JP4404319B1 - Bearing device - Google Patents

Bearing device Download PDF

Info

Publication number
JP4404319B1
JP4404319B1 JP2008261704A JP2008261704A JP4404319B1 JP 4404319 B1 JP4404319 B1 JP 4404319B1 JP 2008261704 A JP2008261704 A JP 2008261704A JP 2008261704 A JP2008261704 A JP 2008261704A JP 4404319 B1 JP4404319 B1 JP 4404319B1
Authority
JP
Japan
Prior art keywords
slide
sliding
transmission member
curved surface
convex curved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008261704A
Other languages
Japanese (ja)
Other versions
JP2010090615A (en
Inventor
茂 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miwa Tech Co Ltd
Original Assignee
Miwa Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miwa Tech Co Ltd filed Critical Miwa Tech Co Ltd
Priority to JP2008261704A priority Critical patent/JP4404319B1/en
Application granted granted Critical
Publication of JP4404319B1 publication Critical patent/JP4404319B1/en
Publication of JP2010090615A publication Critical patent/JP2010090615A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】簡単な構造で支承装置のコンパクト化、高減衰性を確保できる支承装置を提供することを目的とする。
【解決手段】支承装置1において、上部構造2に配置される下向きの凸曲面からなる第1の滑り面12を形成した第1のスライド部材11と、下部構造6に配置される上向きの凸曲面からなる第2の滑り面14を形成した第2のスライド部材13と、前記第1及び第2のスライド部材の間に配され、上下面に前記第1及び前記第2の滑り面と面接触する凹曲面からなる第3及び第4の滑り面16,17を形成したスライド伝達部材15と、を有し、前記スライド伝達部材の肉厚の薄い中央部に地震時の垂直方向の応力を肉厚の厚い周辺方向に分散する貫通穴20を形成したことを特徴とすることを特徴とする。
【選択図】 図8
An object of the present invention is to provide a bearing device with a simple structure and capable of ensuring compactness and high attenuation.
In a bearing device, a first slide member having a first sliding surface formed of a downward convex curved surface disposed on an upper structure and an upward convex curved surface disposed on a lower structure. The second sliding member 13 formed with the second sliding surface 14 is arranged between the first and second sliding members, and the upper and lower surfaces are in surface contact with the first and second sliding surfaces. And a slide transmission member 15 formed with third and fourth sliding surfaces 16 and 17 each having a concave curved surface. The thin center portion of the slide transmission member is subjected to vertical stress during an earthquake. A feature is that the through-holes 20 dispersed in the thick peripheral direction are formed.
[Selection] Figure 8

Description

本発明は、建築物または橋梁等構造物の上部構造と下部構造との間に設けられ、上部構造の鉛直荷重と水平荷重を支持する支持機能を有する支承装置に関する。   The present invention relates to a support device provided between an upper structure and a lower structure of a structure such as a building or a bridge, and having a support function for supporting a vertical load and a horizontal load of the upper structure.

建築物等の構造物の上部構造と下部構造の間に配置される免震支承装置として、特開平11−117571号公報には、図1に示されるように、上側部材に固定される凸曲面12を有する第1部材11と、下側部材に固定される凸曲面14を有する第2部材13と、前記第1部材と前記第2部材との間に、該第1部材と第2部材の凸曲面12、14に球面接触する凹曲面16、17を有するスライド伝達部材15を配置し、該第1部材と前記第2部材がスライド伝達部材を介して水平変位可能とした免震支承装置が開示されている。
特開2004−68462号公報
As a seismic isolation bearing device disposed between an upper structure and a lower structure of a structure such as a building, JP-A-11-117571 discloses a convex curved surface fixed to an upper member as shown in FIG. Between the first member and the second member, the first member 11 having the first member 11, the second member 13 having the convex curved surface 14 fixed to the lower member, and the first member and the second member. There is provided a seismic isolation bearing device in which a slide transmission member 15 having concave curved surfaces 16 and 17 in spherical contact with the convex curved surfaces 12 and 14 is disposed, and the first member and the second member can be horizontally displaced via the slide transmission member. It is disclosed.
JP 2004-68462 A

このような免震支承装置は、地震時の水平力に対して、第1部材と第2部材の摺動部材を介した摺動による摩擦抵抗で大きな減衰効果が期待できる。   Such a seismic isolation bearing device can be expected to have a great damping effect due to the frictional resistance caused by sliding through the sliding members of the first member and the second member against the horizontal force during the earthquake.

しかしながら、このような構造の免震支承装置は、地震時の垂直方向の荷重に対し、第1部材及び第2部材が凸球面状であるため凸レンズ効果により垂直方向の荷重による応力が中心部に集束し、上下に凹球面が形成されスライド伝達部材の中央の肉厚の最も薄い部分に応力が集中し、スライド伝達部材が破壊されて免震支承装置としての機能を発揮できないという事態が発生する。事実、阪神淡路の震災において、橋梁用支承装置の肉厚の薄い部分に応力が集中し支承が破壊された例が数多く報告されている。垂直荷重に伴う応力集中に対応するためにスライド伝達部材の全体の肉厚を厚くして対応することも考えられるが、そうすると鋼材の使用量が増加するだけでなく、支承装置の高さが高くなり、特に高さ制限がある橋梁用支承装置として適用できないという問題が発生する。   However, in the seismic isolation bearing device having such a structure, the first member and the second member have a convex spherical shape with respect to the vertical load at the time of the earthquake. Convergence occurs, concave and convex spherical surfaces are formed on the top and bottom, stress is concentrated on the thinnest part in the center of the slide transmission member, and the slide transmission member is destroyed and the function as a seismic isolation bearing device cannot be performed. . In fact, in the earthquake disaster of Hanshin Awaji, many cases have been reported in which stress is concentrated on the thin part of the bridge support device and the support is destroyed. In order to cope with stress concentration due to vertical load, it may be possible to increase the overall thickness of the slide transmission member, but this not only increases the amount of steel used, but also increases the height of the bearing device. Therefore, there is a problem that it cannot be applied as a bridge support device having a height restriction.

本発明は、上記従来の問題を解決するものであって、簡単な構造で支承装置のコンパクト化、高減衰性を確保でき、地震時に大きな垂直荷重が負荷されても支承装置の破壊を回避できる支承装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and it is possible to secure the compactness and high attenuation of the bearing device with a simple structure, and to avoid the breaking of the bearing device even when a large vertical load is applied during an earthquake. An object is to provide a bearing device.

本発明の支承装置は、前記課題を解決するために、建築物や橋梁等の構造物の支承装置であって、上部構造に配置される下向きの凸曲面からなる第1の滑り面を形成した第1のスライド部材と、下部構造に配置される上向きの凸曲面からなる第2の滑り面を形成した第2のスライド部材と、前記第1及び前記第2のスライド部材の間に配置され、上下面に前記第1及び前記第2の滑り面と面接触する凹曲面からなる第3及び第4の滑り面を形成したスライド伝達部材と、を有し、前記スライド伝達部材の肉厚の薄い中央部に地震時の垂直方向の応力を肉厚の厚い周辺方向に分散する貫通穴を形成したことを特徴とする。
以上
In order to solve the above problems, the bearing device of the present invention is a bearing device for a structure such as a building or a bridge, and has a first sliding surface formed of a downward convex curved surface arranged in the upper structure. A first slide member, a second slide member formed with a second sliding surface composed of an upward convex curved surface disposed in the lower structure, and the first slide member and the second slide member, A slide transmission member formed on the upper and lower surfaces with third and fourth sliding surfaces made of concave curved surfaces in surface contact with the first and second sliding surfaces, and the slide transmission member is thin. A through hole is formed in the central part to disperse the stress in the vertical direction during an earthquake in the thicker peripheral direction.
more than

また、本発明の支承装置は、前記第1及び前記第2の滑り面の凸曲面を円筒形の一部を切断した形状とし、前記第3及び前記第4の滑り面の形状を前記第1及び前記第2の滑り面の凸曲面と面接触する凹曲面とし、前記第1及び前記第2スライド部材と前記スライド伝達部材の軸方向の両端にストッパを配置し、前記第1及び前記第2スライド部材の前記スライド伝達部材を介したスライドを径方向のスライドの一方向としたことを特徴とする。   In the bearing device of the present invention, the convex curved surfaces of the first and second sliding surfaces are formed by cutting a part of a cylindrical shape, and the shapes of the third and fourth sliding surfaces are the first. And a concave curved surface in surface contact with the convex curved surface of the second sliding surface, stoppers are disposed at both axial ends of the first and second slide members and the slide transmission member, and the first and second The slide through the slide transmission member of the slide member is one direction of the radial slide.

また、本発明の支承装置は、前記第1及び前記第2の滑り面を凸球面とし、前記スライド伝達部材の上下面に形成する前記第3及び前記第4の滑り面を前記第1及び前記第2の滑り面の凸球面と面接触する凹球面とし、前記第1及び前記第2のスライド部材の前記スライド伝達部材を介したスライドを全方向スライド可能としたことを特徴とする。   In the bearing device of the present invention, the first and second sliding surfaces are convex spherical surfaces, and the third and fourth sliding surfaces formed on the upper and lower surfaces of the slide transmitting member are the first and the second sliding surfaces. A concave spherical surface that is in surface contact with the convex spherical surface of the second sliding surface is provided, and the sliding of the first and second sliding members through the slide transmission member is slidable in all directions.

また、本発明の支承装置は、複数枚の補強鋼板とゴムを積層したゴムバッファを前記第1のスライド部材、前記第2のスライド部材および前記スライド伝達部材の外側に上下構造物間に固定して配置することを特徴とする。 Further, the bearing device of the present invention fixes a rubber buffer in which a plurality of reinforcing steel plates and rubber are laminated to the outside of the first slide member, the second slide member, and the slide transmission member between the upper and lower structures. It is characterized by arranging.

上部構造に配置される下向きの凸曲面からなる第1の滑り面を形成した第1のスライド部材と、下部構造に配置される上向きの凸曲面からなる第2の滑り面を形成した第2のスライド部材と、前記第1及び前記第2のスライド部材の間に配置され、上下面に前記第1及び前記第2の滑り面と面接触する凹曲面からなる第3及び第4の滑り面を形成したスライド伝達部材と、を有し、前記スライド伝達部材の肉厚の薄い中央部に地震時の垂直方向の応力を肉厚の厚い周辺方向に分散する貫通穴を形成した構成により、上部構造からの水平荷重による第1のスライド部材のスライドに伴う反力をスライド伝達部材が第2のスライド部材に伝達し、第2のスライド部材を強制的に反対方向にスライドさせ、上下2面のスライドにより高減衰性の機能を持ち、水平変位量を短くできるので装置のコンパクト化、コストの低減化を図ることができ、地震時の垂直荷重に対して、スライド伝達部材の肉厚の薄い中央部に形成した貫通穴が、垂直荷重に伴う応力の方向を肉厚の厚い周辺部方向に分散し、応力集中によるスライド伝達部材の破壊を防止することができる。
第1及び第2の滑り面の凸曲面を円筒形の一部を切断した形状とし、第3及び第4の滑り面の形状を前記第1及び第2の滑り面の凸曲面と面接触する凹曲面とし、第1及び第2スライド部材とスライド伝達部材の軸方向の両端にストッパを配置し、第1及び第2スライド部材のスライド伝達部材を介したスライドを径方向のスライドの一方向とした構成により、橋軸方向のみのスライドを可能とした橋梁用支承装置として簡単な構成で高減衰性能を有する一方向2面強制スライド支承とすることができる。
第1及び前記第2の滑り面を凸球面とし、スライド伝達部材の上下面に形成する第3及び第4の滑り面を第1及び第2の滑り面の凸球面と面接触する凹球面とし、第1及び第2のスライド部材のスライド伝達部材を介したスライドを全方向スライド可能とした構成により、簡単な構成で高減衰性能を有する全方向2面強制スライド支承とすることができる。
複数枚の補強鋼板とゴムを積層したゴムバッファを前記第1のスライド部材、前記第2のスライド部材および前記スライド伝達部材の外側に上下構造物間に固定して配置する構成により、ゴムバッファが第1のスライド部材、第2のスライド部材およびスライド伝達部材の相対的スライドに干渉されることなく、独立して水平方向の変位をより減衰することができ、第1のスライド部材、第2のスライド部材およびスライド伝達部材の相対的スライドによる減衰効果によりゴムバッファへの負荷を軽減できるのでゴムバッファの長寿命化を図ることができる。
以上
A first slide member having a first sliding surface formed of a downward convex curved surface disposed in the upper structure, and a second slide member formed of a second sliding surface formed of an upward convex curved surface disposed in the lower structure. Third and fourth sliding surfaces, which are arranged between a sliding member and the first and second sliding members, and are formed of concave curved surfaces that are in surface contact with the first and second sliding surfaces on the upper and lower surfaces. An upper structure having a structure in which a through-hole is formed in the thin central portion of the slide transmission member to distribute the stress in the vertical direction during an earthquake in the thick peripheral direction. The slide transmission member transmits the reaction force accompanying the slide of the first slide member due to the horizontal load from the slide to the second slide member, and the second slide member is forcibly slid in the opposite direction to slide the upper and lower surfaces. High damping function Since the horizontal displacement can be shortened, the device can be made compact and the cost can be reduced, and the through-hole formed in the thin central part of the slide transmission member against the vertical load during an earthquake, The direction of the stress accompanying the vertical load is dispersed in the direction of the thick peripheral portion, and the slide transmission member can be prevented from being broken due to the stress concentration.
The convex surfaces of the first and second sliding surfaces are formed by cutting a part of a cylindrical shape, and the shapes of the third and fourth sliding surfaces are in surface contact with the convex surfaces of the first and second sliding surfaces. A concave curved surface is provided, stoppers are disposed at both axial ends of the first and second slide members and the slide transmission member, and the slide via the slide transmission member of the first and second slide members is set to one direction of the radial slide. With this configuration, it is possible to provide a unidirectional two-plane forced slide bearing having a high damping performance with a simple configuration as a bridge bearing device that can slide only in the bridge axis direction.
The first and second sliding surfaces are convex spherical surfaces, and the third and fourth sliding surfaces formed on the upper and lower surfaces of the slide transmitting member are concave spherical surfaces that are in surface contact with the convex spherical surfaces of the first and second sliding surfaces. With the configuration in which the slide through the slide transmission member of the first and second slide members is slidable in all directions, the omnidirectional two-surface forced slide bearing having high attenuation performance can be obtained with a simple configuration.
Wherein a plurality of reinforcing steel and rubber buffer rubber was laminated first slide member, the construction of arranging and fixed between the outer upper and lower structure of the second slide member and said slide transmission member, a rubber buffer The horizontal displacement can be further attenuated independently without interfering with the relative slide of the first slide member, the second slide member, and the slide transmission member . Since the load on the rubber buffer can be reduced by the damping effect by the relative sliding of the slide member and the slide transmission member, the life of the rubber buffer can be extended.
more than

本発明の実施の形態を図により説明する。図2は、本発明の支承装置を示す図である。   Embodiments of the present invention will be described with reference to the drawings. FIG. 2 is a view showing the support device of the present invention.

支承装置1は、建築物や橋梁等の構造物の上部構造に上鋼板5と下部構造に固定された下鋼板9の間に固定配置される。   The bearing device 1 is fixedly disposed between an upper steel plate 5 and a lower steel plate 9 fixed to the lower structure in an upper structure of a structure such as a building or a bridge.

上鋼板5の中央部には、第1のスライド部11が配置される。第1のスライド部11は、上鋼板5と一体に形成しても、第1のスライド部11を上鋼板5と別体に形成し、上鋼板5に形成した係合溝に嵌め込み固定や溶接等の固定手段により固定して形成しても良い。第1のスライド部11は凸曲面からなる第1の滑り面12を備えている。   A first slide portion 11 is disposed at the center of the upper steel plate 5. Even if the first slide portion 11 is formed integrally with the upper steel plate 5, the first slide portion 11 is formed separately from the upper steel plate 5, and is fitted into an engagement groove formed in the upper steel plate 5 to be fixed or welded. It may be fixed by a fixing means such as. The first slide portion 11 includes a first sliding surface 12 made of a convex curved surface.

下鋼板9の中央部には、第2のスライド部13が配置される。第2のスライド部13は、下鋼板9と一体に形成しても良く、第2のスライド部13を下鋼板9と別体に形成し、下鋼板9に形成した係合溝に嵌め込み固定や溶接等の固定手段により固定して形成しても良い。第2のスライド部13は凸曲面からなる第2の滑り面14を備えている。第1及び第2のスライド部11、13は鋼等の耐久性のある金属製とするのが望ましい。   A second slide portion 13 is disposed at the center of the lower steel plate 9. The second slide portion 13 may be formed integrally with the lower steel plate 9, and the second slide portion 13 is formed separately from the lower steel plate 9 and is fitted into an engagement groove formed in the lower steel plate 9 and fixed. You may fix and form by fixing means, such as welding. The second slide portion 13 includes a second sliding surface 14 having a convex curved surface. The first and second slide portions 11 and 13 are preferably made of durable metal such as steel.

上下鋼板5、9に配置された第1及び第2のスライド部11、13の間にスライド伝達部材15が配置される。スライド伝達部材15の上面には凹曲面からなる第3の滑り面16が形成され、スライド伝達部材15の下面には凹曲面からなる第4の滑り面17が形成される。スライド伝達部材15の上面に形成した凹曲面の第3の滑り面16と第1スライド部11の凸曲面からなる第1の滑り面12が全面接触しながらスライド可能に係合し、スライド伝達部材15の下面に形成した凹曲面からなる第4の滑り面17と第2スライド部13の凸曲面からなる第2の滑り面14が全面接触しながらライド可能に係合する。第1及び第2のスライド部11、13とスライド伝達部材15により上部構造2の鉛直荷重を支持するスライド支承18を構成する。スライド伝達部材15は鋼等の耐久性のある金属製とするのが望ましい。   A slide transmission member 15 is disposed between the first and second slide portions 11 and 13 disposed on the upper and lower steel plates 5 and 9. A third sliding surface 16 having a concave curved surface is formed on the upper surface of the slide transmission member 15, and a fourth sliding surface 17 having a concave curved surface is formed on the lower surface of the slide transmission member 15. A slide transmitting member 15 is slidably engaged with the first sliding surface 12 formed of a concave curved surface formed on the upper surface of the slide transmitting member 15 and the first sliding surface 12 formed of the convex curved surface of the first sliding portion 11 so as to be in contact with each other. A fourth sliding surface 17 formed of a concave curved surface formed on the lower surface of 15 and a second sliding surface 14 formed of a convex curved surface of the second slide portion 13 engage with each other while being able to ride. The first and second slide portions 11 and 13 and the slide transmission member 15 constitute a slide bearing 18 that supports the vertical load of the upper structure 2. The slide transmission member 15 is preferably made of a durable metal such as steel.

スライド部材15の肉厚の最も薄い中央に貫通穴20を形成する。貫通穴20の機能については後述する。   A through hole 20 is formed in the center of the slide member 15 where the wall thickness is the thinnest. The function of the through hole 20 will be described later.

図3は、本発明の実施例1の支承装置を示す平面図である。実施例1では、第1及び第2のスライド部11、13の凸曲面からなる第1及び第2の滑り面12、14の形状を円筒形の一部を切断したような凸曲面とし、スライド伝達部材15の上下面に形成される凹曲面からなる第3及び第4の滑り面16、17の形状を、第1及び第2のスライド部11、13の凸曲面からなる第1及び第2の滑り面12、14と面接触する凹曲面とする。そのため、第1の滑り面12と第3の滑り面16及び第2の滑り面14と第4の滑り面17からなる上下2面のスライド面は、直交する二方向にスライド可能である。凸凹曲面の滑り面の軸方向の両端にストッパ21を配置する。その結果、図3に矢印で示す凸凹曲面の径方向の一方向のみスライド可能となる。本発明の支承装置を橋梁用支承として用いる場合、橋軸方向のスライドを許容し、橋軸直角方向のスライドは拘束するので、図3の矢印のスライド方向は橋軸方向となる。スライド伝達部材15の肉厚の最も薄い中央に貫通穴20を形成する。貫通穴20は、スライド伝達部材15の軸方向の長さに応じて肉厚の最も薄い軸方向の中央部に複数形成しても良い。貫通穴20の機能については後述する。   FIG. 3 is a plan view showing the support device according to the first embodiment of the present invention. In the first embodiment, the first and second sliding surfaces 12 and 14 formed of the convex curved surfaces of the first and second slide portions 11 and 13 are formed as convex curved surfaces obtained by cutting a part of a cylindrical shape, and slides are performed. The shapes of the third and fourth sliding surfaces 16 and 17 formed of concave curved surfaces formed on the upper and lower surfaces of the transmission member 15 are the same as the first and second formed of convex curved surfaces of the first and second slide portions 11 and 13. A concave curved surface that is in surface contact with the sliding surfaces 12 and 14 is used. Therefore, the upper and lower two sliding surfaces including the first sliding surface 12 and the third sliding surface 16 and the second sliding surface 14 and the fourth sliding surface 17 are slidable in two orthogonal directions. Stoppers 21 are arranged at both ends in the axial direction of the sliding surface of the uneven surface. As a result, it is possible to slide only in one direction in the radial direction of the uneven curved surface indicated by the arrow in FIG. When the bearing device of the present invention is used as a bridge bearing, the sliding in the direction of the bridge axis is allowed and the sliding in the direction perpendicular to the bridge axis is restrained, so the sliding direction of the arrow in FIG. A through hole 20 is formed in the center of the slide transmission member 15 where the wall thickness is the thinnest. A plurality of through holes 20 may be formed in the axially central portion of the thinnest wall according to the axial length of the slide transmission member 15. The function of the through hole 20 will be described later.

図4は、本発明の実施例2の支承装置1を示す平面図である。実施例2では、第1及び第2のスライド部11、13の凸曲面からなる第1及び第2の滑り面12、14の形状を球形の一部を切断したような凸球面とし、スライド伝達部材15の上下面に形成される凹曲面からなる第3及び第4の滑り面16、17の形状を、第1及び第2のスライド部11、13の凸球面からなる第1及び第2の滑り面12、14と面接触する凹球面とする。そのため、第1の滑り面12と第3の滑り面16及び第2の滑り面14と第4の滑り面17からなる上下2面のスライド面は全方向にスライド可能となる。スライド部材15の肉厚の最も薄い中央に貫通穴20を形成する。貫通穴20の機能については後述する。   FIG. 4 is a plan view showing the support device 1 according to the second embodiment of the present invention. In the second embodiment, the first and second sliding surfaces 12 and 14 formed of the convex curved surfaces of the first and second slide portions 11 and 13 are formed as convex spherical surfaces obtained by cutting a part of a spherical shape, and slide transmission is performed. The shapes of the third and fourth sliding surfaces 16 and 17 formed of concave curved surfaces formed on the upper and lower surfaces of the member 15 are the same as those of the first and second sliding surfaces 11 and 13 formed of convex spherical surfaces. The concave spherical surface is in surface contact with the sliding surfaces 12 and 14. Therefore, the upper and lower two sliding surfaces including the first sliding surface 12 and the third sliding surface 16 and the second sliding surface 14 and the fourth sliding surface 17 can slide in all directions. A through hole 20 is formed in the center of the slide member 15 where the wall thickness is the thinnest. The function of the through hole 20 will be described later.

図5は、本発明の支承装置1の他の実施形態を示す図である。この実施形態の支承装置1は、建築物や橋梁等の構造物の上部構造2に固定された上沓3にセットボルト4により上鋼板5が固定される。下部構造6にアンカーボルト7で固定されたベースプレート8に下鋼板9が連結ボルト10により固定される。上鋼板5と下鋼板9との間に配置されるスライド支承の構成は、図1に示される実施形態と同様であるので説明を省略する。   FIG. 5 is a diagram showing another embodiment of the support device 1 of the present invention. In the support device 1 of this embodiment, an upper steel plate 5 is fixed by a set bolt 4 to an upper rod 3 fixed to an upper structure 2 of a structure such as a building or a bridge. A lower steel plate 9 is fixed to a base plate 8 fixed to the lower structure 6 with anchor bolts 7 by connecting bolts 10. Since the structure of the slide support arrange | positioned between the upper steel plate 5 and the lower steel plate 9 is the same as that of embodiment shown by FIG. 1, description is abbreviate | omitted.

この実施形態では、図1に示される支承装置1の外側に水平荷重を支持するゴムバッファ19を配置する。ゴムバッファ19は、複数枚の補強鋼板とゴムを積層して上下に連結鋼板を配して一体加硫により形成される積層ゴム支承で構成される。ゴムバッファ19は、上下の連結鋼板をボルト等の固定手段を介して上下鋼板5、9に固定する。   In this embodiment, a rubber buffer 19 that supports a horizontal load is disposed outside the support device 1 shown in FIG. The rubber buffer 19 is composed of a laminated rubber bearing formed by laminating a plurality of reinforcing steel plates and rubber and arranging connecting steel plates on the upper and lower sides and integrally vulcanizing. The rubber buffer 19 fixes the upper and lower connecting steel plates to the upper and lower steel plates 5 and 9 through fixing means such as bolts.

図6は、本発明の実施例3の支承装置1を示す図である。実施例3は、図3に示される実施例1の一方向スライド2面強制スライド支承装置のスライド方向の外側に図5に示される実施形態のゴムバッファ19を直線状に配置したものである。スライド支承の構成は、図3に示される実施例1と同様であるので説明を省略する。   FIG. 6 is a view showing the support device 1 according to the third embodiment of the present invention. In Example 3, the rubber buffer 19 of the embodiment shown in FIG. 5 is linearly arranged on the outer side in the sliding direction of the unidirectional slide two-surface forced slide support device of Example 1 shown in FIG. The configuration of the slide support is the same as that of the first embodiment shown in FIG.

図7は、本発明の実施例4の支承装置示す図である。実施例4は、図4に示される実施例2の全方向スライド可能な支承装置に、図5に示される実施形態のゴムバッファ19を同心円状に配置したものである。スライド支承の構成は、図4に示される実施例2と同様であるので説明を省略する。   FIG. 7 is a view showing a support device according to a fourth embodiment of the present invention. In Example 4, the rubber buffer 19 of the embodiment shown in FIG. 5 is concentrically arranged on the omnidirectionally slidable support device of Example 2 shown in FIG. The configuration of the slide support is the same as that of the second embodiment shown in FIG.

図8は、スライド伝達部材15の肉厚の最も薄い中央に形成される貫通穴20の機能を説明するための図である。大地震時に建築物や橋梁等の構造物に垂直方向の大きな変位が作用すると、第1及び第2のスライド部材11、13の凸曲面からなる第1及び第2の滑り面12、14は、垂直方向の応力を矢印に示すように中央に集束する凸レンズの働きをする。凸レンズ効果により中央に集束した応力は、スライド伝達部材15の肉厚の最も薄い中央部に向かう。しかし、スライド伝達部材の肉厚の最も薄い中央部には貫通穴20が形成されているため、中央に集中した応力は、スライド伝達部材15の中央に形成された貫通穴20の周辺の肉圧の厚い方向に矢印に示すように分散して伝達される。   FIG. 8 is a diagram for explaining the function of the through hole 20 formed at the center of the slide transmission member 15 where the wall thickness is the thinnest. When a large vertical displacement acts on a structure such as a building or a bridge during a large earthquake, the first and second sliding surfaces 12 and 14 including the convex curved surfaces of the first and second sliding members 11 and 13 are: It functions as a convex lens that focuses the stress in the vertical direction at the center as shown by the arrow. The stress concentrated in the center due to the convex lens effect is directed toward the thinnest central portion of the slide transmission member 15. However, since the through hole 20 is formed in the thinnest central portion of the slide transmission member, the stress concentrated in the center is caused by the wall pressure around the through hole 20 formed in the center of the slide transmission member 15. As shown by the arrows in the thick direction, the signals are distributed and transmitted.

第1及び第2スライド伝達部材11,13の凸レンズ効果により中央に集中した垂直方向の大きな荷重が、スライド伝達部材15の肉厚の最も薄い中央部に形成された貫通穴20により。肉厚の厚い周辺部に分散するので、スライド伝達部材15の地震時の垂直変位による破壊を回避し、スライド支承としての機能を発揮し、地震時の大きな負荷を減衰する免震支承として機能することができる。   A large vertical load concentrated in the center due to the convex lens effect of the first and second slide transmission members 11 and 13 is caused by the through hole 20 formed in the thinnest central portion of the slide transmission member 15. Since it is dispersed in the thick peripheral part, it avoids breakage due to vertical displacement of the slide transmission member 15 at the time of earthquake, functions as a slide bearing, and functions as a seismic isolation bearing that attenuates a large load during an earthquake. be able to.

図9(a)(b)により、図1に示される実施形態の支承装置1の作用について説明する。図9(a)は、上部構造に水平方向の変位が負荷されていない状態を示し図であり、図9(b)は、上部構造に矢印A方向の水平方向の変位が負荷された状態を示す図である。   9A and 9B, the operation of the support device 1 according to the embodiment shown in FIG. 1 will be described. FIG. 9A is a diagram illustrating a state in which the horizontal displacement is not applied to the upper structure, and FIG. 9B illustrates a state in which the horizontal displacement in the direction of arrow A is applied to the upper structure. FIG.

図9(b)に示されるように、上部構造に矢印A方向の水平荷変位が負荷されると、上部構造2に固定された上鋼板5に配された第1のスライド部材11が矢印A方向と同方向にスライドしようとする。第1のスライド部材11はその凸曲面からなる第1の滑り面12がスライド伝達部材15の上面に形成された凹曲面からなる第3の滑り面16と面接触状態で係合しているため第3の滑り面16に沿って矢印a方向にスライドする。その際、矢印A方向の水平方向のスライド力が凹曲面からなる第3の滑り面16に沿った矢印a方向のスライドになるためスライド方向が変換される。スライド方向が変換されることによる抵抗力と第1及び第3の滑り面12、16間のスライドに伴う摩擦力が発生する。この第1スライド部材11とスライド伝達部材15との間のスライドに伴い発生する抵抗力と摩擦力により上部構造2からの水平方向の変位は減衰される。   As shown in FIG. 9B, when a horizontal load displacement in the direction of arrow A is applied to the upper structure, the first slide member 11 disposed on the upper steel plate 5 fixed to the upper structure 2 is moved to the arrow A. Try to slide in the same direction. The first slide member 11 has a first sliding surface 12 formed of a convex curved surface engaged with a third sliding surface 16 formed of a concave curved surface formed on the upper surface of the slide transmission member 15 in a surface contact state. Slide in the direction of arrow a along the third sliding surface 16. At that time, the sliding direction is changed because the horizontal sliding force in the direction of arrow A results in sliding in the direction of arrow a along the third sliding surface 16 formed of a concave curved surface. A resistance force due to the change of the sliding direction and a frictional force due to the sliding between the first and third sliding surfaces 12 and 16 are generated. The displacement in the horizontal direction from the upper structure 2 is attenuated by the resistance force and the frictional force generated by the sliding between the first slide member 11 and the slide transmission member 15.

第1スライド部材11とスライド伝達部材15との間のスライドに伴う抵抗力と摩擦力は、スライド伝達部材15に矢印aと反対方向の矢印cに示される反力として伝達される。スライド伝達部材15の矢印c方向の反力は、スライド伝達部材15の下面に形成された凹曲面からなる第4の滑り面17と第2のスライド部材13の凸曲面からなる第2の滑り面14の面接触を介して第2のスライド部材13に伝達され、第2のスライド部材13を強制的に第1のスライド部材11のスライド方向である矢印aと反対方向の矢印bの方向にスライドさせる。この第2スライド部13とスライド伝達部材15との間のスライドに伴い発生する抵抗力と摩擦力により上部構造2からの水平方向の変位はさらに減衰される。   The resistance force and the frictional force accompanying the slide between the first slide member 11 and the slide transmission member 15 are transmitted to the slide transmission member 15 as a reaction force indicated by an arrow c in the direction opposite to the arrow a. The reaction force in the direction of the arrow c of the slide transmission member 15 is the fourth sliding surface 17 formed of a concave curved surface formed on the lower surface of the slide transmission member 15 and the second sliding surface formed of the convex curved surface of the second slide member 13. 14 is transmitted to the second slide member 13 through the surface contact, and the second slide member 13 is forcibly slid in the direction of the arrow b opposite to the arrow a which is the slide direction of the first slide member 11. Let The displacement in the horizontal direction from the upper structure 2 is further attenuated by the resistance force and the frictional force generated by the sliding between the second slide portion 13 and the slide transmission member 15.

支承装置1は、上部構造の矢印A方向の水平方向の変位に対して、第1のスライド部材11の凸曲面からなる第1の滑り面12とスライド伝達部材15の上面の凹曲面からなる第3の滑り面16との上部スライド面で矢印a方向にスライドし、第2のスライド部材13の凸曲面からなる第2の滑り面14とスライド伝達部材15の下面の凹曲面からなる第4の滑り面17との下部スライド面の矢印bの方向へ強制スライドする。矢印a方向と矢印b方向は逆方向であるためスライド支承を構成する第1及び第2のスライド部材11、13の水平方向の変位量βは、上部構造の矢印A方向の水平方向の変位量αの1/2となる。スライド支承18の水平変位量を小さくすることができるため、スライド支承の部材寸法をコンパクトにできるため設置スペースを小さくでき支承の設置作業が容易になると共にコストを低減することができる。   The bearing device 1 has a first sliding surface 12 formed of a convex curved surface of the first slide member 11 and a concave curved surface of the upper surface of the slide transmitting member 15 with respect to the horizontal displacement in the direction of arrow A of the superstructure. Slides in the direction of arrow a on the upper slide surface with the third slide surface 16, and a second slide surface 14 formed of a convex curved surface of the second slide member 13 and a fourth curved surface formed of a concave curved surface of the lower surface of the slide transmission member 15. Forcibly slide in the direction of arrow b on the lower slide surface with the slide surface 17. Since the arrow a direction and the arrow b direction are opposite directions, the horizontal displacement amount β of the first and second slide members 11 and 13 constituting the slide bearing is the horizontal displacement amount in the arrow A direction of the superstructure. It becomes 1/2 of α. Since the amount of horizontal displacement of the slide support 18 can be reduced, the dimensions of the slide support can be made compact, so that the installation space can be reduced, the installation work of the support can be facilitated, and the cost can be reduced.

図10(a)(b)により、図5に示される実施形態の支承装置の作用について説明する。図10(a)は、上部構造2に水平荷重が負荷されていない状態を示し図であり、図10(b)は、上部構造2に矢印A方向の水平方向の変位が負荷された状態を示す図である。   10 (a) and 10 (b), the operation of the support device of the embodiment shown in FIG. 5 will be described. FIG. 10A is a diagram illustrating a state in which a horizontal load is not applied to the upper structure 2, and FIG. 10B illustrates a state in which the horizontal displacement in the direction of arrow A is applied to the upper structure 2. FIG.

図10(b)に示されるように、上部構造2に矢印A方向の水平方向の変位が負荷されると、上部構造2に固定された上鋼板5に配された第1のスライド部材11が矢印A方向と同方向にスライドしようとする。第1のスライド部材11はその凸曲面からなる第1の滑り面12がスライド伝達部材15の上面に形成された凹曲面からなる第3の滑り面16と面接触状態しているため第3の滑り面16に沿って矢印a方向にスライドする。その際、矢印A方向の水平方向の変位が凹曲面からなる第3の滑り面16に沿った矢印a方向のスライドになるためスライド方向が変換される。スライド方向が変換されることによる抵抗力と第1及び第3の滑り面12、16間のスライドに伴う摩擦力が発生する。この第1スライド部11材とスライド伝達部材15との間のスライドに伴い発生する抵抗力と摩擦力により上部構造2からの水平方向の変位は減衰される。   As shown in FIG. 10B, when the horizontal displacement in the direction of arrow A is applied to the upper structure 2, the first slide member 11 disposed on the upper steel plate 5 fixed to the upper structure 2 is Try to slide in the same direction as arrow A. The first slide member 11 has a first sliding surface 12 formed of a convex curved surface and is in surface contact with a third sliding surface 16 formed of a concave curved surface formed on the upper surface of the slide transmission member 15. It slides in the direction of arrow a along the sliding surface 16. At that time, since the horizontal displacement in the direction of arrow A becomes a slide in the direction of arrow a along the third sliding surface 16 formed of a concave curved surface, the sliding direction is converted. A resistance force due to the change of the sliding direction and a frictional force due to the sliding between the first and third sliding surfaces 12 and 16 are generated. The displacement in the horizontal direction from the upper structure 2 is attenuated by the resistance force and the frictional force generated by the sliding between the first slide portion 11 material and the slide transmission member 15.

第1スライド部材11とスライド伝達部材15との間のスライドに伴う抵抗力と摩擦力は、スライド伝達部材15に矢印aと反対方向の矢印cに示される反力として伝達される。スライド伝達部材15の矢印c方向の反力は、スライド伝達部材15の下面に形成された凹曲面からなる第4の滑り面17と第2のスライド部材13の凸曲面からなる第2の滑り面14の面接触を介して第2のスライド部材13に伝達され、第2のスライド部材13を強制的に第1のスライド部材11のスライド方向である矢印aと反対方向の矢印bの方向にスライドさせる。この第2スライド部材13とスライド伝達部材15との間のスライドに伴い発生する抵抗力と摩擦力により上部構造2からの水平荷重はさらに減衰される。   The resistance force and the frictional force accompanying the slide between the first slide member 11 and the slide transmission member 15 are transmitted to the slide transmission member 15 as a reaction force indicated by an arrow c in the direction opposite to the arrow a. The reaction force in the direction of the arrow c of the slide transmission member 15 is the fourth sliding surface 17 formed of a concave curved surface formed on the lower surface of the slide transmission member 15 and the second sliding surface formed of the convex curved surface of the second slide member 13. 14 is transmitted to the second slide member 13 through the surface contact, and the second slide member 13 is forcibly slid in the direction of the arrow b opposite to the arrow a which is the slide direction of the first slide member 11. Let The horizontal load from the upper structure 2 is further attenuated by the resistance force and the frictional force generated by the sliding between the second slide member 13 and the slide transmission member 15.

上部構造2からの矢印A方向の水平方向の変位はゴムバッファ19にも負荷され、ゴムバッファ19はせん断弾性変形して水平荷重を減衰する。   The horizontal displacement in the direction of arrow A from the upper structure 2 is also applied to the rubber buffer 19, and the rubber buffer 19 is shear-elastically deformed to attenuate the horizontal load.

上部構造2の鉛直荷重を支持するスライド支承18が、第1のスライド部材11の第1の滑り面12とスライド伝達部材15の上面に形成した第3の滑り面16間のスライドに伴う水平方向の変位の減衰と、スライド伝達部材15に発生する反力による強制的な第2のスライド部材13のスライド伝達部材15の下面に形成した第4の滑り面17に沿った強制スライドによる水平方向の変位の減衰からなる上下2面のスライドにより大きな減衰性能を発揮することができる。スライド支承18で上部構造2からの水平方向の変位が減衰されるのでゴムバッファ19に負荷される水平荷重が軽減されゴムバッファ19の水平荷重による損傷を防止できる。   The horizontal direction accompanying the slide between the 1st sliding surface 12 of the 1st sliding member 11, and the 3rd sliding surface 16 formed in the upper surface of the slide transmission member 15 by the slide bearing 18 which supports the vertical load of the superstructure 2 The horizontal displacement by the forcible slide along the fourth sliding surface 17 formed on the lower surface of the slide transmission member 15 of the second slide member 13 forced by the reaction force generated in the slide transmission member 15 is attenuated. A large attenuation performance can be exhibited by the sliding of the upper and lower surfaces consisting of the displacement attenuation. Since the horizontal displacement from the upper structure 2 is attenuated by the slide support 18, the horizontal load applied to the rubber buffer 19 is reduced, and the rubber buffer 19 can be prevented from being damaged by the horizontal load.

スライド支承18は、上部構造の矢印A方向の水平荷重に対して、第1のスライド部材11の凸曲面からなる第1の滑り面12とスライド伝達部材15の上面の凹曲面からなる第3の滑り面16との上部スライド面で矢印a方向にスライドし、第2のスライド部材13の凸曲面からなる第2の滑り面14とスライド伝達部材15の下面の凹曲面からなる第4の滑り面17との下部スライド面の矢印bの方向へ強制スライドする。矢印a方向と矢印b方向は逆方向であるためスライド支承を構成する第1及び第2のスライド部材11、13の水平方向の変位量βは、上部構造の矢印A方向の水平荷重によるゴムバッファ19の水平変位量αの1/2となる。スライド支承18の水平変位量を小さくすることができるため、スライド支承の部材寸法をコンパクトにできるため設置スペースを小さくでき支承の設置作業が容易になると共にコストを低減することができる。さらに、減衰能力の大きな2面強制スライド支承によりゴムバッファへの負荷を軽減できるのでゴムバッファの長寿命化を図ることができる。   The slide bearing 18 has a first sliding surface 12 composed of a convex curved surface of the first sliding member 11 and a third curved surface composed of a concave curved surface on the upper surface of the slide transmitting member 15 with respect to a horizontal load in the direction of arrow A of the superstructure. A fourth sliding surface that slides in the direction of arrow a on the upper sliding surface with the sliding surface 16 and that has a second curved surface 14 that is a convex curved surface of the second sliding member 13 and a concave curved surface that is the lower surface of the slide transmitting member 15. 17 is forcibly slid in the direction of arrow b on the lower slide surface. Since the direction of the arrow a and the direction of the arrow b are opposite directions, the horizontal displacement amount β of the first and second slide members 11 and 13 constituting the slide bearing is a rubber buffer due to the horizontal load in the arrow A direction of the superstructure. The horizontal displacement amount α of 19 is ½. Since the amount of horizontal displacement of the slide support 18 can be reduced, the dimensions of the slide support can be made compact, so that the installation space can be reduced, the installation work of the support can be facilitated, and the cost can be reduced. Furthermore, since the load on the rubber buffer can be reduced by the two-surface forced slide support having a large damping capacity, the life of the rubber buffer can be extended.

従来技術を示す図である。It is a figure which shows a prior art. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. (a)(b)本発明の実施形態を示す図である。(A) (b) It is a figure which shows embodiment of this invention. (a)(b)本発明の実施形態を示す図である。(A) (b) It is a figure which shows embodiment of this invention.

符号の説明Explanation of symbols

1:支承装置、2:上部構造、3:上沓、4:セットボルト、5:上鋼板、6:下部構造、7:アンカーボルト、8:ベースプレート、9:下鋼板、10:連結ボルト、11:第1のスライド部材、12:第1の滑り面、13:第2のスライド部材、14:第2の滑り面、15:スライド伝達部材、16:第3の滑り面、17:第4の滑り面、18:スライド支承、19:ゴムバッファ、20:貫通穴、21:ストッパ   1: support device, 2: upper structure, 3: upper rod, 4: set bolt, 5: upper steel plate, 6: lower structure, 7: anchor bolt, 8: base plate, 9: lower steel plate, 10: connecting bolt, 11 : 1st slide member, 12: 1st sliding surface, 13: 2nd sliding member, 14: 2nd sliding surface, 15: Slide transmission member, 16: 3rd sliding surface, 17: 4th Sliding surface, 18: Slide support, 19: Rubber buffer, 20: Through hole, 21: Stopper

Claims (4)

建築物や橋梁等の構造物の支承装置であって、
上部構造に配置される下向きの凸曲面からなる第1の滑り面を形成した第1のスライド部材と、
下部構造に配置される上向きの凸曲面からなる第2の滑り面を形成した第2のスライド部材と、
前記第1及び前記第2のスライド部材の間に配置され、上下面に前記第1及び前記第2の滑り面と面接触する凹曲面からなる第3及び第4の滑り面を形成したスライド伝達部材と、
を有し、
前記スライド伝達部材の肉厚の薄い中央部に地震時の垂直方向の応力を肉厚の厚い周辺方向に分散する貫通穴を形成したことを特徴とする支承装置。
A device for supporting structures such as buildings and bridges,
A first slide member forming a first sliding surface composed of a downward convex curved surface disposed in the upper structure;
A second slide member having a second sliding surface formed of an upward convex curved surface disposed in the lower structure;
Slide transmission which is arranged between the first and second slide members and which has third and fourth sliding surfaces formed on the upper and lower surfaces which are concave curved surfaces which are in surface contact with the first and second sliding surfaces. Members,
Have
A support device characterized in that a through hole is formed in the thin central portion of the slide transmission member to distribute the stress in the vertical direction during an earthquake in the thick peripheral direction.
前記第1及び前記第2の滑り面の凸曲面を円筒形の一部を切断した形状とし、
前記第3及び前記第4の滑り面の形状を前記第1及び前記第2の滑り面の凸曲面と面接触する凹曲面とし、
前記第1及び前記第2スライド部材と前記スライド伝達部材の軸方向の両端にストッパを配置し、
前記第1及び前記第2スライド部材の前記スライド伝達部材を介したスライドを径方向のスライドの一方向としたことを特徴とする請求項1に記載の支承装置。
The convex curved surfaces of the first and second sliding surfaces are shaped by cutting a part of a cylindrical shape,
The shape of the third and fourth sliding surfaces is a concave curved surface in surface contact with the convex curved surfaces of the first and second sliding surfaces,
Stoppers are disposed at both axial ends of the first and second slide members and the slide transmission member,
The support device according to claim 1, wherein the slide of the first and second slide members via the slide transmission member is one direction of a radial slide.
前記第1及び前記第2の滑り面を凸球面とし、
前記スライド伝達部材の上下面に形成する前記第3及び前記第4の滑り面を前記第1及び前記第2の滑り面の凸球面と面接触する凹球面とし、
前記第1及び前記第2のスライド部材の前記スライド伝達部材を介したスライドを全方向スライド可能としたことを特徴とする請求項1に記載の支承装置。
The first and second sliding surfaces are convex spherical surfaces;
The third and fourth sliding surfaces formed on the upper and lower surfaces of the slide transmitting member are concave spherical surfaces that are in surface contact with the convex spherical surfaces of the first and second sliding surfaces,
The support device according to claim 1, wherein the slide of the first and second slide members via the slide transmission member is slidable in all directions.
複数枚の補強鋼板とゴムを積層したゴムバッファを前記第1のスライド部材、前記第2のスライド部材および前記スライド部材の外側に上下構造物間に固定して配置することを特徴とする請求項1〜3のいずれかに記載の支承装置。 A rubber buffer in which a plurality of reinforcing steel plates and rubber are laminated is fixedly disposed between the upper and lower structures on the outside of the first slide member, the second slide member, and the slide member. The support apparatus in any one of 1-3.
JP2008261704A 2008-10-08 2008-10-08 Bearing device Expired - Fee Related JP4404319B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008261704A JP4404319B1 (en) 2008-10-08 2008-10-08 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008261704A JP4404319B1 (en) 2008-10-08 2008-10-08 Bearing device

Publications (2)

Publication Number Publication Date
JP4404319B1 true JP4404319B1 (en) 2010-01-27
JP2010090615A JP2010090615A (en) 2010-04-22

Family

ID=41706592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008261704A Expired - Fee Related JP4404319B1 (en) 2008-10-08 2008-10-08 Bearing device

Country Status (1)

Country Link
JP (1) JP4404319B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110397175A (en) * 2019-07-02 2019-11-01 广州大学 A kind of SMA negative stiffness damping device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6420679B2 (en) * 2015-02-03 2018-11-07 オイレス工業株式会社 Seismic isolation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110397175A (en) * 2019-07-02 2019-11-01 广州大学 A kind of SMA negative stiffness damping device

Also Published As

Publication number Publication date
JP2010090615A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP2011501049A (en) Seismic isolation device for structure, construction method of the device, and seismic isolation member
WO2017183542A1 (en) Seismic isolator apparatus
JP3205393U (en) Seismic isolation device
CN112281641B (en) Grid damping support
JP4803455B2 (en) Seismic isolation device
JP4404319B1 (en) Bearing device
KR101127938B1 (en) Seismic isolating apparatus
JP2011099544A (en) Base isolation device
JP2013002192A (en) Tension type base-isolation bearing device
JP4842594B2 (en) Structure damping device
JP4292127B2 (en) Bridge bearing device
JP5305756B2 (en) Damping wall using corrugated steel
JP2011122602A (en) Multi-stage base isolation device
KR20110072412A (en) Seismic isolating apparatus
JP2019082031A (en) Damper mechanism for base-isolation structure, arranging structure of damper mechanism for base-isolation structure, trigger mechanism for base-isolation structure, arranging structure of trigger mechanism for base-isolation structure, sliding bearing structure for base-isolation structure, and building
JP2007063844A (en) Base isolation structure of building
JP4488383B1 (en) Bridge bearing device
JP4893061B2 (en) Viscous vibration damping device and base-isolated building equipped with the same
JP4740016B2 (en) Damping mechanism using inclined oval coil spring
JP2001173092A (en) Structure of column
JP2009001345A (en) Base-isolation supporting device for crane
JP6051325B1 (en) Seismic isolation device with concentric laminated damping material
JP6785497B2 (en) Anti-vibration device
JP3790901B2 (en) Seismic isolation device
JP4360466B2 (en) Rubber bearing device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4404319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141113

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141113

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees