WO2000031436A1 - Seismic isolation device - Google Patents

Seismic isolation device Download PDF

Info

Publication number
WO2000031436A1
WO2000031436A1 PCT/JP1999/006638 JP9906638W WO0031436A1 WO 2000031436 A1 WO2000031436 A1 WO 2000031436A1 JP 9906638 W JP9906638 W JP 9906638W WO 0031436 A1 WO0031436 A1 WO 0031436A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
resin
seismic isolation
support
isolation device
Prior art date
Application number
PCT/JP1999/006638
Other languages
French (fr)
Japanese (ja)
Inventor
Hirokazu Matsukawa
Hiroshi Matsuoka
Ippei Ohta
Original Assignee
Bando Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP33516398A external-priority patent/JP3187018B2/en
Priority claimed from JP25252699A external-priority patent/JP2001074094A/en
Application filed by Bando Chemical Industries, Ltd. filed Critical Bando Chemical Industries, Ltd.
Publication of WO2000031436A1 publication Critical patent/WO2000031436A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/022Bearing, supporting or connecting constructions specially adapted for such buildings and comprising laminated structures of alternating elastomeric and rigid layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F3/00Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic

Definitions

  • the present invention relates to a seismic isolation device that is provided between an upper structure such as a building and a foundation and suppresses the swing of the upper structure due to an earthquake.
  • a load supporting function and a sliding function are provided between an upper plate connected to an upper structure and a lower plate connected to a foundation.
  • a support (pairing plate) is provided, and the support is sealed by a cylindrical rubber spring.
  • the present invention has been made in view of such a point, and an object of the present invention is to reduce the size of the seismic isolation device in the horizontal direction by improving the configuration of the above-described seismic isolation device for a sliding eve.
  • the goal is to ensure good seismic isolation effects. Disclosure of the invention
  • the support is configured such that a plurality of resin plates and a metal plate are alternately stacked in the vertical direction, and the metal plate and the upper and lower sides of the metal plate The resin plate adjacent to at least one of them was configured to slide relatively horizontally in the event of an earthquake.
  • an upper plate connected to the upper structure, a lower plate provided facing the lower side of the upper plate and connected to the foundation, and an outer peripheral portion between the upper plate and the lower plate other than the outer peripheral portion
  • an elastic body that is deformed when the upper plate slides relative to the lower plate in a horizontal direction, so as to suppress the shaking of the upper structure against an earthquake.
  • a plurality of resin plates and metal plates are alternately stacked in the vertical direction, and the metal plate and the resin plate adjacent to at least one of the upper side and the lower side of the metal plate generate an earthquake. It shall be configured to be able to slide relatively horizontally in some cases.
  • the resin plate and the metal plate of the support slide relatively horizontally in the event of an earthquake, and at this time, the resin plate and the metal plate are located on the upper side similarly to the deformation of the elastic body
  • the upper plate slides substantially horizontally with respect to the lower plate, and is approximately the same as the relative sliding amount between the resin plate or metal plate located at the top of the support and the resin plate or metal plate located at the bottom. Slides in the horizontal direction relatively to the lower plate, and this makes the sudden vibration longer and softer. After the convergence of the earthquake, the upper plate and the upper structure can be returned to the position before sliding by the restoring force of the elastic body.
  • the support of the seismic isolation device is configured such that the metal plate of the support and the resin plate adjacent to one of the upper side and the lower side of the metal plate can slide relatively horizontally in the event of an earthquake.
  • an elastic sheet member is provided between the metal plate of the support and a resin plate adjacent to the other of the metal plates.
  • the elastic sheet member shears in the horizontal direction. Even without sliding, the upper plate slightly moves in the horizontal direction relative to the lower plate due to this shear deformation, and even if the opposing sliding surfaces shift to the state of kinetic friction, the upper plate Large acceleration change can be suppressed. In other words, when there is no elastic sheet member, the upper plate starts to move rapidly with respect to the lower plate when transitioning from the static state due to the static friction force to the dynamic friction state. Occurs. Since the change in acceleration of the upper plate is considerably smaller than the change in acceleration of the seismic motion, the seismic isolation device can provide a sufficient seismic isolation effect on the first floor of the upper structure.
  • the horizontal vibration acceleration increases, and the vibration reduction effect of the seismic isolation device tends to decrease.
  • This tendency is particularly noticeable in light-weight two- or three-story buildings such as wooden houses.
  • the elastic sheet member since the change in the acceleration of the upper plate is suppressed by the elastic sheet member, a decrease in the seismic isolation effect on the upper floor can be suppressed. Therefore, a good seismic isolation effect can be obtained on any floor.
  • the elastic sheet member of the support is fixed to the upper and lower resin plates and the metal plate, and the outer diameter of the metal plate is set smaller than that of the resin plate. Is desirable.
  • the corners of the outer peripheral surface of the resin plate and the upper and lower surfaces of the support be chamfered.
  • the coefficient of kinetic friction between the resin plate and the metal plate that can slide horizontally with each other in the event of an earthquake in the support is set to 0.03 to 0.2. No. That is, if the coefficient of kinetic friction between the resin plate and the metal plate is smaller than 0.03, the vibration damping action is small, making it difficult to suppress the vibration.On the other hand, if it is larger than 0.2, the seismic intensity is not quite large. Since the seismic isolation effect is not sufficiently exhibited, the range is set to 0.3 to 0.2. Therefore, a good seismic isolation effect can be obtained regardless of the magnitude of the seismic intensity.
  • the elastic body is preferably made of a cylindrical rubber member that connects the entire outer periphery of the upper plate and the lower plate and covers the support over the entire periphery. . In this way, regardless of the direction in which the upper plate slides with respect to the lower plate, a stable restoring force is generated in the cylindrical rubber member with no directivity, and the rubber member and the support oppose each other. Since dust and dirt can be prevented from entering between the sliding surfaces, stable slidability can be maintained for a long period of time.
  • the elastic body is formed of a cylindrical rubber member in this manner, resin plates are respectively disposed on the uppermost and lowermost portions of the support, and the outer diameters of the two resin plates are smaller than those of the other resin plates. It is desirable that it is set.
  • the connection between the rubber member and the upper and lower plates is a portion where a large stress is generated and stress concentration is likely to occur, so that the resin plates disposed at the uppermost and lowermost portions of the support are used. It is easily damaged by contact.
  • the outer diameters of the resin plates provided at the uppermost and lowermost parts of the body are smaller than those of the other resin plates, make sure that both resin plates do not come into contact with the connection between the upper and lower plates of the rubber member. Thus, damage to the rubber member can be suppressed. Even if the two resin plates abut against the rubber member, the degree of damage to the rubber member is smaller than when the metal plate abuts, and the rubber member can be effectively protected.
  • both resin plates provided at the uppermost and lowermost portions of the support are fixed to the lower surface of the upper plate and the upper surface of the lower plate, respectively.
  • FIG. 1 is a sectional view showing a seismic isolation device according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded view showing an assembling procedure of the seismic isolation device of FIG.
  • FIG. 3 is a diagram corresponding to FIG. 1 showing a state of the seismic isolation device of FIG. 1 during operation.
  • FIG. 4 is a diagram corresponding to FIG. 1 showing a modification of the first embodiment.
  • Figure 5 is a schematic diagram showing the procedure for testing the seismic isolation effect of a seismic isolation device applied to a private house.
  • FIG. 6 is a cross-sectional view illustrating the seismic isolation device according to the second embodiment.
  • FIG. 7 is a diagram corresponding to FIG. 6, illustrating a state in which the resin plate and the metal plate of the support in the seismic isolation device of FIG. 6 relatively slide horizontally when an earthquake occurs.
  • FIG. 8 is a diagram corresponding to FIG. 6, showing a state in which the elastic sheet member of the support in the seismic isolation device of FIG. 6 is sheared and deformed immediately after the earthquake.
  • Figure 9 is a graph showing the horizontal shear characteristics of the seismic isolation layer between the foundation and the foundation equipped with the seismic isolation device in the vibration analysis.
  • FIG. 10 is a graph showing a change in vibration acceleration at each floor as a vibration analysis result.
  • FIG. 11 is a diagram corresponding to FIG. 6 showing a modified example using a laminate as an elastic body.
  • FIG. 1 shows a seismic isolation device A according to Embodiment 1 of the present invention.
  • the seismic isolation device A is provided between an upper structure such as a building and a foundation, and shakes the upper structure against an earthquake. It is intended to suppress
  • the seismic isolation device A includes a circular stainless steel upper plate 1 connected to the upper structure, and a lower stainless steel plate, which is provided opposite to the upper plate 1 and is connected to the foundation. And a steel lower plate 2.
  • a support 3 that supports the upper plate 1 so as to be slidable in the horizontal direction relatively to the lower plate 2 is provided at a portion other than the outer peripheral portion between the upper plate 1 and the lower plate 2.
  • the support 3 is composed of five circular resin plates 3a and four circular metal plates 3b alternately stacked in the up-down direction. a is arranged everywhere.
  • the metal plate 3b of the support 3 is formed so that the outer diameter is smaller than the resin plate 3a, and the resin plate 3a adjacent to one of the upper side and the lower side of the metal plate 3b is formed. (The metal plate 3b above the resin plate 3a located at the center in the vertical direction is connected to the resin plate 3a above it and the resin plate 3a located at the center in the vertical direction.
  • the lower metal plate 3b is fixed to the lower resin plate 3a, respectively).
  • the metal plate 3b and the resin plate 3a adjacent to the other of the metal plates 3b are merely in contact with each other, and can relatively slide horizontally in the event of an earthquake. It has become.
  • the uppermost and lowermost resin plates 3 a are also slidable relative to the upper plate 1 and the lower plate 2.
  • a gap is drawn between the slidable resin plate 3a and the metal plate 3b and between the resin plate 3a and the upper plate 1 or the lower plate 2 ( The same applies to FIG. 3, FIG. 4, FIG. 6 to FIG. 8, and FIG. 11).
  • the resin plate 3a of the support 3 is made of a lubricating resin such as ultra-high molecular weight polyethylene, high-density polyethylene, nylon, polytetrafluoroethylene, polyacetone, etc., and can withstand high compression. As described above, these resins may contain glass fiber, aramide fiber, carbon fiber, metal oxide whiskers as a reinforcing material, and further contain a lubricant. You may let it.
  • the metal plate 3b is made of stainless steel. It is preferable that the coefficient of kinetic friction between the resin plate 3a and the metal plate 3b slidable with each other be set in a range from 0.03 to 0.2.
  • the dynamic friction coefficient may be adjusted within the above range by applying silicone oil or grease between the resin plate 3a and the metal plate 3b.
  • the dynamic friction coefficient can normally be within the above range without applying grease or the like. it can.
  • a concave groove for radiating heat during sliding may be provided on each sliding surface of the resin plate 3a and the metal plate 3b.
  • the outer diameter of the metal plate 3b is set smaller than the resin plate 3a, and the outer peripheral portion of the resin plate 3a protrudes radially outward from the outer peripheral surface of the metal plate 3b.
  • the outer diameters of both resin plates 3a provided at the uppermost and lowermost portions of the support 3 are set smaller than those of the other resin plates 3a. Further, each corner of the outer peripheral surface and the upper and lower surfaces of the resin plate 3a is rounded with an arc-shaped chamfer.
  • the thickness of the resin plate 3a is larger than that of the metal plate 3b, so that the resin plate 3a can sufficiently withstand high compression.
  • the entire circumferences of the outer peripheral portions of the upper plate 1 and the lower plate 2 are elastically connected by a cylindrical rubber member 8 (elastic body) that covers the support 3 over the entire circumference. That is, the upper end of the rubber member 8 is vulcanized and bonded to the outer peripheral portion of the upper plate 2, while the lower end is vulcanized and bonded to a ring member 6 made of stainless steel.
  • the outer peripheral portion of the second member is fixed to each other by a plurality of screws 7. As a result, the space between the upper plate 1 and the lower plate 2 is substantially closed.
  • the rubber member 8 is made of a compounded rubber mainly composed of a natural rubber or a synthetic rubber or a composite material in which any one of the compounded rubbers is reinforced with a fiber, and has a breaking elongation of 600% or more. I have.
  • the rubber member 8 generates a restoring force that extends when the upper plate 1 slides in any direction in the horizontal direction relative to the lower plate 2 and returns the upper plate 1 to the position before sliding. It is supposed to.
  • the upper and lower ends of the rubber member 8 are formed in an arc shape so that the thickness thereof becomes smoother than the center in the vertical direction. When the upper plate 1 slides in the horizontal direction with respect to the lower plate 2, stress concentration is reduced.
  • the inner diameter of the rubber member 8 except for the upper and lower ends is set to be substantially the same as (slightly larger than) the outer diameter of the three resin plates 3 a other than the uppermost and lowermost portions of the support 3.
  • the upper plate 1 is vulcanized and adhered to the upper end surface of the rubber member 8, and the ring member 6 is vulcanized and adhered to the outer peripheral portion of the lower end portion, thereby forming the accommodating portion of the support 3.
  • a support 3 is composed of four resin plates 3a and a metal plate 3b which are bonded and fixed in advance with an adhesive or the like, and one resin plate 3a located at the center in the upward and downward direction.
  • the seismic isolation device A is completed by inserting the lower plate 2 into the ring member 6 with the screws 7 afterwards.
  • the upper plate 1 is fixed to the upper structure and the lower plate 2 is fixed to the foundation with bolts (not shown)
  • holes for bolts are formed in the outer periphery of the upper plate 1 and the lower plate 2).
  • the resin plate 3a and the metal plate 3b of the support 3 that can slide relative to each other during an earthquake will be relatively horizontal. Slide in the direction.
  • the resin plate 3a and the metal plate 3b slide more largely in the horizontal direction with respect to the lower plate 2 as they are located on the upper side.
  • the upper plate 1 slides relative to the lower plate 2 by substantially the same amount as the relative sliding amount between the resin plate 3a located at the uppermost position of 3 and the resin plate 3a located at the lowermost position.
  • the period of the sudden vibration is reduced and softened.
  • the horizontal swing of the upper structure can be suppressed, and the object installed inside the upper structure can be prevented from falling down.
  • the rubber member 8 since the rubber member 8 is deformed and stretched in the direction in which the upper plate 1 is displaced from the lower plate 2, a restoring force is generated in the rubber member 8 to return the upper plate 1 to the position before sliding, and the earthquake converges. Thereafter, the restoring force allows the upper plate 1 and the upper structure to return to the positions before sliding.
  • This rubber member 8 generates the same restoring force when the upper plate 1 slides in any direction in the horizontal direction with respect to the lower plate 2, so that the same force is applied to seismic force from any direction. Can work.
  • the gap between the rubber member 8 and the resin plate 3 a other than the uppermost and lowermost portions of the support 3 is almost zero. Although no gap is provided, as described above, as the resin plate 3a and the metal plate 3b are located on the upper side along the rubber member 8, the resin plate 3a and the metal plate 3b slide more largely in the horizontal direction with respect to the lower plate 2, so that the rubber member 8 is uniformly deformed over the entire vertical direction, and is not locally deformed significantly.
  • the outer diameters of the resin plate 3a and the metal plate 3b appropriate as described above, even if the number of layers of the resin plate 3a and the metal plate 3b is not so large, The relative sliding amount of the upper plate 1 with respect to the lower plate 2 can be increased while maintaining the support of the structure, and as a result, the height of the seismic isolation device A can be kept relatively low. Therefore, it is possible to obtain a good seismic isolation effect while reducing the size of the seismic isolation device A.
  • the metal plate 3b is fixedly joined to the resin plate 3a adjacent to either the upper side or the lower side of the metal plate 3b, the metal plate 3b having a large inertia slides largely in the horizontal direction.
  • the rubber member 8 is not locally deformed by the movement. Since the corners of the outer peripheral surface and the upper and lower surfaces of the resin plate 3a are chamfered, the rubber member 8 is not damaged even if the resin plate 3a comes into contact with the rubber member 8. .
  • the two resin plates 3a provided at the uppermost and lowermost portions of the support 3 are set smaller than the other resin plates 3a, the two resin plates 3a are It can be prevented from contacting the connecting portion between the upper plate 1 and the ring member 6 in the above. That is, a portion of the rubber member 8 where stress concentration is likely to occur can be effectively protected, and damage to the rubber member 8 can be prevented.
  • the metal plate 3b of the support 3 is fixed to the resin plate 3a adjacent to one of the upper and lower sides of the metal plate 3b. It may be configured to be able to slide horizontally relative to the resin plate 3a adjacent to both. in this case, It is desirable to chamfer the corners of the outer peripheral surface and the upper and lower surfaces of the metal plate 3b.
  • the upper and lower resin plates 3a provided at the uppermost and lowermost portions of the support 3 are configured to be slidable relative to the upper plate 1 and the lower plate 2, respectively.
  • the two resin plates 3a may be fixedly joined to the lower surface of the upper plate 1 and the upper surface of the lower plate 2 respectively.
  • both the uppermost and lowermost resin plates 3a of the support 3 abut on the connection portions of the rubber member 8 with the upper plate 1 and the ring member 6, and the rubber member 8 is damaged. Can be prevented.
  • the uppermost and lowermost resin plates 3a of the support 3 are used alone without being fixed to the metal plate 3b, and the resin plate 3a at the center in the vertical direction has metal What is necessary is just to use it in the state which fixed board 3b.
  • the seismic isolation device A is made symmetrical with respect to its vertical center line. be able to.
  • each seismic isolation device A was provided between each pillar 22 located at the four corners of the upper structure 21 of the private house and the foundation 23.
  • the foundation 23 is installed on a plurality of openings for testing, and it is possible to shake the foundation 23 by applying vibration in a horizontal direction.
  • the horizontal friction coefficient of each of the seismic isolation devices A was 0.1, and the horizontal spring constant was 4.4 X 1 (VN / m.
  • the mass of the upper structure 21 was 40 t, almost the same as ordinary wooden houses.
  • FIG. 6 shows a second embodiment of the present invention (note that the same parts as those in FIG. However, a detailed description thereof is omitted), but a circular elastic sheet member 3c is interposed between the resin plate 3a and the metal plate 3b that are joined and fixed to each other in the first embodiment.
  • the support 3 is configured such that the metal plate 3 b of the support 3 and the resin plate 3 a adjacent to one of the upper side and the lower side of the metal plate 3 b are relative to each other when an earthquake occurs.
  • the metal plate 3b of the support 3 and a resin plate 3a adjacent to the other of the metal plate 3b are substantially the same as the metal plate 3b.
  • An elastic sheet member 3c having a diameter is interposed.
  • the elastic sheet member 3c is made of synthetic rubber, natural rubber, low elasticity thermoplastic resin, or the like, and has a thickness of 1 to 10 mm.
  • the elastic sheet member 3c is fixed to the resin plate 3a and the metal plate 3b on both the upper and lower sides thereof with an adhesive (epoxy resin, etc.), and together with the resin plate 3a and the metal plate 3b. It is integrated.
  • the two resin plates 3a provided at the uppermost and lowermost portions of the support 3 are respectively fixed to the lower surface of the upper plate 1 and the upper surface of the lower plate 2 (see above). It may be slidable as in the first embodiment).
  • the resin plate 3a and the metal plate 3b are made of rubber when an earthquake occurs, as shown in FIG. As it is positioned higher along the member 8, it slides more horizontally with respect to the lower plate 2, thereby suppressing the horizontal vibration of the upper structure.
  • the elastic sheet member 3c undergoes shear deformation in the horizontal direction. Even if 3a and the metal plate 3b do not slide, the upper plate 1 moves slightly in the horizontal direction relatively to the lower plate 2 due to the shear deformation of the elastic sheet member 3c.
  • vibration analysis was performed assuming that the seismic isolation device A of Embodiment 2 was installed between a two-story superstructure having a total weight of 1.96 MN and the foundation, and the vibration acceleration of each floor was measured. Was examined.
  • the elastic sheet member 3c the same thing as in the first embodiment (the same as the second embodiment except that the support 3 does not have the elastic sheet member 3c) is described. We also performed vibration analysis.
  • the natural period of the horizontal shear characteristic of the seismic isolation layer between the superstructure equipped with the seismic isolation device A and the foundation was 2.7 seconds, and the equivalent rigidity was 0.98 MN / m.
  • the horizontal displacement (the primary rigidity) of the two sides facing each other in the axial direction depends on the presence or absence of the elastic sheet member 3c.
  • the inclination of the two sides facing each other in the horizontal load axis direction (secondary rigidity) was set to 0.57 MN / m.
  • the primary stiffness is set so that the ratio of the secondary stiffness to the primary stiffness is 0.3 when the elastic sheet member 3c is provided, and is set when the elastic sheet member 3c is not provided (see FIG. (Indicated by a broken line in Fig. 9). That is, the primary stiffness was set to 1.89 MN / m when there was the elastic sheet member 3c, and 4.86 when there was no elastic sheet member 3c. Then, the earthquake waveform (vibration acceleration of 500 cm / s 2 ) was input and the horizontal vibration acceleration at each floor was calculated.
  • the vibration acceleration of each floor was as shown in Fig. 10. That is, when the elastic sheet member 3c is not provided, the vibration reduction effect on the first floor is good, but the acceleration in the second floor ceiling is considerably larger than the first floor by 1.58 times. On the other hand, when the elastic sheet member 3c is provided, the vibration reduction effect on the first floor is slightly inferior to the case without the elastic sheet member 3c, but the acceleration ratio of the second floor ceiling portion to the first floor portion is smaller. From 1 to 19, it can be seen that the provision of the elastic sheet member 3c can suppress the deterioration of the seismic isolation effect on the upper floor.
  • the flexible sheet member 3c of the support 3 is fixed to the resin plate 3a and the metal plate 3b on both the upper and lower sides by an adhesive to integrate the three members.
  • the member 3c may be simply brought into contact with the resin plate 3a and the metal plate 3b.
  • each coefficient of static friction between the resin plate 3a and the elastic sheet member 3c and between the metal plate 3b and the elastic sheet member 3c is the same as that of the resin plate 3a and the metal plate 3b.
  • the coefficient of static friction is sufficiently larger than the static friction coefficient between them, and the above three members are substantially integrated only by the static friction force without using an adhesive.
  • the resin plates 3 a are provided at the uppermost and lowermost portions of the support 3.
  • the uppermost and lowermost portions of the support 3 do not necessarily have to be the resin plates 3 a.
  • metal plates 3b may be provided at the top and bottom, respectively.
  • the outer diameters of the resin plate 3a and the metal plate 3b may all be substantially the same. In this case, it is desirable to chamfer the corners of the outer peripheral surface and the upper and lower surfaces of the metal plate 3b.
  • the resin plate 3a is made of a lubricating resin and the metal plate 3b is made of stainless steel.
  • the kinetic friction between the resin plate 3a and the metal plate 3b which can slide with each other is described.
  • Other resins and metals may be used as long as the coefficient can be set to 0.3 to 0.2.
  • the upper plate 1, the lower plate 2, and the resin plate 3a and the metal plate 3b of the support 3 are formed in a circular shape, but they may be formed in a polygonal shape. However, in this case, it is desirable to chamfer the corners of the polygon on the outer peripheral surfaces of the resin plate 3a and the metal plate 3b.
  • the cylindrical rubber member 8 including the support body 3 composed of the resin plate 3a and the metal plate 3b is used as the elastic body. It is also possible to arrange them at substantially equal intervals in the circumferential direction. Also, as shown in FIG. 11 (in FIG. 11, the support 3 is the same as that of the second embodiment, the elastic body may be the same as that of the first embodiment).
  • a cylindrical laminated body 15 in which 5a and rigid plate layers 15b made of a steel plate or the like are alternately laminated in an upward and downward direction may be used.
  • the elastic rubber layer 15a is sheared and deformed to generate a shear force, and this shear force is a restoring force.
  • the laminate 15 The relationship between the shear force generated in the elastic rubber layer 15a and the relative sliding amount of the upper plate 1 and the lower plate 2 is determined by the tensile force generated in the rubber member 8 and the relative sliding amount of the upper plate 1 and the lower plate 2 in the above embodiment. Compared to the relationship with the momentum, it is closer to linear and easier to handle.
  • the elastic rubber layer 15 and the rigid plate layer 15 are laminated in the same manner as the above-mentioned laminated body 15, and the diameter of the laminated body 15 is substantially smaller than the thickness (difference in inner and outer diameters).
  • a plurality of columnar members may be prepared, and these columnar laminates may be arranged on the outer peripheral portions of the upper plate 1 and the lower plate 2 at substantially equal intervals in the circumferential direction.
  • the seismic isolation device of the present invention is provided between an upper structure such as a building and a foundation, and is useful as a device for suppressing the shaking of the upper structure due to an earthquake.
  • the industrial applicability is high in that it exhibits

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

A seismic isolation device (A) comprising a support (3) that supports an upper plate (1) for horizontal slide movement relative to a lower plate (2), and a rubber member (8) that elastically connects at least portions of the outer peripheries of the upper and lower plates (1, 2) so that it serves as an elastic body that will be deformed when the upper plate (1) is horizontally slid relative to the lower plate (2), wherein, in order to obtain satisfactory seismic isolation effects while reducing the horizontal dimension, the support (3) is made in the form of a lamination by vertically alternately stacking pluralities of resin plates (3a) and metal plates (3b) such that a metal plate (3b) and at least one of the resin plates (3a) adjoining the upper and lower sides of the metal plate (3b) will be relatively and horizontally slid upon occurrence of an earthquake.

Description

曰月 糸田  Satsuki Itoda
技術分野 Technical field
本発明は、 建築物等の上部構造物と基礎との間に設けられ、 地震に対する該上部構 造物の揺れを抑えるようにした免震装置に関する。 背景技術  The present invention relates to a seismic isolation device that is provided between an upper structure such as a building and a foundation and suppresses the swing of the upper structure due to an earthquake. Background art
従来より、 この種の免震装置としては種々のものが提案されており、 例えば特閧昭 Conventionally, various types of seismic isolation devices of this type have been proposed.
6 0 - 2 5 0 1 4 3号公報に示されているように、 上部構造物に連結される上板と、 基礎に連結される下板との間に、 荷重支持機能とすべり機能とを有する (上板を下板 に対して相対的に水平方向に摺動可能に支持する) 支持体 (ペアリングプレート) を 設け、 この支持体を筒形のゴムばねにより密封するようにすることが提案されている このような摺動タイプの免震装置では、 地震発生時に支持体により上板が下板に対し て水平方向に摺動することで、 急激な振動を長周期化して和らげると共に、 地震収束 後はゴムばねの復元力により上板及び上部構造物を摺動前の位置に戻すことができる また、 摺動する部分の動摩擦力が減衰力として作用して、 振動を早期に収束させる。 しかし、 上記従来のものでは、 地震発生時において上板の下板に対する相対摺動量 を大きくして十分な免震効果を得るためには、 上板が下板に対して相対摺動したとき に支持体がゴムばねに当接して該ゴムばねを変形させないように支持体とゴムばねと の間に十分な隙間を取っておく必要があり、 その分だけ免震装置が水平方向に大きく なるという問題がある。 一方、 支持体の外径を小さくすることにより、 免震装置を大 きくしないで上記隙間を十分に取ることは可能であるが、 このようにすると、 上部構 造物の荷重がかかる上板を支持体により確実に支持することができなくなると共に、 地震発生時に上部構造物が傾く等して免震装置に水平方向に対して斜めの力が作用し た場合、 互いに摺動する摺動面の一方が他方に対して傾いた状態で接触し易くなるた め、 摺動性が悪化して十分な免震効果が得られなくなる。 As disclosed in Japanese Patent Application Publication No. 60-2500143, a load supporting function and a sliding function are provided between an upper plate connected to an upper structure and a lower plate connected to a foundation. (Supporting the upper plate so as to be slidable relative to the lower plate in the horizontal direction) A support (pairing plate) is provided, and the support is sealed by a cylindrical rubber spring. In such a sliding type seismic isolation device that has been proposed, when an earthquake occurs, the upper plate slides horizontally with respect to the lower plate by the support, so that sudden vibrations can be lengthened and reduced, and After the convergence of the earthquake, the upper plate and the upper structure can be returned to the position before sliding by the restoring force of the rubber spring.The kinetic frictional force of the sliding part acts as a damping force to converge vibration early. . However, in order to obtain a sufficient seismic isolation effect by increasing the relative sliding amount of the upper plate to the lower plate in the event of an earthquake, the above-mentioned conventional device requires that the upper plate slide relative to the lower plate. It is necessary to provide a sufficient gap between the support and the rubber spring so that the support does not abut on the rubber spring and deform the rubber spring, and the seismic isolation device increases in the horizontal direction by that much. There's a problem. On the other hand, by making the outer diameter of the support smaller, it is possible to make the gap sufficiently without increasing the size of the seismic isolation device.However, in this case, the upper plate on which the load of the upper structure is loaded is supported. One of the sliding surfaces that slides on each other when the upper structure is tilted and an oblique force acts on the seismic isolation device in the horizontal direction due to the inclination of the upper structure during an earthquake, etc. Can easily come into contact with the other As a result, the slidability deteriorates and a sufficient seismic isolation effect cannot be obtained.
本発明は斯かる点に鑑みてなされたものであり、 その目的は、 上記のような摺動夕 イブの免震装置において、 その構成を改良することによって、 免震装置を水平方向に 小さくしつつ、 良好な免震効果が得られるようにすることにある。 発明の開示  The present invention has been made in view of such a point, and an object of the present invention is to reduce the size of the seismic isolation device in the horizontal direction by improving the configuration of the above-described seismic isolation device for a sliding eve. The goal is to ensure good seismic isolation effects. Disclosure of the invention
上記の目的を達成するために、 本発明では、 支持体を、 複数の樹脂板と金属板とが 上下方向に交互に積層されてなるものとし、 この金属板と該金属板の上側及び下側の 少なくとも一方に隣接する樹脂板とが地震発生時に相対的に水平方向に摺動し得るよ うに構成した。  In order to achieve the above object, according to the present invention, the support is configured such that a plurality of resin plates and a metal plate are alternately stacked in the vertical direction, and the metal plate and the upper and lower sides of the metal plate The resin plate adjacent to at least one of them was configured to slide relatively horizontally in the event of an earthquake.
具体的には、 上部構造物と連結される上板と、 該上板の下側に対向して設けられ、 基礎と連結される下板と、 上記上板及び下板間における外周部以外の部分に設けられ、 該上板を下板に対して相対的に水平方向に摺動可能に支持する支持体と、 上記上板及 び下板の外周部の少なくとも一部同士を弾性的に接続して、 該上板が下板に対して相 対的に水平方向に摺動したときに変形する弾性体とを備え、 地震に対する上記上部構 造物の揺れを抑えるようにした免震装置を対象とし、 上記支持体は、 複数の樹脂板と 金属板とが上下方向に交互に積層されてなり、 上記金属板と該金属板の上側及び下側 の少なくとも一方に隣接する樹脂板とが地震発生時に相対的に水平方向に摺動し得る ように構成されているものとする。  Specifically, an upper plate connected to the upper structure, a lower plate provided facing the lower side of the upper plate and connected to the foundation, and an outer peripheral portion between the upper plate and the lower plate other than the outer peripheral portion And a support for supporting the upper plate slidably in a horizontal direction relative to the lower plate, and elastically connecting at least a part of the outer peripheral portions of the upper plate and the lower plate. And an elastic body that is deformed when the upper plate slides relative to the lower plate in a horizontal direction, so as to suppress the shaking of the upper structure against an earthquake. In the support, a plurality of resin plates and metal plates are alternately stacked in the vertical direction, and the metal plate and the resin plate adjacent to at least one of the upper side and the lower side of the metal plate generate an earthquake. It shall be configured to be able to slide relatively horizontally in some cases.
上記の構成により、 地震発生時に支持体の樹脂板と金属板とが相対的に水平方向に 摺動し、 このとき、 樹脂板及び金属板は、 弾性体の変形と同様に、 上側に位置するほ ど下板に対して大きく水平方向に摺動し、 支持体の最上部に位置する樹脂板又は金属 板と最下部に位置する樹脂板又は金属板との相対摺動量と略同じだけ上板が下板に対 して相対的に水平方向に摺動し、 このことで、 急激な振動を長周期化して和らげる。 また、 地震収束後は弾性体の復元力により上板及び上部構造物を摺動前の位置に戻す ことができる。 そして、 上述の如く樹脂板及び金属板が弾性体の変形と同じように上 側に位置するほど下板に対して大きく摺動するので、 支持体と弾性体との隙間をあま り取らなくても、 弾性体が樹脂板及び金属板によって局部的に大きく変形させられる ことはない。 したがって、 樹脂板及び金属板の外径をある程度大きくしても免震装置 が水平方向にそれ程大きくなることはなく、 樹脂板及び金属板の外径を適切な大きさ にすることで、 通常時だけでなく地震発生時においても上部構造物の支持性が向上す ると共に、 地震発生時に上部構造物が傾く等して免震装置に水平方向に対して斜めの 力が作用したとしても、 相対向する摺動面の一方が他方に対して傾くことはなく、 互 いにスムーズに摺動する。 よって、 免震装置を水平方向に小さくしつつ、 良好な免震 効果を得ることができる。 With the above configuration, the resin plate and the metal plate of the support slide relatively horizontally in the event of an earthquake, and at this time, the resin plate and the metal plate are located on the upper side similarly to the deformation of the elastic body The upper plate slides substantially horizontally with respect to the lower plate, and is approximately the same as the relative sliding amount between the resin plate or metal plate located at the top of the support and the resin plate or metal plate located at the bottom. Slides in the horizontal direction relatively to the lower plate, and this makes the sudden vibration longer and softer. After the convergence of the earthquake, the upper plate and the upper structure can be returned to the position before sliding by the restoring force of the elastic body. And, as described above, the more the resin plate and the metal plate are located on the upper side in the same manner as the deformation of the elastic body, the more they slide with respect to the lower plate, so that the gap between the support and the elastic body is loose. Even if it is not removed, the elastic body will not be locally deformed significantly by the resin plate and the metal plate. Therefore, even if the outer diameter of the resin plate and the metal plate is increased to some extent, the seismic isolation device does not become so large in the horizontal direction. In addition to improving the support of the superstructure in the event of an earthquake, even if an oblique force acts on the seismic isolation device due to the inclination of the superstructure during the earthquake, the relative One of the facing sliding surfaces does not tilt with respect to the other, and slides smoothly with each other. Therefore, it is possible to obtain a good seismic isolation effect while reducing the size of the seismic isolation device in the horizontal direction.
上記免震装置の支持体は、 該支持体の金属板と該金属板の上側及び下側のいずれか 一方に隣接する樹脂板とが地震発生時に相対的に水平方向に摺動し得るように構成さ れ、 上記支持体の金属板と該金属板の他方に隣接する樹脂板との間に弾性シート部材 が介装されていることが好ましい。  The support of the seismic isolation device is configured such that the metal plate of the support and the resin plate adjacent to one of the upper side and the lower side of the metal plate can slide relatively horizontally in the event of an earthquake. Preferably, an elastic sheet member is provided between the metal plate of the support and a resin plate adjacent to the other of the metal plates.
このようにすれば、 地震発生直後において相対向する摺動面同士が静止状態から動 摩擦状態へ移行する前には、 弾性シート部材が水平方向にせん断変形するので、 樹脂 板及び金属板が互いに摺動しなくても、 このせん断変形により上板が下板に対して相 対的に水平方向に僅かに移動することとなり、 相対向する摺動面同士が動摩擦状態に 移行しても上板に大きな加速度変化が生じるのを抑制することができる。 すなわち、 弹性シ一ト部材が無い場合、 静止摩擦力による静止状態から動摩擦状態へ移行したと きに上板が下板に対して急激に動き出すことになるために、 上板に大きな加速度変化 が生じる。 この上板の加速度変化は、 地震動の加速度変化よりもかなり小さいため、 上部構造物の一階部分では免震装置による免震効果が十分に得られるものの、 上部階 ほど上記上板の加速度変化を受けて水平振動加速度が大きくなり、 免震装置による振 動低減効果が低下する傾向にある。 このような傾向は、 特に木造住宅等のように 2階 建て又は 3階建ての軽量建築物において顕著になる。 しかし、 この構成では、 上記上 板の加速度変化を弾性シート部材によって抑えるので、 上部階における免震効果の低 下を抑制することができる。 よって、 どの階においても良好な免震効果が確実に得ら れる。 このように弾性シート部材を設ける場合、 支持体の弾性シート部材は、 その上下両 側の樹脂板及び金属板に固着され、 上記金属板の外径が、 上記樹脂板よりも小さく設 定されていることが望ましい。 このことで、 慣性の大きな金属板が水平方向に大きく 摺動して弾性体を局部的に大きく変形させるのを防止することができる。 また、 金属 板の外径を樹脂板よりも小さくすることで、 金属板が弾性体に当接するのを確実に防 止することができる。 よって、 金属板による弾性体の破損を防ぐことができる。 In this way, immediately after the occurrence of the earthquake, before the opposing sliding surfaces shift from the stationary state to the dynamic friction state, the elastic sheet member shears in the horizontal direction. Even without sliding, the upper plate slightly moves in the horizontal direction relative to the lower plate due to this shear deformation, and even if the opposing sliding surfaces shift to the state of kinetic friction, the upper plate Large acceleration change can be suppressed. In other words, when there is no elastic sheet member, the upper plate starts to move rapidly with respect to the lower plate when transitioning from the static state due to the static friction force to the dynamic friction state. Occurs. Since the change in acceleration of the upper plate is considerably smaller than the change in acceleration of the seismic motion, the seismic isolation device can provide a sufficient seismic isolation effect on the first floor of the upper structure. As a result, the horizontal vibration acceleration increases, and the vibration reduction effect of the seismic isolation device tends to decrease. This tendency is particularly noticeable in light-weight two- or three-story buildings such as wooden houses. However, in this configuration, since the change in the acceleration of the upper plate is suppressed by the elastic sheet member, a decrease in the seismic isolation effect on the upper floor can be suppressed. Therefore, a good seismic isolation effect can be obtained on any floor. When the elastic sheet member is provided in this manner, the elastic sheet member of the support is fixed to the upper and lower resin plates and the metal plate, and the outer diameter of the metal plate is set smaller than that of the resin plate. Is desirable. Thus, it is possible to prevent the metal plate having a large inertia from sliding largely in the horizontal direction and locally deforming the elastic body significantly. Further, by making the outer diameter of the metal plate smaller than that of the resin plate, it is possible to reliably prevent the metal plate from contacting the elastic body. Therefore, the elastic body can be prevented from being damaged by the metal plate.
また、 この場合、 支持体における樹脂板の外周面と上下面との各角部に、 面取りが 施されていることが望ましい。 こうすることで、 樹脂板が弾性体に当接してもその角 部で弾性体が破損したりすることはなく、 免震装置の作動中に弾性体の機能が阻害さ れるのを確実に防止することができる。  In this case, it is desirable that the corners of the outer peripheral surface of the resin plate and the upper and lower surfaces of the support be chamfered. By doing so, even if the resin plate abuts against the elastic body, the elastic body will not be damaged at the corners, and the function of the elastic body will not be disturbed during the operation of the seismic isolation device can do.
上記免震装置においては、 支持体において地震発生時に互いに水平方向に摺動し得 る樹脂板及び金属板間の動摩擦係数が、 0 . 0 3〜0 . 2に設定されていることが好 ましい。 すなわち、 樹脂板及び金属板間の動摩擦係数は、 0 . 0 3よりも小さいと、 振動の減衰作用が小さくて振動が収まり難くなる一方、 0 . 2よりも大きいと、 震度 がかなり大きい地震でないと免震効果が十分に発揮されないので、 0 . 0 3〜0 . 2 としている。 よって、 震度の大きさに関係なく良好な免震効果が得られる。  In the above seismic isolation device, it is preferable that the coefficient of kinetic friction between the resin plate and the metal plate that can slide horizontally with each other in the event of an earthquake in the support is set to 0.03 to 0.2. No. That is, if the coefficient of kinetic friction between the resin plate and the metal plate is smaller than 0.03, the vibration damping action is small, making it difficult to suppress the vibration.On the other hand, if it is larger than 0.2, the seismic intensity is not quite large. Since the seismic isolation effect is not sufficiently exhibited, the range is set to 0.3 to 0.2. Therefore, a good seismic isolation effect can be obtained regardless of the magnitude of the seismic intensity.
また、 上記免震装置においては、 弾性体は、 上板及び下板の外周部全周同士を接続 しかつ支持体を全周に亘つて覆う筒状のゴム部材からなるものとするのが好ましい。 こうすることで、 上板が下板に対してどの方向に摺動しても、 筒状ゴム部材に方向性 のない安定した復元力が発生すると共に、 ゴム部材内部や支持体の相対向する摺動面 間にゴミゃ埃が入るのを防止することができるので、 長期に亘つて安定した摺動性を 維持することができる。  In the above seismic isolation device, the elastic body is preferably made of a cylindrical rubber member that connects the entire outer periphery of the upper plate and the lower plate and covers the support over the entire periphery. . In this way, regardless of the direction in which the upper plate slides with respect to the lower plate, a stable restoring force is generated in the cylindrical rubber member with no directivity, and the rubber member and the support oppose each other. Since dust and dirt can be prevented from entering between the sliding surfaces, stable slidability can be maintained for a long period of time.
このように弾性体を筒状のゴム部材で構成する場合、 支持体の最上部及び最下部に、 樹脂板がそれそれ配設され、 上記両樹脂板の外径が他の樹脂板よりも小さく設定され ていることが望ましい。 すなわち、 ゴム部材の上扳及び下板との接続部は、 大きな応 力が発生しかつ応力集中が生じ易い部分であるので、 支持体の最上部及び最下部に配 設された樹脂板が当接することにより損傷を受け易い。 しかし、 この構成では、 支持 体の最上部及び最下部に配設された樹脂板の外径が他の樹脂板よりも小さいので、 そ の両樹脂板をゴム部材の上板及び下板との接続部に当接させないようにすることがで き、 ゴム部材に損傷を与えるのを抑制することができる。 また、 たとえ上記両樹脂板 がゴム部材に当接したとしても、 金属板が当接する場合よりもゴム部材の損傷の程度 は小さくて済み、 ゴム部材を効果的に保護することができる。 When the elastic body is formed of a cylindrical rubber member in this manner, resin plates are respectively disposed on the uppermost and lowermost portions of the support, and the outer diameters of the two resin plates are smaller than those of the other resin plates. It is desirable that it is set. In other words, the connection between the rubber member and the upper and lower plates is a portion where a large stress is generated and stress concentration is likely to occur, so that the resin plates disposed at the uppermost and lowermost portions of the support are used. It is easily damaged by contact. However, in this configuration, Since the outer diameters of the resin plates provided at the uppermost and lowermost parts of the body are smaller than those of the other resin plates, make sure that both resin plates do not come into contact with the connection between the upper and lower plates of the rubber member. Thus, damage to the rubber member can be suppressed. Even if the two resin plates abut against the rubber member, the degree of damage to the rubber member is smaller than when the metal plate abuts, and the rubber member can be effectively protected.
また、 上記支持体の最上部及び最下部に配設された両樹脂板が、 上板の下面及び下 板の上面にそれそれ固着されていることが望ましい。 こうすることで、 樹脂板による ゴム部材の上板及び下板との接続部における損傷を確実に防止することができると共 に、 その接続部の肉厚を他の部分よりも厚くして強度を向上させることができ、 接続 部の繰り返し変形による損傷をも防止することができる。 図面の簡単な説明  Further, it is desirable that both resin plates provided at the uppermost and lowermost portions of the support are fixed to the lower surface of the upper plate and the upper surface of the lower plate, respectively. By doing so, it is possible to reliably prevent damage at the connection between the resin plate and the upper and lower plates of the rubber member, and at the same time, increase the thickness of the connection at a portion thicker than at other portions, thereby improving strength. Can be improved, and damage due to repeated deformation of the connection portion can also be prevented. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施形態 1に係る免震装置を示す断面図である。  FIG. 1 is a sectional view showing a seismic isolation device according to Embodiment 1 of the present invention.
図 2は、 図 1の免震装置の組立手順を示す分解図である。  FIG. 2 is an exploded view showing an assembling procedure of the seismic isolation device of FIG.
図 3は、 図 1の免震装置の作動時の状態を示す図 1相当図である。  FIG. 3 is a diagram corresponding to FIG. 1 showing a state of the seismic isolation device of FIG. 1 during operation.
図 4は、 実施形態 1の変形例を示す図 1相当図である。  FIG. 4 is a diagram corresponding to FIG. 1 showing a modification of the first embodiment.
図 5は、 免震装置を個人住宅に適用してその免震効果を調べる試験の要領を示す概 略図である。  Figure 5 is a schematic diagram showing the procedure for testing the seismic isolation effect of a seismic isolation device applied to a private house.
図 6は、 実施形態 2に係る免震装置を示す断面図である。  FIG. 6 is a cross-sectional view illustrating the seismic isolation device according to the second embodiment.
図 7は、 図 6の免震装置における支持体の樹脂板と金属板とが地震発生時に相対的 に水平方向に摺動した状態を示す図 6相当図である。  FIG. 7 is a diagram corresponding to FIG. 6, illustrating a state in which the resin plate and the metal plate of the support in the seismic isolation device of FIG. 6 relatively slide horizontally when an earthquake occurs.
図 8は、 図 6の免震装置における支持体の弾性シート部材が地震発生直後にせん断 変形した状態を示す図 6相当図である。  FIG. 8 is a diagram corresponding to FIG. 6, showing a state in which the elastic sheet member of the support in the seismic isolation device of FIG. 6 is sheared and deformed immediately after the earthquake.
図 9は、 振動解析において免震装置を設けた上部構造物と基礎との間における免震 層の水平せん断特性を示すグラフである。  Figure 9 is a graph showing the horizontal shear characteristics of the seismic isolation layer between the foundation and the foundation equipped with the seismic isolation device in the vibration analysis.
図 1 0は、 振動解析結果として各階での振動加速度の変化を示すグラフである。 図 1 1は、 弾性体として積層体を用いた変形例を示す図 6相当図である。 発明を実施するための最良の形態 FIG. 10 is a graph showing a change in vibration acceleration at each floor as a vibration analysis result. FIG. 11 is a diagram corresponding to FIG. 6 showing a modified example using a laminate as an elastic body. BEST MODE FOR CARRYING OUT THE INVENTION
実施形態 1  Embodiment 1
図 1は、 本発明の実施形態 1に係る免震装置 Aを示し、 この免震装置 Aは、 建築物 等の上部構造物と基礎との間に設けられ、 地震に対する該上部構造物の揺れを抑える ようにしたものである。 上記免震装置 Aは、 上記上部構造物と連結される円形のステ ンレス鋼製上板 1と、 この上板 1の下側に対向して設けられ、 上記基礎と連結される 同じく円形のステンレス鋼製下板 2とを備えている。  FIG. 1 shows a seismic isolation device A according to Embodiment 1 of the present invention. The seismic isolation device A is provided between an upper structure such as a building and a foundation, and shakes the upper structure against an earthquake. It is intended to suppress The seismic isolation device A includes a circular stainless steel upper plate 1 connected to the upper structure, and a lower stainless steel plate, which is provided opposite to the upper plate 1 and is connected to the foundation. And a steel lower plate 2.
上記上板 1及び下板 2間における外周部以外の部分には、 上板 1を下板 2に対して 相対的に水平方向に摺動可能に支持する支持体 3が設けられている。 この支持体 3は、 5つの円形樹脂板 3 aと 4つの円形金属板 3 bとが上下方向に交互に積層されてなつ ており、 支持体 3の最上部及び最下部には、 樹脂板 3 aがそれそれ配設されている。 上記支持体 3の金属板 3 bは、 外径が樹脂板 3 aよりも小さくなるように形成されて いて、 該金属板 3 bの上側及び下側のいずれか一方に隣接する樹脂板 3 aに接合固定 されている (上下方向中央に位置する樹脂板 3 aよりも上側の金属板 3 bは、 その上 側の樹脂板 3 aに、 また上下方向中央に位置する樹脂板 3 aよりも下側の金属板 3 b は、 その下側の樹脂板 3 aにそれそれ固定されている) 。 そして、 上記金属板 3 bと 該金属板 3 bの他方に隣接する樹脂板 3 aとは、 単に接触しているだけであって、 地 震発生時に相対的に水平方向に摺動し得る状態となっている。 また、 最上部及び最下 部の樹脂板 3 aも上板 1及び下板 2に対してそれそれ相対的に摺動可能なようになさ れている。 尚、 図 1では、 説明の都合上、 摺動し得る樹脂板 3 a及び金属板 3 b間並 びに樹脂板 3 a及び上板 1又は下板 2間は、 隙間をあけて描いている (図 3、 図 4、 図 6〜図 8及び図 1 1においても同じ) 。  A support 3 that supports the upper plate 1 so as to be slidable in the horizontal direction relatively to the lower plate 2 is provided at a portion other than the outer peripheral portion between the upper plate 1 and the lower plate 2. The support 3 is composed of five circular resin plates 3a and four circular metal plates 3b alternately stacked in the up-down direction. a is arranged everywhere. The metal plate 3b of the support 3 is formed so that the outer diameter is smaller than the resin plate 3a, and the resin plate 3a adjacent to one of the upper side and the lower side of the metal plate 3b is formed. (The metal plate 3b above the resin plate 3a located at the center in the vertical direction is connected to the resin plate 3a above it and the resin plate 3a located at the center in the vertical direction. The lower metal plate 3b is fixed to the lower resin plate 3a, respectively). The metal plate 3b and the resin plate 3a adjacent to the other of the metal plates 3b are merely in contact with each other, and can relatively slide horizontally in the event of an earthquake. It has become. The uppermost and lowermost resin plates 3 a are also slidable relative to the upper plate 1 and the lower plate 2. In FIG. 1, for convenience of explanation, a gap is drawn between the slidable resin plate 3a and the metal plate 3b and between the resin plate 3a and the upper plate 1 or the lower plate 2 ( The same applies to FIG. 3, FIG. 4, FIG. 6 to FIG. 8, and FIG. 11).
上記支持体 3の樹脂板 3 aは、 超高分子量ポリエチレン、 高密度ポリエチレン、 ナ ィロン、 ポリテトラフルォロエチレン、 ポリアセ夕一ル等の潤滑性樹脂からなってお り、 高圧縮に耐えられるようにこれらの樹脂に補強材としてガラス繊維、 ァラミ ド繊 維、 カーボン繊維、 金属酸化物ゥイスカーを含有してもよく、 さらに潤滑剤を含有さ せてもよい。 一方、 上記金属板 3 bはステンレス鋼からなっている。 そして、 互いに 摺動可能な樹脂板 3 a及び金属板 3 b間の動摩擦係数は 0 . 0 3〜 0 . 2に設定する ことが望ましい。 これは、 樹脂板 3 a及び金属板 3 b間の動摩擦係数が 0 . 0 3より も小さいと、 振動を減衰させる効果が小さくて振動が収まり難くなる一方、 0 . 2よ りも大きいと、 震度がかなり大きい地震でないと免震効果が十分に発揮されないから である。 尚、 上記樹脂板 3 aと金属板 3 bとの間にシリコンオイルやグリス等を塗布 して動摩擦係数を上記範囲内に調整してもよい。 但し、 上記のように樹脂板 3 a及び 金属板 3 bをそれそれ潤滑性樹脂及びステンレス鋼で構成すれば、 通常は、 グリス等 を塗布しなくても動摩擦係数を上記範囲内にすることができる。 また、 樹脂板 3 a及 び金属板 3 bの各摺動面に、 摺動時の放熱用の凹溝を設けるようにしてもよい。 The resin plate 3a of the support 3 is made of a lubricating resin such as ultra-high molecular weight polyethylene, high-density polyethylene, nylon, polytetrafluoroethylene, polyacetone, etc., and can withstand high compression. As described above, these resins may contain glass fiber, aramide fiber, carbon fiber, metal oxide whiskers as a reinforcing material, and further contain a lubricant. You may let it. On the other hand, the metal plate 3b is made of stainless steel. It is preferable that the coefficient of kinetic friction between the resin plate 3a and the metal plate 3b slidable with each other be set in a range from 0.03 to 0.2. This is because if the coefficient of kinetic friction between the resin plate 3a and the metal plate 3b is smaller than 0.03, the effect of damping the vibration is small and the vibration is hardly contained, while if it is larger than 0.2, This is because the seismic isolation effect cannot be fully exerted unless the seismic intensity is quite large. The dynamic friction coefficient may be adjusted within the above range by applying silicone oil or grease between the resin plate 3a and the metal plate 3b. However, if the resin plate 3a and the metal plate 3b are made of lubricating resin and stainless steel respectively as described above, the dynamic friction coefficient can normally be within the above range without applying grease or the like. it can. Further, a concave groove for radiating heat during sliding may be provided on each sliding surface of the resin plate 3a and the metal plate 3b.
上記金属板 3 bの外径は樹脂板 3 aよりも小さく設定されており、 樹脂板 3 aの外 周部が金属板 3 bの外周面よりも径方向外側に突出している。 また、 支持体 3の最上 部及び最下部に配設された両樹脂板 3 aの外径は、 他の樹脂板 3 aよりも小さく設定 されている。 さらに、 樹脂板 3 aの外周面と上下面との各角部には円弧状の面取りが 施されて丸味が付けられている。 尚、 樹脂板 3 aの厚みは金属板 3 bよりも大きく、 高圧縮に十分に耐えられるようになされている。  The outer diameter of the metal plate 3b is set smaller than the resin plate 3a, and the outer peripheral portion of the resin plate 3a protrudes radially outward from the outer peripheral surface of the metal plate 3b. The outer diameters of both resin plates 3a provided at the uppermost and lowermost portions of the support 3 are set smaller than those of the other resin plates 3a. Further, each corner of the outer peripheral surface and the upper and lower surfaces of the resin plate 3a is rounded with an arc-shaped chamfer. The thickness of the resin plate 3a is larger than that of the metal plate 3b, so that the resin plate 3a can sufficiently withstand high compression.
上記上板 1及び下板 2の外周部の全周同士は、 支持体 3を全周に亘つて覆う円筒状 のゴム部材 8 (弾性体) により弾性的に接続されている。 つまり、 このゴム部材 8の 上端部は上板 2の外周部に加硫接着されている一方、 下端部はステンレス鋼製のリン グ部材 6に加硫接着されて、 このリング部材 6と下板 2の外周部とが複数のネジ 7に より互いに固定されている。 このことで、 上板 1及び下板 2間の空間は略密閉状にさ れている。 上記ゴム部材 8は、 天然ゴム若しくは合成ゴムを主体とする配合ゴム又は そのいずれかの配合ゴムを繊維で補強した複合材からなつていて、 破断伸びが 6 0 0 %以上になるようになされている。 そして、 ゴム部材 8は、 上板 1が下板 2に対して 相対的に水平方向においてどの方向に摺動したときにも伸びて上板 1を摺動前の位置 に復帰させる復元力を発生するようになっている。 また、 上記ゴム部材 8の上下両端 部は、 その肉厚が上下方向中央部よりも滑らかに厚くなるように円弧状に形成されて、 上板 1が下板 2に対して水平方向に摺動したときに応力集中を緩和するようになって いる。 上記ゴム部材 8の上下両端部を除く部分の内径は、 支持体 3における最上部及 び最下部以外の 3つの樹脂板 3 aの外径と略同じに (僅かに大きく) 設定されている。 以上の構成からなる免震装置 Aの組立方法を図 2により説明する。 The entire circumferences of the outer peripheral portions of the upper plate 1 and the lower plate 2 are elastically connected by a cylindrical rubber member 8 (elastic body) that covers the support 3 over the entire circumference. That is, the upper end of the rubber member 8 is vulcanized and bonded to the outer peripheral portion of the upper plate 2, while the lower end is vulcanized and bonded to a ring member 6 made of stainless steel. The outer peripheral portion of the second member is fixed to each other by a plurality of screws 7. As a result, the space between the upper plate 1 and the lower plate 2 is substantially closed. The rubber member 8 is made of a compounded rubber mainly composed of a natural rubber or a synthetic rubber or a composite material in which any one of the compounded rubbers is reinforced with a fiber, and has a breaking elongation of 600% or more. I have. The rubber member 8 generates a restoring force that extends when the upper plate 1 slides in any direction in the horizontal direction relative to the lower plate 2 and returns the upper plate 1 to the position before sliding. It is supposed to. Also, the upper and lower ends of the rubber member 8 are formed in an arc shape so that the thickness thereof becomes smoother than the center in the vertical direction. When the upper plate 1 slides in the horizontal direction with respect to the lower plate 2, stress concentration is reduced. The inner diameter of the rubber member 8 except for the upper and lower ends is set to be substantially the same as (slightly larger than) the outer diameter of the three resin plates 3 a other than the uppermost and lowermost portions of the support 3. The method of assembling the seismic isolation device A having the above configuration will be described with reference to FIG.
先ず、 ゴム部材 8の上端面に上板 1を加硫接着させる一方、 下端部の外周部にリン グ部材 6を加硫接着させて、 支持体 3の収容部を形成する。  First, the upper plate 1 is vulcanized and adhered to the upper end surface of the rubber member 8, and the ring member 6 is vulcanized and adhered to the outer peripheral portion of the lower end portion, thereby forming the accommodating portion of the support 3.
次いで、 予め接着剤等で接合固定した 4組の樹脂板 3 a及び金属板 3 bと、 上下方 向中央に位置する 1つの樹脂板 3 aとで支持体 3を構成してこの支持体 3を上記収容 部内に入れ、 その後、 下板 2を上記リング部材 6に各ネジ 7により結合することで免 震装置 Aが完成する。  Next, a support 3 is composed of four resin plates 3a and a metal plate 3b which are bonded and fixed in advance with an adhesive or the like, and one resin plate 3a located at the center in the upward and downward direction. The seismic isolation device A is completed by inserting the lower plate 2 into the ring member 6 with the screws 7 afterwards.
上記免震装置 Aを上部構造物を構成する柱等と基礎との間に設ける場合、 上板 1を 上部構造物に、 下板 2を基礎にそれそれボルトにより取付固定する (図示は省略する が、 上板 1及び下板 2の外周部にボルト揷通用の孔を形成しておく) 。 このように免 震装置 Aを上部構造物と基礎との間に設けておけば、 地震発生時には支持体 3の互い に摺動可能な樹脂板 3 aと金属板 3 bとが相対的に水平方向に摺動する。 このとき、 図 3に示すように、 ゴム部材 8の変形と同様に、 樹脂板 3 a及び金属板 3 bは上側に 位置するほど下板 2に対して大きく水平方向に摺動し、 支持体 3の最上部に位置する 樹脂板 3 aと最下部に位置する樹脂板 3 aとの相対摺動量と略同じだけ上板 1が下板 2に対して相対的に摺動し、 このことで、 急激な振動を長周期化して和らげる。 この 結果、 上部構造物の水平揺れを抑えることができ、 上部構造物内部に設置したものが 倒れるのを防止することができる。 また、 上板 1が下板 2に対してずれた方向にゴム 部材 8が変形して伸びるため、 ゴム部材 8に上板 1を摺動前の位置に復帰させる復元 力が発生し、 地震収束後はこの復元力により上板 1及び上部構造物を摺動前の位置に 戻すことができる。 このゴム部材 8は、 上板 1が下板 2に対して水平方向においてど の方向に摺動したときにも同じ復元力が発生するので、 どの方向からの地震力に対し ても同じように機能させることができる。  When the above seismic isolation device A is installed between the pillars etc. that constitute the upper structure and the foundation, the upper plate 1 is fixed to the upper structure and the lower plate 2 is fixed to the foundation with bolts (not shown) However, holes for bolts are formed in the outer periphery of the upper plate 1 and the lower plate 2). In this way, if the seismic isolation device A is provided between the superstructure and the foundation, the resin plate 3a and the metal plate 3b of the support 3 that can slide relative to each other during an earthquake will be relatively horizontal. Slide in the direction. At this time, as shown in FIG. 3, similarly to the deformation of the rubber member 8, the resin plate 3a and the metal plate 3b slide more largely in the horizontal direction with respect to the lower plate 2 as they are located on the upper side. The upper plate 1 slides relative to the lower plate 2 by substantially the same amount as the relative sliding amount between the resin plate 3a located at the uppermost position of 3 and the resin plate 3a located at the lowermost position. The period of the sudden vibration is reduced and softened. As a result, the horizontal swing of the upper structure can be suppressed, and the object installed inside the upper structure can be prevented from falling down. Also, since the rubber member 8 is deformed and stretched in the direction in which the upper plate 1 is displaced from the lower plate 2, a restoring force is generated in the rubber member 8 to return the upper plate 1 to the position before sliding, and the earthquake converges. Thereafter, the restoring force allows the upper plate 1 and the upper structure to return to the positions before sliding. This rubber member 8 generates the same restoring force when the upper plate 1 slides in any direction in the horizontal direction with respect to the lower plate 2, so that the same force is applied to seismic force from any direction. Can work.
そして、 支持体 3の最上部及び最下部以外の樹脂板 3 aとゴム部材 8との間には殆 ど隙間を設けていないが、 上述の如く樹脂板 3 a及び金属板 3 bがゴム部材 8に沿う ように上側に位置するほど下板 2に対して大きく水平方向に摺動するので、 ゴム部材 8は上下方向全体に亘つて一様に変形し、 局部的に大きく変形させられることはない。 したがって、 樹脂板 3 a及び金属板 3 bの外径をある程度大きくしても、 ゴム部材 8 との隙間を取る必要がないので、 免震装置 Aが水平方向に大きくなることはなく、 樹 脂板 3 a及び金属板 3 bの外径を適切な大きさにすることで、 通常時だけでなく地震 発生時においても上部構造物の支持性が向上すると共に、 地震発生時に上部構造物が 傾く等して免震装置 Aに水平方向に対して斜めの力が作用したとしても、 相対向する 摺動面の一方が他方に対して傾くことはなく、 互いにスムーズに摺動する。 また、 上 記のように樹脂板 3 a及び金属板 3 bの外径を適切な大きさにすることで、 樹脂板 3 a及び金属板 3 bの積層数をそれ程多くしなくても、 上部構造物の支持性を維持しつ つ上板 1の下板 2に対する相対摺動量を大きくすることができ、 この結果、 免震装置 Aの高さを比較的低く抑えることができる。 よって、 免震装置 Aを小型化しつつ、 良 好な免震効果を得ることができる。 The gap between the rubber member 8 and the resin plate 3 a other than the uppermost and lowermost portions of the support 3 is almost zero. Although no gap is provided, as described above, as the resin plate 3a and the metal plate 3b are located on the upper side along the rubber member 8, the resin plate 3a and the metal plate 3b slide more largely in the horizontal direction with respect to the lower plate 2, so that the rubber member 8 is uniformly deformed over the entire vertical direction, and is not locally deformed significantly. Therefore, even if the outer diameters of the resin plate 3a and the metal plate 3b are increased to some extent, there is no need to provide a gap with the rubber member 8, so that the seismic isolation device A does not increase in the horizontal direction, and By making the outer diameters of the plate 3a and the metal plate 3b appropriate, not only during normal times but also during an earthquake, the support of the upper structure is improved, and the upper structure tilts when an earthquake occurs. Even if a diagonal force acts on the seismic isolation device A in the horizontal direction, one of the opposing sliding surfaces does not tilt with respect to the other, and slides smoothly with each other. Also, by making the outer diameters of the resin plate 3a and the metal plate 3b appropriate as described above, even if the number of layers of the resin plate 3a and the metal plate 3b is not so large, The relative sliding amount of the upper plate 1 with respect to the lower plate 2 can be increased while maintaining the support of the structure, and as a result, the height of the seismic isolation device A can be kept relatively low. Therefore, it is possible to obtain a good seismic isolation effect while reducing the size of the seismic isolation device A.
また、 金属板 3 bは、 該金属板 3 bの上側及び下側のいずれか一方に隣接する樹脂 板 3 aに接合固定されているので、 慣性の大きな金属板 3 bが水平方向に大きく摺動 してゴム部材 8を局部的に大きく変形させることはない。 そして、 樹脂板 3 aの外周 面と上下面との各角部に面取りが施されているので、 樹脂板 3 aがゴム部材 8に当接 しても、 ゴム部材 8が損傷することはない。  Further, since the metal plate 3b is fixedly joined to the resin plate 3a adjacent to either the upper side or the lower side of the metal plate 3b, the metal plate 3b having a large inertia slides largely in the horizontal direction. The rubber member 8 is not locally deformed by the movement. Since the corners of the outer peripheral surface and the upper and lower surfaces of the resin plate 3a are chamfered, the rubber member 8 is not damaged even if the resin plate 3a comes into contact with the rubber member 8. .
さらに、 支持体 3の最上部及び最下部に配設された両樹脂板 3 aの外径が他の樹脂 板 3 aよりも小さく設定されているので、 その両樹脂板 3 aがゴム部材 8における上 板 1及びリング部材 6との接続部に当接しないようにすることができる。 つまり、 ゴ ム部材 8の応力集中が生じ易い部分を効果的に保護することができ、 ゴム部材 8の損 傷を防止することができる。  Further, since the outer diameters of the two resin plates 3a provided at the uppermost and lowermost portions of the support 3 are set smaller than the other resin plates 3a, the two resin plates 3a are It can be prevented from contacting the connecting portion between the upper plate 1 and the ring member 6 in the above. That is, a portion of the rubber member 8 where stress concentration is likely to occur can be effectively protected, and damage to the rubber member 8 can be prevented.
尚、 上記実施形態 1では、 支持体 3の金属板 3 bを、 該金属板 3 bの上側及び下側 のいずれか一方に隣接する樹脂板 3 aに接合固定したが、 上側及び下側の両方に隣接 する樹脂板 3 aと相対的に水平方向に摺動し得るように構成してもよい。 この場合、 金属板 3 bの外周面と上下面との各角部にも面取りを施すようにすることが望ましい。 また、 上記実施形態 1では、 支持体 3の最上部及び最下部に配設された両樹脂板 3 aをそれそれ上板 1及び下板 2に対して相対的に摺動可能なように構成したが、 図 4 に示すように、 その両樹脂板 3 aを上板 1の下面及び下板 2の上面にそれそれ接合固 定するようにしてもよい。 このようにすれば、 支持体 3の最上部及び最下部の両樹脂 板 3 aがゴム部材 8における上板 1及びリング部材 6との接続部に当接してゴム部材 8が損傷するのを確実に防止することができる。 そして、 この場合、 支持体 3の最上 部及び最下部の両樹脂板 3 aは金属板 3 bと固定しないで単独で用いると共に、 上下 方向中央部の樹脂板 3 aは、 その上下両面に金属板 3 bを固定した状態で用いるよう にすればよい。 また、 上板 1とゴム部材 8との接続を、 下板 2と同様に、 リング部材 6を介して行うようにすれば、 免震装置 Aをその上下方向中央線に対して対称形状に することができる。 In the first embodiment, the metal plate 3b of the support 3 is fixed to the resin plate 3a adjacent to one of the upper and lower sides of the metal plate 3b. It may be configured to be able to slide horizontally relative to the resin plate 3a adjacent to both. in this case, It is desirable to chamfer the corners of the outer peripheral surface and the upper and lower surfaces of the metal plate 3b. In the first embodiment, the upper and lower resin plates 3a provided at the uppermost and lowermost portions of the support 3 are configured to be slidable relative to the upper plate 1 and the lower plate 2, respectively. However, as shown in FIG. 4, the two resin plates 3a may be fixedly joined to the lower surface of the upper plate 1 and the upper surface of the lower plate 2 respectively. In this way, it is ensured that both the uppermost and lowermost resin plates 3a of the support 3 abut on the connection portions of the rubber member 8 with the upper plate 1 and the ring member 6, and the rubber member 8 is damaged. Can be prevented. In this case, the uppermost and lowermost resin plates 3a of the support 3 are used alone without being fixed to the metal plate 3b, and the resin plate 3a at the center in the vertical direction has metal What is necessary is just to use it in the state which fixed board 3b. Also, if the connection between the upper plate 1 and the rubber member 8 is made via the ring member 6 as in the case of the lower plate 2, the seismic isolation device A is made symmetrical with respect to its vertical center line. be able to.
ここで、 実際に上記実施形態 1と同様の免震装置 Aを作製してその免震効果を調べ た。 すなわち、 樹脂板 3 aをナイロン樹脂製とし、 金属板 3 bをステンレス鋼製とし て上記実施形態 1と同じ構成の支持体 3を作製し、 この支持体 3を用いて 4つの免震 装置 Aを作製した。 この各免震装置 Aを、 図 5に示すように、 個人住宅における上部 構造物 2 1の四隅に位置する各柱 2 2と基礎 2 3との間にそれそれ設けた。 この基礎 2 3は、 試験のために複数のコ口上に設置されていて、 この基礎 2 3に対して水平方 向に振動を加えて揺らすことが可能とされている。 尚、 上記各免震装置 Aの水平方向 の摩擦係数は 0 . 1であり、 水平方向ばね定数は 4 . 4 X 1 (VN/mであった。 また、 上部構造物 2 1の質量は、 一般の木造住宅と略同じ 4 0 tとした。  Here, a seismic isolation device A similar to that of the first embodiment was actually manufactured and its seismic isolation effect was examined. That is, the resin plate 3 a is made of nylon resin, and the metal plate 3 b is made of stainless steel to produce a support 3 having the same configuration as that of the first embodiment. Was prepared. As shown in Fig. 5, each seismic isolation device A was provided between each pillar 22 located at the four corners of the upper structure 21 of the private house and the foundation 23. The foundation 23 is installed on a plurality of openings for testing, and it is possible to shake the foundation 23 by applying vibration in a horizontal direction. The horizontal friction coefficient of each of the seismic isolation devices A was 0.1, and the horizontal spring constant was 4.4 X 1 (VN / m. The mass of the upper structure 21 was 40 t, almost the same as ordinary wooden houses.
そして、 上記基礎 2 3に対して水平方向に地震波を入力して上部構造物 2 1の振動 減衰効果を調べた。 この結果、 上部構造物 2 1の水平方向の最大加速度は入力波の約 1 / 5に低減し、 最大水平変位は約 1 5 c m以下となり、 免震効果が十分に発揮され ていることが確認された。  Then, a seismic wave was input in the horizontal direction to the foundation 23, and the vibration damping effect of the upper structure 21 was examined. As a result, the maximum horizontal acceleration of the superstructure 21 was reduced to about 1/5 of the input wave, the maximum horizontal displacement was about 15 cm or less, and it was confirmed that the seismic isolation effect was sufficiently exhibited. Was done.
実施形態 2  Embodiment 2
図 6は本発明の実施形態 2を示し (尚、 図 1と同じ部分については同じ符号を付し てその詳細な説明は省略する) 、 上記実施形態 1において互いに接合固定した樹脂板 3 aと金属板 3 bとの間に円形の弾性シ一ト部材 3 cを介装したものである。 FIG. 6 shows a second embodiment of the present invention (note that the same parts as those in FIG. However, a detailed description thereof is omitted), but a circular elastic sheet member 3c is interposed between the resin plate 3a and the metal plate 3b that are joined and fixed to each other in the first embodiment.
すなわち、 この実施形態 2では、 支持体 3は、 該支持体 3の金属板 3 bと該金属板 3 bの上側及び下側のいずれか一方に隣接する樹脂板 3 aとが地震発生時に相対的に 水平方向に摺動し得るように構成され、 この支持体 3の金属板 3 bと該金属板 3 bの 他方に隣接する樹脂板 3 aとの間に、 金属板 3 bと略同径の弾性シート部材 3 cが介 装されている。 この弾性シート部材 3 cは、 合成ゴム、 天然ゴム、 低弾性の熱可塑性 樹脂等からなっていて、 厚さは 1〜1 0 mmに設定されている。 そして、 弾性シート 部材 3 cは、 その上下両側の樹脂板 3 a及び金属板 3 bに接着剤 (エポキシ系ゃシァ ン系等) により固着されて、 該樹脂板 3 a及び金属板 3 bと共に一体化されている。 尚、 支持体 3の最上部及び最下部に配設された両樹脂板 3 aは、 この実施形態 2では、 上板 1の下面及び下板 2の上面にそれそれ接合固定されている (上記実施形態 1のよ うに摺動可能にしてもよい) 。  That is, in the second embodiment, the support 3 is configured such that the metal plate 3 b of the support 3 and the resin plate 3 a adjacent to one of the upper side and the lower side of the metal plate 3 b are relative to each other when an earthquake occurs. The metal plate 3b of the support 3 and a resin plate 3a adjacent to the other of the metal plate 3b are substantially the same as the metal plate 3b. An elastic sheet member 3c having a diameter is interposed. The elastic sheet member 3c is made of synthetic rubber, natural rubber, low elasticity thermoplastic resin, or the like, and has a thickness of 1 to 10 mm. Then, the elastic sheet member 3c is fixed to the resin plate 3a and the metal plate 3b on both the upper and lower sides thereof with an adhesive (epoxy resin, etc.), and together with the resin plate 3a and the metal plate 3b. It is integrated. In the second embodiment, the two resin plates 3a provided at the uppermost and lowermost portions of the support 3 are respectively fixed to the lower surface of the upper plate 1 and the upper surface of the lower plate 2 (see above). It may be slidable as in the first embodiment).
上記免震装置 Aを上部構造物と基礎との間に設けておけば、 地震発生時には、 上記 実施形態 1と同様に、 図 7に示すように、 樹脂板 3 a及び金属板 3 bがゴム部材 8に 沿うように上側に位置するほど下板 2に対して大きく水平方向に摺動し、 上部構造物 の水平揺れを抑える。 そして、 地震発生直後において樹脂板 3 a及び金属板 3 bの摺 動面同士が静止状態にあるときには、 図 8に示すように、 弾性シート部材 3 cが水平 方向にせん断変形するので、 樹脂板 3 aと金属板 3 bとが摺動しなくても、 この弾性 シート部材 3 cのせん断変形により上板 1が下板 2に対して相対的に水平方向に僅か に移動することとなり、 上記摺動面同士が動摩擦状態に移行しても上板 1に大きな加 速度変化が生じるのを抑制することができる。 すなわち、 弾性シート部材 3 cが無い 場合、 静止摩擦力による静止状態から動摩擦状態へ移行したときに上板 1が下板 2に 対して急激に動き出すために、 上板 1に大きな加速度変化が生じる。 この上板 1の加 速度変化は、 地震動の加速度変化よりもかなり小さいため、 上部構造物の一階部分で は免震装置 Aによる免震効果が十分に得られるものの、 上部階ほど上記上板 1の加速 度変化を受けて水平振動加速度が大きくなり、 免震装置 Aによる振動低減効果が低下 する傾向にある。 このような傾向は、 特に木造住宅等のように 2階建て又は 3階建て の軽量建築物において顕著になる。 しかし、 この実施形態 2では、 上記上板 1の加速 度変化を弾性シート部材 3 cによって抑えるので、 上部階においても良好な免震効果 が得られる。 If the seismic isolation device A is provided between the upper structure and the foundation, the resin plate 3a and the metal plate 3b are made of rubber when an earthquake occurs, as shown in FIG. As it is positioned higher along the member 8, it slides more horizontally with respect to the lower plate 2, thereby suppressing the horizontal vibration of the upper structure. When the sliding surfaces of the resin plate 3a and the metal plate 3b are in a stationary state immediately after the occurrence of the earthquake, as shown in FIG. 8, the elastic sheet member 3c undergoes shear deformation in the horizontal direction. Even if 3a and the metal plate 3b do not slide, the upper plate 1 moves slightly in the horizontal direction relatively to the lower plate 2 due to the shear deformation of the elastic sheet member 3c. Even when the sliding surfaces shift to a state of dynamic friction, it is possible to suppress the occurrence of a large acceleration change in the upper plate 1. That is, when the elastic sheet member 3c is not provided, the upper plate 1 rapidly moves relative to the lower plate 2 when the static state is changed from the stationary state due to the static frictional force to the dynamic friction state, so that a large acceleration change occurs in the upper plate 1. . Since the change in acceleration of the upper plate 1 is much smaller than the change in acceleration of the seismic motion, the seismic isolation effect of the seismic isolation device A can be sufficiently obtained on the first floor of the upper structure. The horizontal vibration acceleration increases due to the change in the acceleration of 1 and the vibration reduction effect of the seismic isolation device A decreases. Tend to. This tendency is particularly noticeable in light-weight two- or three-story buildings such as wooden houses. However, in the second embodiment, since the change in the acceleration of the upper plate 1 is suppressed by the elastic sheet member 3c, a good seismic isolation effect can be obtained even on the upper floor.
ここで、 上記実施形態 2の免震装置 Aを総重量 1 . 9 6 M Nの 2階建ての上部構造 物と基礎との間に設けた場合を想定して振動解析を行い、 各階の振動加速度を調べた。 尚、 弾性シート部材 3 cの効果を調べるために上記実施形態 1と同様のもの (支持体 3が弾性シート部材 3 cを有していないこと以外は上記実施形態 2と同じもの) につ いても振動解析を行った。  Here, vibration analysis was performed assuming that the seismic isolation device A of Embodiment 2 was installed between a two-story superstructure having a total weight of 1.96 MN and the foundation, and the vibration acceleration of each floor was measured. Was examined. In order to examine the effect of the elastic sheet member 3c, the same thing as in the first embodiment (the same as the second embodiment except that the support 3 does not have the elastic sheet member 3c) is described. We also performed vibration analysis.
このとき、 上記免震装置 Aを設けた上部構造物と基礎との間における免震層の水平 せん断特性の固有周期を 2 . 7秒とし、 等価剛性を 0 . 9 8 MN/mとした。 そして、 ヒステリシスループを、 図 9に示すように、 平行四辺形で表すとしたとき、 水平変位 軸方向に対向する二辺の傾き (一次剛性という) は、 弾性シート部材 3 cの有無によ り異ならせ、 水平荷重軸方向に対向する二辺の傾き (二次剛性という) は共に 0 . 5 7 MN/mにした。 具体的には、 上記一次剛性は、 二次剛性の一次剛性に対する比が、 弾性シート部材 3 cが有る場合には 0 . 3になるように設定し、 弹性シート部材 3 c が無い場合 (図 9に破線で示す) には◦. 1 1 7になるように設定した。 つまり、 一 次剛性は、 弾性シート部材 3 cが有る場合には 1 . 8 9 M N/mにし、 弾性シート部 材 3 cが無い場合には 4 . 8 6にした。 そして、 地震波形 (振動加速度 5 0 0 c m/ s 2 ) を入力して各階での水平方向の振動加速度を算出した。 At this time, the natural period of the horizontal shear characteristic of the seismic isolation layer between the superstructure equipped with the seismic isolation device A and the foundation was 2.7 seconds, and the equivalent rigidity was 0.98 MN / m. Then, assuming that the hysteresis loop is represented by a parallelogram as shown in FIG. 9, the horizontal displacement (the primary rigidity) of the two sides facing each other in the axial direction depends on the presence or absence of the elastic sheet member 3c. The inclination of the two sides facing each other in the horizontal load axis direction (secondary rigidity) was set to 0.57 MN / m. Specifically, the primary stiffness is set so that the ratio of the secondary stiffness to the primary stiffness is 0.3 when the elastic sheet member 3c is provided, and is set when the elastic sheet member 3c is not provided (see FIG. (Indicated by a broken line in Fig. 9). That is, the primary stiffness was set to 1.89 MN / m when there was the elastic sheet member 3c, and 4.86 when there was no elastic sheet member 3c. Then, the earthquake waveform (vibration acceleration of 500 cm / s 2 ) was input and the horizontal vibration acceleration at each floor was calculated.
上記振動解析の結果、 各階の振動加速度は図 1 0のようになった。 すなわち、 弾性 シート部材 3 cが無い場合には、 一階での振動低減効果は良好であるものの、 二階天 井部分では加速度が一階床部分に対して 1 . 5 8倍とかなり大きくなる。 これに対し、 弾性シート部材 3 cが有る場合には、 一階での振動低減効果は弾性シート部材 3 cが 無い場合よりも僅かに劣るものの、 二階天井部分の一階床部分に対する加速度比は 1 - 1 9となり、 弾性シート部材 3 cを設けることにより上部階における免震効果の低下 を抑制できることが判る。 尚、 上記実施形態 2では、 支持体 3の弹性シート部材 3 cを、 接着剤によりその上 下両側の樹脂板 3 a及び金属板 3 bに固着して三者を一体化したが、 弾性シート部材 3 cを樹脂板 3 a及び金属板 3 bに対して単に接触させるだけであってもよい。 この 場合、 樹脂板 3 aと弾性シ一ト部材 3 cとの間及び金属板 3 bと弾性シート部材 3 c との間の各静止摩擦係数が共に樹脂板 3 aと金属板 3 bとの間の静止摩擦係数よりも 十分に大きく、 上記三者は接着剤を用いないでも静止摩擦力のみで実質的に一体化し た状態になる。 As a result of the above vibration analysis, the vibration acceleration of each floor was as shown in Fig. 10. That is, when the elastic sheet member 3c is not provided, the vibration reduction effect on the first floor is good, but the acceleration in the second floor ceiling is considerably larger than the first floor by 1.58 times. On the other hand, when the elastic sheet member 3c is provided, the vibration reduction effect on the first floor is slightly inferior to the case without the elastic sheet member 3c, but the acceleration ratio of the second floor ceiling portion to the first floor portion is smaller. From 1 to 19, it can be seen that the provision of the elastic sheet member 3c can suppress the deterioration of the seismic isolation effect on the upper floor. In the second embodiment, the flexible sheet member 3c of the support 3 is fixed to the resin plate 3a and the metal plate 3b on both the upper and lower sides by an adhesive to integrate the three members. The member 3c may be simply brought into contact with the resin plate 3a and the metal plate 3b. In this case, each coefficient of static friction between the resin plate 3a and the elastic sheet member 3c and between the metal plate 3b and the elastic sheet member 3c is the same as that of the resin plate 3a and the metal plate 3b. The coefficient of static friction is sufficiently larger than the static friction coefficient between them, and the above three members are substantially integrated only by the static friction force without using an adhesive.
また、 上記実施形態 1, 2では、 支持体 3の最上部及び最下部に樹脂板 3 aをそれ それ設けたが、 支持体 3の最上部及び最下部が必ずしも樹脂板 3 aである必要はなく、 最上部及び最下部に金属板 3 bをそれそれ配設してもよい。 また、 樹脂板 3 a及び金 属板 3 bの外径は全て略同じになるようにしてもよい。 この場合、 金属板 3 bの外周 面と上下面との各角部にも面取りを施すようにすることが望ましい。  In the first and second embodiments, the resin plates 3 a are provided at the uppermost and lowermost portions of the support 3. However, the uppermost and lowermost portions of the support 3 do not necessarily have to be the resin plates 3 a. Instead, metal plates 3b may be provided at the top and bottom, respectively. Further, the outer diameters of the resin plate 3a and the metal plate 3b may all be substantially the same. In this case, it is desirable to chamfer the corners of the outer peripheral surface and the upper and lower surfaces of the metal plate 3b.
さらに、 上記実施形態 1, 2では、 樹脂板 3 aを潤滑性樹脂製とし、 金属板 3 bを ステンレス鋼製としたが、 互いに摺動可能な樹脂板 3 a及び金属板 3 b間の動摩擦係 数を 0 . 0 3〜0 . 2に設定できれば、 他の樹脂や金属を用いてもよい。  Further, in the first and second embodiments, the resin plate 3a is made of a lubricating resin and the metal plate 3b is made of stainless steel. However, the kinetic friction between the resin plate 3a and the metal plate 3b which can slide with each other is described. Other resins and metals may be used as long as the coefficient can be set to 0.3 to 0.2.
また、 上記実施形態 1, 2では、 上板 1及び下板 2並びに支持体 3の樹脂板 3 a及 び金属板 3 bを円形に形成したが、 これらを多角形状に形成してもよい。 但し、 この 場合には、 その樹脂板 3 a及び金属板 3 bの外周面における多角形の角部は面取りを 施しておくことが望ましい。  In the first and second embodiments, the upper plate 1, the lower plate 2, and the resin plate 3a and the metal plate 3b of the support 3 are formed in a circular shape, but they may be formed in a polygonal shape. However, in this case, it is desirable to chamfer the corners of the polygon on the outer peripheral surfaces of the resin plate 3a and the metal plate 3b.
加えて、 上記実施形態 1 , 2では、 弾性体として樹脂板 3 aと金属板 3 bとからな る支持体 3を内包する円筒状のゴム部材 8を用いたが、 例えば複数のコイルばねを周 方向に略等間隔をあけて配置することも可能である。 また、 弾性体を、 図 1 1に示す ように (図 1 1では支持体 3は実施形態 2と同じにしているが、 実施形態 1と同じに してもよい) 、 複数の弾性ゴム層 1 5 aと鋼板等からなる剛性板層 1 5 bとが上下方 向に交互に積層された円筒状の積層体 1 5で構成してもよい。 こうすれば、 上板 1が 下板 2に対して相対的に水平方向に摺動したときに、 上記弾性ゴム層 1 5 aがせん断 変形してせん断力が発生し、 このせん断力が復元力となる。 この場合、 積層体 1 5の 弾性ゴム層 1 5 aに発生するせん断力と上板 1及び下板 2の相対摺動量との関係は、 上記実施形態におけるゴム部材 8に生じる引張力と上板 1及び下板 2の相対摺動量と の関係に比べて線形に近く、 扱い易いものとなる。 さらに、 上記積層体 1 5と同様に 弾性ゴム層 1 5と剛性板層 1 5とを積層したものであって積層体 1 5の厚み (内外径 の差) と略同じ程度のかなり小さい径で円柱状に形成したものを複数用意して、 これ ら円柱状の積層体を上板 1及び下板 2の外周部において周方向に略等間隔をあけて配 置するようにしてもよい。 産業上の利用可能性 In addition, in the first and second embodiments, the cylindrical rubber member 8 including the support body 3 composed of the resin plate 3a and the metal plate 3b is used as the elastic body. It is also possible to arrange them at substantially equal intervals in the circumferential direction. Also, as shown in FIG. 11 (in FIG. 11, the support 3 is the same as that of the second embodiment, the elastic body may be the same as that of the first embodiment). A cylindrical laminated body 15 in which 5a and rigid plate layers 15b made of a steel plate or the like are alternately laminated in an upward and downward direction may be used. In this way, when the upper plate 1 slides relative to the lower plate 2 in the horizontal direction, the elastic rubber layer 15a is sheared and deformed to generate a shear force, and this shear force is a restoring force. Becomes In this case, the laminate 15 The relationship between the shear force generated in the elastic rubber layer 15a and the relative sliding amount of the upper plate 1 and the lower plate 2 is determined by the tensile force generated in the rubber member 8 and the relative sliding amount of the upper plate 1 and the lower plate 2 in the above embodiment. Compared to the relationship with the momentum, it is closer to linear and easier to handle. Further, the elastic rubber layer 15 and the rigid plate layer 15 are laminated in the same manner as the above-mentioned laminated body 15, and the diameter of the laminated body 15 is substantially smaller than the thickness (difference in inner and outer diameters). A plurality of columnar members may be prepared, and these columnar laminates may be arranged on the outer peripheral portions of the upper plate 1 and the lower plate 2 at substantially equal intervals in the circumferential direction. Industrial applicability
本発明の免震装置は、 建築物等の上部構造物と基礎との間に設けられ、 地震に対す る該上部構造物の揺れを抑えるものとして有用であり、 特に小型で優れた免震効果を 発揮する点で産業上の利用可能性は高い。  INDUSTRIAL APPLICABILITY The seismic isolation device of the present invention is provided between an upper structure such as a building and a foundation, and is useful as a device for suppressing the shaking of the upper structure due to an earthquake. The industrial applicability is high in that it exhibits

Claims

言青求の範囲 Scope of word blue
1 . 上部構造物と連結される上板と、 該上板の下側に対向して設けられ、 基礎と連 結される下板と、 上記上板及び下板間における外周部以外の部分に設けられ、 該上板 を下板に対して相対的に水平方向に摺動可能に支持する支持体と、 上記上板及び下板 の外周部の少なくとも一部同士を弹性的に接続して、 該上板が下板に対して相対的に 水平方向に摺動したときに変形する弾性体とを備え、 地震に対する上記上部構造物の 揺れを抑えるようにした免震装置であって、 1. An upper plate connected to the upper structure, a lower plate provided facing the lower side of the upper plate and connected to the foundation, and a portion other than the outer peripheral portion between the upper plate and the lower plate. A support that slidably supports the upper plate relative to the lower plate in a horizontal direction relative to the lower plate, and at least a part of the outer peripheral portions of the upper plate and the lower plate are sexually connected to each other; An elastic body that is deformed when the upper plate slides relative to the lower plate in a horizontal direction, wherein the seismic isolation device suppresses the shaking of the upper structure due to an earthquake,
上記支持体は、 複数の樹脂板と金属板とが上下方向に交互に積層されてなり、 上記 金属板と該金属板の上側及び下側の少なくとも一方に隣接する樹脂板とが地震発生時 に相対的に水平方向に摺動し得るように構成されている免震装置。  The support is formed by alternately stacking a plurality of resin plates and metal plates in the vertical direction, and the metal plate and the resin plate adjacent to at least one of the upper side and the lower side of the metal plate when the earthquake occurs. A seismic isolation device configured to be relatively horizontally slidable.
2 . 支持体は、 該支持体の金属板と該金属板の上側及び下側のいずれか一方に隣接 する樹脂板とが地震発生時に相対的に水平方向に摺動し得るように構成され、 2. The support is configured such that a metal plate of the support and a resin plate adjacent to one of the upper side and the lower side of the metal plate can relatively slide horizontally in the event of an earthquake,
上記支持体の金属板と該金属板の他方に隣接する樹脂板との間に弾性シート部材が 介装されている請求項 1記載の免震装置。  The seismic isolation device according to claim 1, wherein an elastic sheet member is interposed between the metal plate of the support and a resin plate adjacent to the other of the metal plates.
3 . 支持体の弾性シート部材は、 その上下両側の樹脂板及び金属板に固着され、 上記金属板の外径が、 上記樹脂板よりも小さく設定されている請求項 2記載の免震  3. The seismic isolation according to claim 2, wherein the elastic sheet member of the support is fixed to a resin plate and a metal plate on both upper and lower sides thereof, and an outer diameter of the metal plate is set smaller than that of the resin plate.
4 . 支持体における樹脂板の外周面と上下面との各角部に、 面取りが施されている 請求項 3記載の免震装置。 4. The seismic isolation device according to claim 3, wherein each corner of the outer peripheral surface and the upper and lower surfaces of the resin plate in the support is chamfered.
5 . 支持体において地震発生時に互いに水平方向に摺動し得る樹脂板及び金属板間 の動摩擦係数が、 0 . 0 3〜0 . 2に設定されている請求項 1又は 2記載の免震装置 c 5. The seismic isolation device according to claim 1 or 2, wherein a coefficient of kinetic friction between the resin plate and the metal plate, which can slide in a horizontal direction when an earthquake occurs in the support, is set to 0.03 to 0.2. c
6 . 弾性体は、 上板及び下板の外周部全周同士を接続しかつ支持体を全周に亘つて 覆う筒状のゴム部材からなる請求項 1又は 2記載の免震装置。 6. The seismic isolation device according to claim 1 or 2, wherein the elastic body is a cylindrical rubber member that connects the entire outer periphery of the upper plate and the lower plate and covers the support over the entire periphery.
7 . 支持体の最上部及び最下部に、 樹脂板がそれそれ配設され、  7. At the top and bottom of the support, resin plates are respectively arranged,
上記両樹脂板の外径が他の樹脂板よりも小さく設定されている請求項 6記載の免震 7. The seismic isolation device according to claim 6, wherein the outer diameters of the two resin plates are set smaller than the other resin plates.
8 . 支持体の最上部及び最下部に配設された両樹脂板が、 上板の下面及び下板の上 面にそれそれ固着されている請求項 7記載の免震装置。 8. The seismic isolation device according to claim 7, wherein the two resin plates disposed at the uppermost portion and the lowermost portion of the support are respectively fixed to the lower surface of the upper plate and the upper surface of the lower plate.
PCT/JP1999/006638 1998-11-26 1999-11-26 Seismic isolation device WO2000031436A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10/335163 1998-11-26
JP33516398A JP3187018B2 (en) 1998-11-26 1998-11-26 Seismic isolation device
JP25252699A JP2001074094A (en) 1999-09-07 1999-09-07 Base isolation device
JP11/252526 1999-09-07

Publications (1)

Publication Number Publication Date
WO2000031436A1 true WO2000031436A1 (en) 2000-06-02

Family

ID=26540761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006638 WO2000031436A1 (en) 1998-11-26 1999-11-26 Seismic isolation device

Country Status (2)

Country Link
TW (1) TW436563B (en)
WO (1) WO2000031436A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023001A1 (en) * 2002-09-02 2004-03-18 Komatsu Ltd. Vibration damping device and bucket for construction machine
CN103573894A (en) * 2012-08-03 2014-02-12 上海微电子装备有限公司 Vibration reduction device
US20170159287A1 (en) * 2015-12-07 2017-06-08 Chong-Shien Tsai Friction-damping energy absorber
CN110629898A (en) * 2019-09-19 2019-12-31 西安建筑科技大学 Column bottom damper and corrugated web semi-wrapped column based on same
CN110965463A (en) * 2019-12-19 2020-04-07 安徽微威减震降噪技术研究院 Rubber shock insulation support

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI494783B (en) * 2014-03-31 2015-08-01 Univ Kun Shan Vibration analysis system for composite sheet with flexible foundation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123350A (en) * 1981-01-21 1982-07-31 Okumura Corp Earthquake resistant support apparatus of structure
JPS63102806U (en) * 1986-12-24 1988-07-04
JPH01268906A (en) * 1988-04-21 1989-10-26 Yuichi Aida Slide forcing-type structure rubber bearing device and structure rubber bearing and setting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123350A (en) * 1981-01-21 1982-07-31 Okumura Corp Earthquake resistant support apparatus of structure
JPS63102806U (en) * 1986-12-24 1988-07-04
JPH01268906A (en) * 1988-04-21 1989-10-26 Yuichi Aida Slide forcing-type structure rubber bearing device and structure rubber bearing and setting method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023001A1 (en) * 2002-09-02 2004-03-18 Komatsu Ltd. Vibration damping device and bucket for construction machine
US7681689B2 (en) 2002-09-02 2010-03-23 Komatsu Ltd. Vibration damping device and bucket for construction machine
US7743881B2 (en) 2002-09-02 2010-06-29 Komatsu Ltd. Vibration damping device and bucket for construction machine
US8438759B2 (en) 2002-09-02 2013-05-14 Komatsu, Ltd. Vibration damping device and bucket for construction machine
CN103573894A (en) * 2012-08-03 2014-02-12 上海微电子装备有限公司 Vibration reduction device
US20170159287A1 (en) * 2015-12-07 2017-06-08 Chong-Shien Tsai Friction-damping energy absorber
US9945116B2 (en) * 2015-12-07 2018-04-17 Chong-Shien Tsai Friction-damping energy absorber
CN110629898A (en) * 2019-09-19 2019-12-31 西安建筑科技大学 Column bottom damper and corrugated web semi-wrapped column based on same
CN110629898B (en) * 2019-09-19 2021-03-30 西安建筑科技大学 Column bottom damper and corrugated web semi-wrapped column based on same
CN110965463A (en) * 2019-12-19 2020-04-07 安徽微威减震降噪技术研究院 Rubber shock insulation support

Also Published As

Publication number Publication date
TW436563B (en) 2001-05-28

Similar Documents

Publication Publication Date Title
KR101353949B1 (en) Earthquake isolation device
JP2002039266A (en) Base isolation device
WO2000031436A1 (en) Seismic isolation device
JP3187018B2 (en) Seismic isolation device
JP2001074094A (en) Base isolation device
JP2000017889A (en) Vibration isolation device
WO2000037823A1 (en) Vibration isolating apparatus
JPH09105440A (en) Base isolation device
JP3326421B2 (en) Seismic isolation device
JPH0434247A (en) Base isolation element
KR970005011B1 (en) Vibration-proof structure
JP2000130506A (en) Three-dimensional base isolation device
JP3562711B2 (en) Sliding bearing for seismic isolation
JPH11294529A (en) Base isolation device
JP2001200891A (en) Base isolation device
JPH09196117A (en) Base isolator
JPH11287054A (en) Base isolation device
JP2000283229A (en) Base isolation device
JP2000297558A (en) Base isolation device
JP2801693B2 (en) Laminated rubber bearing
JPH0520808Y2 (en)
JP2000038857A (en) Vibration isolating device and construction of vibration isolation of lightweight structure equipped with the device
JP2000257670A (en) Base isolation device
JPH0520807Y2 (en)
JP2000257303A (en) Base isolation device and base isolation structure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase