JP4420646B2 - 荷重測定装置 - Google Patents

荷重測定装置 Download PDF

Info

Publication number
JP4420646B2
JP4420646B2 JP2003350453A JP2003350453A JP4420646B2 JP 4420646 B2 JP4420646 B2 JP 4420646B2 JP 2003350453 A JP2003350453 A JP 2003350453A JP 2003350453 A JP2003350453 A JP 2003350453A JP 4420646 B2 JP4420646 B2 JP 4420646B2
Authority
JP
Japan
Prior art keywords
load
rotating shaft
torque
measurement object
reaction force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003350453A
Other languages
English (en)
Other versions
JP2005114599A (ja
Inventor
雅安 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2003350453A priority Critical patent/JP4420646B2/ja
Publication of JP2005114599A publication Critical patent/JP2005114599A/ja
Application granted granted Critical
Publication of JP4420646B2 publication Critical patent/JP4420646B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、測定対象物の荷重を、ひずみゲージを用いて測定する荷重測定装置に関し、例えば、粉体、液体等を充填した容器等の大きい静荷重に対する微少な荷重変動などの測定に効果がある。
一般に、荷重を測定する力センサとしては、ひずみゲージ式のロードセルが知られており、このようなロードセルを用いた荷重測定装置には、例えば、特許文献1に示す技術がある。この荷重測定装置においては、ロードセルの上端部及び下端部を曲面状に形成し、このロードセルを、上面材及び下面材をその両側において弾性部材により連結した筐体に収容することにより、横荷重や曲げ力を吸収して垂直荷重を測定するようにしている(特許文献1参照)。
特開平10―30968号公報
ところで、ロードセルには、測定し得る荷重の上限値が定格容量として定められており、その測定精度は、定格容量の大きさに依らず、定格容量に対し、ほぼ10-3(0.1%オーダー)の値である。
しかし、ある大きな荷重値(例えば1000kgf=106gf)を規格値として、その規格値より極めて小さい、例えば10-5(0.001%オーダー)の荷重のふれ、誤差、変動など(前例では10g)を伴う測定対象物を測定する場合には、極めて高精度のロードセルを用いなければならないという問題がある。
従って、本発明の目的は、大荷重の測定対象物を測定するにあたって、荷重のふれ、誤差、変動などがロードセル(ひずみゲージ)の測定精度を超えていてもこのような既存のロードセルを利用して高精度に測定し得る荷重測定装置を提供することにある。
本発明は、測定対象物に対し予め設定された反力と実際の荷重の差を荷重差分としてトルクに変換し、該トルクと平衡するトルクを発生させる抗力を電気抵抗に変換することにより、測定対象物の該荷重差分を測定する荷重測定装置であって、基台上に軸支された回転軸と、前記回転軸に片持ち梁状に固定され、前記測定対象物の荷重を受けることにより前記回転軸を中心に回転する荷重受け部材と、前記基台及び前記回転軸の双方に固定され、前記回転軸に生じたトルクに抗する荷重伝達部材と、前記荷重伝達部材に設置され、前記荷重伝達部材に生じた抗力を電気抵抗に変換するひずみゲージと、前記回転軸に対し、前記測定対象物の荷重と逆向きであってほぼ等価の反力を伝達するように構成された荷重反力発生機構とを備えた荷重測定装置を提供することにより、前記目的を達成したものである。
なお、本出願において、「荷重差分」とは、測定対象物に対し予め設定された反力と測定対象物の実際の荷重の差分を言う。例えば測定対象物に対し設定反力が99Kgf、測定対象物の実際の荷重が100Kgfであれば1Kgfが荷重差分である。機構的には荷重反力発生機構(例えば、ばね)で設定した値が本出願で言う「予め設定する反力」に相当し、測定対象物の実際の荷重と荷重反力発生機構(例えば、ばね)に発生する荷重の差分が「荷重差分」である。
本発明によれば、荷重反力発生機構(例えば、ばね)により、測定対象物の規格荷重の相当分を予め設定した反力でほぼ相殺し、生じた荷重差分によるトルクのみを回転軸に生じさせることができる。その結果、当該トルクのみにより生じる抗力をひずみゲージで検出させることができるため、測定対象物が大荷重であっても前記の荷重差分のみを測定の対象にして高精度な測定が可能となる。
以下、本発明の荷重測定装置の最も好ましい一実施形態(第1実施形態)を図1(a)(b)及び図2を参照して詳細に説明する。
図1(a)(b)又は図2に示すように、本実施形態の荷重測定装置1は、測定対象物2と荷重反力発生機構8の反力との差である荷重差分ΔFをトルクΔT1に変換し、トルクΔT1に抗して生じる抗力F3を電気抵抗に変換することにより、測定対象物2の上記荷重差分F1を測定する装置であって、基台3、回転軸4、荷重受け部材5、荷重伝達部材6、ひずみゲージ7、荷重反力発生機構8等を備えている。以下、かかる荷重測定装置1の詳細を述べる。
本実施形態の測定対象物2には、例えば、静荷重の測定対象として、粉体、液体等を充填した容器等があり、動荷重の測定対象として、フィルムに塗布された塗料等がある。測定対象物2の荷重F1は、大きい規格荷重A(105〜106gf)に対し、微小な変動荷重B(100〜102gf)を規格範囲とし、実際の測定精度C(10―5〜10―4)が要求されるものである。
図1(a)、図2に示すように、基台3は、長方形のプレート状に形成されたものである。ここで、便宜上、基台3の縦方向、横方向、垂直(鉛直)方向を、それぞれ、x軸、y軸、z軸とする。
基台3の後方部(x+側部位)には、一対の軸受ブロック11、11が立設されており、軸受ブロック11には、回転軸4の両端部分が回転可能に支持されている。この回転軸4は、y軸回りに回転するようになっている。
荷重受け部材5は、一対の荷重支持梁部5a、5aと、荷重受皿部5bとからなる。荷重支持梁部5aは、互いに平行に配置された状態で、これらの後端部分が回転軸4に片持ち梁状に固定されている。荷重支持梁部5aの前端部分には、荷重受皿部5bが固定されている。このような荷重受け部材5は、荷重受皿部5bに測定対象物2の荷重F1を受けることにより、回転軸4を中心にしてこの回転軸4と共に、y軸回りに回転するようになっている。
荷重伝達部材6は、高剛性金属の水平梁部6a及び鉛直梁部6bがL字状に連結されてなる。この鉛直梁部6bは、その表面にひずみゲージ7が所定位置に貼付されてロードセル7’として構成されるものであるが、本実施形態では、鉛直梁部6bの下端部に既存のロードセル7’を配置して構成されており、この点について後述し、それまでの説明では、鉛直梁部6bが1本の梁として扱う。
水平梁部6aの端部は、回転軸4の中央部に固定端Pとして固定されており、鉛直梁部6bの端部は、基台3に固定されている。このような荷重伝達部材6は、無荷重状態の荷重受け部材5を基台3と平行に保持し、荷重受け部材が荷重差分を受けた状態で、この荷重差分により回転軸4に生じたトルクΔT1に抗するようになっている。
この点について詳述すると、図1(a)(b)に示すように、荷重伝達部材6は、両端が固定されたL型の曲がり梁であり、水平梁部6aの固定端Pに反時計回り方向のトルクT1が作用した場合、水平梁部6aが下に凸曲面状に撓み、鉛直梁部6bが前方(x−方向)に凸曲面状に撓むが、これらの撓み量は微小のため、鉛直梁部6bが、回転軸4から鉛直下向き(z−方向)の圧縮荷重を受けると共に、その抗力として基台3から鉛直上向き(z+方向)の圧縮荷重を受けているものとして扱える。
そして、鉛直梁部6bに、ひずみゲージ7が貼付されている場合、このひずみゲージ7は、荷重差分で生じたトルクと釣り合う抗力を電気抵抗の差として検出するようになっている。
なお、ひずみゲージ7には、リード線等を介して、ひずみ指示器、増幅器、計算機、記録計等が電気的に接続されており(以上図示しない)、ひずみゲージからの入力信号に基づいて、荷重受け部材5上に載置された測定対象物2の荷重値ΔF1に関する情報(正確には、変動荷重Bに関する情報、詳細後述)に変換できるようになっている。
本実施形態の場合、ひずみゲージ7は、鉛直梁部6bに直接貼付されず、ロードセル7’に組み込まれており、これに対し、鉛直梁部6bは、ロードセル7’の高さ分だけ短く形成され、鉛直梁部6bの下端がロードセル7’の上面に固定されている。このように構成された荷重伝達部材6は、上述した荷重伝達部材6と実質的に同一であり、上記同様、水平梁部6aの固定端Pに反時計回り方向のトルクT1が作用した場合、ロードセル7’は、鉛直梁部6bの下端面から鉛直下向き(z−方向)の圧縮荷重を受けると共に、その抗力として基台3から鉛直上向き(z+方向)の圧縮荷重を受けている。
水平梁部6aは、その端部が、ねじ機構等を用いて回転軸4に移動可能に連結されることにより、鉛直梁部6bと共に、回転軸4に対し水平方向(x+−方向)に長さ調節可能に構成されている。このように構成された荷重伝達部材6は、トルクの成分要素である作用線距離を調節することにより、ロードセル7’に作用する力を増減するようになっている(詳細後述)。
本実施形態の場合、荷重反力発生機構8は、ばね8Aにより構成されている。この負荷ばね8Aは、圧縮コイルばねであり、水平に保たれた荷重受皿部5bと、基台3との間に圧縮状態で設置された場合において、測定対象物2の規定荷重Aとほぼ等価であってこれと逆向き(上向き)の負荷荷重F2を荷重受皿部5bに付勢するように構成されている。
このようなばね8Aは、測定対象物2の荷重F1のうち、規格荷重Aに相当分の荷重を相殺し、換言すれば、測定対象物2の荷重ΔF1により生じるトルクΔT1と逆向きであってこれとほぼ等価の負荷トルクΔT2を、荷重受け部材5を介して回転軸4に伝達するようになっている。すなわち、ばね8Aは、実質的に、測定対象物2の荷重差分Bに相当分の荷重によるトルクΔT1を回転軸4に生じさせ、そのトルクΔT1に応じた力をロードセル7’に作用させる機能をもつようになっている。
なお、荷重受け部材5には、ストッパ12が設けられており、このストッパ12は、ばね8Aの負荷荷重F2を受けて、無負荷状態の荷重受け部材5を水平状態に保持するようになっている。
次に、本実施形態の荷重測定装置1の使用態様及び作用を、図1(a)(b)及び図2を参照して説明する。
粉体等を充填した容器を静荷重の測定対象とし、荷重測定を繰り返し行う。測定対象物2の荷重F1は、規定荷重Aが105gf(=100kgf)であり、変動荷重Bが10gf以内とし、実際に要求される測定精度Cが10-4がである場合において、ロードセル7’にあっては、定格容量が10kgf、誤差範囲が±10gf(機器上の測定精度が10-3)のものと、ばね8Aにあっては、負荷荷重F2が98Kgf±1Kgfのものを用意する。
1個のロードセルが容量100Kgで、そのロードセルに対して10gの測定精度を実現させることは非常に技術的に困難であり、それが達成できたとしてもそのロードセルは非常に高価なものとなる。一方、ばね(荷重反力発生機構)を98Kgf±1Kgfの範囲に調整することは現実的に可能な範囲なので、定格容量が1Kgf、測定誤差範囲±10gfというロードセルを製造することは困難ではない。本実施形態では、困難性なく製造できるロードセル、すなわち既存のロードセルを用いて、従来は実現が困難であった荷重変動の高精度測定が可能となる。
荷重差分はプラスマイナスに変動するので、常に抗力がかかる状態に、ばね調整(荷重反力発生機構)を設定しておけば、荷重の変動分を常に検出する事ができる。
例えば、測定対象物2の荷重F1が100Kgf±10gf、ばね8Aの負荷荷重F2が99Kgfである測定例では、荷重受皿部5bの中心線L2上の作用点Qには、荷重F1と負荷荷重F2との差分ΔF(1Kgf±10gf)が下向きに作用する。ロードセルは1Kgfの容量に対し、±10gfの変動は10-2の程度の精度であが、100Kgfに対しては10-4程度の精度となり、高精度の測定が可能となる。
これにより、回転軸4には、反時計回り方向の微小トルクΔT1が生じる。この微小トルクΔT1の大きさは、(差分ΔF)×(作用線距離l1)[l1:回転軸4の中心線L1と荷重受皿部5bの中心線L2との間の水平距離]である。
この微小トルクΔT1が荷重伝達部材6に伝達される一方で、微小トルクΔT1の大きさと等しく時計回り方向の微小トルクΔT2が荷重伝達部材6から抗モーメントとして回転軸4に伝達される。
この場合、荷重伝達部材6においては、水平梁部6aの固定端Pに微小トルクΔT1が作用し、鉛直梁部6bの固定端Rには、鉛直上向きの圧縮荷重F3が作用し、この反力として鉛直下向きの圧縮荷重F3’がロードセル7’に作用する。
ロードセル7’に作用する圧縮荷重F3’の大きさは、(差分ΔF)×((作用線距離l1)/(作用線距離l2))[l2:回転軸4の中心線L1と鉛直梁部6bの中心線L3との間の水平距離]である。
ここに、測定感度ν=(作用線距離l1)/(作用線距離l2)とした場合、この測定感度νは、荷重伝達部材6の長さ調節により設定変更が可能であり、圧縮荷重F3’を増減させることにより、ロードセル7’の感度をその誤差範囲内で上げるための値である。
上記測定例においては、差分ΔFが3gfであり、測定感度ν=2に設定することにより、圧縮荷重F3’が6gfとなってロードセル7’の誤差範囲内にあるため、ロードセル7’の感度を上げることができる。
また、測定対象物2の荷重F1が10008gf、ばね8Aの負荷荷重(反力)F2が99995gf(105gf−5gf)である場合においては、差分ΔFが13gfであり、測定感度ν=1/2に設定することにより、圧縮荷重F3’が6.5gfとなってロードセル7’の誤差範囲内に含まれる。
なお、測定対象物2の荷重F1よりもばね8Aの負荷荷重F2を大きく設定した場合は、図1に示す装置では、ΔFがマイナスとなるのでロードセル7’に荷重がかからない状態となる。この場合には、荷重伝達部材6を、荷重受け部材5を対称(軸対称)中心として天地逆となる位置に設ける構成にすれば、ロードセルに荷重がかかるようになり、荷重差分の測定が可能となる。しかし、このような構成では、ロードセル7’を受けるための基台3を図1の上方にまで延出することになり、装置としての構成が若干複雑化する。よって、図1に示すように、ばね8A、ロードセル7’が水平の基台3上にまとめて設置される方が装置としての構成が簡略であり、調整も行いやすい。そこで、測定対象物2の荷重F1よりもばね8Aの反力F2が小さくなるように設定するのが装置の実用面では好ましいといえる。この点は、ばねに替えて分銅(図3参照)や減速ギヤ(図4参照)を用いた場合でも同様である。
本実施形態の測定荷重装置1の別の使用態様について説明する。
例えば、グラビア塗布のように、フィルムに高粘性の塗料を塗布する工程においては、フィルム上の塗料を平滑化するために、ローラ状のスムーザが用いられる。このスムーザは、微小な変動荷重を伴いながら、連続的に大きな荷重を受け、このようなスムーザを、動荷重の測定対象とする。
上記の荷重測定装置1を使用するにあたって、荷重支持梁部5aの前端部分に、荷重受皿部5bの代わりに、スムーザ(図示しない)を固定する。そして、スムーザをフィルム上の塗料に接触させ、ひずみゲージ7からの入力信号に基づいて、スムーザに生じる動荷重の変動荷重を測定し、その測定値により、塗料の動粘度の経時的変化を求める。
このように、連続的な動荷重の変動荷重を測定対象にした使用態様においては、動粘度の経時的変化を、オンライン上でリアルタイムに計測し、その計測値に基づいて、フィルムの搬送速度や塗料の塗布量を調節することにより、塗料の膜厚の均一化を図ることができる。
以上述べたように、本実施形態によれば、ばね8Aの負荷荷重F2により、測定対象物2の規格荷重Aの相当分をほぼ相殺し、実質的に、変動荷重Bの相当分による微小トルクΔT1を回転軸4に生じさせ、その微小トルクΔT1に応じた微小の力をロードセル7’に作用させる。すなわち、測定対象物2自体の荷重ではなく、変動荷重Bを測定の対象とするため、測定対象物2の大荷重に対する微小変動の測定に関してはロードセル7’の測定精度を超えている場合でも、既存のロードセル7’を利用して高精度測定が可能となる。
このような本実施形態の荷重測定装置1を用いることにより、微小の変動荷重を伴う大荷重の測定を、繰り返し行う静荷重に対してだけでなく、連続的な動荷重に対しても、高精度で行うことができる。
また、本実施形態によれば、荷重伝達部材6の水平距離を回転軸4に対して長さを調節可能にしたため、ロードセル7’に作用させる荷重を、ロードセル7’の感度や誤差範囲(機器上の測定精度)、負荷ばね8Aの誤差範囲に応じて、適正な値に設定することができる。
特に、本実施形態の場合、測定対象物2に係わる測定を該測定対称物自体の荷重ではなく、変動荷重Bにしたため、変動荷重Bの測定範囲に合わせてロードセル7’の定格容量を決定することができるため、精度の高い測定に適したロードセル7’を選択することができる。
以下、本発明の荷重測定装置の最も好ましい他の実施形態(第2実施形態)を図3を参照して詳細に説明する。
本実施形態の荷重測定装置1Aは、荷重反力発生機構8が、上皿天秤構造を採用している点で上記第1実施形態と主に異なり、この異なる点について説明し、上記第1実施形態と同様の構成については、同一の符号を付してその説明を省略する。
本実施形態の場合、荷重反力発生機構8は、錘8Bと、錘受け部材8Cとからなる。錘受け部材8Cは、回転軸4の中心線L1に対し、上記荷重受け部材5と略線対称構造であり、回転軸4に対し荷重支持梁部5aと反対側に固定された錘支持梁部8C1と、この後端部分に固定された錘受皿部8C2とからなる。
錘8Bは、複数の分銅からなり、これらの分銅の合計の荷重は、測定対象物2の規定荷重Aよりもわずかに小さい値に設定されている。例えば、規定荷重が10000gfの場合、2000gfの分銅が4個と1992gfの分銅1個、合計5個の分銅が用いられる。
ここに、てこ長比κ=(作用線距離l1)/(作用線距離l3)[l1:回転軸4の中心線L1と荷重受皿部5bの中心線L2との間の水平距離、l3:回転軸4の中心線L1と錘受皿部8C2の中心線L4との間の水平距離]とした場合、このてこ長比κは、荷重支持梁部5aの長さに対して錘支持梁部8C1の長さを変更することによりその値を変更することが可能であり、錘8Bの荷重(分銅の数)を減少させることができる。
このように構成された荷重測定装置1Aにおいては、例えば、測定対象物2の荷重F1が10000gf、てこ長比κが1/2である場合、前述の合計5個の分銅からなる錘8Bを錘受皿部8C2に載置し、これにより、錘受け部材8Cが、回転軸4を支点に荷重受け部材5と共に揺動し、略水平面上に配置される。この場合、差分ΔF(8gf)による微小トルクΔT1が、回転軸4に反時計回り方向に作用する。
その後の作用は、上記第1実施形態と同様である。
以上述べたように、本実施形態によれば、錘8Bの荷重により、測定対象物2の規格荷重Aをほぼ相殺するようにしたため、錘8Bが気温、湿度等の外的要因に影響されにくいという性質や、錘8Bに質量基準となる分銅を利用でき、測定対象物2をより高精度に測定できるという利点がある。その他の構成及び作用効果は上記第1実施形態と同様である。
以下、本発明の荷重測定装置の最も好ましい他の実施形態(第3実施形態)を図4を参照して詳細に説明する。
本実施形態の荷重測定装置1Cは、荷重反力発生機構8が、減速ギヤ構造を採用している点で上記第1、第2実施形態と主に異なり、この異なる点について説明し、上記第1、第2実施形態と同様の構成については、同一の符号を付してその説明を省略する。
本実施形態の場合、荷重反力発生機構8は、減速ギヤ列80である。この減速ギヤ列80は、回転軸4に固定されたトルク発生ギヤ84及び所定の負荷を有する負荷ギヤ81を含む複数のギヤが所定の減速比uで配列されてなる。負荷ギヤ81は、その支軸13に固定された錘14により、時計回り方向の駆動トルクTdを発生するように構成されている。
ここで、荷重測定装置1Cの省スペース化の観点から、軸受ブロック11及び回転軸4は、基台3の前方部(x−側部位)に配置され、荷重受皿部5bは、基台3の後方部(x―側部位)に配置されている一方で、減速ギヤ列80は、トルク発生ギヤ84が前端位置となり、負荷ギヤ81が後端位置となる配列で配置されている。
この場合、荷重受け部材5に生じた測定対象物2の荷重によるトルクT1は、回転軸4に対し時計回り方向に作用し、トルク発生ギヤ81による負荷トルクT2を回転軸4に対し反時計回り方向に作用させるためには、減速ギヤ列80の歯数は偶数になる。
このような減速ギヤ列80は、本実施形態では、負荷ギヤ81(歯数Z1)、第1従動ギヤ82(歯数Z2)、第2従動ギヤ83(Z3)、トルク発生ギヤ84(Z4)から構成されており、減速比uは次の式(1)で示される。
u=(Z1・Z3)/(Z2・Z4) … 式(1)
この減速比uは、負荷ギヤ81に発生させた駆動トルクTdを、トルク発生ギヤ84に増幅して伝達させるための値であり、1より小さい値(例えば1/10)に設定されている。
このように構成された荷重測定装置1Cにおいては、減速比uが1/10の場合、負荷トルクT2は、駆動トルクTdの10倍になるため、錘14を小荷重にできるという利点がある。その他の構成及び作用効果は上記第1、第2実施形態と同様である。
本発明は、上記第1〜第3実施形態に限られることなく、種々の変更等を行うことができる。
例えば、図5に示すように、上記第1実施形態の荷重測定装置1において、基台3の下方に別の基台30を配置し、これらの間に別のロードセル70を設置することにより、測定対象物2の変動荷重Bだけでなく、測定対象物2自体の荷重(規定荷重A+変動荷重B)を測定できる。
第1実施形態において、ばね8Aは、引っ張りコイルばねであってもよい。第1〜第3実施形態において、ロードセル7’は、ひずみゲージ式に限られず、磁歪式、圧電式等のものにすることができる。ひずみゲージ7は、金属抵抗式又は半導体式の何れであってもよい。第3実施形態において、錘14は、第2実施形態の複数の分銅からなる錘8Bとしてもよい。
第1〜第3実施形態において、荷重伝達部材にひずみゲージを設置せず、回転軸の表面にトルク検出機構を直接貼付して回転軸に生じたトルクを検出するようにしてもよい。この場合、トルク検出機構としては、上記実施例で用いたひずみゲージ等が挙げられる。
(a)は、第1実施形態の荷重測定装置の概略構成を示す正面図、(b)は、(a)における外力及びトルクの作用を示す図である。 第1実施形態の荷重測定装置の概略構成を示す平面図である。 第2実施形態の荷重測定装置の概略構成を示す正面図である。 第3実施形態の荷重測定装置の概略構成を示す正面図である。 第1実施形態の荷重測定装置の変形例を示す正面図である。
符号の説明
2 測定対象物
3 基台
4 回転軸
5 荷重受け部材
6 荷重伝達部材
7 ひずみゲージ
8 荷重反力発生機構
8A ばね
8B 錘
8C 錘受け部材
80 減速ギヤ列

Claims (5)

  1. 測定対象物に対し予め設定された反力と該測定対象物の実際の荷重の差を荷重差分としてトルクに変換し、該トルクと平衡するトルクを発生させる抗力を電気抵抗に変換することにより、測定対象物の該荷重差分を測定する荷重測定装置であって、
    基台上に立設された一対の軸受けブロックに両端部分が回転可能に支持された回転軸と、
    前記回転軸に片持ち梁状に固定され、前記測定対象物の荷重を受けることにより前記回転軸を中心に回転する荷重受け部材と、
    前記基台及び前記回転軸の双方に固定され、前記回転軸に生じたトルクに抗する荷重伝達部材と、
    前記荷重伝達部材の先端に設置され、前記荷重伝達部材に生じた抗力を電気抵抗に変換するひずみゲージと、
    前記回転軸に対し、前記測定対象物の荷重と逆向きであってほぼ等価の反力を伝達するように構成された荷重反力発生機構とを備え、
    前記荷重反力発生機構は、前記荷重受け部材の荷重受け皿部と基台との間に圧縮状態で設置されたばねであり、該ばねは、前記測定対象物の荷重と逆向きであってほぼ等価の荷重を前記荷重受け部材に付勢するように構成されている荷重測定装置。
  2. 前記荷重受け部材には、ストッパが設けられており、該ストッパは、ばねの負荷荷重を受けて、無負荷状態の前記荷重受け部材を水平状態に保持する請求項1に記載の荷重測定装置。
  3. 測定対象物に対し予め設定された反力と該測定対象物の実際の荷重の差を荷重差分としてトルクに変換し、該トルクと平衡するトルクを発生させる抗力を電気抵抗に変換することにより、測定対象物の該荷重差分を測定する荷重測定装置であって、
    基台上に立設された一対の軸受けブロックに両端部分が回転可能に支持された回転軸と、
    前記回転軸に片持ち梁状に固定され、前記測定対象物の荷重を受けることにより前記回転軸を中心に回転する荷重受け部材と、
    前記基台及び前記回転軸の双方に固定され、前記回転軸に生じたトルクに抗する荷重伝達部材と、
    前記荷重伝達部材の先端に設置され、前記荷重伝達部材に生じた抗力を電気抵抗に変換するひずみゲージと、
    前記回転軸に対し、前記測定対象物の荷重と逆向きであってほぼ等価の反力を伝達するように構成された荷重反力発生機構とを備え、
    前記荷重反力発生機構は、減速ギヤ列であり、該減速ギヤ列は、前記回転軸に固定されたトルク発生ギヤ及び所定の負荷を有する負荷ギヤを含む複数のギヤが所定の減速比で配列されてなり、該減速比が、該負荷ギヤに生じたトルクを該トルク発生ギヤに増幅して伝達するように設定されている荷重測定装置。
  4. 前記荷重伝達部材は、前記回転軸に固定された水平梁部と、前記基台に固定され前記ひずみゲージが貼付された鉛直梁部とがL字状に連結されてなり、該水平梁部が該鉛直梁部と共に前記回転軸に対し水平方向に長さ調節可能に構成されている請求項1〜3の何れかに記載の荷重測定装置
  5. 前記回転軸の表面に貼付され、前記回転軸に生じたトルクを検出する検出機構を備える請求項1〜3の何れかに記載の荷重測定装置。
JP2003350453A 2003-10-09 2003-10-09 荷重測定装置 Expired - Fee Related JP4420646B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003350453A JP4420646B2 (ja) 2003-10-09 2003-10-09 荷重測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003350453A JP4420646B2 (ja) 2003-10-09 2003-10-09 荷重測定装置

Publications (2)

Publication Number Publication Date
JP2005114599A JP2005114599A (ja) 2005-04-28
JP4420646B2 true JP4420646B2 (ja) 2010-02-24

Family

ID=34541994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003350453A Expired - Fee Related JP4420646B2 (ja) 2003-10-09 2003-10-09 荷重測定装置

Country Status (1)

Country Link
JP (1) JP4420646B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100897536B1 (ko) * 2007-07-23 2009-05-15 신동용 외팔보 탄성체를 이용한 비접촉 하중 측정 장치
CN101886945B (zh) * 2010-06-29 2012-01-18 重庆大唐科技股份有限公司 称重模块
GB201315715D0 (en) * 2013-09-04 2013-10-16 Metryx Ltd Method and device for determining information relating to the mass of a semiconductor wafer
JP7224260B2 (ja) * 2019-08-26 2023-02-17 三菱重工業株式会社 荷重検出装置
JP7395173B2 (ja) * 2019-08-28 2023-12-11 株式会社松井製作所 水分判定装置、水分判定システム及び水分判定方法
KR102464541B1 (ko) * 2020-10-07 2022-11-11 주식회사 아모티스 공기베어링 검사 장치

Also Published As

Publication number Publication date
JP2005114599A (ja) 2005-04-28

Similar Documents

Publication Publication Date Title
US5357786A (en) Device for determining mechanical properties of materials
US8887584B2 (en) Load measuring apparatus
EP0136118A2 (en) Load cell with shift adjustment and scale
JPS6329209B2 (ja)
CN101216363A (zh) 扭矩测量仪的标定设备
JP4420646B2 (ja) 荷重測定装置
Schlegel et al. Construction of a standard force machine for the range of 100 μN–200 mN
JP3739314B2 (ja) 材料表面の機械的特性試験装置
US9477638B2 (en) Surface acoustic wave scale that automatically updates calibration information
JP2003214938A (ja) 歪ゲージ式荷重センサ
JP3670648B2 (ja) 荷重測定機構
JP3761792B2 (ja) 校正装置付きロードセル式はかり
JPS5994016A (ja) 荷重検出機構
US7434482B1 (en) Feedback-controlled piezoelectric force measuring apparatus
CN1330959C (zh) 一种动态弯矩的测量方法
JP4917859B2 (ja) 力学量発生装置、力学量発生装置を備えた装置およびトルク計測基準機
US4091885A (en) Weight sensing apparatus
JP4079971B2 (ja) 荷重測定機構
US20050023048A1 (en) Load cell
Park et al. Column-type multi-component force transducers and their evaluation for dynamic measurement
CA2062351A1 (en) Weighing apparatus and method
KR101061100B1 (ko) 정밀 웨이팅 벨런스
RU2102710C1 (ru) Датчик для тензометрических весов
WO2022001772A1 (en) A method for configuring a calibration mechanism and force sensor thereof
US10908039B2 (en) Load cell assembly including cavities to buffer horizontal shear forces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees