JP4421762B2 - 接地抵抗測定装置 - Google Patents
接地抵抗測定装置 Download PDFInfo
- Publication number
- JP4421762B2 JP4421762B2 JP2000331896A JP2000331896A JP4421762B2 JP 4421762 B2 JP4421762 B2 JP 4421762B2 JP 2000331896 A JP2000331896 A JP 2000331896A JP 2000331896 A JP2000331896 A JP 2000331896A JP 4421762 B2 JP4421762 B2 JP 4421762B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- vmr
- ground resistance
- voltage
- voltage component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Description
【発明の属する技術分野】
本発明は、信号電圧比を用いて接地抵抗を測定する接地抵抗測定装置に関するものである。
【0002】
【従来の技術】
この種の接地抵抗測定装置として、図5に示す接地抵抗測定装置51が従来から知られている。この接地抵抗測定装置51は、補助電極を用いないで接地抵抗を測定可能に構成されており、第1端子2、装置アースに接続された第2端子3、操作部54、信号発生部6、第1アンプ7、出力抵抗(抵抗値Ro:既知)8、同期検波部10、第2アンプ11、演算部52、第3アンプ53および表示部55を備えている。また、第1端子2には、リード線14が接続され、第2端子3には、リターン線15が接続されている。さらに、リード線14の先端には、金属棒等で構成され大地17に埋設された被測定接地棒16が接続されている。この場合、リターン線15は、一定の長さ(通常、10m以上)を有する絶縁被覆付きの導線で構成され、絶縁状態で大地17上に自由配置される。なお、リターン線15に代えて、大地17から絶縁された状態で大地17上に配設可能な金属板を用いることもできる。
【0003】
操作部54は、周波数設定信号を出力する周波数設定手段(具体的には可変抵抗)を備え、この周波数設定手段はオペレータによって操作される。信号発生部6は、周波数設定信号によって特定される周波数の高周波正弦波(以下、高周波信号vcともいう)を測定信号として生成する。したがって、信号発生部6は、操作部54内の周波数設定手段が操作された際には、その操作に応じた周波数の高周波信号vcを生成する。第1アンプ7は、バッファとして機能し、入力した高周波信号vcを注入信号Voとして低インピーダンスで出力する。出力抵抗8は、第1アンプ7と第1端子2との間に接続されている。したがって、第1アンプ7から出力された注入信号Voは、出力抵抗8を介してリード線14に供給される。また、リード線14に供給された注入信号Voは、被測定接地棒16に注入され、リターン線15と大地17との大地間結合容量を介して、リターン線15および第2端子3からなる経路を経て接地抵抗測定装置51に帰還する。同期検波部10は、第2端子3と第1端子2との間に発生する電圧Vmを入力し、注入信号Voで同期検波することにより、測定対象信号としての電圧Vmの実数成分(単に直流電圧成分ともいう)を抽出する。また、同期検波部10は、例えば、図6に示すように、注入信号Voと電圧Vmとを乗算する乗算器10aと、乗算器10aにおける出力電圧の直流電圧成分を通過させる低域フィルタ10bとで構成される。第2アンプ11は、同期検波部10によって生成された直流電圧成分の電圧レベルを調整し、最終的な直流電圧成分Vmrとして出力する。演算部52は、例えば乗算器を用いて構成され、直流電圧成分Vmrを用いて予め決められた所定のアナログ演算処理を行い、接地抵抗Rgの抵抗値の大小に比例する電圧を生成する。第3アンプ53は、演算部52によって生成された電圧に対してスケーリング調整を行う。表示部55は、アナログメータで構成され、スケーリング調整後の電圧に応じてメータ針を振らすことによって接地抵抗Rgを表示する。
【0004】
次に、この接地抵抗測定装置51を用いた接地抵抗測定方法の原理について説明する。最初に、接地抵抗測定装置51、リード線14、リターン線15、大地17および被測定接地棒16を含めた測定系の等価回路を図7に示す。この場合、同図において、Rgは被測定接地棒16の接地抵抗、Lはリード線14のインダクタンス成分、Cはリターン線15の大地間結合容量、Rはリターン線15の皮膜による絶縁抵抗を意味する。また、第1端子2および第2端子3間のインピーダンスZm(つまり、リード線14、被測定接地棒16、大地17およびリターン線15からなるループのインピーダンス)は、下記の(1)式で表される。
Zm=Rm+Im・・・・(1)式
ただし、Rmは実数成分、Imは虚数成分を意味し、それぞれ下記の(2)式および(3)式で表される。
Rm=Rg+R/(1+(ωCR)2)・・・・・・・・・(2)式
Im=jωL−jωCR2/(1+(ωCR)2)・・・・(3)式
【0005】
一方、上記インピーダンスZmを形成するループの共振周波数においては、Im=0となるため、(3)式より、下記の(4)式が成立する。
R/(1+(ωCR)2)=L/CR・・・・・・・・・・(4)式
この場合、(4)式は(2)式の右辺第2項と等しいため、CR≫Lの条件下では、(2)式の右辺第2項の値がゼロとなる。この結果、下記の式が成立する。
Rm≒Rg
したがって、被測定接地棒16の接地抵抗Rgは、出力抵抗8(抵抗値Ro)と接地抵抗Rgとで注入信号voの電圧Voを分圧した電圧Vmに基づいて算出することができる。このため、この接地抵抗測定装置51では、まず、同期検波部10が、注入信号voの周波数を上記したループの共振周波数と等しくした状態で、第1端子2での電圧Vmを注入信号の電圧Voで同期検波し、第2アンプ11が、電圧レベルを調整することによって直流電圧成分Vmrを生成する。次いで、演算部52が、下記の(5)式における右辺の(x/(1−x))をアナログ演算することによって直流電圧を生成し、第3アンプ53が、演算部52によって生成された直流電圧を所定利得で増幅することによって接地抵抗Rgの抵抗値に応じた直流電圧を生成して表示部55に出力する。この結果、表示部55が接地抵抗Rgの抵抗値を表示する。
Rg=Ro×Vmr/(Vo−Vmr)=Ro×x/(1−x)・・(5)式
ただし、x=Vmr/Vo
【0006】
したがって、オペレータは、表示部55に表示される接地抵抗Rgの値を監視しつつ、操作部54の周波数設定手段を操作して信号発生部6が生成する高周波信号vcの周波数を徐々に変え、表示された接地抵抗Rgが最も小さくなる点を探すことにより、その最も小さな値を接地抵抗Rgとして測定することができる。
【0007】
【発明が解決しようとする課題】
ところが、この従来の接地抵抗測定装置51には、以下の問題点がある。すなわち、上記(5)式における直流電圧成分Vmrの値は、第1アンプ7、同期検波部10および第2アンプ11におけるゲインやオフセット電圧が変動したときには、その変動に応じて変化する。また、接地抵抗Rgの抵抗値も、直流電圧成分Vmrの変化に応じて変動する。その一方、温度変化や経時的要因に対して上記のゲインやオフセット電圧を一定に保つことは極めて困難である。したがって、従来の接地抵抗測定装置51には、同期検波部10や第1アンプ7などのゲイン変動などに起因して、高精度で接地抵抗Rgを測定するのが困難であるという問題点が存在する。
【0008】
本発明は、かかる問題点に鑑みてなされたものであり、接地抵抗を高精度で測定可能な接地抵抗測定装置を提供することを主目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成すべく請求項1記載の接地抵抗測定装置は、被測定接地棒に接続されるリード線、および絶縁状態で大地上に配置されるリターン導体が接続可能に構成されて、前記被測定接地棒の接地抵抗を測定する接地抵抗測定装置において、交流信号を生成すると共にその周波数を可変制御可能に構成された信号発生部と、前記リード線または前記リターン導体と前記信号発生部との間に接続される出力抵抗と、当該出力抵抗の前記リード線または前記リターン導体側の出力端部、当該出力抵抗の前記信号発生部側の入力端部、およびゼロ電位部位から1つを選択して当該選択した部位の電圧を出力する信号切換手段と、当該信号切換手段から出力される前記電圧を前記交流信号で同期検波することにより直流電圧成分を生成する同期検波部と、演算制御部とを備え、前記演算制御部は、前記信号切換手段による前記出力端部の選択時に前記信号発生部における前記交流信号の周波数を変化させて求めた前記同期検波部で生成される最低値の直流電圧成分Vmrと、その周波数に維持した状態において前記信号切換手段による前記入力端部の選択時に前記同期検波部によって生成される直流電圧成分Vmr∞と、前記周波数に維持した状態において前記信号切換手段による前記ゼロ電位部位の選択時に前記同期検波部によって生成される直流電圧成分Vmr0とに基づき、等価的に、前記直流電圧成分Vmrから前記直流電圧成分Vmr0を減算した第1の減算値を算出すると共に、前記直流電圧成分Vmr∞から直流電圧成分Vmrを減算した第2の減算値を算出し、当該第2の減算値で前記第1の減算値を除した値に前記出力抵抗の抵抗値を乗算する演算処理を行うことにより前記接地抵抗を測定することを特徴とする。
【0010】
また、請求項2記載の接地抵抗測定装置は、請求項1記載の接地抵抗測定装置において、前記直流電圧成分Vmr、前記直流電圧成分Vmr∞および前記直流電圧成分Vmr0を複数回それぞれ算出し、前記演算制御部は、前記複数回算出した前記各直流電圧成分を平均化すると共に当該平均化した各値に基づいて前記演算処理を行うことにより前記接地抵抗を測定することを特徴とする。
【0011】
【発明の実施の形態】
以下、添付図面を参照して、本発明に係る接地抵抗測定装置の好適な実施の形態について説明する。なお、従来の接地抵抗測定装置51と同一の構成要素については同一の符号を付して、重複する説明を省略する。
【0012】
接地抵抗測定装置1は、図1に示すように、第1端子2、第2端子3、操作部4、測定した接地抵抗Rgを数値によってディジタル表示する表示部5、測定信号としての高周波信号vcを生成する信号発生部6、高周波信号vcを注入信号Voとして出力する第1アンプ7、抵抗値Roの出力抵抗8、スイッチ9、スイッチ9から出力される電圧を注入信号Voで同期検波することにより直流電圧成分を生成する同期検波部10、同期検波部10によって生成された直流電圧を直流電圧成分Vmrとして低インピーダンスで出力する第2アンプ11、および演算制御部12を備えている。また、第1端子2には、リード線14が接続され、第2端子3には、リターン線15が接続されている。この場合、リード線14は、大地17に埋設された被測定接地棒16に接続される。一方、リターン線15は、大地17と絶縁した状態で、その大地17上に自由配置される。
【0013】
信号発生部6は、一例としてDDS(Direct Digital Synthesizer)を用いて構成され、演算制御部12によって出力されたディジタルデータに応じた周波数の高周波信号vcを生成する。
【0014】
操作部4は、信号発生部6によって生成される高周波信号vcの周波数を設定するためのアナログ信号の周波数設定信号を出力する周波数設定回路41と、演算制御部12に対して、接地抵抗Rgの演算処理を開始させるための開始信号を出力する演算開始スイッチ42とを備えている。具体的には、周波数設定回路41には、周波数設定手段としての可変抵抗が設けられており、この可変抵抗の抵抗値に応じた電圧が周波数設定信号として演算制御部12に出力される。スイッチ9は、例えばリレーやアナログスイッチで構成され、演算制御部12の切換制御に従い、出力抵抗8の第1端子2側の出力端部、出力抵抗8の第1アンプ7側の入力端部、およびゼロ電位部位から1つを選択し、その選択した部位に生じている電圧を同期検波部10に出力する。同期検波部10は、スイッチ9から出力される出力抵抗8の出力端部の電圧、出力抵抗8の入力端部の電圧(注入信号Voの電圧)、またはアース電位(0V)を注入信号Voで同期検波することにより、それぞれに対応する直流電圧成分Vmr,Vmr∞,Vmr0を生成する。
【0015】
演算制御部12は、2つのA/Dコンバータと、所定のソフトウェアに従って動作するCPU(若しくはDSP)と、ソフトウェアやデータを格納するメモリとを備えて構成されている(いずれも図示せず)。この場合、1つのA/Dコンバータは、第2アンプ11によって電圧レベル変換された直流電圧成分(Vmr,Vmr∞,Vmr0)をディジタルデータに変換する。一方、他のA/Dコンバータは、操作部4の周波数設定手段によって出力される周波数設定信号をディジタルデータに変換して信号発生部6に出力する。また、CPUは、演算開始スイッチ42の操作前においては、上記(5)式に従って接地抵抗Rgを演算して表示部5に表示させる。一方、オペレータによって演算開始スイッチ42が操作された際には、CPUは、スイッチ9を切換制御して上記した3種類の直流電圧成分Vmr,Vmr∞,Vmr0を算出すると共にディジタルデータに変換された各直流電圧成分Vmr,Vmr∞,Vmr0の値を内部メモリ内に記憶する。さらに、この際に、CPUは、上記した3種類の直流電圧成分Vmr,Vmr∞,Vmr0と、出力抵抗8の抵抗値Roとを用いて、等価的に、直流電圧成分Vmrから直流電圧成分Vmr0を減算した第1の減算値を算出すると共に、直流電圧成分Vmr∞から直流電圧成分Vmrを減算した第2の減算値を算出し、第2の減算値で第1の減算値を除した値に出力抵抗の抵抗値を乗算する演算処理を行うことにより真の接地抵抗Rgを算出する。具体的には、下記(6)式に従い、接地抵抗Rgを演算する処理を行う。また、CPUは、演算した接地抵抗Rgを表示部5に表示させる。
Rg=Ro×(Vmr−Vmr0)/(Vmr∞−Vmr) ・・・(6)式
【0016】
次に、接地抵抗測定装置1による接地抵抗測定処理について説明する。なお、この処理は、後述するように、共振周波数の探索処理と、接地抵抗Rgの演算処理とに大別される。
【0017】
最初に、測定に先立ち、第2端子3にリターン線15を接続した後、リターン線15を大地17上に配設する。次いで、大地17に打ち込まれた被測定接地棒16と第1端子2とをリード線14で接続する。この後、接地抵抗測定装置1の電源を投入する。
【0018】
電源投入状態では、演算制御部12が、共振周波数探索処理を最初に実行する。この処理では、演算制御部12は、スイッチ9を制御して、出力抵抗8の出力端部を選択する。この状態では、その部位における電圧Vmが、スイッチ9を介して同期検波部10に入力される。次に、演算制御部12は、操作部4から入力される周波数設定信号をディジタルデータに変換し、そのディジタルデータを信号発生部6に出力する。これにより、信号発生部6は、操作部4から出力された周波数設定信号に対応した周波数の高周波信号vcを出力する。この結果、信号発生部6によって生成される高周波信号vcの周波数が、操作部4における周波数設定回路41の操作に応じて任意に変化する。次いで、この高周波信号vcは、第1アンプ7に入力され、注入信号Voとして出力される。この場合、注入信号Voは、出力抵抗8を介してリード線14に供給され、被測定接地棒16、大地17、リターン線15と大地17との大地間結合容量、リターン線15および第2端子3を経由して接地抵抗測定装置1に帰還する。この際に、同期検波部10は、第2端子3(接地抵抗測定装置1内の装置アース)と第1端子2との間に発生する電圧Vmを入力し、注入信号Voで同期検波することにより直流電圧成分を生成する。次いで、第2アンプ11が、所定利得で増幅して直流電圧成分Vmrとして出力する。次に、演算制御部12が、直流電圧成分Vmrに基づいて所定の演算処理((5)式の演算処理)を行うことにより接地抵抗Rgを算出する。この際に、演算制御部12は、算出した接地抵抗Rgを表示部5に表示させる。
【0019】
この場合、オペレータは、表示部5に表示された接地抵抗Rgの値を監視しつつ、操作部4の周波数設定回路41を操作して高周波信号vcの周波数を徐々に変化させることにより、表示された接地抵抗Rgの値が最も小さくなる被測定系の共振周波数を探索する。次いで、オペレータは、共振周波数を検知した際に、操作部4内の演算開始スイッチ42を操作する。これにより、操作部4から演算制御部12に演算開始信号が出力される。次いで、演算制御部12は、真の接地抵抗Rgを算出するための演算処理を開始する。
【0020】
この際に、演算制御部12は、信号発生部6に出力する周波数設定用のディジタルデータを共振周波数に対応するデータに固定することにより、信号発生部6によって生成される高周波信号vcの周波数を共振周波数に維持する。次いで、演算制御部12は、第2アンプ11から入力されている直流電圧成分Vmrを内部メモリに記憶させる。次に、演算制御部12は、スイッチ9を制御して、出力抵抗8の入力端部を選択し、スイッチ9を介して注入信号Voを同期検波部10に入力させ、第2アンプ11から出力される直流電圧成分Vmr∞を内部メモリに記憶させる。次に、演算制御部12は、スイッチ9を制御して、ゼロ電位部位を選択することにより、スイッチ9を介してアース電位を同期検波部10に入力させ、第2アンプ11から出力される直流電圧成分Vmr0を内部メモリに記憶させる。この際に、演算制御部12は、ゲイン変動やドリフト変動が定常とみなせる程度の短時間内で直流電圧成分Vm,Vmr∞,Vmr0の測定を行う。また、直流電圧成分Vmr∞および直流電圧成分Vmr0の測定順序を逆にすることもできる。
【0021】
演算制御部12は、上記の各直流電圧成分の測定を完了した際には、内部メモリに記憶した各直流電圧成分Vmr,Vmr0,Vmr∞を読み出し、(6)式に基づいて接地抵抗Rgを演算処理で算出する。次に、演算制御部12は、算出した接地抵抗Rgを表示部5に表示させる。この結果、最終的な真の接地抵抗Rgが測定される。また、演算制御部12に対して、上述した各直流電圧成分Vmr,Vmr0,Vmr∞の測定を複数回それぞれ繰り返して実行させ、各直流電圧成分Vmr,Vmr0,Vmr∞毎に平均値を演算させた後、各平均値に基づいて接地抵抗Rgを演算させるように構成することもできる。この構成によれば、ノイズの影響を排除することができるため、接地抵抗Rgを高精度で算出することができる。
【0022】
次に、上記(6)式によって真の接地抵抗Rgが算出される根拠について、図2を参照して説明する。
【0023】
まず、信号発生部6によって生成される高周波信号vcが下記の式で表されるものとする。
vc=Vc×cosωt
この場合、同期検波部10内の乗算器10aの入力端子X1における電圧波形Wx1、乗算器10aの入力端子Y1における電圧波形Wy1、乗算器10aの入力端子X2およびY2における電圧波形Wx2,Wy2、乗算器10aの出力端子Wにおける電圧波形Ww、低域フィルタ10bの出力端子における直流電圧成分VDCは、それぞれ次式で表される。なお、αは第1アンプ7のゲイン変動率、ofs1,ofs2はそれぞれ第1アンプ7および第2アンプ11のドリフト分、ofx ,ofy はそれぞれ同期検波部10の入力端子X1および入力端子Y1の入力オフセット分、Uは同期検波部10内のゲイン、Zは同期検波部10の出力オフセット分、およびθは出力抵抗8の両端における高周波信号vcの位相差を意味する。
【0024】
【数1】
【0025】
(11)式より第2アンプ11から出力される直流電圧成分Vmrは、下記の(12)式で表され、その(12)式より、Rgは(13)式で表わせる。なお、Aは第2アンプ11のゲインを意味し、βは第2アンプ11のゲイン変動率を意味し、ofs3は第2アンプ11のドリフト分を意味する。
【0026】
【数2】
【0027】
また、(12)式に基づいて、直流成分Vmr0は、下記の(14)式で表され、直流成分Vmr∞は、(15)式で表される。したがって、接地抵抗Rgは、(13)式〜(15)式から最終的に(6)式で表される。
【0028】
【数3】
【0029】
このように、この接地抵抗測定装置1によれば、第1アンプ7および第2アンプ11のゲイン変動やドリフト分、同期検波部10のゲインやオフセット電圧分、さらには、出力抵抗8の両端における高周波信号vcの位相差が存在したとしても、これらが定常とみなせる短い時間内に、スイッチ9を切り換えて、各直流電圧成分Vmr,Vmr0,Vmr∞を測定することによって、真の接地抵抗Rgを精度良く算出することができる。これにより、ゲイン変動などに対する補償回路が一切不要となるため、部品点数および調整工数を大幅に削減することができる。また、この接地抵抗測定装置1によれば、接地抵抗Rgの算出用回路をディジタル化したことにより、アナログ回路によって接地抵抗Rgを算出する従来の接地抵抗測定装置51の回路構成と比較して、回路構成を簡略化することができる。
【0030】
なお、本発明は、上述した発明の実施の形態に示した構成に限定されない。例えば、図3に示す接地抵抗測定装置21のように、注入信号Voをディジタルデータに変換するA/Dコンバータ22と、スイッチ9から出力される電圧をディジタルデータに変換するA/Dコンバータ23とを設け、かつ同期検波部24を所定のソフトウェアに従って動作するCPU(若しくはDSP)で構成することで、同期検波回路全体としてディジタル化することもできる。この構成によれば、アナログ部品を不要にすることができるため、接地抵抗測定装置21を小型化できると共にコストダウンを図ることができる。さらに、A/Dコンバータ22,23、ディジタル化した同期検波部24、および演算制御部12をDSPなどで一体的に構成することもでき、かかる構成を採用した場合には、回路構成をさらに簡略化することができる。また、第1端子2にリターン線15を接続し、かつ、第2端子3にリード線14を接続して接地抵抗Rgを測定することができるのは勿論である。
【0031】
また、上述した実施の形態の構成に加えて、オペレータによって操作される周波数設定手段(例えば可変抵抗)の操作量に対して、信号発生部6によって生成される高周波信号vcの周波数がリニアに変化するように補正する周波数補正回路を追加することもできる。この構成によれば、共振周波数の探索が容易となる。この場合、周波数補正回路を、ハードウェア、または演算制御部12によるソフトウェア処理によって構成することができる。
【0032】
また、上述した実施の形態では、操作部4に設けられた周波数設定回路41内の周波数設定手段(可変抵抗)を操作して信号発生部6から出力される測定信号の周波数の設定を行うマニュアル方式について説明したが、これに限定されない。例えば、図4に示す接地抵抗測定装置31のように、演算制御部12が周波数設定回路41を制御する構成を採用することができる。この構成によれば、演算制御部12に対して、高周波信号vcの周波数を変化させつつ共振周波数を自動探索させることができると共に接地抵抗Rgを自動算出させることもできる。
【0033】
さらに、上述した実施の形態では、演算制御部12が、演算開始スイッチ42の操作前において(5)式の演算処理によって接地抵抗Rgを算出し、演算開始スイッチ42の操作後において(6)式の演算処理によって真の接地抵抗Rgを算出する例について説明したが、本発明は、これに限定されない。例えば、演算開始スイッチ42を設けることなく、演算制御部12に対して、スイッチ9を自動切換させて常に(6)式の演算処理による真の接地抵抗Rgを算出させる構成を採用することもできる。この構成によれば、高周波信号vcの周波数を変更する都度、その周波数の高周波信号vcを用いて算出された接地抵抗Rgが表示部5に順次表示されるため、オペレータは、表示される接地抵抗Rgのうちの最も小さい値を真の接地抵抗Rgとして測定することができる。
【0034】
また、第1端子2および第2端子3間のインダクタンス成分は、主としてリード線14のインダクタンス成分のため、一般的には小さい値となる。このため、インピーダンスの共振周波数がMHzオーダーの高い周波数になることがある。かかる場合には、同期検波部10などの回路設計において高周波を考慮する必要がある。このため、回路構成や基板設計に困難を伴う結果、設計時間が長時間化する。そこで、第1端子2および第2端子3間のインダクタンス成分を強制的に増加させ、共振周波数を低い周波数にシフトさせることによって、この問題を解決することもできる。この場合、図1に破線で示すように、出力抵抗8と第1端子2との間に共振点シフト用のインダクタンス26を接続することにより、インダクタンス成分を増加させて共振周波数を低下させることができる。
【0035】
また、接地抵抗測定装置1をバッテリで駆動させる場合、図1に破線で示すように、バッテリを含む電源部27の出力のオン・オフ制御を行う電源制御部28を設け、電源制御部28が他の構成要素に対する電源の供給をオン/オフ制御する構成を採用することもできる。この構成によれば、接地抵抗測定装置1の主電源スイッチがオン状態に維持されている状態であっても、電源制御部28が、例えばオペレータによって操作部4が一定時間以上操作されない状態が続いたことを検出したときに、電源制御部28および操作部4を除く他の構成要素に対する電源供給を停止させることができる。この構成を採用した場合、操作部4がオペレータによって操作されていない非測定時における接地抵抗測定装置1を消費電力が少ない待機状態に移行させることができる。この結果、バッテリの電力消費を抑え、バッテリの交換頻度を少なくすることができる。
【0036】
【発明の効果】
以上のように、請求項1記載の接地抵抗測定装置によれば、直流電圧成分Vmr,Vmr∞,Vmr0とに基づいて接地抵抗を測定することにより、同期検波部などの装置内部の回路におけるゲイン変動やドリフトの影響を排除することができるため、高精度で接地抵抗を測定することができる。
【0037】
また、請求項2記載の接地抵抗測定装置によれば、直流電圧成分Vmr,Vmr∞,Vmr0を複数回それぞれ算出して平均化し、その平均化した各値に基づいて演算処理を行って接地抵抗を測定することにより、ノイズの影響を排除することができ、これにより、より高精度で接地抵抗を測定することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る接地抵抗測定装置1の構成を示すブロック図である。
【図2】主として同期検波部10の構成を示すブロック図である。
【図3】他の実施の形態に係る接地抵抗測定装置21の構成を示すブロック図である。
【図4】さらに他の実施の形態に係る接地抵抗測定装置31の構成を示すブロック図である。
【図5】従来の接地抵抗測定装置51の構成を示すブロック図である。
【図6】接地抵抗測定装置51における同期検波部10の構成を主として示すブロック図である。
【図7】接地抵抗Rgを測定する測定系の等価回路図である。
【符号の説明】
1 接地抵抗測定装置
6 信号発生部
8 出力抵抗
9 スイッチ
10 同期検波部
12 演算制御部
14 リード線
15 リターン線
16 被測定接地棒
17 大地
Vmr,Vmr∞,Vmr0 直流成分
Claims (2)
- 被測定接地棒に接続されるリード線、および絶縁状態で大地上に配置されるリターン導体が接続可能に構成されて、前記被測定接地棒の接地抵抗を測定する接地抵抗測定装置において、
交流信号を生成すると共にその周波数を可変制御可能に構成された信号発生部と、前記リード線または前記リターン導体と前記信号発生部との間に接続される出力抵抗と、当該出力抵抗の前記リード線または前記リターン導体側の出力端部、当該出力抵抗の前記信号発生部側の入力端部、およびゼロ電位部位から1つを選択して当該選択した部位の電圧を出力する信号切換手段と、当該信号切換手段から出力される前記電圧を前記交流信号で同期検波することにより直流電圧成分を生成する同期検波部と、演算制御部とを備え、
前記演算制御部は、前記信号切換手段による前記出力端部の選択時に前記信号発生部における前記交流信号の周波数を変化させて求めた前記同期検波部で生成される最低値の直流電圧成分Vmrと、その周波数に維持した状態において前記信号切換手段による前記入力端部の選択時に前記同期検波部によって生成される直流電圧成分Vmr∞と、前記周波数に維持した状態において前記信号切換手段による前記ゼロ電位部位の選択時に前記同期検波部によって生成される直流電圧成分Vmr0とに基づき、等価的に、前記直流電圧成分Vmrから前記直流電圧成分Vmr0を減算した第1の減算値を算出すると共に、前記直流電圧成分Vmr∞から直流電圧成分Vmrを減算した第2の減算値を算出し、当該第2の減算値で前記第1の減算値を除した値に前記出力抵抗の抵抗値を乗算する演算処理を行うことにより前記接地抵抗を測定することを特徴とする接地抵抗測定装置。 - 前記直流電圧成分Vmr、前記直流電圧成分Vmr∞および前記直流電圧成分Vmr0を複数回それぞれ算出し、前記演算制御部は、前記複数回算出した前記各直流電圧成分を平均化すると共に当該平均化した各値に基づいて前記演算処理を行うことにより前記接地抵抗を測定することを特徴とする請求項1記載の接地抵抗測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000331896A JP4421762B2 (ja) | 2000-10-31 | 2000-10-31 | 接地抵抗測定装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000331896A JP4421762B2 (ja) | 2000-10-31 | 2000-10-31 | 接地抵抗測定装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002139530A JP2002139530A (ja) | 2002-05-17 |
JP4421762B2 true JP4421762B2 (ja) | 2010-02-24 |
Family
ID=18808177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000331896A Expired - Fee Related JP4421762B2 (ja) | 2000-10-31 | 2000-10-31 | 接地抵抗測定装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4421762B2 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5627326B2 (ja) * | 2010-07-26 | 2014-11-19 | 日置電機株式会社 | 接地抵抗計および接地抵抗測定方法 |
KR101163963B1 (ko) | 2011-12-27 | 2012-07-06 | 김병학 | 모니터링 가능한 서지보호장치 |
CN102680931B (zh) * | 2012-05-09 | 2014-04-09 | 南京安吉特电气科技有限公司 | 接地装置特性参数测试系统检定装置 |
CN103675462B (zh) * | 2013-12-17 | 2016-05-04 | 厦门红相电力设备股份有限公司 | 小电流雷电冲击接地阻抗测试方法及其装置 |
CN105467248A (zh) * | 2015-12-17 | 2016-04-06 | 清华大学 | 一种接地装置冲击特性测量修正方法 |
CN105606924A (zh) * | 2015-12-17 | 2016-05-25 | 陕西省电力科学研究院 | 一种接地装置冲击特性测量修正方法 |
CN107219404B (zh) * | 2016-03-21 | 2020-11-10 | 华为技术有限公司 | 一种频率调节的方法及装置 |
KR101876358B1 (ko) * | 2016-11-24 | 2018-07-11 | 한국전기안전공사 | 접지 임피던스 평가 시스템 |
CN110879312B (zh) * | 2018-09-06 | 2021-08-24 | 余振邦 | 一种接地阻抗测量方法及其装置 |
CN116539963B (zh) * | 2023-04-28 | 2023-11-21 | 烟台国网中电电气有限公司 | 一种检测输电线路杆塔接地引下线接地电阻的方法 |
-
2000
- 2000-10-31 JP JP2000331896A patent/JP4421762B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002139530A (ja) | 2002-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4445114B2 (ja) | ジッタ測定装置及びその方法 | |
JP4421762B2 (ja) | 接地抵抗測定装置 | |
US5706214A (en) | Calibration of microcomputer-based metering apparatus | |
US6208945B1 (en) | Harmonic component measuring method for power system | |
WO2008047428A1 (fr) | COMPTEUR ÉLECTRONIQUE DE kWh | |
JP2004041435A (ja) | 生体インピーダンス測定装置 | |
JP2003302431A5 (ja) | ||
JPH10123188A (ja) | 高調波測定システム | |
JP2720970B2 (ja) | 測定器 | |
CN104914303A (zh) | 电能计量方法 | |
US8174254B2 (en) | Measuring device with negative-feedback DC voltage amplifier | |
JP2010038787A (ja) | 絶縁監視装置 | |
JP2002131347A (ja) | 接地抵抗測定装置及び接地抵抗測定方法 | |
JP5308724B2 (ja) | 絶縁監視装置 | |
JP4054652B2 (ja) | 蓄電池の内部インピーダンス測定方法および蓄電池の内部インピーダンス測定装置 | |
JP2007132777A (ja) | インピーダンス測定装置 | |
JP2010261722A (ja) | 電圧検出装置および線間電圧検出装置 | |
JP4421769B2 (ja) | 接地抵抗測定装置 | |
Delle Femine et al. | Low power contacless voltage sensor for IoT applications | |
JP3047036B2 (ja) | 電力測定装置 | |
JP4996992B2 (ja) | インピーダンス測定装置 | |
JP2009300158A (ja) | 絶縁監視装置 | |
US6873149B1 (en) | Method and system for eddy current proximity system noise reduction | |
JP2004279153A (ja) | 電力計 | |
JP3805478B2 (ja) | 容量性素子の等価直列抵抗測定方法および等価直列抵抗測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091201 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091203 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121211 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4421762 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121211 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131211 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |