の増減がなく、また小型の加温器32を用いて適正な加温操作をすることができる利点が得られる。
【0055】
また、バイパス配管28を設ける場合に、その開閉手段(バイパス切替手段)の具体的な構成は問わず、例えば当該開閉手段(バイパス切替手段)を省略して常時バイパスが行われるようにしてもよく、その場合には例えばバイパス通路の途中にオリフィスプレートを差し込むなどしてバイパス流量を一定に保つ工夫をすることが好ましい。あるいは、前記バイパス切替手段として、例えば図7(a)に示すようにバイパス配管28の途中に二方弁からなるバイパス切替弁46を設置してもよいし、さらに、同図(b)に示すように前記バイパス切替弁46と加温手段30とをバイパスしてその上流側と下流側とを結ぶサブバイパス回路47にサブバイパス切替弁48を設けるようにしてもよい。後者の場合には、バイパス切替弁46を閉じてサブバイパス切替弁48を開くことにより、積極的な熱媒体の加温はしないがバイパス許容状態は保持するといった運転が可能になる。
【0056】
また、バイパス切替弁を閉から開に切替える際、その開弁までの間は加温器32及びその周辺に熱媒体が滞留しており、この滞留している熱媒体の温度は熱媒体循環通路20を循環する熱媒体の温度と異なっているため、その差分を投入熱量から差し引いておくことが好ましい。前記加温器32及び配管の容量Vは決まっているので、加温器32の周辺の熱媒体温度を図1に示す温度センサ39で測定しておけば、前記投入熱量から差し引くべき熱量ΔQを次式から求めることができる。
【0057】
ΔQ=Cp・V・{T(滞留温度)−T(循環温度)}
以上は、単一の気化用熱交換器10を使用する例であるが、本発明では複数の気化用熱交換器を併用することも可能である。
【0058】
図8に示す気化システムでは、気化用熱交換器10の下流側(高温側)に当該熱交換器10と同等の構成をもつガス加温用熱交換器10Gが直列に配され、このガス加温用熱交換器10Gと冷熱利用設備18Gとの間にもバイパス配管28及びその途中の加温手段30を含む熱媒体循環通路20Gが設けられている。そして、前記気化用熱交換器10のNG出口ヘッダ18Bから排出されるNGが配管44を通じて前記ガス加温用熱交換器10Gの伝熱管16に導入され、ここで熱媒体(当該熱交換器10Gと冷熱利用設備18Gとの間を循環する熱媒体)と熱交換することにより前記NGがさらに加温されてからシステム外へ排出されるようになっている。
【0059】
また、このシステムでは、気化用熱交換器10内の着氷状態測定センサ36と、配管44に設けられた温度センサ(排出ガス温度センサ)37とに加え、ガス加温用熱交換器10Gから排出されるNGの温度を測定する温度センサ37Gも設けられている。そして、これらのセンサ36,37,37Gの測定値のうちのいずれか一つが予め設定された許容範囲を逸脱する(例えば温度センサ37Gの測定値が設定値以下となる)ときに、気化用熱交換器10側の演算器40が熱媒体循環通路20におけるバイパス切替弁46を開いて当該熱媒体循環通路20を循環する熱媒体を加温する(すなわち気化用熱交換器10への熱媒体による供給熱量を増加する)制御を行うとともに、ガス加温用熱交換器10G側の演算器(ガス加温側供給熱量調節手段)40Gも熱媒体循環通路20Gにおけるバイパス切替弁46を開いて当該熱媒体循環通路20を循環する熱媒体を加温する(すなわちガス加温用熱交換器10Gへの熱媒体による供給熱量を増加する)制御を行うように構成されている。
【0060】
このような運転を行えば、上流側における気化用熱交換器10での着氷状態や、配管44を通じてガス加温用熱交換器10Gに導入されるNGの温度(温度センサ37により測定される温度)に基づいて、ガス加温用熱交換器10Gの熱媒体に対する投入熱量を調節することにより、当該ガス加温用熱交換器10Gでの着氷もより確実に抑止することができる。
【0061】
なお、このようなガス加温用熱交換器10Gに対する供給熱量を調節する場合、当該調節を例えば温度センサ37の測定値(すなわち気化用熱交換器10から排出されるNG温度の測定値)のみに基づいて行うようにしても有効である。
【0062】
また図9は、低温側気化用熱交換器10Lと高温側気化用熱交換器10Hを並列に配して高温側気化用熱交換器10Hを予備熱交換器として使用するシステム例を示したものである。図例では、高温側気化用熱交換器10H側に冷熱利用設備と熱媒体を循環させるための熱媒体循環通路は設けられておらず、専ら加温手段30によって熱媒体の加温が行われて、低温側気化用熱交換器10Lよりも高温の領域で高温側気化用熱交換器10Hが運転されるようになっている。また、LNG供給源と各熱交換器10L,10HのLNG入口ヘッダ18Aとの間には切替弁49L,49Hがそれぞれ設けられている。
【0063】
なお、同図の装置では、低温側気化用熱交換器10Lの熱媒体循環通路20に前記図1等に示すバイパス配管28が設けられていないが、当該バイパス配管28や加温手段30を設けてもよいことはいうまでもない。また、高温側気化用熱交換器10Hについては、その運転温度が比較的高いため、前記図2に示したシェルアンドチューブ型熱交換器のほか、例えば空気を熱媒体とするフィンチューブ型の熱交換器を用いることも可能である。
【0064】
次に、このシステムにおいて行われる演算制御動作を図10に基づいて説明する。
【0065】
運転開始時は、演算器40は切替弁49Lを開、切替弁49Hを閉にして低温側気化用熱交換器10Lが運転される状態にする(ステップS21)。その運転中、着氷状態検出センサ36により低温側気化用熱交換器10Lにおける伝熱管16上の着氷状態が測定される(ステップS22)とともに、NG出口配管に設けられた温度センサ37により排出NG温度が測定される(ステップS23)。そして、両センサ36,37のうちの少なくとも一方の測定値が許容範囲を逸脱した時点で(ステップS24でNO)、演算器40は切替弁49Lを閉じて切替弁49Hを開くことにより運転熱交換器を高温側気化用熱交換器10Hに切り替える(ステップS25)。
【0066】
このような熱交換器の切替により、低温側気化用熱交換器10Lでの着氷状態が過度に進行することが防止される。一方、高温側気化用熱交換器10Hでは高温領域で運転が行われるため、過度に着氷が生じるおそれはほとんどない。そして、低温側気化用熱交換器10Lでの着氷厚み及び排出NG温度がともに正常値に復帰した時点で(ステップS24でYES)、当該低温側気化用熱交換器10Lの運転に切り替えられる。
【0067】
また、前記各気化用熱交換器10L,10Hの入口側に設けられる切替弁49L,49Hを開度調節可能な流量調整弁とし、その開度(LNG流量)を着氷状態等に応じて適宜調節するようにすれば、当該着氷状態等に基づいて熱媒体への供給熱量のみを操作する場合に比べて当該熱媒体の温度の変動を小さく抑えることができる利点が得られる。
【0068】
図11〜図13は、同等の温度領域で運転される2つの気化用熱交換器101,102を併用するシステムの例を示したものであり、これらの気化用熱交換器101,102は互いに予備熱交換器として機能する。
【0069】
このシステムでは、各熱交換器101,102の胴12内が共通の冷熱利用設備18に接続されている。具体的に、配管22は、バイパス配管28との合流位置よりも熱交換器側の位置で2つに分岐し、一方の分岐配管221が気化用熱交換器101側の熱媒体入口13Aに接続され、他方の分岐配管222が気化用熱交換器102側の熱媒体入口13Aに接続されている。同様に、配管24も前記バイパス配管28の入口位置よりも熱交換器側の位置で2つに分岐し、一方の分岐配管241が気化用熱交換器101側の熱媒体出口13Bに接続され、他方の分岐配管242が気化用熱交換器102側の熱媒体出口13Bに接続されている。
【0070】
さらに、前記分岐配管241,222の間には切替移行配管50が設けられ、その途中に移行弁52が設けられるとともに、前記各分岐配管221,241,222,242の途中にそれぞれ切替弁53,54,55,56が設けられている。また、LNG供給源と各熱交換器101,102のLNG入口ヘッダ18Aとの間にも切替弁57,58がそれぞれ設けられている。
【0071】
このシステムにおいて行われる演算制御動作を図14に示す。
【0072】
運転開始時は、演算器40は切替弁53,54,57を開、移行弁52及び切替弁55,56を閉にして気化用熱交換器101が運転される状態にする(ステップS31)。この状態では、図11に示されるように、LNGが切替弁57を通じて気化用熱交換器101の伝熱管16に流入する一方、冷熱利用設備18から排出される熱媒体は切替弁53が開弁している分岐配管221から前記気化用熱交換器101の胴12内に流入し、かつ、切替弁54が開弁している分岐配管241を通じて冷熱利用設備18に供給される。
【0073】
その運転中、着氷状態検出センサ36により気化用熱交換器101における伝熱管16上の着氷状態が測定される(ステップS32)とともに、NG出口配管に設けられた温度センサ37により排出NG温度が測定される(ステップS33)。そして、両センサ36,37のうちの少なくとも一方の測定値が許容範囲を逸脱した時点で(ステップS34でNO)、演算器40は移行弁52及び切替弁56,58を開いて切替弁54,57を閉じることにより、前記気化用熱交換器101から気化用熱交換器102への切替移行運転を開始する(ステップS35)。
【0074】
この切替移行運転では、図12に示されるように、LNGが切替弁58を通じて気化用熱交換器102の伝熱管16に流入する一方、冷熱利用設備18から排出される熱媒体は切替弁53が開弁している分岐配管221から一旦気化用熱交換器101の胴12内に流入し、さらにこの胴12から移行弁52が開いている切替移行配管50を通じて気化用熱交換器102側の胴12内に流入して、切替弁56が開弁している分岐配管242を通じて冷熱利用設備18に供給される。このように、それまで使用していた気化用熱交換器101の胴12内の熱媒体を次に使用する気化用熱交換器102の胴12内に流すことにより、当該熱媒体のもつ冷熱を有効に利用して気化用熱交換器102の始動を効率良く行うことができる。
【0075】
このような切替移行運転を一定時間行った後(ステップS36でYES)、演算器40は、前記移行弁52及び切替弁53を閉じて切替弁55を開く(ステップS37)。これにより、図13に示されるように、冷熱利用設備18から排出される熱媒体が切替弁55が開弁している分岐配管222から前記気化用熱交換器101の胴12内に流入して切替弁56が開弁している分岐配管242を通じて冷熱利用設備18に供給される状態となり、気化用熱交換器102への切替が完了する。
【0076】
なお、本発明は3以上の熱交換器(少なくとも一つは気化用熱交換器を含む。)を併用する場合にも前記と同様にして適用することが可能である。
【0077】
【発明の効果】
以上のように本発明は、気化用熱交換器の伝熱管表面の着氷状態を測定し、その測定値に基づいて、前記気化用熱交換器への熱媒体による供給熱量を調節したり当該気化用熱交換器の運転を停止して別の予備熱交換器に運転切替したりするものであるので、熱交換器における伝熱管表面での着氷を確実に抑止しながら、効率の高い運転を行うことができる効果がある。
【図面の簡単な説明】
【図1】単一の気化用熱交換器とバイパス通路を用いたLNG気化装置の例を示すフローシートである。
【図2】前記気化用熱交換器の具体的構造を示す断面図である。
【図3】(a)(b)は前記気化用熱交換器の伝熱管内を流れるLNGのエンタルピ曲線である。
【図4】前記LNG気化装置において行われる演算制御動作を示すフローチャートである。
【図5】(a)(b)(c)は前記LNG気化装置における加温熱源の投入形態例を示すグラフである。
【図6】(a)はバイパス通路を使用せずに加温熱源を熱媒体に直接供給する例を示すフローシート、(b)は加温熱源を気化用熱交換器内に直接供給する例を示すフローシートである。
【図7】(a)(b)は前記バイパス通路におけるバイパス切換手段の変形例を示すフローシートである。
【図8】気化用熱交換器とガス加温用熱交換器とを併用したLNG気化システムの例を示すフローシートである。
【図9】低温側気化用熱交換器と高温側気化用熱交換器とを併用したLNG気化システムの例を示すフローシートである。
【図10】図9に示すLNG気化システムにおいて行われる演算制御動作を示すフローチャートである。
【図11】2つの気化用熱交換器を併用するLNG気化システムにおいて熱交換器切替前の運転状態を示すフローシートである。
【図12】図11に示すLNG気化システムにおいて熱交換器切替移行運転の状態を示すフローシートである。
【図13】図11に示すLNG気化システムにおいて熱交換器切替完了後の運転状態を示すフローシートである。
【図14】図11〜図13に示すLNG気化システムにおいて行われる演算制御動作を示すフローチャートである。
【符号の説明】
10,101,102 気化用熱交換器
10L 低温側気化用熱交換器
10H 高温側気化用熱交換器
10G ガス加温用熱交換器
12 胴
16 伝熱管
20 熱媒体循環通路
26 ポンプ(熱媒体循環手段)
28 バイパス配管
29,46 バイパス切換弁
30 加温手段
34 供給弁
36 着氷状態測定センサ
37,37G 温度センサ(排出ガス温度測定手段)
40 演算器(供給熱量調節手段、バイパス制御手段)
40′演算器(ガス加温側供給熱量調節手段)
50 切替移行配管

Claims (25)

  1. 胴内に伝熱管が挿通され、当該伝熱管内を流れる低温液化ガスと前記胴内の熱媒体との間で熱交換を行わせることにより前記伝熱管内の低温液化ガスを気化させる気化用熱交換器と、前記胴内に熱媒体を流すための熱媒体供給手段とを備えた低温液化ガス気化装置を運転するための方法であって、
    前記伝熱管に当該伝熱管表面の着氷状態を測定する着氷状態測定手段を設け、この着氷状態測定手段の測定値に基づいて前記気化用熱交換器への前記熱媒体による供給熱量を調節するとともに、前記気化用熱交換器の伝熱管から排出されるガスの温度を測定し、その測定値が一定以下の場合には前記着氷状態測定手段の測定値にかかわらず前記気化用熱交換器への前記熱媒体による供給熱量を増やすことを特徴とする低温液化ガス気化装置の運転方法。
  2. 請求項1記載の低温液化ガス気化装置の運転方法において、
    前記熱媒体供給手段は、前記気化用熱交換器の胴内と冷熱利用設備との間で前記熱媒体を循環させるものであって、前記胴から排出される熱媒体を前記冷熱利用設備に導いて当該冷熱利用設備で昇温した熱媒体を前記胴内へ還元するものであることを特徴とする低温液化ガス気化装置の運転方法。
  3. 請求項1または2記載の低温液化ガス気化装置の運転方法において、
    前記胴内から排出される熱媒体の一部を抜き出して加温手段により加温してから前記胴内に導かれる熱媒体に合流させるとともに、前記着氷状態測定手段の測定値に基づいて前記加温手段による前記熱媒体への供給熱量を調節することを特徴とする低温液化ガス気化装置の運転方法。
  4. 請求項1〜3のいずれかに記載の低温液化ガス気化装置の運転方法において、胴内に伝熱管が挿通されて当該伝熱管内を流れるガスと前記胴内の熱媒体との間で熱交換を行わせることにより前記伝熱管内のガスを加温するガス加温用熱交換器の当該伝熱管に前記気化用熱交換器で気化されたガスを流すことにより当該ガスを加温させるとともに、前記気化用熱交換器の伝熱管から排出されるガスの温度の測定値が一定以下の場合には前記ガス加温用熱交換器への前記熱媒体による供給熱量を増やすことを特徴とする低温液化ガス気化装置の運転方法。
  5. 胴内に伝熱管が挿通され、当該伝熱管内を流れる低温液化ガスと前記胴内の熱媒体との間で熱交換を行わせることにより前記伝熱管内の低温液化ガスを気化させる気化用熱交換器と、前記胴内に熱媒体を流すための熱媒体供給手段とを備えた低温液化ガス気化装置を運転するための方法であって、
    前記伝熱管の入口箇所、前記伝熱管内で前記低温液化ガスが沸騰する箇所の少なくとも一方の箇所における着氷状態を測定する位置に当該伝熱管表面の着氷状態を測定する着氷状態測定手段を設け、この着氷状態測定手段の測定値に基づいて前記気化用熱交換器への前記熱媒体による供給熱量を調節することを特徴とする低温液化ガス気化装置の運転方法。
  6. 請求項5記載の低温液化ガス気化装置の運転方法において、前記熱媒体供給手段は、前記気化用熱交換器の胴内と冷熱利用設備との間で前記熱媒体を循環させるものであって、前記胴から排出される熱媒体を前記冷熱利用設備に導いて当該冷熱利用設備で昇温した熱媒体を前記胴内へ還元するものであることを特徴とする低温液化ガス気化装置の運転方法。
  7. 請求項5または6記載の低温液化ガス気化装置の運転方法において、前記胴内から排出される熱媒体の一部を抜き出して加温手段により加温してから前記胴内に導かれる熱媒体に合流させるとともに、前記着氷状態測定手段の測定値に基づいて前記加温手段による前記熱媒体への供給熱量を調節することを特徴とする低温液化ガス気化装置の運転方法。
  8. 請求項5〜7のいずれかに記載の低温液化ガス気化装置の運転方法において、前記気化用熱交換器の伝熱管から排出されるガスの温度を測定し、その測定値が一定以下の場合には前記着氷状態測定手段の測定値にかかわらず前記気化用熱交換器への前記熱媒体による供給熱量を増やすことを特徴とする低温液化ガス気化装置の運転方法。
  9. 請求項5〜8のいずれかに記載の低温液化ガス気化装置の運転方法において、胴内に伝熱管が挿通されて当該伝熱管内を流れるガスと前記胴内の熱媒体との間で熱交換を行わせることにより前記伝熱管内のガスを加温するガス加温用熱交換器の当該伝熱管に前記気化用熱交換器で気化されたガスを流すことにより当該ガスを加温させるとともに、前記気化用熱交換器の伝熱管から排出されるガスの温度の測定値が一定以下の場合には前記ガス加温用熱交換器への前記熱媒体による供給熱量を増やすことを特徴とする低温液化ガス気化装置の運転方法。
  10. 胴内に伝熱管が挿通され、当該伝熱管内を流れる低温液化ガスと前記胴内の熱媒体との間で熱交換を行わせることにより前記伝熱管内の低温液化ガスを気化させる気化用熱交換器と、前記胴内に熱媒体を流すための熱媒体供給手段とを備えた低温液化ガス気化装置を運転するための方法であって、前記伝熱管に当該伝熱管表面の着氷状態を測定する着氷状態測定手段を設け、この着氷状態測定手段の測定値が予め定められた許容範囲を超える場合に前記気化用熱交換器の運転を停止してこの気化用熱交換器とは別の予備熱交換器により前記低温液化ガスの気化を続けることを特徴とする低温液化ガス気化装置の運転方法。
  11. 請求項10記載の低温液化ガス気化装置の運転方法において、前記予備熱交換器を前記気化用熱交換器よりも高温領域で運転することを特徴とする低温液化ガス気化装置の運転方法。
  12. 請求項10記載の低温液化ガス気化装置の運転方法において、前記予備熱交換器の使用を開始する際、前記運転を停止した気化用熱交換器の胴内にある熱媒体を前記予備熱交換器の胴内に導入することを特徴とする低温液化ガス気化装置の運転方法。
  13. 胴内に伝熱管が挿通され、当該伝熱管内を流れる低温液化ガスと前記胴内の熱媒体との間で熱交換を行わせることにより前記伝熱管内の低温液化ガスを気化させる気化用熱交換器と、前記胴内に熱媒体を流すための熱媒体供給手段とを備えた低温液化ガス気化装置において、前記伝熱管に設けられ、当該伝熱管表面の着氷状態を測定する着氷状態測定手段と、この着氷状態測定手段の測定値に基づいて前記気化用熱交換器への前記熱媒体による供給熱量を調節する供給熱量調節手段とを備え、
    前記熱媒体供給手段は、前記気化用熱交換器の胴内と冷熱利用設備との間で前記熱媒体を循環させる通路であって前記胴から排出される熱媒体を前記冷熱利用設備に導いて当該冷熱利用設備で昇温した熱媒体を前記胴内へ還元するための熱媒体循環通路と、前記胴内から排出される熱媒体の一部を抜き出して前記胴内に導かれる熱媒体に合流させるバイパス通路と、このバイパス通路を流れる熱媒体を加温する加温手段とを含み、前記供給熱量調節手段は少なくとも前記加温手段による前記熱媒体への供給熱量を調節する動作を行うものであり、
    更に、前記バイパス通路に前記熱媒体を流すバイパス許容状態と当該バイパス通路に前記熱媒体が流れるのを阻止するバイパス阻止状態とに切替えられるバイパス切替手段を備えたことを特徴とする低温液化ガス気化装置。
  14. 請求項13記載の低温液化ガス気化装置において、前記加温手段による加温が行われる場合にのみ前記バイパス切替手段を前記バイパス許容状態にし、前記加温手段による加温が行われない場合には前記バイパス切替手段を前記バイパス阻止状態にするバイパス制御手段を備えたことを特徴とする低温液化ガス気化装置。
  15. 胴内に伝熱管が挿通され、当該伝熱管内を流れる低温液化ガスと前記胴内の熱媒体との間で熱交換を行わせることにより前記伝熱管内の低温液化ガスを気化させる気化用熱交換器と、前記胴内に熱媒体を流すための熱媒体供給手段とを備えた低温液化ガス気化装置において、前記伝熱管に設けられ、当該伝熱管表面の着氷状態を測定する着氷状態測定手段と、この着氷状態測定手段の測定値に基づいて前記気化用熱交換器への前記熱媒体による供給熱量を調節する供給熱量調節手段と、前記気化用熱交換器の伝熱管から排出されるガスの温度を測定する排出ガス温度測定手段を備え、前記排出ガス温度測定手段の測定値が一定以下の場合には前記着氷状態測定手段の測定値にかかわらず前記気化用熱交換器への前記熱媒体による供給熱量を増やすように前記供給熱量調節手段が構成されていることを特徴とする低温液化ガス気化装置。
  16. 請求項15記載の低温液化ガス気化装置において、前記熱媒体供給手段は、前記気化用熱交換器の胴内と冷熱利用設備との間で前記熱媒体を循環させる通路であって前記胴から排出される熱媒体を前記冷熱利用設備に導いて当該冷熱利用設備で昇温した熱媒体を前記胴内へ還元するための熱媒体循環通路と、前記胴内から排出される熱媒体の一部を抜き出して前記胴内に導かれる熱媒体に合流させるバイパス通路と、このバイパス通路を流れる熱媒体を加温する加温手段とを含み、前記供給熱量調節手段は少なくとも前記加温手段による前記熱媒体への供給熱量を調節する動作を行うものであることを特徴とする低温液化ガス気化装置。
  17. 請求項16記載の低温液化ガス気化装置において、前記バイパス通路に前記熱媒体を流すバイパス許容状態と当該バイパス通路に前記熱媒体が流れるのを阻止するバイパス阻止状態とに切替えられるバイパス切替手段を備えたことを特徴とする低温液化ガス気化装置。
  18. 請求項17記載の低温液化ガス気化装置において、前記加温手段による加温が行われる場合にのみ前記バイパス切替手段を前記バイパス許容状態にし、前記加温手段による加温が行われない場合には前記バイパス切替手段を前記バイパス阻止状態にするバイパス制御手段を備えたことを特徴とする低温液化ガス気化装置。
  19. 請求項15〜18のいずれかに記載の低温液化ガス気化装置において、胴内に伝熱管が挿通されて当該伝熱管内に前記気化用熱交換器で気化されたガスが流されることにより当該ガスと前記胴内の熱媒体との間で熱交換を行わせて前記伝熱管内のガスを加温するガス加温用熱交換器と、前記排出ガス温度測定手段による測定値が一定以下の場合に前記ガス加温用熱交換器への前記熱媒体による供給熱量を増やすガス加温側供給熱量調節手段とを備えたことを特徴とする低温液化ガス気化装置。
  20. 胴内に伝熱管が挿通され、当該伝熱管内を流れる低温液化ガスと前記胴内の熱媒体との間で熱交換を行わせることにより前記伝熱管内の低温液化ガスを気化させる気化用熱交換器と、前記胴内に熱媒体を流すための熱媒体供給手段とを備えた低温液化ガス気化装置において、前記伝熱管の入口箇所、前記伝熱管内で前記低温液化ガスが沸騰する箇所の少なくとも一方の箇所における着氷状態を測定する位置に設けられ、当該伝熱管表面の着氷状態を測定する着氷状態測定手段と、この着氷状態測定手段の測定値に基づいて前記気化用熱交換器への前記熱媒体による供給熱量を調節する供給熱量調節手段とを備えたことを特徴とする低温液化ガス気化装置。
  21. 請求項20記載の低温液化ガス気化装置において、前記熱媒体供給手段は、前記気化用熱交換器の胴内と冷熱利用設備との間で前記熱媒体を循環させる通路であって前記胴から排出される熱媒体を前記冷熱利用設備に導いて当該冷熱利用設備で昇温した熱媒体を前記胴内へ還元するための熱媒体循環通路と、前記胴内から排出される熱媒体の一部を抜き出して前記胴内に導かれる熱媒体に合流させるバイパス通路と、このバイパス通路を流れる熱媒体を加温する加温手段とを含み、前記供給熱量調節手段は少なくとも前記加温手段による前記熱媒体への供給熱量を調節する動作を行うものであることを特徴とする低温液化ガス気化装置。
  22. 請求項20または21記載の低温液化ガス気化装置において、前記バイパス通路に前記熱媒体を流すバイパス許容状態と当該バイパス通路に前記熱媒体が流れるのを阻止するバイパス阻止状態とに切替えられるバイパス切替手段を備えたことを特徴とする低温液化ガス気化装置。
  23. 請求項20〜22のいずかに記載の低温液化ガス気化装置において、前記加温手段による加温が行われる場合にのみ前記バイパス切替手段を前記バイパス許容状態にし、前記加温手段による加温が行われない場合には前記バイパス切替手段を前記バイパス阻止状態にするバイパス制御手段を備えたことを特徴とする低温液化ガス気化装置。
  24. 請求項20〜23のいずれかに記載の低温液化ガス気化装置において、前記気化用熱交換器の伝熱管から排出されるガスの温度を測定する排出ガス温度測定手段を備え、その測定値が一定以下の場合には前記着氷状態測定手段の測定値にかかわらず前記気化用熱交換器への前記熱媒体による供給熱量を増やすように前記供給熱量調節手段が構成されていることを特徴とする低温液化ガス気化装置。
  25. 請求項20〜24のいずれかに記載の低温液化ガス気化装置において、胴内に伝熱管が挿通されて当該伝熱管内に前記気化用熱交換器で気化されたガスが流されることにより当該ガスと前記胴内の熱媒体との間で熱交換を行わせて前記伝熱管内のガスを加温するガス加温用熱交換器と、前記排出ガス温度測定手段による測定値が一定以下の場合に前記ガス加温用熱交換器への前記熱媒体による供給熱量を増やすガス加温側供給熱量調節手段とを備えたことを特徴とする低温液化ガス気化装置。
JP2003119702A 2003-04-24 2003-04-24 低温液化ガス気化装置及びその運転方法 Expired - Lifetime JP4422977B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119702A JP4422977B2 (ja) 2003-04-24 2003-04-24 低温液化ガス気化装置及びその運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119702A JP4422977B2 (ja) 2003-04-24 2003-04-24 低温液化ガス気化装置及びその運転方法

Publications (2)

Publication Number Publication Date
JP2004324761A JP2004324761A (ja) 2004-11-18
JP4422977B2 true JP4422977B2 (ja) 2010-03-03

Family

ID=33498861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119702A Expired - Lifetime JP4422977B2 (ja) 2003-04-24 2003-04-24 低温液化ガス気化装置及びその運転方法

Country Status (1)

Country Link
JP (1) JP4422977B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220739A (zh) * 2012-05-14 2014-12-17 现代重工业株式会社 用于处理液化气的系统及方法
CN105004141A (zh) * 2014-04-24 2015-10-28 林德股份公司 液化富烃馏分的方法
US9683766B1 (en) * 2013-07-12 2017-06-20 Lockheed Martin Corporation System and method for electronic de-clogging of microcoolers
US9784505B2 (en) 2012-05-15 2017-10-10 Lockheed Martin Corporation System, apparatus, and method for micro-capillary heat exchanger
US9863670B2 (en) 2011-09-20 2018-01-09 Lockheed Martin Corporation Extended travel flexure bearing and micro check valve
KR101856470B1 (ko) * 2017-08-03 2018-05-11 이상혁 액화석유가스 원격 제어 및 감시 시스템
US9999885B1 (en) 2014-05-30 2018-06-19 Lockheed Martin Corporation Integrated functional and fluidic circuits in Joule-Thompson microcoolers

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090126372A1 (en) * 2007-11-16 2009-05-21 Solomon Aladja Faka Intermittent De-Icing During Continuous Regasification of a Cryogenic Fluid Using Ambient Air
JP5219127B2 (ja) * 2008-02-08 2013-06-26 昭和電工ガスプロダクツ株式会社 液化二酸化炭素の気化熱回収装置および気化熱回収方法
JP5378064B2 (ja) * 2009-05-19 2013-12-25 Ihiプラント建設株式会社 空温式気化器の運転方法
CN102612621B (zh) * 2009-11-18 2014-05-28 国际壳牌研究有限公司 处理蒸发气体流的方法及其设备
WO2013172645A1 (ko) * 2012-05-14 2013-11-21 현대중공업 주식회사 액화가스 처리 시스템 및 방법
WO2013172641A1 (ko) * 2012-05-14 2013-11-21 현대중공업 주식회사 액화가스 처리 시스템 및 방법
WO2013172643A1 (ko) * 2012-05-14 2013-11-21 현대중공업 주식회사 액화가스 처리 시스템 및 방법
KR101549745B1 (ko) 2013-08-16 2015-09-02 현대중공업 주식회사 액화가스 처리 시스템
KR101917349B1 (ko) * 2016-09-13 2018-11-09 주식회사 베스트 복합 히팅 기화장치
JP6956491B2 (ja) * 2017-02-01 2021-11-02 株式会社Ihiプラント 熱交換器及び熱交換システム
WO2018225683A1 (ja) * 2017-06-06 2018-12-13 住友精化株式会社 液化燃料ガス気化システムおよびそのための液体熱媒温度制御方法
JP7011516B2 (ja) * 2018-03-30 2022-01-26 株式会社神戸製鋼所 液化天然ガス気化システム
CN110701842A (zh) * 2019-10-22 2020-01-17 航天科工哈尔滨风华有限公司 一种利用lng冷能制雪、制冰的气化系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9863670B2 (en) 2011-09-20 2018-01-09 Lockheed Martin Corporation Extended travel flexure bearing and micro check valve
US10254017B2 (en) 2011-09-20 2019-04-09 Lockheed Martin Corporation Extended travel flexure bearing and micro check valve
CN104220739A (zh) * 2012-05-14 2014-12-17 现代重工业株式会社 用于处理液化气的系统及方法
CN104246198A (zh) * 2012-05-14 2014-12-24 现代重工业株式会社 用于处理液化气的系统及方法
US9885446B2 (en) 2012-05-14 2018-02-06 Hyundai Heavy Industries Co., Ltd. System and method for processing liquefied gas
US9784505B2 (en) 2012-05-15 2017-10-10 Lockheed Martin Corporation System, apparatus, and method for micro-capillary heat exchanger
US9683766B1 (en) * 2013-07-12 2017-06-20 Lockheed Martin Corporation System and method for electronic de-clogging of microcoolers
CN105004141A (zh) * 2014-04-24 2015-10-28 林德股份公司 液化富烃馏分的方法
US9999885B1 (en) 2014-05-30 2018-06-19 Lockheed Martin Corporation Integrated functional and fluidic circuits in Joule-Thompson microcoolers
KR101856470B1 (ko) * 2017-08-03 2018-05-11 이상혁 액화석유가스 원격 제어 및 감시 시스템

Also Published As

Publication number Publication date
JP2004324761A (ja) 2004-11-18

Similar Documents

Publication Publication Date Title
JP4422977B2 (ja) 低温液化ガス気化装置及びその運転方法
JP4770976B2 (ja) コンテナ用冷凍装置
JP3759724B2 (ja) 冷蔵庫
ITTO940103A1 (it) Condizionatore d'aria del tipo ad accumulazione di colore e procedimento di sbrinamento
KR100716706B1 (ko) 1중 2중 효용 흡수 냉동기의 운전 방법
JP4291459B2 (ja) 熱交換器の徐冷方法及び装置
KR20120070670A (ko) 부유식 구조물
KR101405271B1 (ko) 순간 급탕이 가능한 히트펌프 급탕장치
US20110048344A1 (en) Water heating apparatus
JP3737357B2 (ja) 給湯装置
CN101730825A (zh) 用于控制吸收式冷却器中的温度的方法和系统
JP4056211B2 (ja) ヒートポンプ給湯機
CN213901546U (zh) 热量回收系统和供电系统
CN214746788U (zh) 一种冻干机节能循环系统
JP4479836B2 (ja) 温水システム
JP5397314B2 (ja) 車両の熱管理システム
JP4090262B2 (ja) 吸収式冷凍機
KR100602221B1 (ko) 냉장고용 온수디스펜서의 증기방출 방지장치
JP3851204B2 (ja) 吸収式冷凍機
JP6369980B2 (ja) アイスリンクの冷却設備及び冷却方法
US20220344559A1 (en) Thermoelectric power generation system
CN112378120A (zh) 热量回收系统和供电系统
JP5170470B2 (ja) 温水装置
JP4479833B2 (ja) 温水システム
JPH07301486A (ja) 真空凍結乾燥機の蒸気凝結装置におけるコールドトラップの温度制御方法および温度制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4422977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term