JP4740016B2 - Damping mechanism using inclined oval coil spring - Google Patents

Damping mechanism using inclined oval coil spring Download PDF

Info

Publication number
JP4740016B2
JP4740016B2 JP2006097863A JP2006097863A JP4740016B2 JP 4740016 B2 JP4740016 B2 JP 4740016B2 JP 2006097863 A JP2006097863 A JP 2006097863A JP 2006097863 A JP2006097863 A JP 2006097863A JP 4740016 B2 JP4740016 B2 JP 4740016B2
Authority
JP
Japan
Prior art keywords
coil spring
oval coil
spring
flange
upper flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006097863A
Other languages
Japanese (ja)
Other versions
JP2007270981A (en
Inventor
満洲雄 甲田
Original Assignee
サンデン商事株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン商事株式会社 filed Critical サンデン商事株式会社
Priority to JP2006097863A priority Critical patent/JP4740016B2/en
Publication of JP2007270981A publication Critical patent/JP2007270981A/en
Application granted granted Critical
Publication of JP4740016B2 publication Critical patent/JP4740016B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Rolling Contact Bearings (AREA)

Description

この発明は、広く一般に使用される防振、耐震構造等に利用される傾斜型オーバルコイルバネ利用の緩衝機構に関する。   The present invention relates to a shock absorbing mechanism using a tilted oval coil spring, which is widely used for vibration proofing, earthquake proof structure and the like.

一般に防振装置に用いられる防振材料としては、振動や音を吸収して減衰させる機能が優れ、且つ強度の高い材料が望まれる。防振ゴム、空気バネ、金属バネ等が知られ、建築物用、輸送機関やその他のエンジン用、また、例えば、防振ゴムは、車両、機械、その他の設備に取り付けて、振動の伝搬防止、または緩衝の目的で使用されているのが通例である(例えば、特許文献1参照。)。
特開2001−304336号公報
In general, as a vibration-proof material used for a vibration-proof device, a material having an excellent function of absorbing and attenuating vibration and sound and having high strength is desired. Anti-vibration rubber, air springs, metal springs, etc. are known, for buildings, transportation and other engines, for example, anti-vibration rubber is attached to vehicles, machines and other equipment to prevent vibration propagation Or, it is usually used for the purpose of buffering (see, for example, Patent Document 1).
JP 2001-304336 A

然しながら上述の先行例において、負荷を受けた時の傾斜型オーバルコイルバネの変形に対する機能面での改善が望まれていた。   However, in the preceding example described above, it has been desired to improve the function of the inclined oval coil spring when it is subjected to a load.

本発明は、上述の事情に鑑みて成されたもので、特許文献1を基に更に研鑚して機能を向上させたものであり、傾斜型オーバルコイルバネの負荷を受けた時のバネの変形分を吸収して無駄なエネルギーの発生を除去可能とし、防振性、静音性を向上させた傾斜型オーバルコイルバネ利用の緩衝機構を提供することを目的とする。   The present invention has been made in view of the above-mentioned circumstances, and has been further studied based on Patent Document 1 to improve its function, and the deformation of the spring when subjected to a load of a tilted oval coil spring. It is an object of the present invention to provide a buffer mechanism using a tilted oval coil spring that absorbs the amount of energy and eliminates the generation of useless energy, and has improved vibration proofing and noise reduction.

この発明は、下記構成を備えることにより上記課題を解決できるものである。   The present invention can solve the above problems by providing the following configuration.

(1)傾斜度を示すピッチ角αを以って一方向にコイルを傾斜させた傾斜型オーバルコイルバネとゴム状弾性体とを組合わせ、上部フランジを備えたバネ受フランジの上部フランジとバネ受フランジには相対向して所定の溝部を設け、この溝部に前記傾斜型オーバルコイルバネをコイルバネの軸方向に対して横臥して遊嵌・設置し、更に前記バネ受フランジ側の溝部の両側上縁部に設けた凹処内に前記ゴム状弾性体を上部フランジと離れて単層状、若しくは積層状にしてバネユニットYsを形成すると共に、上部フランジに働く負荷に対して前記傾斜型オーバルコイルバネの傾斜度を示すピッチ角αの変形率が適用範囲内で前記傾斜型オーバルコイルバネを働かせ、ついで前記上部フランジと係止させて前記ゴム状弾性体を働かせ、これにより前記傾斜型オーバルコイルバネと協働で全荷重を受けるように構成し、更に前記傾斜型オーバルコイルバネの軸方向変形分を吸収するための軸受ユニットYbを一体に組合せた構成としたことを特徴とする傾斜型オーバルコイルバネ利用の緩衝機構。 (1) An upper flange and a spring of a spring bearing flange comprising an upper flange and an inclined oval coil spring in which a coil is inclined in one direction with a pitch angle α 0 indicating an inclination, and a rubber-like elastic body. Predetermined grooves are provided on the receiving flange opposite to each other, and the inclined oval coil springs are loosely fitted and installed in the groove with respect to the axial direction of the coil spring, and further on both sides of the grooves on the spring receiving flange side. A spring unit Ys is formed by separating the rubber-like elastic body from the upper flange into a single layer or a laminate in a recess provided at an edge, and the inclined oval coil spring against a load acting on the upper flange. the deformation ratio of the pitch angle alpha 0 indicating the degree of inclination exert the inclined oval coil spring within the scope exerts the rubbery elastomer then is engaged with said upper flange, which And characterized in that more the in inclined oval coil spring cooperating configured to receive the full load, and a further configuration which combines together the bearing unit Yb for absorbing axial deformation amount of the slanted oval coil spring A shock absorbing mechanism using a tilted oval coil spring.

(2)前記バネユニットYsは、前記傾斜型オーバルコイルバネと前記ゴム状弾性体とを組合せた対を複数並設して成る上部フランジを備えたバネ受フランジを単段若しくは多段構造とした前項(1)記載の傾斜型オーバルコイルバネ利用の緩衝機構。 (2) The spring unit Ys has a single-stage or multi-stage structure with a spring receiving flange having an upper flange formed by arranging a plurality of pairs of the inclined oval coil spring and the rubber-like elastic body in parallel. 1) The buffer mechanism using the inclined type oval coil spring as described above.

(3)前記軸受ユニットYbは、対向する対となる上下軸受フランジを有し、該フランジの対向する面にそれぞれ係合する溝部を設け、この溝部に沿って転動する複数の転動体から構成される前項(1)記載の傾斜型オーバルコイルバネ利用の緩衝機構。 (3) The bearing unit Yb includes upper and lower bearing flanges that are opposed to each other. The bearing unit Yb includes groove portions that engage with the opposing surfaces of the flanges, and includes a plurality of rolling elements that roll along the groove portions. A shock absorbing mechanism using the inclined oval coil spring according to (1) above.

(4)前記転動体は、球体、円筒状ころ、截頭円錐状ころのいずれかから構成される前項(3)記載の傾斜型オーバルコイルバネ利用の緩衝機構。   (4) The tilting type oval coil spring-use buffer mechanism according to the item (3), wherein the rolling element is any one of a sphere, a cylindrical roller, and a frustoconical roller.

この発明によれば、小さな負荷変動に対して、変形率が大きく、振動や音の吸収減衰機能が高い傾斜型オーバルコイルバネを横臥状態で利用し、且つ弾性体を並設することにより、負荷に対する応力を分散して、地震その他の外力により発生する衝撃等を緩和し、且つバネの変形分を吸収する構成としたことで静音性を向上させると共に防振部材、耐震部材としての寿命を更に向上させ、経済的な緩衝機構を提供出来るという効果を呈する。   According to the present invention, a tilt type oval coil spring having a large deformation rate and a high function of absorbing and absorbing vibration and sound is used in a recumbent state with respect to a small load fluctuation, and an elastic body is provided side by side, so that Distributing stress to mitigate impacts caused by earthquakes and other external forces, and absorbs the deformation of the spring, improving silence and further improving the life of vibration-proof and earthquake-resistant members And an economic buffering mechanism can be provided.

以下、本発明に係る傾斜型オーバルコイルバネ利用の緩衝機構の実施の形態を説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a buffer mechanism using a tilted oval coil spring according to the present invention will be described below.

図1は、実施例1における要部構成を示す縦断面図、図2は、実施例2における要部構成を示す縦断面図、図3は、実施形態における要部構成を示す断面拡大図、(a)はコイルバネの軸方向に直交する面に沿った断面図、(b)はA−A断面図、図4は、負荷が掛かった時の状態を示す断面拡大図、(a)はコイルバネの軸方向に直交する面に沿った断面図、(b)はA−A断面図、図5は、実施例3における要部構成を示す縦断面図、図6は、実施例4における要部構成を示す縦断面図、図7は、実施例5における要部構成を示す説明図、(a)は模式的斜視図、(b)はC−C断面図、(c)は(b)の要部平面図、図8は、実施例6における要部構成を示す縦断面図である。   FIG. 1 is a longitudinal sectional view showing a main part configuration in Example 1, FIG. 2 is a longitudinal sectional view showing a main part configuration in Example 2, and FIG. 3 is an enlarged cross-sectional view showing a main part configuration in the embodiment. (A) is a cross-sectional view taken along a plane orthogonal to the axial direction of the coil spring, (b) is a cross-sectional view along AA, FIG. 4 is an enlarged cross-sectional view showing a state when a load is applied, and (a) is a coil spring. FIG. 5B is a cross-sectional view taken along the line AA, FIG. 5 is a vertical cross-sectional view showing the configuration of the main part in Example 3, and FIG. 6 is the main part in Example 4. FIG. 7 is an explanatory view showing a main part configuration in Example 5, (a) is a schematic perspective view, (b) is a CC cross-sectional view, and (c) is a cross-sectional view of (b). FIG. 8 is a longitudinal sectional view showing the configuration of the main part in the sixth embodiment.

傾斜度を示すピッチ角αを以って一方向にコイルを傾斜させた傾斜型オーバルコイルバネTOSとゴム状弾性体3とを組合わせ、上部フランジ1を備えたバネ受フランジ2の上部フランジ1とバネ受フランジ2には相対向して所定の溝部1a、2aを設け、この溝部1a、2aに前記傾斜型オーバルコイルバネTOSをコイルバネの軸方向に対して横臥して遊嵌・設置し、更に前記バネ受フランジ2側の溝部2aの両側上縁部に設けた凹処3a、3a内に前記ゴム状弾性体3を上部フランジ1と離れて(図中hx)単層状、若しくは積層状に並設すると共に上部フランジ1に働く負荷Pに対して前記傾斜型オーバルコイルバネTOSの傾斜度を示すピッチ角αの変形率が適用範囲内で前記傾斜型オーバルコイルバネTOSを働かせ、ついで前記上部フランジ1と係止させて前記ゴム状弾性体3を働かせ、これにより前記傾斜型オーバルコイルバネTOSと協働で全荷重を受けるように構成し、更に前記傾斜型オーバルコイルバネTOSの軸方向(長手方向)変形分を吸収するための軸受ユニットYbを一体に組合せた構成としたことを特徴とする。 An upper flange 1 of a spring bearing flange 2 provided with an upper flange 1 is formed by combining an inclined oval coil spring TOS having a coil inclined in one direction with a pitch angle α 0 indicating an inclination and a rubber-like elastic body 3. And the spring receiving flange 2 are provided with predetermined groove portions 1a and 2a opposite to each other, and the inclined oval coil spring TOS is placed in the groove portions 1a and 2a so as to be loosely fitted and installed with respect to the axial direction of the coil spring. The rubber-like elastic body 3 is separated from the upper flange 1 (hx in the figure) in the recesses 3a and 3a provided on both upper edges of the groove portion 2a on the spring receiving flange 2 side, and arranged in a single layer or in a stacked manner. deformation rate of the pitch angle alpha 0 indicating the inclination of the inclined oval coil spring TOS to a load P acting on the upper flange 1 exert the inclined oval coil spring TOS within the scope as well as setting, with The rubber-like elastic body 3 is engaged with the upper flange 1 so that it receives a full load in cooperation with the inclined oval coil spring TOS. Further, the axial direction of the inclined oval coil spring TOS ( (Longitudinal direction) The bearing unit Yb for absorbing deformation is integrally combined.

軸受ユニットYbは、対向する対となる上下軸受フランジ4、5を有し、該フランジの対向する面にそれぞれ係合する溝部4a、5aを設け、この溝部4a、5aに沿って転動する複数の転動体Brから構成されている。   The bearing unit Yb has upper and lower bearing flanges 4 and 5 that are opposed to each other. The bearing units Yb are provided with grooves 4a and 5a that engage with the opposing surfaces of the flanges. Rolling elements Br.

尚、図示するように、傾斜型オーバルコイルバネTOS、ゴム状弾性体3、上部フランジ1、バネ受フランジ2とで構成される組合せがバネユニットYsである。   As shown in the figure, the spring unit Ys is a combination of the inclined oval coil spring TOS, the rubber-like elastic body 3, the upper flange 1, and the spring receiving flange 2.

実施例1の場合は、図1に示すように、傾斜型オーバルコイルバネTOSとゴム状弾性体3とを複数列配置して上部フランジ1とバネ受フランジ2とで挟持し、この下方側に転動体Brを形成する球体6を挟持する上部軸受フランジ4と下部軸受フランジ5を支持体を構成するごとく添設し、傾斜型オーバルコイルバネTOS長手方向軸心に沿って設けられた溝(この場合転動体Brを形成する球体6に係合する断面円弧状の溝)4a、5aをガイドとして転動するため、負荷Pが発生して図3(a)、(b)の状態から図4(a)、(b)の状態となり、傾斜型オーバルコイルバネTOSの傾斜度を示すピッチ角αがαとなって傾斜度が大となり、前記コイルバネが沈みこんだ時、傾斜型オーバルコイルバネTOSが長手方向に変形して抵抗が生ずるが、転動体Brを形成する球体6の転動作用(歪を打ち消す方向(矢印イに沿って)に転動する)によりずれようとする変形エネルギーを軸受ユニットYbが吸収するので、振動、騒音などを防止することが出来る。 In the case of the first embodiment, as shown in FIG. 1, a plurality of inclined oval coil springs TOS and rubber-like elastic bodies 3 are arranged and sandwiched between the upper flange 1 and the spring bearing flange 2 and rolled downward. An upper bearing flange 4 and a lower bearing flange 5 that sandwich the sphere 6 that forms the moving body Br are attached to form a support body, and a groove (in this case, a rolling shaft provided along the longitudinal axis of the inclined oval coil spring TOS). Since the rolling is performed using arcuate grooves 6a and 5a engaged with the sphere 6 forming the moving body Br as guides, a load P is generated and the state shown in FIGS. ), (B), the pitch angle α 0 indicating the inclination of the inclined oval coil spring TOS becomes α 1 and the inclination becomes large, and when the coil spring sinks, the inclined oval coil spring TOS is elongated. Deform in the direction Although resistance occurs, the bearing unit Yb absorbs deformation energy that tends to shift due to the rolling operation of the sphere 6 forming the rolling element Br (rolling in the direction of canceling the distortion (along the arrow A)). Vibration and noise can be prevented.

実施例2は、図2に示すように、傾斜型オーバルコイルバネTOSとゴム状弾性体3(図中、積層ゴム状弾性体)を並列して複列に配置し、上部フランジ1とバネ受フランジ2とで挟持して一段を形成するバネユニットYsを多段として多段式構造(この場合、3段式とした例)とし、最下部に軸受ユニットYbを一体に組合せた構成とした例である。その他実施例1と同様の部分は、説明を省略する。   In the second embodiment, as shown in FIG. 2, the inclined oval coil spring TOS and the rubber-like elastic body 3 (laminated rubber-like elastic body in the figure) are arranged in a double row, and the upper flange 1 and the spring receiving flange are arranged. This is an example in which the spring unit Ys sandwiched between 2 and 2 forms a multi-stage structure with a multi-stage structure (in this case, a three-stage structure) and the bearing unit Yb is integrally combined at the bottom. Description of other parts similar to those of the first embodiment is omitted.

実施例3は、図5に示すように、傾斜型オーバルコイルバネTOSとゴム状弾性体3とを並列して複列に配置し、上部フランジ1とバネ受フランジ2とで挟持し、単段式複列の構成として一段を形成するバネユニットYsの上側に転動体Brを形成する球体6を挟持する上部軸受フランジ4と下部軸受フランジ5とから成る軸受ユニットYbを添設した場合である。その他実施例1と同様の部分は、説明を省略する。   In the third embodiment, as shown in FIG. 5, the inclined oval coil spring TOS and the rubber-like elastic body 3 are arranged in a double row in parallel, and are sandwiched between the upper flange 1 and the spring bearing flange 2 to provide a single stage type. This is a case where a bearing unit Yb composed of an upper bearing flange 4 and a lower bearing flange 5 sandwiching a spherical body 6 forming a rolling element Br is provided above a spring unit Ys forming a single row as a double row structure. Description of other parts similar to those of the first embodiment is omitted.

実施例4は、図6に示すように、実施例2の場合とは、逆に多段のバネユニットYsの最上部に軸受ユニットYbを添設した場合である。その他実施例1及び2と同様の部分は、説明を省略する。   As shown in FIG. 6, the fourth embodiment is a case where the bearing unit Yb is attached to the uppermost portion of the multi-stage spring unit Ys as opposed to the second embodiment. Description of other parts similar to those in the first and second embodiments will be omitted.

実施例5は、図7(a)、(b)に示すように、全体構成が円盤状となる構成とした場合であり、円板状の上部フランジ7と円板状のバネ受フランジ8との間に傾斜型オーバルコイルバネTOSとゴム状弾性体3とを並列に対を成して周設してバネユニットYs−1を形成し、このバネユニットYs−1の下側に円板状の上部軸受フランジ9と下部軸受フランジ10とを有し、この間に転動体Brを形成する複数の截頭円錐状ころ11を挟持して成る軸受ユニットYb−1を添設した場合であり、上方から負荷が掛かった場合、傾斜型オーバルコイルバネTOSが傾斜側に傾斜角度を増して変形すると円周方向に撓みが生じ、この作用を打ち消すように円板状のバネ受フランジ8と上部軸受フランジ9とが回転しようとする方向に転動体Brを形成する複数の截頭円錐状ころ11が従動して傾斜型オーバルコイルバネTOSの変形分を吸収するために最下部の基盤となる下部軸受フランジ10が固定され安全な状態を維持することが出来る。図7(c)は截頭円錐状ころ11の形状を説明したものであり、円盤の中心CLから円周側に向かって放射状の線分の広がり角度βに沿って描かれる外側に向かって末広がりの截頭円錐状ころを構成する。截頭円錐状ころ11の形状、大きさ及び個数は円盤の大きさ、負荷の大きさに対応して自由に決めることができる。   As shown in FIGS. 7A and 7B, the fifth embodiment is a case where the overall configuration is a disc shape, and includes a disc-shaped upper flange 7 and a disc-shaped spring receiving flange 8. A slanted oval coil spring TOS and a rubber-like elastic body 3 are arranged in parallel to form a spring unit Ys-1, and a disk-like member is formed below the spring unit Ys-1. This is a case in which a bearing unit Yb-1 having an upper bearing flange 9 and a lower bearing flange 10 and sandwiching a plurality of frustoconical rollers 11 forming a rolling element Br between them is additionally provided from above. When a load is applied, if the inclined oval coil spring TOS is deformed by increasing the inclination angle toward the inclined side, the circumferential bending occurs, and the disk-shaped spring receiving flange 8 and the upper bearing flange 9 are arranged so as to cancel this action. Rolling element Br in the direction of rotation A plurality of truncated conical rollers 11 to be formed can be maintained lower bearing flange 10 which is a bottom of the foundation safe state is fixed to absorb the deformation amount of the driven to slanted oval coil spring TOS. FIG. 7C illustrates the shape of the frustoconical roller 11 and spreads outward from the center CL of the disk toward the outer circumference, drawn along the spread angle β of the radial line segment. The frusto-conical roller is constructed. The shape, size and number of the frustoconical rollers 11 can be freely determined according to the size of the disk and the size of the load.

符号12は、組立て式着脱自在の回転軸である。   Reference numeral 12 denotes an assembly-type detachable rotating shaft.

実施例6は、図8に示すように、実施例5の転動体Brを球体15に置き換えた場合であり、その他の構成は実施例5の場合と同様である。   As shown in FIG. 8, the sixth embodiment is a case where the rolling element Br of the fifth embodiment is replaced with a sphere 15, and other configurations are the same as those of the fifth embodiment.

尚、図7(b)中の符号9a、10aは転動体Brを形成する截頭円錐状ころ11に係合するガイド用の溝部であり、また図8中の符号13a、14aは転動体Brを形成する球体15に係合するガイド用の断面円弧状の溝部である。   Reference numerals 9a and 10a in FIG. 7B are guide groove portions that engage with the frustoconical rollers 11 forming the rolling elements Br, and reference numerals 13a and 14a in FIG. 8 indicate the rolling elements Br. It is the groove part of the cross-sectional arc shape for a guide engaged with the spherical body 15 which forms.

更に尚、軸受ユニットを構成する転動体は、負荷の状況、構造などの条件に応じて球体、円筒状ころ、截頭円錐状ころ、のいずれかを自由に選択でき、また材質については、金属製、合成樹脂製等負荷に適応出来るものであれば良く、限定するものではない。   Furthermore, the rolling elements constituting the bearing unit can be freely selected from spherical, cylindrical rollers and frustoconical rollers according to the conditions of load, structure, etc. There is no limitation as long as it can be applied to a load such as a product made of synthetic resin or the like.

実施例1における要部構成を示す縦断面図The longitudinal cross-sectional view which shows the principal part structure in Example 1 実施例2における要部構成を示す縦断面図The longitudinal cross-sectional view which shows the principal part structure in Example 2 実施形態における要部構成を示す断面拡大図、(a)コイルバネの軸方向に直交する面に沿った断面図、(b)A−A断面図The cross-sectional enlarged view which shows the principal part structure in embodiment, (a) Cross-sectional view along the surface orthogonal to the axial direction of a coil spring, (b) AA cross-sectional view 負荷が掛かった時の状態を示す断面拡大図、(a)コイルバネの軸方向に直交する面に沿った断面図、(b)A−A断面図Cross-sectional enlarged view showing a state when a load is applied, (a) a cross-sectional view along a plane orthogonal to the axial direction of the coil spring, (b) AA cross-sectional view 実施例3における要部構成を示す縦断面図The longitudinal cross-sectional view which shows the principal part structure in Example 3 実施例4における要部構成を示す縦断面図The longitudinal cross-sectional view which shows the principal part structure in Example 4 実施例5における要部構成を示す説明図、(a)模式的斜視図、(b)C−C断面図、(c)は(b)の要部平面図Explanatory drawing which shows the principal part structure in Example 5, (a) Typical perspective view, (b) CC sectional drawing, (c) is a principal part top view of (b). 実施例6における要部構成を示す縦断面図The longitudinal cross-sectional view which shows the principal part structure in Example 6

符号の説明Explanation of symbols

1、7 上部フランジ
2、8 バネ受フランジ
3 ゴム状弾性体
4、9、13 上部軸受フランジ
5、10、14 下部軸受フランジ
6、15 球体
11 截頭円錐状ころ
Br 転動体
TOS 傾斜型オーバルコイルバネ
Yb 軸受ユニット
Ys バネユニット
DESCRIPTION OF SYMBOLS 1, 7 Upper flange 2, 8 Spring receiving flange 3 Rubber-like elastic bodies 4, 9, 13 Upper bearing flange 5, 10, 14 Lower bearing flange 6, 15 Sphere 11 Frozen conical roller Br Rolling element TOS Inclined oval coil spring Yb Bearing unit Ys Spring unit

Claims (4)

傾斜度を示すピッチ角αを以って一方向にコイルを傾斜させた傾斜型オーバルコイルバネとゴム状弾性体とを組合わせ、上部フランジを備えたバネ受フランジの上部フランジとバネ受フランジには相対向して所定の溝部を設け、この溝部に前記傾斜型オーバルコイルバネをコイルバネの軸方向に対して横臥して遊嵌・設置し、更に前記バネ受フランジ側の溝部の両側上縁部に設けた凹処内に前記ゴム状弾性体を上部フランジと離れて単層状、若しくは積層状にしてバネユニットYsを形成すると共に、上部フランジに働く負荷に対して前記傾斜型オーバルコイルバネの傾斜度を示すピッチ角αの変形率が適用範囲内で前記傾斜型オーバルコイルバネを働かせ、ついで前記上部フランジと係止させて前記ゴム状弾性体を働かせ、これにより前記傾斜型オーバルコイルバネと協働で全荷重を受けるように構成し、更に前記傾斜型オーバルコイルバネの軸方向変形分を吸収するための軸受ユニットYbを一体に組合せた構成としたことを特徴とする傾斜型オーバルコイルバネ利用の緩衝機構。 An inclined oval coil spring having a coil inclined in one direction with a pitch angle α 0 indicating an inclination is combined with a rubber-like elastic body, and an upper flange and a spring receiving flange of a spring receiving flange having an upper flange are combined. Is provided with a predetermined groove portion opposed to each other, and the inclined type oval coil spring is laid sideways with respect to the axial direction of the coil spring and installed in the groove portion, and is further provided on the upper edge portions on both sides of the groove portion on the spring receiving flange side. A spring unit Ys is formed by separating the rubber-like elastic body from the upper flange into a single layer or a laminate in the provided recess, and the inclination of the inclined oval coil spring with respect to the load acting on the upper flange exercising the inclined oval coil spring within the deformation rate coverage of the pitch angle alpha 0 indicating the exerts the rubber-like elastic body then is engaged with said upper flange, thereby Serial configured to receive the full load in inclined oval coil spring cooperating with, characterized by further has a structure which combines together the bearing unit Yb for absorbing axial deformation amount of the slanted oval coil spring A shock absorbing mechanism using an inclined oval coil spring. 前記バネユニットYsは、前記傾斜型オーバルコイルバネと前記ゴム状弾性体とを組合せた対を複数並設して成る上部フランジを備えたバネ受フランジを単段若しくは多段構造としたことを特徴とする請求項1記載の傾斜型オーバルコイルバネ利用の緩衝機構。 The spring unit Ys has a single-stage or multistage structure for a spring receiving flange having an upper flange formed by arranging a plurality of pairs of the inclined oval coil spring and the rubber-like elastic body in parallel. The buffer mechanism using the inclined oval coil spring according to claim 1. 前記軸受ユニットYbは、対向する対となる上下軸受フランジを有し、該フランジの対向する面にそれぞれ係合する溝部を設け、この溝部に沿って転動する複数の転動体から構成されることを特徴とする請求項1記載の傾斜型オーバルコイルバネ利用の緩衝機構。 The bearing unit Yb has a pair of upper and lower bearing flanges that are opposed to each other, and each of the bearing units Yb is configured by a plurality of rolling elements that are provided with grooves that engage with the opposing surfaces of the flanges and that roll along the grooves. The shock absorbing mechanism using the inclined type oval coil spring according to claim 1. 前記転動体は、球体、円筒状ころ、截頭円錐状ころのいずれかから構成されることを特徴とする請求項3記載の傾斜型オーバルコイルバネ利用の緩衝機構。   4. The buffer mechanism using a tilted oval coil spring according to claim 3, wherein the rolling element is formed of any one of a sphere, a cylindrical roller, and a frustoconical roller.
JP2006097863A 2006-03-31 2006-03-31 Damping mechanism using inclined oval coil spring Expired - Fee Related JP4740016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006097863A JP4740016B2 (en) 2006-03-31 2006-03-31 Damping mechanism using inclined oval coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006097863A JP4740016B2 (en) 2006-03-31 2006-03-31 Damping mechanism using inclined oval coil spring

Publications (2)

Publication Number Publication Date
JP2007270981A JP2007270981A (en) 2007-10-18
JP4740016B2 true JP4740016B2 (en) 2011-08-03

Family

ID=38673993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006097863A Expired - Fee Related JP4740016B2 (en) 2006-03-31 2006-03-31 Damping mechanism using inclined oval coil spring

Country Status (1)

Country Link
JP (1) JP4740016B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5327611B2 (en) * 2009-03-18 2013-10-30 株式会社リコー Cleaning device, image forming apparatus, and process cartridge
CN106286698A (en) * 2016-09-10 2017-01-04 安徽蓝鼎环保能源科技有限公司 A kind of noise and vibration control equipment
CN113369664B (en) * 2021-06-24 2022-05-31 安徽理工大学 Two-stage vacuum-pumping explosion processing platform in spherical tank and working method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3779857B2 (en) * 2000-04-24 2006-05-31 サンデン商事株式会社 Damping mechanism using inclined oval coil spring
JP4805553B2 (en) * 2004-06-02 2011-11-02 サンデン商事株式会社 Anti-vibration structure using oval coil spring

Also Published As

Publication number Publication date
JP2007270981A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP5172672B2 (en) Seismic isolation device
JP5012346B2 (en) Isolation device
JP6482373B2 (en) Seismic isolation structure
CN112281641B (en) Grid damping support
JP5638762B2 (en) Building
JP4740016B2 (en) Damping mechanism using inclined oval coil spring
JP3779857B2 (en) Damping mechanism using inclined oval coil spring
JP2006207680A (en) Laminated rubber supporter
JP2002070943A (en) Slip support device for base isolation
JP2011122602A (en) Multi-stage base isolation device
JP4359958B2 (en) Complex seismic isolation unit and seismic isolation structure
JP4613333B2 (en) Seismic isolation device
JP2004300776A (en) Sliding bearing device with stopper and anchor structure for structure
JP3187018B2 (en) Seismic isolation device
JP3790901B2 (en) Seismic isolation device
JP7284684B2 (en) seismic isolation system
JP6628988B2 (en) Seismic isolation device
JP6051325B1 (en) Seismic isolation device with concentric laminated damping material
WO2000031436A1 (en) Seismic isolation device
TWI734527B (en) Anti-vibration device (two)
JP3326421B2 (en) Seismic isolation device
JP5524683B2 (en) Rubber bearing
JP2010090615A (en) Bearing apparatus
JP2937983B2 (en) Vertical shock-absorbing laminated rubber bearing
JP2005068874A (en) Rolling bearing with stopper and seismic response reducing system of building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R150 Certificate of patent or registration of utility model

Ref document number: 4740016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees