JP4421391B2 - Retaining wall construction method - Google Patents

Retaining wall construction method Download PDF

Info

Publication number
JP4421391B2
JP4421391B2 JP2004182558A JP2004182558A JP4421391B2 JP 4421391 B2 JP4421391 B2 JP 4421391B2 JP 2004182558 A JP2004182558 A JP 2004182558A JP 2004182558 A JP2004182558 A JP 2004182558A JP 4421391 B2 JP4421391 B2 JP 4421391B2
Authority
JP
Japan
Prior art keywords
retaining wall
building
seismic isolation
base material
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004182558A
Other languages
Japanese (ja)
Other versions
JP2006002528A (en
Inventor
研自 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2004182558A priority Critical patent/JP4421391B2/en
Publication of JP2006002528A publication Critical patent/JP2006002528A/en
Application granted granted Critical
Publication of JP4421391B2 publication Critical patent/JP4421391B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は建物の地下外側面の外側に設ける擁壁の構築方法に関する。   The present invention relates to a method for constructing a retaining wall provided outside a basement outside surface of a building.

例えば建物を免震構造とする場合の免震ピットの擁壁を構築する方法として以下の方法が知られている(例えば、特許文献1参照)。この方法は、建物の周囲の地中に山止め壁を埋設した後に、山止め壁と建物の地下外側面との間の土を掘削して建物の周囲にドライエリア(地下空間)を形成するとともに山止め壁と建物の地下外側面との間に切梁を設置し、その後、ドライエリアの底から建物の下を根切りしていき、根切りにより露出した地下地盤上及びドライエリア内に型枠を設置して型枠内に鉄筋を配置し、型枠内に生コンクリートを打ち込むことで地下地盤上に形成されたフーチングと一体化された擁壁が構築される。   For example, the following method is known as a method of constructing a retaining wall of a seismic isolation pit when a building is made a seismic isolation structure (see, for example, Patent Document 1). In this method, after embedding a retaining wall in the ground around the building, the soil between the retaining wall and the outer basement surface of the building is excavated to form a dry area (underground space) around the building. At the same time, a beam is installed between the mountain retaining wall and the outside underground surface of the building, and then the bottom of the building is rooted from the bottom of the dry area, on the underground ground and in the dry area exposed by the root cutting. A retaining wall integrated with footings formed on the underground ground is constructed by installing the formwork, placing reinforcing bars in the formwork, and driving ready-mixed concrete into the formwork.

しかしながら、上述の擁壁構築方法では、構築する擁壁の外側に山留め壁を埋設する必要があるので、山留め壁そのものの設置スペースや山留め壁の埋設施工に必要な重機の設置スペースが必要となる。
特開平9−184144号公報
However, in the above-described retaining wall construction method, it is necessary to embed a retaining wall outside the retaining wall to be constructed. Therefore, a space for installing the retaining wall itself and a space for installing heavy machinery necessary for the construction of the retaining wall are required. .
JP-A-9-184144

発明が解決しようとする課題は、従来、構築する擁壁の外側に山留め壁を埋設する必要があり、山留め壁そのものの設置スペースや山留め壁の埋設施工に必要な重機の設置スペースが必要となる。特に、建物と敷地境界との間隔が小さい場合には、スペースが確保できないことから、施工がより困難となるという点である。また、山止め壁の埋設作業、型枠設置作業、配筋作業、コンクリート打設作業などの各作業を時系列順に順番に別々に行わなくてはならないため、施工管理が大変である。また、山留め壁を撤去する場合は、周辺の地盤を緩める可能性があり、山留め壁を存置させる場合は、不経済である。尚、山留め壁の埋設及び撤去作業において重機から発生する振動及び騒音などは周辺環境に大きな影響を与える。   Conventionally, the problem to be solved by the invention is that a retaining wall needs to be buried outside the retaining wall to be constructed, and the installation space for the retaining wall itself and the installation space for heavy machinery necessary for the construction of the retaining wall are required. . In particular, when the space between the building and the site boundary is small, the space cannot be secured, so that the construction becomes more difficult. In addition, the construction management is difficult because each work such as the embedding work of the mountain retaining wall, the formwork installation work, the bar arrangement work, and the concrete placing work must be performed separately in order of time series. Moreover, when removing the retaining wall, the surrounding ground may be loosened, and when retaining the retaining wall, it is uneconomical. It should be noted that vibrations and noises generated from heavy machinery during the embedding and removal work of the mountain retaining wall greatly affect the surrounding environment.

本発明による擁壁構築方法は、建物の地下外側面に接触する接触面を有した沈降ガイド部材と建物の地下外側面に対向する擁壁を構成する擁壁構成部材とが連結部材により互いに連結された擁壁基材を用い、擁壁基材の沈降ガイド部材の接触面を建物の地下外側面に接触させながら擁壁基材の下方の地盤を掘削して擁壁基材を自重で沈下させた後に擁壁構成部材と建物の基礎部とを連結するとともに擁壁基材の連結部材と沈降ガイド部材とを撤去して擁壁構成部材を擁壁としたことを特徴とする。また、擁壁基材の上に1つ以上の繋ぎ用擁壁基材を連結していってこれらを沈降させた後に擁壁基材の擁壁構成部材と建物の基礎部とを連結するとともに擁壁基材及び繋ぎ用擁壁基材の連結部材と沈降ガイド部材とを撤去して擁壁構成部材を擁壁としたことや、擁壁基材の下端が先鋭に形成されたことも特徴とする。   In the retaining wall construction method according to the present invention, a settling guide member having a contact surface that contacts a basement outside surface of a building and a retaining wall constituting member that forms a retaining wall facing the basement outside surface of the building are connected to each other by a connecting member. The retaining wall base material is submerged by its own weight by excavating the ground below the retaining wall base material while contacting the contact surface of the sedimentation guide member of the retaining wall base material with the underground outer surface of the building. The retaining wall constituting member and the foundation portion of the building are connected to each other, and the retaining wall base member and the settling guide member are removed to make the retaining wall constituting member a retaining wall. In addition, after connecting one or more connecting retaining wall base materials on the retaining wall base material and settling them, the retaining wall constituent member of the retaining wall base material and the foundation of the building are connected. The retaining wall base material and the connecting retaining wall base material for connection and the settling guide member are removed to make the retaining wall constituent member a retaining wall, and the lower end of the retaining wall base material is also sharply formed And

本発明によれば、擁壁基材の沈降ガイド部材の接触面を建物の地下外側面に接触させながら擁壁基材を沈降させるため、構築する擁壁の外側に山留め壁を埋設する必要がなくなり、山留め壁そのものの設置スペースや山留め壁の埋設施工に必要な重機の設置スペースが不要となることから、施工が容易となり、特に、建物と敷地境界との間隔が小さい場合でも擁壁を構築施工できる。また、山留め壁の埋設及び撤去作業が不要となるため、周辺地盤を緩めることなく、重機による騒音振動も少なくできる。また、型枠設置作業、配筋作業、コンクリート打設作業を少なくできて、擁壁構築施工に関する施工管理が容易となる。また、擁壁基材の上に1つ以上の繋ぎ用擁壁基材を連結していってこれらを沈降させることで、擁壁基材の1つ1つを小さくでき、擁壁基材を吊るクレーンなどの重機の大きさを小さくできる。また、建物の地下外側面をガイドとして擁壁基材を沈降させるため、擁壁基材がまっすぐに沈降し、擁壁構成部材と建物の外側面との間の間隔を設計どおりに正確に確保でき、建物の地下外側面と擁壁との間のクリアランスの寸法精度を高くできる。また、先鋭な下端により擁壁基材が地下に進行しやすくなり、作業の効率化が図れる。   According to the present invention, in order to sink the retaining wall base material while bringing the contact surface of the sedimentation guide member of the retaining wall base material into contact with the underground outer surface of the building, it is necessary to bury a retaining wall outside the retaining wall to be constructed. Eliminates the need for installation space for the retaining wall itself and heavy machinery necessary for burying the retaining wall, making construction easier, especially when the distance between the building and the site boundary is small Can be constructed. In addition, since it is not necessary to bury and remove the retaining wall, it is possible to reduce noise vibration caused by heavy machinery without loosening the surrounding ground. In addition, it is possible to reduce the formwork installation work, the reinforcement work, and the concrete placement work, and the construction management related to the retaining wall construction work becomes easy. Moreover, by connecting one or more retaining wall base materials for connection on the retaining wall base material and settling them, each of the retaining wall base materials can be made smaller. The size of heavy machinery such as a hanging crane can be reduced. In addition, because the retaining wall base material sinks using the underground outer surface of the building as a guide, the retaining wall base material settles straight, ensuring the distance between the retaining wall component and the outer surface of the building exactly as designed. It is possible to increase the dimensional accuracy of the clearance between the outside basement surface of the building and the retaining wall. In addition, the sharp lower end makes it easier for the retaining wall base material to travel underground, thereby improving work efficiency.

図1は本発明の最良形態による擁壁構築方法に用いる擁壁基材を示し、図2−図8は本擁壁構築方法を採用した建物の免震ピット施工方法の工程を示す。   FIG. 1 shows a retaining wall base material used in a retaining wall construction method according to the best mode of the present invention, and FIGS. 2 to 8 show steps of a seismic isolation pit construction method for a building adopting this retaining wall construction method.

本発明の最良形態による擁壁構築方法では図1に示すような擁壁基材50を用いて擁壁施工を行う。擁壁基材50は、沈降ガイド部材51と、擁壁構成部材52と、沈降ガイド部材51と擁壁構成部材52とを互いに連結する連結部材53とで形成される。沈降ガイド部材51は例えば少なくとも水平部55と水平部55の両端と互いに連結されて水平部55より垂直に同方向に延長する2つの垂直部56;57とで逆凹字形状に形成された骨格部58を有する。この骨格部58の逆凹字形状の一面が建物1の地下外側面1fに接触する接触面59を形成する。接触面59とは反対側の面(以下「反対側面」という)が擁壁構成部材52との連結面60を構成する。擁壁構成部材52は例えば沈降ガイド部材51の逆凹字の大きさに対応する矩形板状に形成されたプレキャストコンクリート板により形成される。沈降ガイド部材51の連結面60と擁壁構成部材52の連結面である一面61との左右の端部側同士が連結部材53;53により互いに連結される。これにより、沈降ガイド部材51の連結面60と擁壁構成部材52の一面61とが平行に向き合った状態に連結される。擁壁構成部材52の一面61と所定幅の厚さを隔てた他面62は一面61より下側が長く形成され、擁壁構成部材52の下端部は、他面62の下端64から一面61の下端64aに斜め上方向に傾斜して繋がる傾斜面63に形成される。これにより、擁壁構成部材52の下端部における他面62の下端64は先鋭に形成される。擁壁構成部材52の上面65には当該上面65より突出する複数の連結用鉄筋66を備える。一方の連結部材53は沈降ガイド部材51の垂直部57の連結面60と擁壁構成部材52の一面61の左端側とを連結するものであり、他方の連結部材53は沈降ガイド部材51の垂直部56の連結面60と擁壁構成部材52の一面61の右端側とを連結するものである。連結部材53は例えば面60;61同士を繋ぐ上下4本の連結部67で構成される。沈降ガイド部材51の骨格部58や連結部材53は補強される。図1に示すように、例えば、沈降ガイド部材51の骨格部58は、水平部55の中央に連結されて両垂直部56;57との間に平行に設けられた中央垂直補強部68と、これら3つの垂直部56;57;68間をつなぐ上下3本の水平補強部69と、垂直部56;57;68と水平部55と補強部69とで形成された格子枠70の対角部を繋ぐ補強桟71とにより補強される。尚、6つの格子枠70のうち少なくとも下部2つの格子枠70内には補強桟71は設けられておらず、下部2つの格子枠70の開口を介して擁壁基材50の外側から擁壁基材50の内側の空間への掘削用重機の搬入を可能としている。また、連結部材53は、上下4本の連結部67間を斜めに繋ぐ補強桟72と、上下4つの連結部67の外側面を繋いで沈降ガイド部材51と擁壁構成部材52との対向する端部間を塞ぐ鋼製板73とにより補強される。従って、沈降ガイド部材51と擁壁構成部材52との間に形成される内部空間74は、擁壁基材50の上下方向に貫通するとともに沈降ガイド部材51の格子枠70による開口を介して擁壁基材50の外部に連通する。連結部67は例えばH形鋼等の棒材により形成される。よって、沈降ガイド部材51の垂直部56;57;68や水平部55、連結部材53の接触面59を形成する逆凹字形状の面積を小さくでき、接触面59と建物1の地下外側面1fとの摩擦を少なくできるので、擁壁基材50の沈下速度を早くできる。連結部材53と擁壁構成部材52とは例えば図外のアンカーボルト等の固定具により固定される。連結部材53と沈降ガイド部材51とは例えば図外のボルトナットや溶接等の固定具により固定される。   In the retaining wall construction method according to the best mode of the present invention, retaining wall construction is performed using a retaining wall substrate 50 as shown in FIG. The retaining wall base member 50 is formed of a settling guide member 51, a retaining wall constituting member 52, and a connecting member 53 that couples the settling guide member 51 and the retaining wall constituting member 52 to each other. The sedimentation guide member 51 is, for example, a skeleton formed in an inverted concave shape with at least a horizontal portion 55 and two vertical portions 56; 57 that are connected to each other at both ends of the horizontal portion 55 and extend vertically in the same direction from the horizontal portion 55. Part 58. One surface of the inverted concave shape of the skeleton 58 forms a contact surface 59 that contacts the underground outer surface 1 f of the building 1. A surface opposite to the contact surface 59 (hereinafter referred to as “opposite side surface”) forms a connection surface 60 with the retaining wall constituting member 52. The retaining wall constituting member 52 is formed of, for example, a precast concrete plate formed in a rectangular plate shape corresponding to the size of the inverted concave shape of the settling guide member 51. The left and right end portions of the connecting surface 60 of the settling guide member 51 and the one surface 61 that is the connecting surface of the retaining wall constituting member 52 are connected to each other by the connecting members 53 and 53. As a result, the connecting surface 60 of the settling guide member 51 and the one surface 61 of the retaining wall constituting member 52 are connected in a state of facing each other in parallel. The other surface 62 that is separated from the one surface 61 of the retaining wall constituting member 52 by a predetermined width is formed longer on the lower side than the one surface 61, and the lower end portion of the retaining wall constituting member 52 extends from the lower end 64 of the other surface 62 to the one surface 61. It is formed on an inclined surface 63 that is inclined and connected to the lower end 64a in an obliquely upward direction. Thereby, the lower end 64 of the other surface 62 in the lower end part of the retaining wall structural member 52 is formed sharply. The upper surface 65 of the retaining wall constituting member 52 includes a plurality of connecting reinforcing bars 66 protruding from the upper surface 65. One connecting member 53 connects the connecting surface 60 of the vertical portion 57 of the settling guide member 51 and the left end side of the one surface 61 of the retaining wall constituting member 52, and the other connecting member 53 is the vertical of the settling guide member 51. The connecting surface 60 of the part 56 and the right end side of the one surface 61 of the retaining wall constituting member 52 are connected. The connecting member 53 includes, for example, upper and lower four connecting portions 67 that connect the surfaces 60 and 61. The skeleton 58 and the connecting member 53 of the settling guide member 51 are reinforced. As shown in FIG. 1, for example, the skeleton part 58 of the settling guide member 51 is connected to the center of the horizontal part 55 and is provided in parallel with the vertical parts 56; Diagonal portions of the lattice frame 70 formed by the three vertical reinforcing portions 69 that connect the three vertical portions 56; 57; 68, and the vertical portions 56; 57; 68, the horizontal portions 55, and the reinforcing portions 69. It is reinforced by a reinforcing bar 71 connecting the two. The reinforcing bars 71 are not provided in at least the lower two lattice frames 70 of the six lattice frames 70, and the retaining walls are formed from the outside of the retaining wall base material 50 through the openings of the lower two lattice frames 70. The heavy equipment for excavation can be carried into the space inside the base material 50. In addition, the connecting member 53 connects the reinforcing guide 72 that obliquely connects the upper and lower four connecting portions 67 and the outer surfaces of the upper and lower four connecting portions 67 so that the settling guide member 51 and the retaining wall constituting member 52 face each other. It is reinforced by a steel plate 73 that plugs between the ends. Accordingly, the internal space 74 formed between the settling guide member 51 and the retaining wall constituting member 52 penetrates in the vertical direction of the retaining wall base member 50 and is held through the openings by the lattice frame 70 of the settling guide member 51. It communicates with the outside of the wall substrate 50. The connecting portion 67 is formed of a bar material such as H-shaped steel. Therefore, the area of the inverted concave shape forming the contact portions 59 of the vertical portions 56; 57; 68, the horizontal portions 55, and the connecting members 53 of the settling guide member 51 can be reduced. Therefore, the settlement speed of the retaining wall base material 50 can be increased. The connecting member 53 and the retaining wall constituting member 52 are fixed by a fixing tool such as an anchor bolt (not shown). The connecting member 53 and the settling guide member 51 are fixed by, for example, a fixing tool such as a bolt nut and welding not shown.

図2−図8により、擁壁構築方法を採用した建物1の免震ピット施工方法を説明する。まず、図2のように、建物1の下部に鋼製杭基礎4を複数打設した後に、建物1の基礎柱1aとこの基礎柱1aに近い位置の鋼製杭基礎4の上端1bとを繋ぐコンクリートキャップ4aを打設する。その後、建物1における隣接建物3とは反対側の地下外側面1fと対向する擁壁の施工を行う。   2-8, the seismic isolation pit construction method of the building 1 which employ | adopted the retaining wall construction method is demonstrated. First, as shown in FIG. 2, after placing a plurality of steel pile foundations 4 in the lower part of the building 1, the foundation pillar 1a of the building 1 and the upper end 1b of the steel pile foundation 4 at a position close to the foundation pillar 1a The connecting concrete cap 4a is placed. Then, the retaining wall facing the underground outer surface 1f opposite to the adjacent building 3 in the building 1 is constructed.

擁壁施工においては擁壁基材の沈降作業を行う。まず、図1に示す擁壁基材50を図外のクレーン等の重機で吊り上げて、図3(a)に示すように、擁壁基材50の沈降ガイド部材51の接触面59を建物1の地下外側面1fに接触させながら擁壁基材50を降ろす。これにより、擁壁基材50の自重で擁壁構成部材52の下端64は建物1の周辺の地盤面1Gに突き刺さる。そして、擁壁基材50の下部の格子枠70の開口を介して擁壁基材50の内部空間74に図外の掘削用重機を搬入して擁壁基材50の下方の地盤を掘削用重機で掘削していく。すると、擁壁基材50は、図3(b)に示すように、自重によって沈降していく。この場合、擁壁構成部材52の先鋭な下端64により擁壁基材50が地下に進行しやすい。よって、擁壁基材50の沈降速度を早くでき、作業の効率化が図れる。また、沈降ガイド部材51の接触面59及び建物1の地下外側面1fのうちの一方の面あるいは両方の面に両者間の摩擦を軽減させる処理(例えば蝋付け処理、テフロン(登録商標)加工処理等)を施すことで、擁壁基材50の沈降速度をさらに早くでき、さらに作業の効率化が図れる。また、沈降ガイド部材51の接触面59が建物1の地下外側面1fに接触しながら沈降することで、擁壁基材50がまっすぐに沈降し、擁壁構成部材52と建物1の地下外側面1fとの間のクリアランスを設計どおりに正確に確保でき、建物1の地下外側面1fと擁壁との間のクリアランスの寸法精度を高くできる。従って、免震ピットを精度良く施工できる。また、擁壁基材50の内部空間74は上下方向に貫通するので、内部空間74の下方の地盤上に掘削用重機を置いて地盤を掘削でき、また、掘削した土を上方の開口から搬出することが可能となり、掘削及び掘削土搬出作業が容易となる。また、擁壁基材50の内部空間74内に上の開口から太陽光が差し込むので内部空間74を明るくでき、作業環境を良くできる。   In the retaining wall construction, the retaining wall base material is settled. First, the retaining wall base material 50 shown in FIG. 1 is lifted by a heavy machine such as a crane (not shown), and the contact surface 59 of the settling guide member 51 of the retaining wall base material 50 is set as shown in FIG. The retaining wall base material 50 is lowered while being in contact with the underground outer surface 1f. Thereby, the lower end 64 of the retaining wall constituting member 52 is pierced into the ground surface 1G around the building 1 by its own weight. Then, a heavy excavating machine (not shown) is carried into the internal space 74 of the retaining wall base 50 through the openings of the lattice frame 70 below the retaining wall base 50 to excavate the ground below the retaining wall base 50. Drilling with heavy machinery. Then, the retaining wall base material 50 is settled by its own weight as shown in FIG. In this case, the retaining wall base member 50 is likely to advance underground due to the sharp lower end 64 of the retaining wall component 52. Therefore, the settling speed of the retaining wall base material 50 can be increased, and work efficiency can be improved. Further, a process for reducing friction between the contact surface 59 of the sedimentation guide member 51 and one or both of the underground outer surface 1f of the building 1 (for example, brazing process, Teflon (registered trademark) process) Etc.), the settling speed of the retaining wall base material 50 can be further increased, and the work efficiency can be further improved. Moreover, the contact surface 59 of the sedimentation guide member 51 sinks while contacting the underground outer surface 1 f of the building 1, so that the retaining wall base material 50 settles straight, and the retaining wall component 52 and the underground outer surface of the building 1 The clearance between the first and second walls can be accurately ensured as designed, and the dimensional accuracy of the clearance between the underground outer surface 1f of the building 1 and the retaining wall can be increased. Therefore, the seismic isolation pit can be constructed with high accuracy. Further, since the internal space 74 of the retaining wall base material 50 penetrates in the vertical direction, the ground can be excavated by placing a heavy excavator on the ground below the internal space 74, and the excavated soil is carried out from the upper opening. Excavation and excavation soil removal work becomes easy. Moreover, since sunlight inserts into the internal space 74 of the retaining wall base material 50 from the upper opening, the internal space 74 can be brightened and the working environment can be improved.

その後、図3(c)のように、擁壁基材50の上に繋ぎ用擁壁基材500を繋げ、さらに、擁壁基材50の下方の地盤を掘削していくことで、擁壁基材50と繋ぎ用擁壁基材500とを沈降させる。繋ぎ用擁壁基材500の構成は擁壁基材50と同様の構成でよい。但し、繋ぎ用擁壁基材500の擁壁構成部材52Aは、下端面63Aが水平な面に形成され、この水平な下端面63A及び上端面65Aより複数の連結用鉄筋66(図1参照)を突出させたものを用いる。従って、擁壁基材50の擁壁構成部材52と繋ぎ用擁壁基材500の擁壁構成部材52Aとの連結は、例えば、擁壁基材50の沈降ガイド部材51の水平部55の両端側と繋ぎ用擁壁基材500の沈降ガイド部材51Aの両側垂直部の下端部とを図外のボルトナットや溶接等の固定具で固定し、擁壁基材50の擁壁構成部材52の上面65と繋ぎ用擁壁基材500の擁壁構成部材52Aの下端面63Aとを対向させた状態で上下の連結用鉄筋66;66同士を図外の鉄線で繋ぎ、その後、この擁壁基材50の擁壁構成部材52の上面65と繋ぎ用擁壁基材500の擁壁構成部材52Aの下端面63Aとの間を周囲から図外の型枠で囲んでその型枠の一部に設けたコンクリート注入孔から生コンクリートを打ち込むことにより上面65と下端面63Aとが鉄筋コンクリートにより連結される。このように連結された擁壁基材50と繋ぎ用擁壁基材500とを沈降させる(図3(d)参照)。以下同様に、図3(d)のように、沈降させた繋ぎ用擁壁基材500の上に更なる繋ぎ用擁壁基材501を繋げ、図4に示すように、上下に連結された擁壁基材50;500;501を沈降させる。建物1が大きい場合等においては、複数の擁壁基材50を横に連結し、その上に、複数の繋ぎ用擁壁基材500を横に連結し、さらにその上に複数の繋ぎ用擁壁基材501を横に連結してこれらを沈降させていけばよい。このようにすれば、擁壁基材50;500;501の1つ1つを小さくでき、擁壁基材50;500;501を吊るクレーンなどの重機の大きさを小さくできるので、建物1の周囲の敷地面積が小さい場合でも擁壁を構築できる。また、擁壁構築施工において、従来のような山留め壁の埋設作業及び撤去作業を無くすことができるので、山留め壁そのものの設置スペースや山留め壁の埋設及び撤去作業に必要な重機の設置スペースが不要となることから、施工が容易となり、特に、建物と敷地境界との間隔が小さい場合でも容易に施工可能となる。また、山留め壁の埋設及び撤去作業が不要となるため、周辺地盤を緩めることなく、重機による騒音振動も少なくできる。また、型枠設置作業、配筋作業、コンクリート打設作業も少なくできることから、従来に比べ、擁壁構築施工に関する施工管理も容易となる。   After that, as shown in FIG. 3C, the retaining wall base material 500 is joined on the retaining wall base material 50, and further, the retaining wall base material 50 is excavated in the lower ground, thereby retaining the retaining wall. The base material 50 and the connecting retaining wall base material 500 are allowed to settle. The configuration of the retaining wall base material 500 for connection may be the same as that of the retaining wall base material 50. However, the retaining wall constituting member 52A of the retaining wall substrate 500 for connection has a lower end surface 63A formed in a horizontal surface, and a plurality of connecting reinforcing bars 66 (see FIG. 1) from the horizontal lower end surface 63A and the upper end surface 65A. Use a protrusion. Therefore, the connection between the retaining wall constituent member 52 of the retaining wall base material 50 and the retaining wall constituent member 52A of the connecting retaining wall base material 500 is, for example, both ends of the horizontal portion 55 of the settling guide member 51 of the retaining wall base material 50. The retaining wall base member 500 of the retaining wall base member 50 of the retaining wall base member 50 is fixed to a lower end portion of the vertical portion on both sides of the settling guide base member 51A of the connecting retaining wall base member 500 with a fixing member such as a bolt nut or welder. With the upper surface 65 and the lower end surface 63A of the retaining wall constituting member 52A of the retaining wall base member 500 facing each other, the upper and lower connecting rebars 66; 66 are connected with an unillustrated iron wire, and then the retaining wall base The upper wall 65 of the retaining wall constituting member 52 of the material 50 and the lower end surface 63A of the retaining wall constituting member 52A of the retaining wall base member 500 for connection are surrounded by a mold frame outside the figure from the periphery and part of that mold frame. Upper surface 65 and lower end surface by driving ready-mixed concrete through the provided concrete injection hole 3A and are connected by reinforced concrete. The retaining wall base material 50 and the retaining retaining wall base material 500 thus connected are allowed to settle (see FIG. 3D). Similarly, as shown in FIG. 3 (d), a further retaining wall base member 501 is connected to the sedimented retaining wall base material 500, and is connected up and down as shown in FIG. Retaining wall substrate 50; 500; 501 is allowed to settle. When the building 1 is large or the like, a plurality of retaining wall base materials 50 are connected horizontally, a plurality of connecting retaining wall base materials 500 are connected horizontally, and a plurality of connecting retaining bases are further provided thereon. What is necessary is just to connect the wall base material 501 sideways and to make these settle. In this way, each of the retaining wall base materials 50; 500; 501 can be made smaller, and the size of a heavy machine such as a crane that hangs the retaining wall base material 50; 500; 501 can be made smaller. Retaining walls can be constructed even when the surrounding site area is small. In addition, the retaining wall construction and removal work as in the past can be eliminated in the retaining wall construction work, so the installation space for the retaining wall itself and the heavy equipment installation space required for the embedding and removal work are unnecessary. Therefore, the construction becomes easy, and in particular, the construction can be easily performed even when the interval between the building and the site boundary is small. In addition, since it is not necessary to bury and remove the retaining wall, it is possible to reduce noise vibration caused by heavy machinery without loosening the surrounding ground. In addition, since the work for installing the formwork, the bar arrangement work, and the concrete placing work can be reduced, the construction management for the construction of the retaining wall can be facilitated as compared with the conventional construction.

また、図4の紙面に対して前方及び後方における建物1の外側にも同じように擁壁基材50;500;501を配置して沈下させる。擁壁基材50;500;501の沈下作業が終了したならば、擁壁基材50の下方の地盤の掘削作業を行っていた掘削用重機で建物1の下部を横方向に掘削していって、建物1の下に地下空間75を形成していく。そして地下空間75の下部の地盤面76の上に基礎部としてのマットスラブ6を打設していく。例えば、図4の建物1の左側から右側に向けて順番に擁壁基材50;500;501の沈降作業を行っていき、沈下させた擁壁基材50の擁壁構成部材52の下端側同士を免震構造とする建物1の基礎部としてのマットスラブ6で互いに連結していくとともに、マットスラブ6により連結された擁壁基材50及びその上の繋ぎ用擁壁基材500;501の擁壁構成部材52;52A;52Bと沈降ガイド部材51;51A;51B及び連結部材53;53A;53Bとを切り離して、沈降ガイド部材51;51A;51B及び連結部材53;53A;53Bを撤去する(図5参照)。但し、マットスラブ6の下にマットスラブ6と繋がって残っている沈降ガイド部材51の垂直部56;57;68の下端部はそのままとしておく。よって、マットスラブ6で擁壁構成部材52が自立支持され、マットスラブ6と繋がった擁壁構成部材52;52A;52Bにより擁壁600が構成される。以上により、建物1における隣接建物3とは反対側の地下外側面1f側から隣接建物3側に向かって順々に建物1の免震ピットの擁壁600を構築していくことができる。以上により、上下に複数連結された擁壁基材50;500;501の沈降ガイド部材51;51A;51Bの接触面59が建物1の地下外側面1fに接触しながら沈降することで、擁壁構成部材52;52A;52Bと建物1の地下外側面1fとの間のクリアランスは設計どおりに正確に確保されるため、建物1の地下外側面1との間のクリアランスの寸法精度の高い擁壁600が構築される。   In addition, the retaining wall base materials 50; 500; 501 are similarly disposed on the outside of the building 1 in the front and rear with respect to the paper surface of FIG. When the subsidence work of the retaining wall base material 50; 500; 501 is completed, the lower part of the building 1 is excavated in the lateral direction by the heavy equipment for excavation that was excavating the ground below the retaining wall base material 50. Then, an underground space 75 is formed under the building 1. Then, a mat slab 6 as a foundation is placed on the ground surface 76 below the underground space 75. For example, the lowering side of the retaining wall constituting member 52 of the retaining wall base material 50 that has been settled by sequentially performing the sinking operation of the retaining wall base materials 50; 500; 501 from the left side to the right side of the building 1 in FIG. The slabs 6 are connected to each other by a mat slab 6 as a base portion of the building 1 having a seismic isolation structure, and the retaining wall base 50 connected by the mat slab 6 and the connecting retaining wall base 500 on the mat slab 6; The retaining wall constituting member 52; 52A; 52B and the settling guide member 51; 51A; 51B and the connecting member 53; 53A; 53B are separated, and the settling guide member 51; 51A; 51B and the connecting member 53; 53A; (See FIG. 5). However, the lower end portions of the vertical portions 56; 57; 68 of the settling guide member 51 remaining connected to the mat slab 6 below the mat slab 6 are left as they are. Therefore, the retaining wall constituting member 52 is independently supported by the mat slab 6, and the retaining wall 600 is constituted by the retaining wall constituting members 52; 52A; 52B connected to the mat slab 6. As described above, the seismic isolation pit retaining wall 600 of the building 1 can be constructed in order from the underground outer surface 1f side of the building 1 opposite to the adjacent building 3 toward the adjacent building 3 side. By the above, the retaining wall base material 50; 500; 501 settling guide members 51; 51A; 51B of the retaining wall base material 50; Since the clearance between the structural member 52; 52A; 52B and the underground outer surface 1f of the building 1 is accurately ensured as designed, the retaining wall with high dimensional accuracy of the clearance between the building 1 and the underground outer surface 1 600 is built.

次に、図6に示すように、建物1における隣接建物3と隣接する側の地下壁80(図5参照)を撤去し、建物1と隣接建物3との間の下部に残った地盤の土81を建物1の下の地下空間75から掘削用重機で掘削し、さらに、撤去した地下壁80の内側に図外の掘削用重機を搬入して、地下壁80を撤去して形成された開口82を利用して上から掘削する。そして、隣接建物3の下の地盤を薬液を用いて地盤改良を施すことで地盤改良部83を形成する。建物1と隣接建物3との間の地盤の掘削作業が終了したならば、図7に示すように、マットスラブ6と建物1との間にコンクリート等で建物1の下部を構成する免震上部基礎部7と建物1の免震基礎部を構成する免震下部基礎部8を形成し、免震上部基礎部7と免震下部基礎部8との間に免震用ゴム体2を設け、免震上部基礎部7と免震下部基礎部8との間の鋼製杭基礎4の部分4xを切断して取り除く。その後、免震用ゴム体2のゴムを水平方向に変位させて当該免震構造の建物1を曳き家し、図8のように、建物1と隣接建物3との間の距離を広げた後に、建物1と隣接建物3との間に擁壁700を形成する。この擁壁700は、建物1の曳き家により広くなった建物1と隣接建物3との間の地下空間701に図外の型枠を設置してその型枠内に配筋してコンクリートを打設することで形成する。   Next, as shown in FIG. 6, the underground wall 80 (see FIG. 5) on the side adjacent to the adjacent building 3 in the building 1 is removed, and the ground soil remaining in the lower part between the building 1 and the adjacent building 3 is removed. 81 is an opening formed by excavating 81 with an excavating heavy machine from the underground space 75 under the building 1, and further carrying an excavating heavy machine (not shown) into the removed underground wall 80 and removing the underground wall 80. Excavate from above using 82. And the ground improvement part 83 is formed by giving the ground improvement of the ground under the adjacent building 3 using a chemical | medical solution. When the excavation of the ground between the building 1 and the adjacent building 3 is completed, as shown in FIG. 7, the seismic isolation upper part that constitutes the lower part of the building 1 with concrete or the like between the mat slab 6 and the building 1 Forming the base isolation base 8 and the base isolation base 8 constituting the base isolation base of the building 1, and providing the base isolation rubber body 2 between the base isolation base 7 and base isolation base 8, The part 4x of the steel pile foundation 4 between the seismic isolation upper foundation part 7 and the seismic isolation lower foundation part 8 is cut and removed. After that, after the rubber of the seismic isolation rubber body 2 is displaced in the horizontal direction and the building 1 having the seismic isolation structure is spread, the distance between the building 1 and the adjacent building 3 is increased as shown in FIG. A retaining wall 700 is formed between the building 1 and the adjacent building 3. The retaining wall 700 is made by placing a formwork (not shown) in the underground space 701 between the building 1 and the adjacent building 3 which is widened by the thatched house of the building 1, and placing concrete in the formwork and placing concrete. It is formed by installing.

次に図9−図14に基いて上記免震構造建物の曳き家方法について詳説する。図9は免震構造建物の曳き家方法の原理を示し、図10は免震構造建物の曳き家方法を示し、図11は曳き家方法における免震用ゴム体の移動操作に用いる免震用ゴム体の連結装置を示し、図12は連結装置における上下のフランジを示し、図13は連結装置における上部ベースを示し、図14は連結装置における下部ベースを示す。   Next, based on FIGS. 9-14, it explains in full detail about the method of thatching of the said base isolation structure building. FIG. 9 shows the principle of the method of making a base-isolated structure, FIG. 10 shows the method of making a base-isolated building, and FIG. FIG. 12 shows the upper and lower flanges in the connecting device, FIG. 13 shows the upper base in the connecting device, and FIG. 14 shows the lower base in the connecting device.

免震構造建物の曳き家方法は、建物の下に免震用ゴム体を設けた免震構造建物において、免震用ゴム体の上端を免震構造建物の免震上部基礎部に固定し、かつ、免震用ゴム体の下端を水平方向に移動して当該免震用ゴム体を変形させることで当該免震用ゴム体に復元力を発生させ、この発生させた復元力で建物を移動させる。あるいは、免震用ゴム体の下端を免震構造建物の免震上部基礎部に固定し、かつ、免震用ゴム体の上端を水平方向に移動して当該免震用ゴム体を変形させることで当該免震用ゴム体に復元力を発生させ、この発生させた復元力で建物を移動させる。まず、説明を簡単にするため、例えば、図9(a)のように2本の免震用ゴム体2を備えた構成を例にして説明する。まず、図9(b)に示すように、一方の免震用ゴム体2Xの下端2uを水平方向に所定の距離だけ移動した後に一方の免震用ゴム体2Xの下端2uを建物1の免震下部基礎部8に図外のボルト等の固定具で連結固定する。この場合、一方の免震用ゴム体2Xの上端2tが建物1の免震上部基礎部7に図外のボルト等の固定具で連結固定されていて、他方の免震用ゴム体2Yの上端2tが建物1の免震上部基礎部7に図外のボルト等の固定具で連結固定され、他方の免震用ゴム体2Yの下端2uが免震下部基礎部8に図外のボルト等の固定具で連結固定されているとすれば、一方の免震用ゴム体2Xは直立状態に復元しようとして、これにより建物1は図9の右側に移動する。即ち、一方の免震用ゴム体2Xの下端2uを水平方向に移動させると、他方の免震用ゴム体2Yの下端2uと免震下部基礎部8との連結固定点を反力点として、一方の免震用ゴム体2Xに復元力が蓄えられ、この復元力により建物1を移動させることが可能となる。即ち、図9(b)に示すように、一方の免震用ゴム体2Xの下端2uを例えば10cm移動させたとすると、免震用ゴム体2Xと免震用ゴム体2Yとが同じものであれば、建物1は5cm移動する。ここで、仮に建物1を5cmだけ移動すればよいのであれば、以上の操作により建物1を移動させることが可能である。この場合、図9(b)の状態で建物1を図外のジャッキ等で下から支持して、上記免震用ゴム体2X;2Yを直立状態となるよう取付け直せばよい。また、建物1を最初の位置から5cm以上移動したい場合、例えば10cm程度移動したいのであれば、図9(b)の状態から他方の免震用ゴム体2Yの下端2uと免震下部基礎部8との連結を解く。すると、一方の免震用ゴム体2Xが復元力で例えば図9(c)のように直立状態となる方向に復元する。これにより、建物1は最初の位置から10cm程度移動する。復元した後に他方の免震用ゴム体2Yの下端2uと免震下部基礎部8とを連結固定する。以上のように、免震用ゴム体2Xの水平方向の復元力を利用して建物1を移動させることができる。   In the seismic isolation building where the seismic isolation rubber body is provided under the building, the upper end of the seismic isolation rubber body is fixed to the seismic isolation upper foundation of the seismic isolation structure building. In addition, by moving the lower end of the seismic isolation rubber body in the horizontal direction and deforming the seismic isolation rubber body, a restoring force is generated in the seismic isolation rubber body, and the building is moved with the generated restoring force. Let Alternatively, the lower end of the seismic isolation rubber body is fixed to the base isolation upper base of the seismic isolation structure, and the upper end of the seismic isolation rubber body is moved horizontally to deform the seismic isolation rubber body. Then, a restoring force is generated in the seismic isolation rubber body, and the building is moved with the generated restoring force. First, in order to simplify the description, for example, a configuration including two seismic isolation rubber bodies 2 as shown in FIG. 9A will be described. First, as shown in FIG. 9B, after the lower end 2u of one seismic isolation rubber body 2X is moved by a predetermined distance in the horizontal direction, the lower end 2u of one seismic isolation rubber body 2X is Connect and fix to the base 8 of the seismic lower part with a fixture such as a bolt not shown. In this case, the upper end 2t of one seismic isolation rubber body 2X is connected and fixed to the seismic isolation upper base portion 7 of the building 1 with a fixture such as a bolt (not shown), and the upper end of the other seismic isolation rubber body 2Y. 2t is connected and fixed to the seismic isolation upper base portion 7 of the building 1 with a fastener such as a bolt not shown, and the lower end 2u of the other seismic isolation rubber body 2Y is connected to the base isolation lower base portion 8 such as a bolt not shown in the figure. If it is assumed that it is connected and fixed by a fixture, one of the seismic isolation rubber bodies 2X tries to restore the upright state, thereby moving the building 1 to the right side of FIG. That is, when the lower end 2u of one seismic isolation rubber body 2X is moved in the horizontal direction, the connection fixing point between the lower end 2u of the other seismic isolation rubber body 2Y and the seismic isolation lower base 8 is used as a reaction point. A restoring force is stored in the seismic isolation rubber body 2X, and the building 1 can be moved by the restoring force. That is, as shown in FIG. 9B, if the lower end 2u of one seismic isolation rubber body 2X is moved by 10 cm, for example, the seismic isolation rubber body 2X and the seismic isolation rubber body 2Y are the same. In this case, the building 1 moves 5 cm. Here, if it is sufficient to move the building 1 by 5 cm, the building 1 can be moved by the above operation. In this case, the building 1 may be supported from below with a jack or the like not shown in the state of FIG. 9B, and the seismic isolation rubber bodies 2X; 2Y may be reattached so as to be in an upright state. Further, when it is desired to move the building 1 by 5 cm or more from the initial position, for example, about 10 cm, the lower end 2u of the other seismic isolation rubber body 2Y and the seismic isolation lower base 8 from the state of FIG. 9B. Unlink with. Then, one seismic isolation rubber body 2X is restored in a direction in which it is in an upright state as shown in FIG. Thereby, the building 1 moves about 10 cm from the initial position. After restoration, the lower end 2u of the other seismic isolation rubber body 2Y and the seismic isolation lower base 8 are connected and fixed. As described above, the building 1 can be moved using the horizontal restoring force of the seismic isolation rubber body 2X.

上記では、一方の免震用ゴム体2Xの下端2uを水平移動させる場合について説明したが、一方の免震用ゴム体2Xの上端2tを水平移動させるようにしてもよい。即ち、この場合は、建物1を図外のジャッキ等で下から支持して若干浮かせておいてから、一方の免震用ゴム体2Xの上端2tを図9(a)において左側に移動して建物1の免震上部基礎部7と連結固定する。これにより、図9(b)の状態となる。そして、他方の免震用ゴム体2Yの上端2tと建物1の免震上部基礎部7との連結を解く。すると、一方の免震用ゴム体2Xが復元力で例えば図9(c)のように直立状態となる方向に復元する。その後に他方の免震用ゴム体2Yの上端2tと免震上部基礎部7と連結固定する。以上のようにしても、免震用ゴム体2Xの復元力を利用して建物を移動させることができる。   Although the case where the lower end 2u of one seismic isolation rubber body 2X is moved horizontally has been described above, the upper end 2t of one seismic isolation rubber body 2X may be moved horizontally. That is, in this case, the building 1 is supported from below by a jack or the like not shown in the figure and slightly floated, and then the upper end 2t of one seismic isolation rubber body 2X is moved to the left in FIG. 9A. It is fixedly connected to the seismic isolated upper foundation 7 of the building 1. As a result, the state shown in FIG. Then, the connection between the upper end 2t of the other seismic isolation rubber body 2Y and the seismic isolation upper base portion 7 of the building 1 is released. Then, one seismic isolation rubber body 2X is restored in a direction in which it is in an upright state as shown in FIG. Thereafter, the upper end 2t of the other seismic isolation rubber body 2Y and the seismic isolation upper base 7 are connected and fixed. Even if it does as mentioned above, a building can be moved using the restoring force of rubber body 2X for seismic isolation.

即ち、建物1の下に免震用ゴム体2を配置して免震構造建物とした後、免震用ゴム体2の下端2uあるいは上端2tを水平方向に移動させることで、建物1の曳き家作業を容易とでき、隣接建物3(図10参照)との間の距離を広げることが可能となる。   That is, after placing the seismic isolation rubber body 2 under the building 1 to form a seismic isolation structure building, the lower end 2u or the upper end 2t of the seismic isolation rubber body 2 is moved horizontally, so Housework can be facilitated, and the distance between adjacent buildings 3 (see FIG. 10) can be increased.

図11に示すように、免震用ゴム体2は、例えば鋼板9とゴム10とが交互に積層されこれらが接着により互いに連結された積層体により形成される。このような構成の免震用ゴム体2を使用することで、積層されたゴム10のそれぞれに水平荷重を分担させることができて、ゴム10に水平荷重が加わった状態においても建物1の荷重を充分に支持でき、また、鋼板9により垂直荷重に対する剛性を確保できる。従って、ゴム10に水平荷重が加わった場合に、免震用ゴム体2が倒れ込んでしまうことを防止できる。免震用ゴム体2の上面11には図外のボルト等の固定材で免震用ゴム体2の上面11に取付けられた上部フランジ12を備え、免震用ゴム体2の下面13には図外のボルト等の固定材で免震用ゴム体2の下面13に取付けられた下部フランジ14を備える。尚、免震用ゴム体2は、例えば、高さ200mm〜700mm、横幅500mm〜1500mm程度の円柱状あるいは直方体状に形成されたものを使用する。   As shown in FIG. 11, the seismic isolation rubber body 2 is formed of a laminated body in which, for example, steel plates 9 and rubber 10 are alternately laminated and these are connected to each other by adhesion. By using the seismic isolation rubber body 2 having such a configuration, it is possible to share the horizontal load to each of the laminated rubbers 10 and the load of the building 1 even when the horizontal load is applied to the rubber 10. Can be sufficiently supported, and the steel plate 9 can ensure rigidity against vertical load. Therefore, it is possible to prevent the seismic isolation rubber body 2 from falling down when a horizontal load is applied to the rubber 10. The upper surface 11 of the seismic isolation rubber body 2 is provided with an upper flange 12 attached to the upper surface 11 of the seismic isolation rubber body 2 with a fixing material such as a bolt (not shown). A lower flange 14 attached to the lower surface 13 of the seismic isolation rubber body 2 with a fixing material such as a bolt not shown is provided. In addition, the rubber body 2 for seismic isolation uses what was formed in the column shape or rectangular parallelepiped shape of about 200 mm-700 mm in height and 500 mm-1500 mm of horizontal width, for example.

図12に示すように、上下のフランジ12;14は同じものよりなり、免震用ゴム体2の軸中心を中心として免震用ゴム体2の上面11と下面13とに同心状に取付けられる。上下のフランジ12;14の面における免震用ゴム体2の周囲を囲む仮想円a上には例えば8個のボルト貫通孔15が仮想円a上においてそれぞれ互いに45度の角度を隔てて形成される。   As shown in FIG. 12, the upper and lower flanges 12; 14 are made of the same material, and are concentrically attached to the upper surface 11 and the lower surface 13 of the seismic isolation rubber body 2 around the axis center of the seismic isolation rubber body 2. . On the virtual circle a surrounding the periphery of the seismic isolation rubber body 2 on the surfaces of the upper and lower flanges 12; 14, for example, eight bolt through holes 15 are formed on the virtual circle a at an angle of 45 degrees from each other. The

免震上部基礎部7の下面16には上部フランジ12を一位置に連結可能とする上部ベース17が取付けられる。免震下部基礎部8の上面18には下部フランジ14を複数の連結位置で取付可能とする下部ベース19が取付けられる。上下のベース17;19は例えば金属製の平板に設けられた試験管のような形状に形成された金属袋体の内側に雌ねじ20が形成された複数の袋ナット部21を備える。   An upper base 17 that allows the upper flange 12 to be connected to one position is attached to the lower surface 16 of the seismic isolation upper base portion 7. A lower base 19 that allows the lower flange 14 to be attached at a plurality of connecting positions is attached to the upper surface 18 of the base isolation base 8. The upper and lower bases 17; 19 are provided with a plurality of cap nut portions 21 in which a female screw 20 is formed inside a metal bag body formed in a shape like a test tube provided on a metal flat plate, for example.

免震上部基礎部7の下面16への上部ベース17の取付けは以下の通りである。上部ベース17にあらかじめ袋ナット部21を所定の数だけ溶接等の結合手段で取付け、また、コンクリートとの接続を確実にするためスタッドボルト22等を必要数取付けた後に、上部ベース17を図外の型枠で所定の位置に設置し、型枠内に免震上部基礎部7の鉄筋コンクリート部を打設充填することで、この鉄筋コンクリート部により形成される免震上部基礎部7の下面16に上部ベース17が取付けられる。これにより、上部ベース17の下面25は免震上部基礎部7の下面16と同一平面上に位置する。図13に示す上部ベース17の袋ナット部21のボルト挿入孔26と図12に示す上部フランジ12に形成されたボルト貫通孔15とは合致する位置に形成される。即ち、図13に示すように、上部ベース17には例えば8個のボルト挿入孔26が仮想円a上においてそれぞれ互いに45度の角度を隔てて形成され、このボルト挿入孔26を有する8個の袋ナット部21が形成される。   The attachment of the upper base 17 to the lower surface 16 of the seismic isolation upper base portion 7 is as follows. A predetermined number of cap nuts 21 are attached to the upper base 17 in advance by a joining means such as welding, and a necessary number of stud bolts 22 and the like are attached to secure the connection with the concrete, and then the upper base 17 is not shown. It is installed at a predetermined position in the formwork of this, and the reinforced concrete part of the seismic isolation upper foundation part 7 is cast and filled in the formwork, so that the upper part is formed on the lower surface 16 of the seismic isolation upper base part 7 formed by this reinforced concrete part. A base 17 is attached. Thereby, the lower surface 25 of the upper base 17 is located on the same plane as the lower surface 16 of the seismic isolation upper base portion 7. The bolt insertion hole 26 of the cap nut portion 21 of the upper base 17 shown in FIG. 13 and the bolt through hole 15 formed in the upper flange 12 shown in FIG. That is, as shown in FIG. 13, for example, eight bolt insertion holes 26 are formed in the upper base 17 at an angle of 45 degrees with respect to each other on the virtual circle a, and eight bolt insertion holes 26 having the bolt insertion holes 26 are formed. A cap nut portion 21 is formed.

建物1を図11の右側に移動して曳き家するものと仮定すると、下部ベース19は移動方向に長いプレートにより形成され、下部フランジ14を4つの別々の位置に連結するための後述する4つの連結位置構成部31;32;33;34を備える。免震下部基礎部8の上面18への下部ベース19の取付けは、上述した免震上部基礎部7の下面16への上部ベース17の取付けと同様である。   Assuming that the building 1 is moved to the right side of FIG. 11 and that the house is to be moved, the lower base 19 is formed by a plate that is long in the moving direction, and the four below-described four links for connecting the lower flange 14 to four separate positions. The connecting position components 31; 32; 33; 34 are provided. Attachment of the lower base 19 to the upper surface 18 of the base isolation base 8 is the same as the attachment of the upper base 17 to the lower surface 16 of the base isolation upper base 7 described above.

図14に示すように、下部ベース19にも複数の袋ナット部21が設けられる。図14の点線で示された1つ1つの仮想円b,c,d,eの上に位置するボルト挿入孔26を備えた複数の袋ナット部21群が1つ1つの連結位置構成部31;32;33;34を形成する。図14における下部ベース19の1番左側の初期連結位置である第1連結位置構成部31を形成する複数の袋ナット部21群の位置は上部ベース17の複数の袋ナット部21の位置の真下に位置される。従って、上部フランジ12のボルト貫通孔15の位置と上部ベース17の袋ナット部21のボルト挿入孔26の位置とを合致させた状態でボルト貫通孔15及びボルト挿入孔26にボルト35(図11参照)を挿入してボルト35を袋ナット部21に締結し、さらに、下部フランジ14のボルト貫通孔15の位置と下部ベース19の第1連結位置構成部31を形成する複数の袋ナット部21のボルト挿入孔26の位置とを合致させた状態でボルト貫通孔15及びボルト挿入孔26にボルト35を挿入してボルト35を袋ナット部21に締結することで、免震用ゴム体2を上下の免震基礎部7;8に固定できる。この状態では、免震用ゴム体2は直立状態となり、免震用ゴム体2のゴム10には水平方向の力が加わっていない。   As shown in FIG. 14, the lower base 19 is also provided with a plurality of cap nut portions 21. A plurality of cap nut portions 21 having bolt insertion holes 26 positioned on each virtual circle b, c, d, e shown by dotted lines in FIG. 32; 33; 34. In FIG. 14, the positions of the plurality of cap nut portions 21 forming the first connection position constituting portion 31 that is the first left-side initial connection position of the lower base 19 are directly below the positions of the plurality of cap nut portions 21 of the upper base 17. Located in. Therefore, the bolt 35 (see FIG. 11) is inserted into the bolt through hole 15 and the bolt insertion hole 26 in a state where the position of the bolt through hole 15 of the upper flange 12 and the position of the bolt insertion hole 26 of the cap nut portion 21 of the upper base 17 are matched. The bolt 35 is fastened to the cap nut portion 21 and the plurality of cap nut portions 21 forming the position of the bolt through hole 15 of the lower flange 14 and the first connecting position constituting portion 31 of the lower base 19 are inserted. By inserting the bolt 35 into the bolt through hole 15 and the bolt insertion hole 26 in a state where the position of the bolt insertion hole 26 is matched, the bolt 35 is fastened to the cap nut portion 21, so that the seismic isolation rubber body 2 is Can be fixed to the upper and lower seismic isolation bases 7; 8. In this state, the seismic isolation rubber body 2 is in an upright state, and no horizontal force is applied to the rubber 10 of the seismic isolation rubber body 2.

下部ベース19の第1連結位置構成部31と下部フランジ14とを連結するボルト35を取外して、下部フランジ14を図外のジャッキ等の取付プレート移動具で第1連結位置構成部31から第2連結位置構成部32の位置まで移動して、下部フランジ14と第2連結位置構成部32とをボルト35で連結すると、免震用ゴム体2の下端が移動することにより免震用ゴム体2のゴム10に水平方向の力が加わって、ゴム10が水平方向に変位し、免震用ゴム体2は上から右斜めに傾斜する状態となる。以後同様にボルト35を取外して下部フランジ14を取付プレート移動具で第2連結位置構成部32から第3連結位置構成部33の位置まで移動して下部フランジ14と第3連結位置構成部33とをボルト35で連結し、さらに、ボルト35を取外して下部フランジ14を取付プレート移動具で第3連結位置構成部33から最終連結位置である第4連結位置構成部34の位置まで移動して下部フランジ14と第4連結位置構成部34とをボルト35で連結する。以上にように下部フランジ14の移動による免震用ゴム体2の下端の移動操作を行う。尚、ここでは、最終連結位置である第4連結位置構成部34は下部フランジ14の8つのボルト貫通孔15に対応する8つの袋ナット部21により形成することで、第4連結位置構成部34と下部フランジ14との連結を8個のボルト35により強固に連結しており、第1〜第3連結位置構成部31〜33はボルト35の着脱作業を少なくするために下部フランジ14に90度の角度を隔てて形成された4つのボルト貫通孔15に対応する4つの袋ナット部21で形成し、第1〜第3連結位置構成部31;32;33と下部フランジ14との連結を4個のボルト35により連結する構造とした。隣合う連結位置構成部間の距離は例えば200mm程度に設定される。従って、下部フランジ14を隣合う連結位置構成部間で移動させた場合、下部フランジ14の移動距離は200mm程度であり、下部フランジ14を第1連結位置構成部31から第4連結位置構成部34まで移動した場合には下部フランジの移動距離は600mm程度となる。これにより、建物1の下に配置したすべての免震用ゴム体2の下部フランジ14を建物1を移動する一方向に向けて移動した場合に最終的に建物1も600mm程度移動する。震度6〜7の地震を想定した場合に、免震構造とした建物1と隣接建物3との間に必要とされる間隔(クリアランス)は300mm〜800mm程度であり、従って、建物を600mm程度移動できれば、免震構造とした建物1と隣接建物3との間に必要とされる間隔を設けることが可能となる。   The bolt 35 that connects the first connection position component 31 of the lower base 19 and the lower flange 14 is removed, and the lower flange 14 is removed from the first connection position component 31 by a mounting plate moving tool such as a jack (not shown). When the lower flange 14 and the second connection position component 32 are connected with the bolt 35 by moving to the position of the connection position component 32, the lower end of the seismic isolation rubber body 2 moves, and the seismic isolation rubber body 2. A horizontal force is applied to the rubber 10 to displace the rubber 10 in the horizontal direction, and the seismic isolation rubber body 2 is inclined obliquely to the right from above. Thereafter, the bolt 35 is similarly removed, and the lower flange 14 is moved from the second connection position component 32 to the position of the third connection position component 33 by the mounting plate moving tool, and the lower flange 14 and the third connection position component 33 are moved. And the lower flange 14 is moved from the third connection position component 33 to the position of the fourth connection position component 34, which is the final connection position, by the attachment plate moving tool. The flange 14 and the fourth connection position component 34 are connected by a bolt 35. As described above, the lower end of the seismic isolation rubber body 2 is moved by moving the lower flange 14. Here, the fourth connection position constituting part 34, which is the final connection position, is formed by the eight cap nut parts 21 corresponding to the eight bolt through holes 15 of the lower flange 14, so that the fourth connection position constituting part 34 is formed. And the lower flange 14 are firmly connected by eight bolts 35, and the first to third connection position constituent parts 31 to 33 are attached to the lower flange 14 at 90 degrees in order to reduce the attaching / detaching work of the bolts 35. The four cap nut portions 21 corresponding to the four bolt through-holes 15 formed at an angle of 4 are formed to connect the first to third connection position constituent portions 31; 32; 33 and the lower flange 14 with four. The structure is connected by individual bolts 35. The distance between adjacent connection position components is set to about 200 mm, for example. Therefore, when the lower flange 14 is moved between adjacent connection position components, the movement distance of the lower flange 14 is about 200 mm, and the lower flange 14 is moved from the first connection position component 31 to the fourth connection position component 34. When moving to the lower flange, the moving distance of the lower flange is about 600 mm. Thereby, when the lower flanges 14 of all the seismic isolation rubber bodies 2 arranged under the building 1 are moved in one direction in which the building 1 is moved, the building 1 finally moves about 600 mm. When an earthquake with a seismic intensity of 6 to 7 is assumed, the required clearance (clearance) between the building 1 having the seismic isolation structure and the adjacent building 3 is about 300 mm to 800 mm. Therefore, the building is moved about 600 mm. If possible, it is possible to provide a required interval between the building 1 having the seismic isolation structure and the adjacent building 3.

上下のフランジ12;14、上下のベース17;19、ボルト35により免震用ゴム体2の移動操作に用いる免震用ゴム体2の連結装置が構成される。   The upper and lower flanges 12 and 14, the upper and lower bases 17 and 19, and the bolts 35 constitute a connecting device for the seismic isolation rubber body 2 used for moving the seismic isolation rubber body 2.

次に曳き家方法の一例を図10に基いて説明する。まず、図10(a)に示すように建物1の下に免震用ゴム体2を設置して、免震構造の建物1とする。ここでは、例えば建物1の下の横方向に8個、前後方向に4個の免震用ゴム体2を所定間隔で設置したと仮定して説明する。次に、図10(b)に示すように、建物1の隣接建物3と隣接する側とは反対側である建物1の最終移動位置側(図の右側)の下に位置する横2個×前後4個=8個の免震用ゴム体2(2A)の1つ1つの下端側を、下部フランジ14を例えば上述したように200mm程度ずつ3回に分けて移動し、最終的に第4連結位置構成部34に固定する。これにより、免震用ゴム体2(2A)は下端に取付けられた下部フランジ14が移動される毎に、建物1が免震用ゴム体2(2A)のゴム10の変形により生じる復元力で引っ張られて右側に移動する。そして、下部フランジ14を移動していないその他の免震用ゴム体2の上部フランジ12が建物1に引っ張られることで免震用ゴム体2の上部側が右側方向に変位する。以上により、建物1は例えば右側に150mm移動する。次に、図10(c)に示すように、建物1の最終移動位置側に近い中央側の下に位置する横2個×前後4個=8個の免震用ゴム体2(2B)の1つ1つの下部フランジ14を例えば上述したように200mm程度ずつ3回に分けて移動し、最終的に第4連結位置構成部34に固定する。これにより、当該下部フランジ14を移動させた免震用ゴム体2(2B)は下部フランジ14が移動される毎に、建物1が免震用ゴム体2(2B)のゴム10の変形により生じる復元力で引っ張られて右側に移動する。そして、下部フランジ14を移動していないその他の免震用ゴム体2の上部フランジ12が建物1に引っ張られることで免震用ゴム体2の上部側が右側方向に変位する。以上により、建物は例えば右側にさらに150mm移動する。以下同様に、図10(d)に示すように、建物1の隣接建物3と隣接する側に近い中央側の下に位置する横2個×前後4個=8個の免震用ゴム体2(2C)の1つ1つの下部フランジ14を例えば上述したように200mm程度ずつ3回に分けて移動し、最終的に第4連結位置構成部34に固定する。これにより、建物は例えば右側にさらに150mm移動する。最後に、建物の隣接建物と隣接する側の下に位置する横2個×前後4個=8個の免震用ゴム体2(2D)の1つ1つの下部フランジ14を例えば上述したように200mm程度ずつ3回に分けて移動し、最終的に第4連結位置構成部34に固定する。これにより、建物1は例えば右側にさらに150mm移動する。従って、以上で、建物1は最初の位置から右側に合計600mm移動する(図10(e)参照)。図2における破線は建物1の最初の位置を示し、図10(e)における破線は免震用ゴム体2の最初の位置を示す。図10では、免震用ゴム体2と建物1とが尺取虫と似た動作を行うことで建物1が移動する。   Next, an example of the sowing method will be described with reference to FIG. First, as shown in FIG. 10A, a seismic isolation rubber body 2 is installed under the building 1 to obtain a seismic isolation structure building 1. Here, for example, it is assumed that eight seismic isolation rubber bodies 2 are installed at predetermined intervals in the lateral direction under the building 1 and in the front-rear direction. Next, as shown in FIG. 10 (b), the horizontal 2 pieces located below the final movement position side (right side in the figure) of the building 1 that is opposite to the side adjacent to the adjacent building 3 of the building 1 × For example, as described above, the lower flange 14 is divided into three portions of about 200 mm as described above, and the lower end side of each of the four front and rear = 8 seismic isolation rubber bodies 2 (2A) is moved in three steps. It fixes to the connection position structure part 34. FIG. Thus, the seismic isolation rubber body 2 (2A) has a restoring force generated by the deformation of the rubber 10 of the seismic isolation rubber body 2 (2A) each time the lower flange 14 attached to the lower end is moved. Pull to move to the right. And when the upper flange 12 of the other seismic isolation rubber body 2 not moving the lower flange 14 is pulled by the building 1, the upper side of the seismic isolation rubber body 2 is displaced in the right direction. As described above, the building 1 moves, for example, 150 mm to the right. Next, as shown in FIG. 10 (c), the two lateral x front and rear four = 8 seismic isolation rubber bodies 2 (2 B) located below the central side near the final movement position side of the building 1. For example, as described above, each lower flange 14 is moved in three steps of about 200 mm as described above, and finally fixed to the fourth connection position constituting portion 34. Thereby, the seismic isolation rubber body 2 (2B) in which the lower flange 14 is moved is generated by the deformation of the rubber 10 of the seismic isolation rubber body 2 (2B) every time the lower flange 14 is moved. It is pulled by the restoring force and moves to the right. And when the upper flange 12 of the other seismic isolation rubber body 2 not moving the lower flange 14 is pulled by the building 1, the upper side of the seismic isolation rubber body 2 is displaced in the right direction. As a result, the building moves further 150 mm to the right, for example. Similarly, as shown in FIG. 10 (d), as shown in FIG. 10 (d), 2 laterals × 4 front and back = 8 seismic isolation rubber bodies 2 located below the central side close to the side adjacent to the adjacent building 3 of the building 1. Each lower flange 14 of (2C) is moved, for example, about 200 mm in three portions as described above, and finally fixed to the fourth connecting position constituting portion 34. As a result, the building moves further 150 mm to the right, for example. Finally, each of the lower flanges 14 of the two seismic isolation rubber bodies 2 (2D) located under the side adjacent to the adjacent building of the building and the lateral 2 × front and rear 4 = 8 is, for example, as described above. The movement is divided into three portions of about 200 mm, and finally fixed to the fourth connection position component 34. Thereby, the building 1 moves further 150 mm to the right side, for example. Therefore, as described above, the building 1 moves a total of 600 mm to the right from the initial position (see FIG. 10E). The broken line in FIG. 2 shows the first position of the building 1, and the broken line in FIG. 10 (e) shows the first position of the seismic isolation rubber body 2. In FIG. 10, the building 1 moves as the seismic isolation rubber body 2 and the building 1 perform an operation similar to a scale insect.

上述した曳き家方法によれば、免震用ゴム体2の移動操作を行うだけでよいので、建物1の曳き家作業を容易にできる。建物1の下に直立状態に固定されたすべての免震用ゴム体2の移動操作を、まず、建物1の最終移動位置側に配置された複数の免震用ゴム体2の移動操作から行い、次に、建物1の中央側に配置された複数の免震用ゴム体2の移動操作を行い、次に、建物1の最終移動位置側とは反対側に配置された複数の免震用ゴム体2の移動操作を行うというように、同時期に操作する複数の免震用ゴム体2をブロック分けして順番に操作したことにより、曳き家作業を計画的に行うことができて、免震用ゴム体2の移動操作に伴う建物1の移動後の姿勢管理も容易となる。また、1つ1つの免震用ゴム体2の移動操作を複数回に分けて行ったので、免震用ゴム体2のゴムに過大な水平変位を与えないようにでき、免震用ゴム体2の損傷等を防ぐことができる。   According to the above-mentioned method of making a house, it is only necessary to perform the moving operation of the seismic isolation rubber body 2, so that the operation of the house 1 can be facilitated. All the seismic isolation rubber bodies 2 fixed in an upright state under the building 1 are first moved from the plurality of seismic isolation rubber bodies 2 arranged on the final movement position side of the building 1. Next, a plurality of seismic isolation rubber bodies 2 arranged on the center side of the building 1 are moved, and then a plurality of seismic isolations arranged on the side opposite to the final movement position side of the building 1 By operating a plurality of seismic isolation rubber bodies 2 that are operated at the same time in blocks, such as moving the rubber body 2, and operating in order, Posture movement management of the building 1 accompanying the movement operation of the seismic isolation rubber body 2 is also facilitated. In addition, since the movement operation of each seismic isolation rubber body 2 is performed in a plurality of times, the rubber of the seismic isolation rubber body 2 can be prevented from being subjected to excessive horizontal displacement. 2 can be prevented.

また、建物1の下部としての免震上部基礎部7の下面16に固定された上部ベース17と、免震用ゴム体2の上端に固定されて上部ベース17と固定的に連結される上部フランジ12と、建物1の免震基礎部としての免震下部基礎部8の上面18に固定された下部ベース19と、免震用ゴム体2の下端に固定されて下部ベース19との連結位置を可変可能な下部フランジ14とを備えた連結装置を用いたので、下部フランジ14の位置を移動して下部ベース19との連結位置を変更することで免震用ゴム体2のゴム10に水平方向の変位を与えて建物1を容易に移動させることができる。また、下部ベース19が複数の連結位置を形成する袋ナット部21群を備え、下部フランジ14が下部ベース19の1つの連結位置を形成する袋ナット部21群のボルト挿入孔26に対応するボルト貫通孔15を備えるので、ボルト35の着脱により下部フランジ14と下部ベース19との連結位置を容易に変更でき、下部フランジ14と下部ベース19との連結位置の変更作業を容易とでき、免震用ゴム体2の移動作業を容易とできる。   Moreover, the upper base 17 fixed to the lower surface 16 of the seismic isolation upper base part 7 as the lower part of the building 1 and the upper flange fixed to the upper end of the seismic isolation rubber body 2 and fixedly connected to the upper base 17 12, the lower base 19 fixed to the upper surface 18 of the base isolation base 8 as the base isolation base of the building 1, and the lower base 19 fixed to the lower end of the base isolation rubber body 2. Since the connecting device provided with the variable lower flange 14 is used, the position of the lower flange 14 is moved to change the connecting position with the lower base 19 so that the rubber 10 of the seismic isolation rubber body 2 is horizontally oriented. It is possible to easily move the building 1 by giving the displacement. Further, the lower base 19 includes a group of cap nut portions 21 that form a plurality of connection positions, and the lower flange 14 corresponds to the bolt insertion hole 26 of the cap nut portion 21 group that forms one connection position of the lower base 19. Since the through-hole 15 is provided, the connecting position between the lower flange 14 and the lower base 19 can be easily changed by attaching and detaching the bolt 35, and the changing operation of the connecting position between the lower flange 14 and the lower base 19 can be facilitated. The moving operation of the rubber body 2 can be facilitated.

免震用ゴム体2の上端を移動させる場合には、図11の構成を上下逆にした構成の連結装置を用いればよい。この場合でも、上記と同様の効果が得られる。   When the upper end of the seismic isolation rubber body 2 is moved, a connecting device having a configuration in which the configuration in FIG. 11 is turned upside down may be used. Even in this case, the same effect as described above can be obtained.

上記では、下部ベース19が下部フランジ14との連結位置を複数備え、連結位置を形成する対応部が下部ベース19と下部フランジ14とに設けられた構成において、下部ベース19の対応部を袋ナット部21により形成し、下部フランジ14の対応部を袋ナット部21のボルト挿入孔26に対応するボルト貫通孔15により形成し、連結手段をボルト貫通孔15を通して袋ナット部21のボルト挿入孔26に締結されることで下部ベース19と下部フランジ14とを連結するボルト35により形成したが、下部ベース19と下部フランジ14の上記対応部を図外のピン挿入孔により形成し、このピン挿入孔に挿入されてピン挿入孔同士を結合してベースとフランジとを連結する図外のピンにより上記連結手段を形成してもよい。尚、免震用ゴム体2の上端を移動させる場合には、上部ベース17と上部フランジ12とに上記ピン挿入孔を設ければよい。   In the above configuration, in the configuration in which the lower base 19 has a plurality of connecting positions with the lower flange 14 and the corresponding portions forming the connecting positions are provided on the lower base 19 and the lower flange 14, the corresponding portions of the lower base 19 are used as cap nuts. Formed by the portion 21, the corresponding portion of the lower flange 14 is formed by the bolt through hole 15 corresponding to the bolt insertion hole 26 of the cap nut portion 21, and the connecting means passes through the bolt through hole 15 and the bolt insertion hole 26 of the cap nut portion 21. The lower base 19 and the lower flange 14 are connected to each other by bolts 35 that are connected to each other. However, the corresponding portion of the lower base 19 and the lower flange 14 is formed by a pin insertion hole (not shown). The connecting means may be formed by a pin (not shown) that is inserted into the pin and joins the pin insertion holes to connect the base and the flange. In addition, what is necessary is just to provide the said pin insertion hole in the upper base 17 and the upper flange 12, when moving the upper end of the rubber body 2 for seismic isolation.

上記では、建物1の下に直立状態に固定されたすべての免震用ゴム体2の移動操作をブロック毎に分けて操作したが、本発明では、建物1の下に直立状態に固定されたすべての免震用ゴム体2のうち、どのような位置にある免震用ゴム体2から移動操作を行ってもよい。また、免震用ゴム体2を1つずつ操作しても構わない。   In the above, the movement operation of all the seismic isolation rubber bodies 2 fixed in the upright state under the building 1 is divided into blocks, but in the present invention, it is fixed in the upright state under the building 1. The movement operation may be performed from the seismic isolation rubber body 2 in any position among all the seismic isolation rubber bodies 2. Further, the seismic isolation rubber bodies 2 may be operated one by one.

建物1の四方の地下外側面1fの1つ1つに対応した擁壁基材50を1つずつ沈下させ、これら4つの擁壁基材50の擁壁構成部材52の下端側をマットスラブ6等の建物1の基礎部で互いに連結することで建物1の免震ピットの四方の擁壁を構築してもよい。この場合、擁壁構築のための山止め壁の埋設作業、型枠設置作業、配筋作業、コンクリート打設作業を無くすことができるので、擁壁構築施工に関する施工管理が容易となる。
また、免震ピットの擁壁に限らず、例えば、建物の地下部を増設する場合等において擁壁を構築する場合にも本発明の擁壁構築方法を適用できる。
Retaining wall base materials 50 corresponding to each one of the four underground outer surfaces 1f of the building 1 are sunk one by one, and the lower end side of the retaining wall constituting member 52 of these four retaining wall base materials 50 is mat slab 6. The four retaining walls of the seismic isolation pit of the building 1 may be constructed by connecting each other at the foundation of the building 1. In this case, since the embedding work of the mountain retaining wall for the construction of the retaining wall, the formwork installation work, the reinforcement work, and the concrete placing work can be eliminated, the construction management related to the retaining wall construction work becomes easy.
Further, the retaining wall construction method of the present invention can be applied not only to the retaining wall of the seismic isolation pit, but also to constructing the retaining wall when, for example, adding an underground part of a building.

本発明の最良形態による擁壁構築方法に用いる擁壁基材を示す斜視図。The perspective view which shows the retaining wall base material used for the retaining wall construction method by the best form of this invention. 最良形態の擁壁構築方法を採用した建物の免震ピット施工方法を示す工程図。The process figure which shows the seismic isolation pit construction method of the building which employ | adopted the retaining wall construction method of the best form. 最良形態の擁壁構築方法を採用した建物の免震ピット施工方法を示す工程図。The process figure which shows the seismic isolation pit construction method of the building which employ | adopted the retaining wall construction method of the best form. 最良形態の擁壁構築方法を採用した建物の免震ピット施工方法を示す工程図。The process figure which shows the seismic isolation pit construction method of the building which employ | adopted the retaining wall construction method of the best form. 最良形態の擁壁構築方法を採用した建物の免震ピット施工方法を示す工程図。The process figure which shows the seismic isolation pit construction method of the building which employ | adopted the retaining wall construction method of the best form. 最良形態の擁壁構築方法を採用した建物の免震ピット施工方法を示す工程図。The process figure which shows the seismic isolation pit construction method of the building which employ | adopted the retaining wall construction method of the best form. 最良形態の擁壁構築方法を採用した建物の免震ピット施工方法を示す工程図。The process figure which shows the seismic isolation pit construction method of the building which employ | adopted the retaining wall construction method of the best form. 最良形態の擁壁構築方法を採用した建物の免震ピット施工方法を示す工程図。The process figure which shows the seismic isolation pit construction method of the building which employ | adopted the retaining wall construction method of the best form. 免震構造建物の曳き家方法の原理を示す。The principle of thatched-house method of seismic isolation structure is shown. 曳き家方法の一例を示す図。The figure which shows an example of the howling house method. 曳き家方法の免震用ゴム体の移動操作に用いる免震用ゴム体の連結装置による連結構造を示す断面図。Sectional drawing which shows the connection structure by the connection apparatus of the seismic isolation rubber body used for the movement operation of the seismic isolation rubber body of the whispering house method. 上記連結装置の上下のフランジを示す平面図。The top view which shows the upper and lower flanges of the connecting device. 上記連結装置の上部ベースを示す平面図。The top view which shows the upper base of the said connection apparatus. 上記連結装置の下部ベースを示す平面図。The top view which shows the lower base of the said connection apparatus.

符号の説明Explanation of symbols

1 建物、1f 建物の地下外側面、6 マットスラブ(建物の基礎部)、
50 擁壁基材、51 沈降ガイド部材、52 擁壁構成部材、53 連結部材、
59 接触面、64 擁壁構成部材の先鋭な下端、
500;501 繋ぎ用擁壁基材、600 擁壁。
1 building, 1f outside basement of the building, 6 mat slab (foundation of the building),
50 Retaining Wall Base Material, 51 Sedimentation Guide Member, 52 Retaining Wall Constituent Member, 53 Connecting Member,
59 contact surface, 64 sharp lower end of retaining wall component,
500; 501 Retaining wall base material for connection, 600 Retaining wall.

Claims (3)

建物の地下外側面に接触する接触面を有した沈降ガイド部材と建物の地下外側面に対向する擁壁を構成する擁壁構成部材とが連結部材により互いに連結された擁壁基材を用いた擁壁構築方法であって、擁壁基材の沈降ガイド部材の接触面を建物の地下外側面に接触させながら擁壁基材の下方の地盤を掘削して擁壁基材を自重で沈下させた後に擁壁構成部材と建物の基礎部とを連結するとともに擁壁基材の連結部材と沈降ガイド部材とを撤去して擁壁構成部材を擁壁としたことを特徴とする擁壁構築方法。   A retaining wall base material in which a sedimentation guide member having a contact surface that contacts a basement outside surface of a building and a retaining wall constituent member constituting a retaining wall facing the basement outside surface of the building are connected to each other by a connecting member is used. A retaining wall construction method in which the retaining wall base material sinks under its own weight by excavating the ground below the retaining wall base material while the contact surface of the sedimentation guide member of the retaining wall base material is in contact with the outer basement surface of the building. A retaining wall construction method characterized in that the retaining wall constituent member and the foundation of the building are connected to each other and the retaining member of the retaining wall base material and the settling guide member are removed to make the retaining wall constituent member a retaining wall. . 擁壁基材の上に1つ以上の繋ぎ用擁壁基材を連結していってこれらを沈降させた後に擁壁基材の擁壁構成部材と建物の基礎部とを連結するとともに擁壁基材及び繋ぎ用擁壁基材の連結部材と沈降ガイド部材とを撤去して擁壁構成部材を擁壁としたことを特徴とする請求項1に記載の擁壁構築方法。   One or more connecting retaining wall base materials are connected on the retaining wall base material, and after these have been settled, the retaining wall constituent member of the retaining wall base material is connected to the foundation of the building and the retaining wall The retaining wall construction method according to claim 1, wherein the connecting member and the settling guide member of the base material and the retaining wall base material for connection are removed and the retaining wall constituting member is used as a retaining wall. 擁壁基材の下端が先鋭に形成されたことを特徴とする請求項1又は請求項2に記載の擁壁構築方法。   The method for constructing a retaining wall according to claim 1, wherein the lower end of the retaining wall base material is formed sharply.
JP2004182558A 2004-06-21 2004-06-21 Retaining wall construction method Expired - Fee Related JP4421391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182558A JP4421391B2 (en) 2004-06-21 2004-06-21 Retaining wall construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182558A JP4421391B2 (en) 2004-06-21 2004-06-21 Retaining wall construction method

Publications (2)

Publication Number Publication Date
JP2006002528A JP2006002528A (en) 2006-01-05
JP4421391B2 true JP4421391B2 (en) 2010-02-24

Family

ID=35771151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182558A Expired - Fee Related JP4421391B2 (en) 2004-06-21 2004-06-21 Retaining wall construction method

Country Status (1)

Country Link
JP (1) JP4421391B2 (en)

Also Published As

Publication number Publication date
JP2006002528A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP4069509B2 (en) Construction method of reverse struts in the outer periphery of underground excavation space
KR20010064667A (en) Method of building underground structure
JP3850785B2 (en) Caisson laying method using main foundation pile
KR100673475B1 (en) A pc girder member for frame of underground layer and assembling structure of frame of underground by using of it and the method therof
JP2006207265A (en) Joining method of pile and column and its structure
JP4421391B2 (en) Retaining wall construction method
JP4362824B2 (en) Reverse strike method
JPS63280153A (en) Underground inverted lining method
KR101707376B1 (en) Structure for constructing underground structure using composite beams and the construction method thereof
JP2003268770A (en) Earth retaining construction method and reinforcing structure of sheet pile used for this construction method
JPH1077644A (en) Earthquake resisting pile foundation construction method
JP3228199U (en) Construction structure of earth retaining support
JP3377444B2 (en) How to build underground side walls
JP7038014B2 (en) Construction method of seismic isolation structure
KR102523155B1 (en) Connecting structure of middle girder and construction method thereof
JPH09324418A (en) Foundation pile structure and construction method therefor
JP4319231B2 (en) Approach caisson and method for constructing tunnel approach section composed of caisson
JP4464556B2 (en) Intermediate pile replacement method
JP4657759B2 (en) Building pile foundation structure
JP2018066220A (en) Reconstruction method of underground skeleton
JP2002121753A (en) Floating construction method for pier
JP2819008B2 (en) Existing building seismic isolation method
JP2900840B2 (en) How to build underground structures
JP3158055B2 (en) Septic tank equipment laying method
JP2000087679A (en) Underground structure, and its constructing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees