JP4408115B2 - 電子基板ブロックおよび放射線検査装置 - Google Patents

電子基板ブロックおよび放射線検査装置 Download PDF

Info

Publication number
JP4408115B2
JP4408115B2 JP2006034250A JP2006034250A JP4408115B2 JP 4408115 B2 JP4408115 B2 JP 4408115B2 JP 2006034250 A JP2006034250 A JP 2006034250A JP 2006034250 A JP2006034250 A JP 2006034250A JP 4408115 B2 JP4408115 B2 JP 4408115B2
Authority
JP
Japan
Prior art keywords
electronic
substrate
electronic substrate
heat
heat conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006034250A
Other languages
English (en)
Other versions
JP2007212360A (ja
Inventor
明宏 浮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2006034250A priority Critical patent/JP4408115B2/ja
Publication of JP2007212360A publication Critical patent/JP2007212360A/ja
Application granted granted Critical
Publication of JP4408115B2 publication Critical patent/JP4408115B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Description

本発明は、半導体装置等の電子素子を搭載した複数の電子基板を積層した電子基板ブロックと、これを用いた放射線検査装置に関する。
近年、生体(被検体)の内部の情報を得るために断層撮影装置が広く用いられるようになってきた。断層撮影装置としては、X線コンピュータ断層撮影(X線CT)装置、磁気共鳴映像装置、SPECT(single photon emission CT)装置、ポジトロン断層撮影(PET)装置が挙げられる。X線CT装置は、被検体のある断面に多方向から幅の狭いX線ビームを曝射し、透過したX線を検出してその断面内でのX線の吸収の度合いの空間分布をコンピュータで計算し画像化している。このように、X線CT装置は、被検体内部の形態的な異常、例えば出血巣を把握できる。
これに対し、PET装置は被検体内の機能情報が精密に得られるため、近年盛んに開発が進められている。PET装置を用いた診断方法は、まず、ポジトロン核種で標識された検査用薬剤を、注射や吸入等により被検体の内部に導入する。被検体内に導入された検査用薬剤は、検査用薬剤に応じた機能を有する特定の部位に蓄積される。例えば、糖類の検査用薬剤を用いた場合、ガン細胞等の新陳代謝の盛んな部位に選択的に蓄積される。このとき、検査用薬剤のポジトロン核種から陽電子が放出され、この陽電子と周囲の電子とが結合して消滅する際に2つのガンマ線(いわゆる消滅ガンマ線)が互いに約180度の方向に放出される。この2つのガンマ線を被検体の周りに配置した放射線検出器により同時検出し、コンピュータ等で画像を再生成することにより被検体における放射性同位元素の分布画像データを取得する。このようにPET装置では被検体の体内の機能情報が得られるため、様々な難病の病理解明が可能である。
PET装置では、ガンマ線検出器が被検体を360度囲むように配置されている。ガンマ線検出器は、半導体検出素子と、その半導体検出素子に入射したガンマ線を電気的に検出するための検出回路基板からなる。消滅ガンマ線は被検体からランダムな方向に放出されるため、ガンマ線検出器には検出効率を向上させるため多数の半導体検出素子が配置される(例えば、特許文献1参照。)。
図1に示すように、筐体101内に多数の基板104が配置され、基板104には、多数の半導体検出素子102と、半導体チップ103等の電子素子が実装されている。半導体チップ103は、半導体検出素子102の数に応じて多数のプリアンプやバッファ回路を有するので発熱量が多い。そのため、筐体101の内外に放熱のための半導体チップ103を覆う冷却ジャケット105や冷却機構106が設けられている。
特開2005−128000号公報
ところで、PET装置は、PETカメラが被検体の周囲にガンマ線検出器を配置するため、被検体の大きさに応じてガンマ線検出器が配置される径が決まる。例えば被検体がマウスのような小動物の場合はその径が小さく、PETカメラも小型ですむ。しかし、被検体が人体の場合はガンマ線検出器が配置される径が1m程度になるため、PETカメラが大型化する。PETカメラの設置スペースの制約上できる限りガンマ線検出器は小型化されることが望まれる。
しかし、図1に示すように、従来のガンマ線検出器100は放熱を確保するため基板104間に空隙が必要とされていた。そのため基板104を高密度に配置することは困難であるという問題がある。
そこで、本発明は上記問題点に鑑みてなされたもので、本発明の目的は、複数の基板ユニットを高密度に積層が可能で、かつ簡単な構造で良好な放熱能力を有する電子基板ブロック、およびこれを備える放射線検査装置を提供することである。
本発明の一観点によれば、積層された複数の基板ユニットと、該複数の基板ユニットの少なくとも側方を規制して固定する枠体と、を備え前記複数の基板ユニットは、各々、配線基板と、該配線基板上に配設された電子素子と、該電子素子を覆うと共に熱的に接触する熱伝導キャップ部とを有し、前記熱伝導キャップ部は、配線基板の両側端よりも外側に突出してなると共に、当該熱伝導キャップ部の側面が、枠体の側面に熱的に接触してなることを特徴とする電子基板ブロックが提供される。
本発明によれば、複数の基板ユニットは積層されている。また、基板ユニットの各々は、熱伝導キャップ部が電子素子を覆うと共に接触し、さらに、熱伝導キャップ部の側面と枠体との側面とが熱的に接触している。これにより、電子素子の発熱を熱伝導キャップ部を介してその側方から枠体に放熱している。この熱伝導経路には空気がほとんど介在せず主に固体中の熱伝導であるので、空気を熱媒体として使用する場合よりも熱伝導率を高く設定できる。したがって、基板ユニットを高密度に積層が可能で、かつ簡単な構造で良好な放熱能力を有する。また、電子基板ブロックは簡単な構造を有するので材料コストおよび組立コストの低減を図れるため、製造コストを低減できる。
前記熱伝導キャップ部の側面と枠体の側面との間に熱伝導性弾性材を配設した構成としてもよい。これにより、熱伝導キャップ部の側面と枠体の側面との接触が良好となると共に、熱伝導性弾性材は熱伝導率が良好なため、電子素子の発熱を熱伝導キャップ部および熱伝導性弾性材を介してその側方から枠体に放熱できる。さらに、熱伝導性弾性材を配設することにより、熱伝導性弾性材を配設した側とは反対側の熱伝導キャップ部の側面と枠体の側面との接触が良好となり、その間の熱抵抗を低減でき、その結果、放熱能力を高めることができる。
本発明の他の観点によれば、放射性同位元素を含む被検体から発生する放射線を検出する放射線検出ブロックと、前記放射線検出ブロックに接続される上記いずれかの電子基板ブロックと、前記複数の電子基板ブロックの各々から取得した放射線の入射時刻および入射位置を含む検出情報に基づいて前記放射性同位元素の被検体内における分布情報を取得する情報処理手段と、を備え、前記複数の電子基板ブロックは、前記被検体が挿入される開口部を有する支持板の一面に、該開口部を囲むように配置されると共に、該電子基板ブロックを冷却する冷却手段を設けてなることを特徴とする放射線検査装置が提供される。
本発明によれば、電子基板ブロックの電子素子の発熱をその枠体に放熱し、さらに冷却手段が設けられているので、円滑に放熱できる。
前記複数の電子基板ブロックは、前記被検体が挿入される開口部を有する支持板の一面に、該開口部を囲むように配置されると共に、前記冷却手段は、前記開口部の周囲を略環状に配設された冷却液流路と、該冷却液流路に冷却液を供給する冷却液供給器とからなる構成としてもよい。これにより、複数の電子基板ブロックの発熱を電子基板ブロックの配置に対応して環状に設けた冷却液流路により効率的に放熱できる。
本発明によれば、複数の半導体検出素子が高精度に配置された放射線検出ブロック、およびこれを用いた放射線検査装置を提供できる。
以下、図面を参照しつつ実施の形態を説明する。
図2は、本発明の実施の形態に係るPET装置の構成図、図3は、図2に示すPETカメラのZ1矢視図、図4は、図2に示すPETカメラのZ2矢視図である。
図2〜図4を参照するに、PET装置10は、被検体Sを載置すると共に位置を制御する検査台11、被検体Sからのガンマ線を検出するPETカメラ12、PETカメラ12からの検出データを処理し、同時に生じたガンマ線を計数する同時計数部13、得られた被検体Sの体内のポジトロン核種RIの位置の画像データを再生成する情報処理部20、検査台11の位置制御等を行う検査台制御部24、画像データを表示等する表示部25、および情報処理部20や検査台制御部24に指示を送る端末や画像データを出力するプリンタ等からなる入出力部26等から構成される。
PETカメラ12は、略直立する支持板15の表面に、被検体Sが挿入される開口部15aを360度に亘って囲むように配設された放射線検出ブロック16と、放射線検出ブロック16に接続された電子基板ブロック18等からなる。
放射線検出ブロック16は、図示を省略するが、ガンマ線等の放射線を検出可能な半導体検出素子が搭載された配線基板が格納されている。配線基板は、後ほど図5等で説明する電子基板ブロック18の基板ユニット31と同様に配置され、例えば配線基板と基板ユニット31とは1対1に設けられ、配線基板からの検出信号が基板ユニット31に供給される。
半導体検出素子は、例えば、エネルギーが511keVのガンマ線に有感なテルル化カドミウム(CdTe)、Cd1-xZnxTe(CZT)、臭化タリウム(TlBr)、シリコン等の半導体結晶体に、その対向する面の各々に電極が形成されている。それらの電極を介して半導体結晶体に60V〜1000Vのバイアス電圧が印加される。半導体検出素子は、ガンマ線γa、γbの入射により生じた電子正孔対をそれぞれの電極に集める。そして、これにより生じた電気信号(検出信号)を、電子基板ブロック18に格納された基板ユニット31に送出する。
基板ユニット31には、後ほど説明するが、検出信号を増幅すると共に検出信号に基づいて、ガンマ線γa、γbが半導体検出素子に入射した時刻(入射時刻)を測定する回路を有する。基板ユニット31は、入射時刻のデータを同時計数部13に送出する。
同時計数部13では、入射時刻のデータに基づいてコインシデンス検出を行う。コインシデンス検出は、入射時刻が略一致する2つ以上の入射時刻のデータがあるか否かを判定し、入射時刻が略一致する2つ以上の入射時刻のデータがある場合、これらの入射時刻のデータを有効と判定し、コインシデンス情報とする。また、コインシデンス検出は、ガンマ線入射時刻が一致しない検出データを無効と判定し破棄する。コインシデンス情報は情報処理部20に送出される。
情報処理部20では、演算部21において画像再生成アルゴリズムによる画像データの再生成を行う。具体的には、コインシデンス情報と、コインシデンス情報に含まれる半導体検出素子番号等と、これに対応する半導体検出素子の位置情報等から所定の画像再生成アルゴリズム(例えば、期待値最大化(Expectation Maximization)法)に基づいて画像データを再生成する。これにより、被検体S内のポジトロン核種RIの分布情報が得られ、表示部25にその分布情報が表示される。また、入出力部26からの要求に応じて再生成された画像データを表示する。なお、情報処理部20には、上記の画像再生成アルゴリズムによるプログラムや半導体検出素子の位置情報やデータ等を記憶するメモリ回路22および記憶装置23が設けられている。情報処理部20には、例えばパーソナルコンピュータを用いることができる。
以上の構成および動作により、PET装置10は、被検体Sの体内に選択的に位置するポジトロン核種RIから生じるガンマ線を検出し、ポジトロン核種RIの分布状態の画像データを再生成する。これにより、被検体S内の機能情報が得られる。
図4に示すように、支持板15には冷却液パイプ28が開口部15aを略中心として環状に設けられている。冷却液パイプ28は、支持板15の電子基板ブロック18とは反対側の面に設けられている。冷却液パイプ28は、支持板15の表面に接するように、あるいは支持板15に形成された溝部15bの内部に設けられている。冷却液パイプ28を流通する冷却液は、電子基板ブロック18から生じた熱を支持板15を介して吸熱することで、電子基板ブロック18を冷却する。冷却液パイプ28は冷却装置29に接続されており、冷却装置29は冷却液パイプ28を流通する冷却液を冷却すると共に冷却液を押出すポンプの機能を有し、冷却された冷却液を冷却液パイプ28内を循環させている。これにより、電子基板ブロック18の配置に応じて冷却液パイプ28が配置されているので、電子基板ブロック18の発熱を効率的に放熱できる。
なお、図2〜図4においてPETカメラ12には16組の放射線検出ブロック16および電子基板ブロック18が示されているがこの数は一例に過ぎず、被検体Sの大きさに応じて適宜選択される。
次に本実施の形態の主な特徴の一つである電子基板ブロック18について説明する。
図5は、PETカメラを構成する電子基板ブロックの斜視図、図6は基板ユニットの斜視図、図7は、図5に示す電子基板ブロックの断面図、図8は基板ユニットの回路構成を示すブロック図である。なお、図5は、図2等に示す放射線検出ブロック16側から見た図であり、説明の便宜上、枠体の一部を破断させてその内部を示している。また、図6では、高熱伝導キャップ体34の一部を透視して示している。図7は、図6に示す半導体チップ33を切る位置での電子基板ブロックのX1軸方向の断面図である。
図5〜図7を参照するに、電子基板ブロック18は、枠体30と、枠体30内に積層された複数の基板ユニット31等からなる。枠体30は、支持板15に固定されると共に熱的に接触している。基板ユニット31には、配線基板32と、配線基板32上に実装された半導体チップ33と、半導体チップ33の表面に接触すると共に配線基板32の一部を覆う高熱伝導キャップ体34と、放射線検出ブロック(不図示)および同時計数部(不図示)の各々と接続するためのコネクタ35,36と、配線基板32の下面には絶縁フィルム38とが設けられている。基板ユニット31はその積層体が幅方向(X1軸方向)および高さ方向(Z1軸方向)が枠体30により規制されて固定されている。
図8を参照するに、基板ユニット31の回路構成は、プリアンプ44、波形整形回路45、および入射タイミング測定回路46等からなる。プリアンプ44の入力部は放射線検出ブロックの半導体検出素子に接続されており、ガンマ線の入射に伴う検出信号が供給される。プリアンプ44は検出信号を増幅し、波形整形回路45は、例えば、アクティブ型の微分回路と積分回路を組み合わせた構成を有し、検出信号をガウス型波形に整形する。入射タイミング測定回路46は、例えばコンスタントフラクション・ディスクリミネーターから構成される。入射タイミング測定回路46は、整形された検出信号に基づいて、検出信号の立ち上がりから所定の時間後に検出パルスを生成する。
これらの回路44〜46は、例えばCMOSのASIC(application specific(特定用途向け)IC)の図7に示すように半導体チップ33に搭載されている。半導体チップ33には、上述したプリアンプ44や波形整形回路45はアナログ回路である。また、入射タイミング測定回路46は、アナログ回路とデジタル回路から構成される。アナログ回路では、信号を処理していない間の消費電力がデジタル回路よりも極めて大きいため発熱が特に顕著である。このため、放熱が不十分な場合、過熱して正常に動作しなくなる。本実施の形態の電子基板ブロック18は次に説明するように、簡単な構造で良好な放熱能力を有する。なお、基板ユニット31の回路構成は図8に示した回路構成に限定されず、公知の回路構成を用いることができる。
図5〜図7に戻り、高熱伝導キャップ体34は、配線基板32の上面にその一部が接触し、接着剤により固着されている。さらに、高熱伝導キャップ体34は、半導体チップ33を覆うと共に、その下面の一部が半導体チップ33の表面に接触するように設けられている。なお、図示は省略しているが、高熱伝導キャップ体34は、半導体チップ33以外の電子素子に接触するように設けてもよい。
高熱伝導キャップ体34は、金属あるいは合金からなり、例えば、熱伝導率が金属や合金の中で特に高いアルミニウム、銅、アルミニウム合金等を用いることができる。さらに、図7に示すように、高熱伝導キャップ体34の下面と半導体チップ33の表面との間には、高熱伝導グリースまたは高熱伝導性接着剤からなる高熱伝導層39が形成されていてもよい。高熱伝導グリースは、例えば信越シリコーン社のG750(製品名)を用いることができ、高熱伝導性接着剤は、例えば住友スリーエム社のEW2070(製品名)を用いることができる。高熱伝導層39により、高熱伝導キャップ体34と半導体チップ33との間に良好な熱的接触が形成され、高熱伝導キャップ体34と半導体チップ33との間の熱伝導率が向上する。
また、図6および図7に示すように、高熱伝導キャップ体34は、配線基板32の幅方向(X1軸方向)の両側端よりも突出している。これにより、図7に示すように、高熱伝導キャップ体34は、幅方向の一方の側面34aが枠体30の側板30aの側面30−1に直接接触している。これにより、半導体チップ33の発熱を高熱伝導キャップ体34を介してその側面34aから枠体30に放熱できる。この熱伝導経路には空気がほとんど介在せず主に固体中の熱伝導であるので、空気を熱媒体として使用する場合よりも熱伝導率を高く(すなわち熱抵抗を低く)設定できる。さらに、高熱伝導キャップ体34の側面34aおよび側板30aの表面の平坦性を高めることで互いに密接でき、高熱伝導キャップ体34と側板30aとの間に熱抵抗を低減できる。
高熱伝導キャップ体34の他方の側面34bと枠体30の側板30bの側面30−2との間に高熱伝導弾性材40が設けられている。高熱伝導弾性材40には、熱伝導率が通常のゴム(熱伝導率0.14W/(m・K))よりも高い弾性材、例えば、酸化アルミニウムのフィラーが分散したシリコーンゴム(熱伝導率3.0W/(m・K))やその他の高熱伝導性弾性材を用いることができる。
また、高熱伝導弾性材40は、枠体30の側板30bが4つの基板ユニット31を横方向に押し付けるように固定されているので、高熱伝導キャップ体34と高熱伝導弾性材40との接触が良好となり、これと同時に高熱伝導弾性材40と側板30bとの接触が良好となる。これにより、半導体チップ33の発熱が高熱伝導キャップ体34を介してその側面34bから枠体30に放熱される。また、高熱伝導弾性材40を設けることで、高熱伝導キャップ体34の側面34aと側板30aとの接触がいっそう良好となり、放熱能力がさらに高まる。なお、高熱伝導弾性材40は、上述したように設ける方が好ましいが、高熱伝導キャップ体34の側面34bと側板30bの側面30−2との良好な接触が得られる場合は、製造コスト低減の観点から省略してもよい。
また、電子基板ブロック18の最も上部の基板ユニット31の高熱伝導キャップ体34と枠体30の天板30cとの間に高熱伝導弾性材41が設けられている。高熱伝導弾性材41は、上述した高熱伝導弾性材40と同様の材料から選択される。高熱伝導弾性材41は、枠体30の天板30cにより下方に押圧されている。これにより、基板ユニット31のX1−Y1面からの傾きを抑制でき、高熱伝導キャップ体34の側面34aと枠体30の側面30−1との接触を良好に保持できる。これと同時に、高熱伝導キャップ体34の側面34bと高熱伝導弾性材40との接触を良好に保持できる。その結果、放熱能力をいっそう向上できる。このように、高熱伝導弾性材41は設ける方が好ましいが、設けなくとも基板ユニット31のX1−Y1面からの傾きを所定の範囲に設定できる場合は省略してもよい。これにより高熱伝導弾性材41の材料コストを低減できる。
なお、配線基板32はプリント配線板であり、例えば、ガラスエポキシ基板、セラミック基板等を用いることができ、その材料に特に制限はない。配線基板32は、熱伝導性を高める点で酸化アルミニウム等の熱伝導性絶縁材料のフィラーを含むガラスエポキシ基板を用いることが好ましい。また、絶縁フィルム38は、例えばポリイミドフィルムであり、上下の検出ユニット間の電気的絶縁をより完全にするために設けられているが、配線基板32自体も絶縁性を有するので絶縁フィルム38を省略してもよい。
高熱伝導キャップ体34は、図6に示すように、その下面が幅方向の両側端では、配線基板32の側端面32aの一部を覆うように突起部34−1が形成されている。これにより、高熱伝導キャップ体34の側面34a,34bの面積を増加させて放熱能力を確保しつつ、基板ユニット31の厚さ(絶縁フィルム38wを設けた場合は絶縁フィルム38の下面から高熱伝導キャップ体34の表面までの距離、あるいは絶縁フィルム38を設けない場合は配線基板32の下面から高熱伝導キャップ体34の表面までの距離)を低減できる。その結果、基板ユニット31の積層体全体の厚さを低減できるので、より高密度に積層できる。また、電子基板ブロック18の高さを低減でき小型化できる。
なお、上下の基板ユニット31の高熱伝導キャップ体34は互いの直接接触が回避される方が好ましい。すなわち、図7に示すように、下側の基板ユニット31の高熱伝導キャップ体34の表面と上側の基板ユニット31の絶縁フィルム38とが直接接触しており、下側の高熱伝導キャップ体34の表面34cと上側の高熱伝導キャップ体34の突起部の下面34−1dとは離隔されている。その理由は以下の通りである。上下の高熱伝導キャップ体34間の熱抵抗が高熱伝導キャップ体34と枠体30との熱抵抗よりも小さくなると、高熱伝導キャップ体34間を主に熱が伝導してしまい、枠体30側への熱伝導量が減少し十分に放熱できなくなるおそれがあるからである。さらに、冷却液パイプ28から遠い上部の高熱伝導キャップ体34に熱が溜まり易くなり、上部の配線基板32に設けられた半導体チップ33と下部の配線基板32に設けられた半導体チップ33との温度差が拡大し、それらの動作特性にばらつきが生じてしまい、ガンマ線の入射時刻の測定にばらつきが生じる等の問題が生じるおそれがあるからである。
上述したように、枠体30に伝導した熱は、枠体30が固定されている支持板15に伝導し、支持板15の反対側に設けられた冷却液パイプ28を流通する冷却液により放熱される。もちろん、冷却液パイプ28および冷却装置29(図4に示す。)を設ける代わりに、電子基板ブロック18の枠体30の外側にフィラーとファンからなる強制空冷機構を設けてもよく、これらを併用してもよい。なお、強制空冷機構は、基板ユニット30の天板30c上に設けるよりも側板30a,30bの外表面に設けることが好ましい。これは、天板30c上に設けると図2に示すPETカメラ12の外径が増大し大型化するのに対して、側板30a,30bの外表面に設ける場合は大型化を回避できる。
本実施の形態によれば、電子基板ブロック18は、複数の基板ユニット31が略隙間なく積層されている。したがって、高密度に積層することができる。さらに、基板ユニット31の各々は、熱伝導キャップ部34が半導体チップ33を覆うと共に接触し、さらに、熱伝導キャップ部34の側面34a,34bと枠体30a,30bとの側面30−1,30−2とが熱的に接触している。これにより、半導体チップ33の発熱を熱伝導キャップ部34を介してその側方から枠体30に放熱している。この熱伝導経路には空気がほとんど介在せず主に固体中の熱伝導であるので、空気を熱媒体として使用する場合よりも熱伝導率を高く設定できる。したがって、電子基板ブロック18は、基板ユニット31を高密度に積層が可能で、かつ簡単な構造で良好な放熱能力を有する。また、電子基板ブロック18は、は簡単な構造を有するので材料コストおよび組立コストの低減を図れるため、製造コストを低減できる。
以上本発明の好ましい実施の形態について詳述したが、本発明は係る特定の実施の形態に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内において、種々の変形・変更が可能である。
例えば、上述した実施の形態では、PET装置を例に説明したが、本発明は、SPECT(単一光子放射形コンピュータ断層撮影)装置に適用できる。さらに、本発明の電子基板ブロックは、半導体チップが実装された複数の配線基板を有する電子装置に適用できることはいうまでもない。
従来の検出基板ユニットの断面図である。 本発明の実施の形態に係るPET装置の構成図である。 図2に示すPETカメラのZ1矢視図である。 図2に示すPETカメラのZ2矢視図である。 PETカメラを構成する電子基板ブロックの斜視図である。 基板ユニットの斜視図である。 図5に示す電子基板ブロックの断面図である。 基板ユニットの回路構成を示すブロック図である。
符号の説明
10 PET装置
11 検査台
12 PETカメラ
13 同時計数部
16 放射線検出ブロック
18 電子基板ブロック
20 情報処理部
28 冷却液パイプ
29 冷却装置
30 枠体
31 基板ユニット
32 配線基板
33 半導体チップ
34 高熱伝導キャップ体
35,36 コネクタ
38 絶縁フィルム
40,41 高熱伝導弾性材

Claims (11)

  1. 積層された複数の基板ユニットと、該複数の基板ユニットの少なくとも側方を規制して固定する枠体と、を備え、
    前記複数の基板ユニットは、各々、配線基板と、該配線基板上に配設された電子素子と、該電子素子を覆うと共に熱的に接触する熱伝導キャップ部とを有し、
    前記熱伝導キャップ部は、配線基板の両側端よりも外側に突出してなると共に、当該熱伝導キャップ部の側面が、枠体の側面に熱的に接触してなることを特徴とする電子基板ブロック。
  2. 上下に隣接する2つの前記基板ユニットは、上側の基板ユニットの配線基板の下面と、下側の基板ユニットの熱伝導キャップ部の上面とが互いに接触して積層されてなり、
    前記上下の基板ユニットの熱伝導キャップ部は互いの接触が回避されてなることを請求項1記載の電子基板ブロック。
  3. 前記熱伝導キャップ部の側面と枠体の側面とが直接接触してなることを特徴とする請求項1または2記載の電子基板ブロック。
  4. 前記熱伝導キャップ部の側面と枠体の側面との間に熱伝導性弾性材を配設してなることを特徴とすることを特徴とする請求項1または2記載の電子基板ブロック。
  5. 前記熱伝導キャップ部は、一方の側面が枠体の側面に直接接触し、他方の側面が枠体の側面との間に熱伝導性弾性材が配設されてなることを特徴とする請求項4記載の電子基板ブロック。
  6. 前記枠体は、天板および底板をさらに備え、
    前記天板と最も上部の基板ユニットの上面との間に他の熱伝導性弾性材を配設し、該天板が他の熱伝導性弾性材を介して積層された複数の基板ユニットを押圧してなることを特徴とする請求項1〜5のうち、いずれか一項記載の電子基板ブロック。
  7. 前記熱伝導性弾性材または他の熱伝導性弾性材はシート状であることを特徴とする請求項4〜6のうち、いずれか一項記載の電子基板ブロック。
  8. 前記熱伝導キャップ部は、その下面の両側端が下方に向けて凸形状の突起部であり、該突起部が配基板をその厚さの少なくとも一部を収容可能な高さを有することを特徴とする請求項1〜7のうち、いずれか一項記載の電子基板ブロック。
  9. 前記枠体に接して当該電子基板ブロックを冷却する冷却手段を設けてなることを特徴とする請求項1〜8のうち、いずれか一項記載の電子基板ブロック。
  10. 放射性同位元素を含む被検体から発生する放射線を検出する放射線検出ブロックと、
    前記放射線検出ブロックに接続される請求項1〜8のうち、いずれか一項記載の複数の電子基板ブロックと、
    前記複数の電子基板ブロックの各々から取得した放射線の入射時刻および入射位置を含む検出情報に基づいて前記放射性同位元素の被検体内における分布情報を取得する情報処理手段と、を備え、
    前記電子基板ブロックを冷却する冷却手段を設けてなることを特徴とする放射線検査装置。
  11. 前記複数の電子基板ブロックは、前記被検体が挿入される開口部を有する支持板の一面に、該開口部を囲むように配置されると共に、
    前記冷却手段は、前記開口部の周囲を略環状に配設された冷却液流路と、該冷却液流路に冷却液を供給する冷却液供給器とからなることを特徴とする請求項10記載の放射線検査装置。
JP2006034250A 2006-02-10 2006-02-10 電子基板ブロックおよび放射線検査装置 Expired - Fee Related JP4408115B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006034250A JP4408115B2 (ja) 2006-02-10 2006-02-10 電子基板ブロックおよび放射線検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006034250A JP4408115B2 (ja) 2006-02-10 2006-02-10 電子基板ブロックおよび放射線検査装置

Publications (2)

Publication Number Publication Date
JP2007212360A JP2007212360A (ja) 2007-08-23
JP4408115B2 true JP4408115B2 (ja) 2010-02-03

Family

ID=38490935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006034250A Expired - Fee Related JP4408115B2 (ja) 2006-02-10 2006-02-10 電子基板ブロックおよび放射線検査装置

Country Status (1)

Country Link
JP (1) JP4408115B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109893157B (zh) * 2019-04-03 2023-11-17 河南明峰医疗科技有限公司 一种pet探测器散热结构

Also Published As

Publication number Publication date
JP2007212360A (ja) 2007-08-23

Similar Documents

Publication Publication Date Title
JP4365762B2 (ja) 核医学診断装置および核医学診断装置の冷却方法
JP4764050B2 (ja) 核医学診断装置および核医学診断装置の冷却方法
US20050067579A1 (en) Nuclear medicine imaging apparatus
JP3858044B1 (ja) 放射線検出モジュール、プリント基板および陽電子放出型断層撮影装置
RU2689257C1 (ru) Детектор излучения с нагревательным устройством
JP4733092B2 (ja) 放射線画像撮影装置
JP2007101273A (ja) 核医学診断装置、陽電子放出型断層撮影装置及び検出器ユニット
US7057181B2 (en) Radiation detecting cassette
JP2007214191A (ja) 放射線検出器および放射線検査装置
JP2005265859A (ja) 核医学診断装置
EP2854178B1 (en) X-ray detector and x-ray imaging apparatus including the same
JP5194862B2 (ja) 二次元画像検出器
US20100006782A1 (en) Detection device
JP2006242958A (ja) 放射線検出器,放射線検出素子及び放射線撮像装置
JP2012145537A (ja) 放射線検出装置、放射線検出システム、及び放射線検出装置の製造方法
JP4408115B2 (ja) 電子基板ブロックおよび放射線検査装置
JP2005128000A (ja) 核医学診断装置
JP2007101234A (ja) 核医学診断装置および核医学診断装置の冷却方法
CN110231648B (zh) 放射线图像检测装置
US20090084970A1 (en) Image detecting device and image capturing system
US6359281B1 (en) High voltage distribution system for solid state scintillation detectors and gamma camera system incorporating the same
JP4641211B2 (ja) 放射線検出器および放射線検査装置
JP2004184679A (ja) 放射線検出用カセッテ
JP6377101B2 (ja) 放射線検出装置及び放射線検出システム
JP3815468B2 (ja) 放射線検出器,放射線検出素子及び放射線撮像装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees