JP4396105B2 - Vertical heat treatment boat and semiconductor wafer heat treatment method - Google Patents

Vertical heat treatment boat and semiconductor wafer heat treatment method Download PDF

Info

Publication number
JP4396105B2
JP4396105B2 JP2003028109A JP2003028109A JP4396105B2 JP 4396105 B2 JP4396105 B2 JP 4396105B2 JP 2003028109 A JP2003028109 A JP 2003028109A JP 2003028109 A JP2003028109 A JP 2003028109A JP 4396105 B2 JP4396105 B2 JP 4396105B2
Authority
JP
Japan
Prior art keywords
heat treatment
support
auxiliary member
boat
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003028109A
Other languages
Japanese (ja)
Other versions
JP2004241545A (en
Inventor
武史 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2003028109A priority Critical patent/JP4396105B2/en
Publication of JP2004241545A publication Critical patent/JP2004241545A/en
Application granted granted Critical
Publication of JP4396105B2 publication Critical patent/JP4396105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主にシリコンウエーハ等を熱処理する際に使用する縦型熱処理用ボートに関する。
【0002】
【従来の技術】
半導体単結晶ウエーハ、例えばシリコンウエーハを用いてデバイスを作製する場合、ウエーハの加工プロセスから素子の形成プロセスまで多数の工程が介在し、その一つに熱処理工程がある。熱処理工程は、ウエーハの表層における無欠陥層の形成、ゲッタリング、結晶化、酸化膜形成、不純物拡散等を目的として行われる重要なプロセスである。
【0003】
このような熱処理工程、例えば、酸化や不純物拡散に用いられる拡散炉(酸化・拡散装置)としては、ウエーハの大口径化に伴い、多数のウエーハを所定の間隔をあけて水平に支持した状態で熱処理を行う縦型の熱処理炉が主に用いられている。そして、縦型熱処理炉を用いてウエーハを熱処理する際には、多数のウエーハをセットするための縦型熱処理用ボート(以下、「熱処理用ボート」又は単に「ボート」という場合がある。)が用いられる。
【0004】
図3は、一般的な縦型熱処理用ボート10の概略を示している。4本の支柱(ロッド)14の両端部に一対の板状部材(連結部材、あるいは天板と底板とも言う)16が連結されている。各支柱14には多数のスリット11が形成され、各スリット11間の凸部がウエーハの支持部12として作用する。ウエーハを熱処理する際には、図4(A)(B)に示したように、各支柱14の同じ高さに形成されている支持部12にウエーハWの外周部を載置することでウエーハWが水平に支持されることになる。
【0005】
図5は、縦型熱処理炉の一例を示す概略図である。熱処理炉20の反応室22の内部に搬入された熱処理用ボート10には多数のウエーハWが水平に支持されている。熱処理の際には、ウエーハWは、反応室22の周囲に設けられたヒータ24によって加熱されることになる。熱処理中、反応室22にはガス導入管26を介してガスが導入され、上方から下方に向かって流れてガス排気管28から外部に排出される。使用するガスは熱処理の目的によって異なるが、主としてH、N、O、Ar等が用いられる。不純物拡散の場合には、これらのガスを不純物化合物ガスのキャリアガスとしても使用する。
【0006】
縦型熱処理用ボート10におけるウエーハ支持部12は種々の形状が採用されており、図6(A)(B)はそれぞれ一例を示している。(A)の方は、円柱形状の支柱14に凹み状のスリット(溝)11を設けることで半円形の支持部12を形成したものである。一方、(B)の方は、(A)のものよりもウエーハWの中心に近い箇所を支持するために幅の広い角柱形状の支柱15に凹み状のスリット11を設けて長方形の支持部13を形成したものである。他にも、スリット形状を円弧状にしたものや、鉤型状にしたものなどもある。
【0007】
また、支柱に比較的大きな板状の支持部(支持板)を設けることでウエーハを安定した状態で支持するもの(特許文献1参照)や、各支持部の上面に段差を設けることで直径の異なるウエーハを支持することができるようにしたもの(特許文献2参照)なども提案されている。
【0008】
ボートの材質に関しては、シリコンウエーハ用としては、ウエーハの汚染を防ぐため、通常、石英(SiO)、炭化珪素(SiC)、シリコン(Si)等の材料が使用されている。例えば、1000℃を超えるような高温熱処理工程では、石英(SiO)製のボートよりも耐熱性が高いSiCやSi製のボートが使用されている。特にSiC製のボートは、Si製のものよりも加工が容易な上、CVD−SiCコートを施すことにより熱処理中に発生する金属汚染をより低減させることができることから多く使用されている。
【0009】
縦型熱処理用ボートを使用すると、特に酸化や不純物拡散等を目的とした高温の熱処理を行う場合、ウエーハの自重による内部応力やウエーハ内温度分布の不均一性による熱歪応力などが生じ、これらの応力がある一定の臨界値を超えると、ウエーハに結晶欠陥であるスリップ(スリップ転位)が発生してしまう。この転位発生の臨界値は高温になると急激に小さくなるため、高温になる程スリップ転位が発生し易くなることが知られている。スリップ転位発生箇所に素子を形成すると、接合リーク等の原因となり、デバイス作製の歩留まりを著しく低下させることがあった。
【0010】
例えば、図6(A)(B)に示したような支持部12,13を形成したボートを用いたとき、支持部12,13の先端と接する箇所にスリップが発生しやすい。これは、ウエーハを水平に保持して高温熱処理を行った場合、ウエーハが自重により撓み、支持部12,13の先端において点接触になりやすくなるためと考えられている。
【0011】
また、特にCVD−SiCコートを施した熱処理用ボートでは、その表面は、Ra(中心線平均粗さ)が1μm程度と非常に粗いため、支持部にウエーハを載置するとウエーハは微小な隆起状部で点接触として支持されることになる。そのため、ウエーハの自重による内部応力が局部的に大きくなり、スリップが発生しやすいと言われている。
【0012】
このようなスリップの発生を防ぐため、支持部の先端を面取りしたり、ウエーハ支持部の表面を研磨することにより隆起状部を除去する等の対策が講じられている。
しかし、熱処理ボートの支持部は薄く脆いため、機械等で面取り加工や研磨加工する際に破損が起こりやすいという問題がある。支持部を1つでも破損すると、ボート全体として不良品となってしまう。そのため、完全な鏡面に研磨するには手作業等で行う必要があるが、各支持部の面粗さにバラツキが出やすい上、全ての支持部を鏡面研磨するには多大な労力を必要とし、非常に高価なボートとなってしまう。
【0013】
また、支持部の表面粗さや先端部の面取りなどの最適形状を確立するためには、様々な表面粗さや面取り形状に設定した種々の熱処理用ボートを作製して数多くの事前実験を行う必要がある。しかし、熱処理ボートは高価なため、多様な熱処理用ボートを揃えて実験することは非常にコストがかかってしまう。
【0014】
一方、スリップの発生を軽減するため、熱処理用ボートの各支柱に形成された溝に円弧状またはリング状の支持部材を設けたものが提案されている(特許文献3参照)。このような熱処理用ボートを用いれば、ウエーハは支持部材と面接触して内部応力等が緩和され、結果的にスリップの発生が軽減されるというものである。
【0015】
しかし、例えばシリコンウエーハは4インチ(100mm)〜12インチ(300mm)までの様々な直径を有するものが製造されており、上記のような円弧状またはリング状の支持部材も各ウエーハの大きさに合わせたものを用意する必要がある。また、円弧状またはリング状の支持部材はかなり大きなものとなるため製造コストが高く、また、熱処理の際にはウエーハとの接触面積が大きくなることからウエーハが汚染され易いという問題もある。
【0016】
【特許文献1】
特開平6−21201号公報
【特許文献2】
特開平5−291166号公報
【特許文献3】
特開平6−260438号公報
【0017】
【発明が解決しようとする課題】
これらの問題に鑑み、本発明は、縦型熱処理装置により半導体ウエーハ等を熱処理する際、スリップ転位や汚染の発生を効果的に防止することができ、しかも、安価であって、改良が容易であり、さらに長期間にわたって使用することができる熱処理ボートを提供することを主な目的とする。
【0018】
【課題を解決するための手段】
前記目的を達成するため、本発明によれば、少なくとも、複数の支柱と、各支柱の両端部に連結した一対の板状部材とを有し、前記各支柱に、被処理物を水平に支持するための支持部が形成されている縦型熱処理用ボートであって、前記各支柱の支持部に、前記被処理物が載置される支持補助部材が着脱可能に装着されているものであることを特徴とする縦型熱処理用ボートが提供される。
【0019】
このような縦型熱処理用ボートであれば、各支持補助部材を、予め機械加工により所望の形状に精度良く加工した上で各支持部に装着することができる。従って、安価にかつ容易に製造することができるので、改良も容易であり、支持補助部材上にシリコンウエーハ等の被処理物を載置して熱処理を行えば、スリップ転位の発生等を効果的に抑制することができる。また、支持補助部材との接触面積を小さくすることができるので、汚染等も効果的に防ぐことができる。
さらに、このような熱処理用ボートを長時間使用して支持補助部材が劣化した場合には、支持補助部材だけを新品のものと交換すればよく、長期間にわたって使用することができる。
【0020】
支持補助部材を各支柱の支持部に着脱可能に装着させる手段に関しては、例えば、支持補助部材の下面にガイド手段が設けられており、該ガイド手段により支持補助部材が支持部に装着されるもの、あるいは支持部と支持補助部材にほぞ加工が施されており、ほぞとほぞ穴により支持補助部材が支持部に装着されるものとすることができる。
【0021】
このようにガイド手段、あるいは、ほぞとほぞ穴により支持補助部材を支持部に装着するようにすれば、支持補助部材を支持部に安定して固定することができる。また、支持補助部材を容易に着脱することができるので、支持補助部材の交換等の際に非常に便利である。
【0022】
また、各支柱の本体に、支持補助部材が嵌め込まれる溝を設けても良い。
支持補助部材を支柱の本体に設けた溝に嵌め込むようにすれば、支持補助部材を、支柱の支持部だけでなく本体に対しても位置決めすることができ、一層安定させることができる。従って、ウエーハを支持補助部材に載置したり、離脱させるときに支持補助部材の位置がずれるのを防ぐことができる。
【0023】
また、支持補助部材の上面に鏡面研磨加工が施されていることが好ましく、また、支持補助部材の上面側の外縁部に面取り加工が施されていることが好ましい。
このように鏡面研磨加工や面取り加工が施された支持補助部材とすれば、熱処理するシリコンウエーハ等のスリップ転位の発生を一層効果的に防止することができる。
【0024】
前記支持補助部材の少なくとも表面の材質が、SiO、SiCまたはSiであることが好ましい。
支持補助部材の表面を上記のようなシリコンベースの材質とすれば、特にシリコンウエーハの熱処理の際に好適に使用することができる。
【0025】
さらに、本発明では、半導体ウエーハを熱処理する方法であって、前記本発明の熱処理用ボートを用い、前記各支柱の支持部に装着されている支持補助部材上に前記半導体ウエーハを載置して熱処理を行うことを特徴とする半導体ウエーハの熱処理方法が提供される。
【0026】
支持補助部材を半導体ウエーハを汚染しない材質で構成し、支持部に装着した支持補助部材上に半導体ウエーハを載置して熱処理を行えば、ウエーハのスリップ転位や金属汚染の発生を効果的に防ぐことができる。また、長時間(長期間)の熱処理により支持補助部材が劣化した場合には、支持補助部材のみを新品に交換すれば良いので、結果的に熱処理のコストを低く抑えて高品質の半導体ウエーハを製造することができる。
【0027】
特に、シリコンウエーハは汎用性が高いが、スリップ転位が入り易いため、これを抑えることが重要である。そこで、本発明に係る熱処理用ボートを用いてシリコンウエーハの熱処理を行えば、スリップ転位の発生を抑制するとともに、熱処理のコストを低減させることができる。
【0028】
【発明の実施の形態】
以下、本発明に係る熱処理用ボートと、これを用いたシリコンウエーハの熱処理について図面を参照しながら具体的に説明する。
図1は、本発明の縦型熱処理用ボートにおける支柱の支持部と支持補助部材の組み合わせの一例を示している。この熱処理用ボート1は、4本の支柱4(1本のみ図示)と、各支柱4の両端部に連結した一対の板状部材(図示せず)とを有している。各支柱4には、それぞれ同じ高さの位置に多数のスリット(第1の溝)7が等間隔で形成されており、スリット7間の凸部がウエーハの支持部2として作用する。そして、この熱処理用ボート1では、各支柱4の支持部2に支持補助部材3が着脱可能に装着される。シリコンウエーハを熱処理する際には、各支柱4の同じ高さの支持部2に装着した支持補助部材3上にウエーハを載置することによりウエーハを水平に支持することができる。
【0029】
支持補助部材3についてさらに詳しく説明する。支持補助部材3の下面には、図1(B)に見られるように、支持部2の上面の形状(長方形)に合致したガイド手段5が設けられている。このようなガイド手段5により支持補助部材3が支持部2に対して位置決めされて装着することができる。
また、支柱本体には、支持部2の上面側に支持補助部材3の厚さに相当する溝(第2の溝)6が設けられている。従って、支持補助部材3を、ガイド手段5により支持部2に合わせるとともに支柱本体の溝6に嵌め込むことにより、支柱4の支持部2だけでなく本体に対しても位置決めされ、安定して装着することができる。
【0030】
なお、ウエーハを支持補助部材3上に載置して熱処理した後、アンロードする際、支持補助部材3とウエーハとが弱い力で貼りついてしまうことがある。しかし、支持補助部材3を支柱本体に設けた溝6に嵌め込んで装着しておけば、熱処理後、ウエーハが支持補助部材3に弱く貼り付いたとしても、アンロードの際にウエーハを支持補助部材3から容易に引き離すことができる。また、支持補助部材3の位置がずれるようなことがなく、位置の修正等の必要がなくなる。
【0031】
一方、例えば、支持補助部材3のガイド手段5とウエーハ支持部2との間に遊びを設けて支持補助部材3が多少可動できるようにしても良い。熱処理中、ウエーハが熱膨張したときにウエーハ支持部2との摩擦で微小なキズが発生するおそれがある。このような傷はデバイス作製時の露光工程などに影響する場合がある。そこで、支持補助部材3に可動性を与えておけば、ウエーハと支持補助部材3との摩擦が低減され、ウエーハの裏面におけるキズの発生を防ぐことができる。
【0032】
図2は、支持部と支持補助部材の他の組み合わせを示したものである。この熱処理用ボート1′では、支持部2′と支持補助部材3′にほぞ加工が施されており、支持部2′の両サイドには凹状の穴(ほぞ穴)8が、支持補助部材3′の下面側には支持部2′のほぞ穴8に合致する凸状のほぞ9がそれぞれ形成されている。このように支持部2′と支持補助部材3′にそれぞれ形成したほぞ穴8とほぞ9により支持補助部材3′を支持部2′に装着することができる。なお、支持部2′にほぞ9を形成し、支持補助部材3′にほぞ穴8を形成して装着するようにしても良い。また、図1のものと同様に、支柱本体には支持補助部材3′が嵌め込まれる溝6が形成されており、支持部2′に確実に固定することができる。
【0033】
なお、支持補助部材の装着手段としては、図1及び図2に示したような機械的手段に限定されず、例えば、熱処理条件に影響を受けず、特定の溶剤で容易に取り外すことができるような接着剤等を用いて支持補助部材を支持部に接着させても良い。
【0034】
支持補助部材3,3′の材質に関しては、被処理物の材質に応じて適宜決めれば良い。シリコンウエーハの熱処理に使用する場合には、少なくとも表面の材質をSiO、SiCまたはSiとすれば、熱処理中の汚染を効果的に防ぐことができる。
【0035】
また、支持補助部材3,3′の上面は鏡面研磨加工が施されていることが好ましい。ウエーハを熱処理する際、熱処理用ボートの支持部2,2′に装着した支持補助部材3,3′上にウエーハを載置するため、ウエーハの下面の外周部が支持補助部材3,3′の上面と接することになる。従って、支持補助部材3,3′の上面の表面粗さが大きいと、ウエーハと支持補助部材3,3′とが点接触となり、接点に応力が集中して熱処理中にスリップ転位を引き起こすおそれがある。そこで、支持補助部材3,3′の少なくとも上面が鏡面研磨されていれば、ウエーハに対する応力集中を緩和し、スリップ転位の発生を効果的に防ぐことができる。
【0036】
また、ウエーハを支持補助部材3,3′上に載置したとき、ウエーハは自重によってわずかに撓むことなどから、支持補助部材3,3′の外縁部と接する部分に応力が集中してスリップ転位が生じるおそれがある。従って、支持補助部材3,3′の上面側の外縁部に面取り加工を施しておくことで、スリップ転位の発生を一層効果的に防ぐことができる。
【0037】
なお、前記したように、従来の熱処理用ボートで研磨加工や面取り加工を施す場合、支持部が脆く、また、支柱に形成された細かい溝の間に加工(研磨加工や面取り加工)を施す必要があることなどから機械加工が困難であった。しかし、本発明の熱処理用ボートでは、支持補助部材3,3′は支柱4とは別に製造されるため、外段取りで個々に機械加工を施すことができる。例えば、図1及び図2に示したように、支持補助部材3,3′の先端部を楕円形に近い形状とし、ウエーハと接触する側の面を研磨装置により平滑化し、さらに角部分を面取り装置により面取り加工を施すことができる。
【0038】
このような機械加工により種々の形態の支持補助部材を容易に作製することができるため、支持補助部材を、熱処理条件、熱処理装置、支柱の形態等に応じ、適宜好ましい形状等に設定することができる。従って、従来のように事前の実験等において熱処理ボート全体を作製する必要がなく、好ましい形態の熱処理用ボートを安価にかつ迅速に作製し、熱処理条件等にあった最適状態の確認(実験)を事前に実施することができる。
【0039】
また、ウエーハを支持する面の表面粗さや面取り形状の水準を容易に変更でき、熱処理条件毎にスリップの発生し難い支持補助部材3,3′を準備することができる。また支持補助部材3,3′の交換が容易であり、スリップの発生しやすい部分のみ形状を変えること等も可能である。
【0040】
本発明の熱処理用ボートを用いてシリコンウエーハの熱処理を行うには、各支柱4の同じ高さの支持部2に装着した支持補助部材3上にシリコンウエーハを載置する。これによりシリコンウエーハは、下面の外周4ヶ所が支持補助部材3と接して水平に支持される。同様にして複数枚のシリコンウエーハを各支持補助部材3を介して水平に支持した後、図5に示されるように、熱処理用ボート1,1′を熱処理炉内に導入し、炉内にガスを供給しながら熱処理を行えば良い。
【0041】
なお、本発明の熱処理用ボートは、高温で熱処理を行なう場合に特に有効である。高温では熱処理用ボートの劣化が早く、早い段階でスリップ転位の発生が見られるが、本発明の熱処理用ボートでは、支持補助部材を交換すればウエーハを支持する部分が新しいものとなり、スリップ転位の発生を防ぐことができる。
【0042】
【実施例】
以下、本発明の実施例及び比較例について説明する。
(実施例)
熱処理するウエーハとして、いわゆるCZ(Czochralski)法で育成され、面方位(100)、直径200mm、厚さ725μmの鏡面研磨されたシリコンウエーハを用意した。
熱処理用ボートは、4本の角柱状の支柱を有し、各支柱の支持部に、図1に示したようなガイドを設けた支持補助部材を装着したものを用意した。熱処理用ボート本体(支柱及び板状部材)の材質はSiCであり、表面にはCVD−SiCコートを施して表面粗さをRa=1μm程度としたものである。また、支持補助部材もSiC製とした。
【0043】
なお、支持補助部材については、予め種々の表面粗さと面取り形態のものを作製してウエーハの熱処理試験を行い、最もスリップの発生が少なかった形態のものを選択した。具体的には、ウエーハと接触する上面部分を鏡面研磨によりRa=0.1μm程度に平滑化し、また、上面側の外縁部をR10で面取りし、先端部は図1に見られるような楕円形状としたものが最適であった。このような形態の支持補助部材を、各支柱の全ての支持部に装着した。
【0044】
このような熱処理用ボートを用い、各支柱の支持部に装着した支持補助部材上に上述のシリコンウエーハを水平に載置し、図5に示すような縦型の熱処理炉を用いて熱処理を行った。具体的には、はじめに温度700℃にてウエーハ(熱処理用ボート)を熱処理炉の下部より導入し、その後、アルゴン雰囲気中で1200℃まで昇温し、1200℃で1時間の熱処理を行った。その後700℃まで降温させ、熱処理炉からウエーハ(熱処理用ボート)を取り出した。このようなウエーハの熱処理を、同じ熱処理用ボートを用いて繰り返し実施した。
【0045】
(比較例)
各支柱に図6(B)に示すような溝を設けて支持部13を形成した熱処理用ボートを用意し、シリコンウエーハを支持部に直接載置して熱処理を行った。
なお、熱処理用ボートは本体の材質がSiCであり、表面にCVD−SiCコートを施したものである。また、ウエーハと接する支持部には鏡面研磨加工や面取り加工などの処理を施さず、ウエーハと接する支持部の上面の表面粗さはRa=1μm程度であった。
このような熱処理用ボートを用いて実施例と同様の条件でシリコンウエーハの熱処理を繰り返して実施した。
【0046】
(結果)
実施例及び比較例でそれぞれ熱処理を行った後のウエーハについて、X線Lang法にてスリップ転位の発生状況を確認した。
その結果、比較例の熱処理用ボートを使用した場合では、約30%のウエーハに数ミリ〜数センチ程度の長さのスリップ転位が生じていた。スリップ転位発生の傾向は、図7に示すようにウエーハW周辺の少し内側のところにスリップ18の発生の起点が見られた。ほとんどの起点は、熱処理用ボートのウエーハ支持部の先端位置に対応していた。このことから、ウエーハの熱処理中、特に、ボートの支持部の先端により接触応力が加わり、スリップ転位が生じたことが判る。
一方、実施例で本発明に係る熱処理用ボートを使用した場合には、ウエーハのスリップ転位の発生はほとんど見られなかった。
【0047】
なお、スリップ転位は、同じ熱処理用ボートを用いて熱処理を繰り返すほど発生し易い傾向があった。特に、比較例の熱処理用ボートでは、熱処理を繰り返すにつれスリップ転位の発生頻度が顕著に増え、ボートの交換が必要であった。
一方、実施例の熱処理用ボートでも繰り返し使用した場合、ウエーハにスリップ転位の発生が見られたが、支持補助部材のみを交換して熱処理用ボート本体はそのまま使用してその後の熱処理を行ったところ、スリップの発生は新品時と同じレベルまで低減することが確認された。
【0048】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【0049】
支柱、支持部、支持補助部材のそれぞれの形状は特に限定されず、支持補助部材の装着の仕方、支持部の間隔等も任意である。例えば、円柱状の支柱を採用し、各支柱に形成した支持部(例えば半円形)に合致する支持補助部材を作製して着脱可能に装着できるようにしても良い。また、被処理物も限定されず、シリコンウエーハ以外の半導体ウエーハ等の熱処理にも好適に適用できる。
【0050】
【発明の効果】
以上説明したように、本発明の縦型熱処理用ボートは各支柱の支持部に支持補助部材を着脱可能に装着するものであり、支持補助部材の加工が容易であるので、ウエーハとの接触面を所望の形態に設定することができる。従って、この熱処理用ボートを用いてシリコンウエーハの熱処理を行えば、載置部に起因するスリップ転位の発生を防止することができる。また、支持補助部材が劣化した場合には、支持補助部材を交換するだけで良く、ボート本体を長期間使用することができるのでコスト的にも有利である。
【0051】
さらに、支持補助部材の形状や粗さを変更するだけで、熱処理時におけるウエーハとの接触粗さの影響等に関する実験も低コストで容易に実施でき、改良等を容易に行うことができる。
そして、このような熱処理用ボートを用いて熱処理されたシリコンウエーハは、スリップ転位が少ないものとなるので、素子を形成する段階での接合リーク等の歩留低下も少なく、デバイス工程での歩留も向上する。
【図面の簡単な説明】
【図1】本発明の縦型熱処理用ボートにおける支柱の支持部と支持補助部材の組み合わせの一例を示す概略図である。
(A)支持部及び支持補助部材(上面側)
(B)支持補助部材(下面側)
【図2】支柱の支持部と支持補助部材の組み合わせの他の例を示す概略図である。
(A)支持部及び支持補助部材(上面側)
(B)支持補助部材(下面側)
【図3】縦型熱処理用ボートの一般的な形態を示す概略図である。
【図4】熱処理用ボートにウエーハをセットした状態を示す概略図である。
(A)平面図
(B)正面図
【図5】縦型熱処理炉の一例を示す概略図である。
【図6】従来の熱処理用ボートにおけるウエーハ支持部を示す概略図である。
(A)半円形の支持部
(B)長方形の支持部
【図7】スリップ転位の発生状況を示す概略説明図である。
【符号の説明】
1,1′…熱処理用ボート、 2,2′…支持部、 3,3′…支持補助部材、
4…支柱、 5…ガイド手段、 6…溝(第2の溝)、
7…スリット(第1の溝)、 8…ほぞ穴、 9…ほぞ、
10…熱処理用ボート、 11…スリット(溝)、 12,13…支持部、
14,15…支柱、 16…板状部材(連結部材)、 18…スリップ、
20…熱処理炉、 22…反応室、 24…ヒータ、 26…ガス導入管、
28…ガス排出管、 W…ウエーハ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vertical heat treatment boat used mainly when heat treating a silicon wafer or the like.
[0002]
[Prior art]
When a device is manufactured using a semiconductor single crystal wafer, for example, a silicon wafer, a number of steps are involved from a wafer processing process to an element formation process, and one of them is a heat treatment process. The heat treatment step is an important process performed for the purpose of forming a defect-free layer on the surface layer of the wafer, gettering, crystallization, oxide film formation, impurity diffusion, and the like.
[0003]
In such a heat treatment process, for example, a diffusion furnace (oxidation / diffusion apparatus) used for oxidation or impurity diffusion, a large number of wafers are supported horizontally at predetermined intervals as the wafer diameter increases. A vertical heat treatment furnace for performing heat treatment is mainly used. When a wafer is heat-treated using a vertical heat treatment furnace, there is a vertical heat treatment boat (hereinafter sometimes referred to as “heat treatment boat” or simply “boat”) for setting a large number of wafers. Used.
[0004]
FIG. 3 schematically shows a general vertical heat treatment boat 10. A pair of plate-like members (also referred to as connecting members, or top and bottom plates) 16 are connected to both ends of the four columns (rods) 14. A large number of slits 11 are formed in each support column 14, and the convex portions between the slits 11 act as wafer support portions 12. When the wafer is heat-treated, as shown in FIGS. 4A and 4B, the outer periphery of the wafer W is placed on the support portion 12 formed at the same height of each of the columns 14, so that the wafer is placed. W will be supported horizontally.
[0005]
FIG. 5 is a schematic view showing an example of a vertical heat treatment furnace. A number of wafers W are horizontally supported on the heat treatment boat 10 carried into the reaction chamber 22 of the heat treatment furnace 20. During the heat treatment, the wafer W is heated by a heater 24 provided around the reaction chamber 22. During the heat treatment, gas is introduced into the reaction chamber 22 through the gas introduction pipe 26, flows downward from above, and is discharged to the outside through the gas exhaust pipe 28. The gas used varies depending on the purpose of the heat treatment, but mainly H2, N2, O2, Ar, etc. are used. In the case of impurity diffusion, these gases are also used as a carrier gas for the impurity compound gas.
[0006]
Various shapes are employed for the wafer support portion 12 in the vertical heat treatment boat 10, and FIGS. 6A and 6B show examples. In the case of (A), a semicircular support portion 12 is formed by providing a concave slit (groove) 11 in a columnar column 14. On the other hand, in the case of (B), in order to support a portion closer to the center of the wafer W than that of (A), a rectangular support part 13 is provided by providing a concave slit 11 in a columnar column 15 having a wide width. Is formed. In addition, there are a slit shape in an arc shape, a slit shape in a bowl shape, and the like.
[0007]
In addition, a relatively large plate-like support portion (support plate) is provided on the support column to support the wafer in a stable state (see Patent Document 1), and a step is provided on the upper surface of each support portion to increase the diameter. A device that can support different wafers (see Patent Document 2) has also been proposed.
[0008]
As for boat materials, quartz (SiO) is usually used for silicon wafers to prevent contamination of the wafers.2), Silicon carbide (SiC), silicon (Si) and the like are used. For example, in a high-temperature heat treatment process exceeding 1000 ° C., quartz (SiO 22SiC and Si boats, which have higher heat resistance than those made from) boats, are used. In particular, SiC boats are often used because they are easier to process than those made of Si, and metal contamination generated during heat treatment can be further reduced by applying a CVD-SiC coating.
[0009]
When using a boat for vertical heat treatment, particularly when high-temperature heat treatment is performed for the purpose of oxidation or impurity diffusion, internal stress due to the weight of the wafer or thermal strain stress due to nonuniformity of the temperature distribution inside the wafer occurs. When the stress exceeds a certain critical value, slip (slip dislocation), which is a crystal defect, occurs in the wafer. It is known that the critical value for the occurrence of dislocation rapidly decreases as the temperature rises, so that slip dislocation is more likely to occur as the temperature increases. If an element is formed at a location where slip dislocations are generated, it may cause a junction leak or the like, and the yield of device fabrication may be significantly reduced.
[0010]
For example, when using a boat in which the support portions 12 and 13 are formed as shown in FIGS. 6A and 6B, a slip is likely to occur at a location in contact with the tips of the support portions 12 and 13. This is considered to be because when the wafer is held horizontally and subjected to high-temperature heat treatment, the wafer is bent by its own weight and is likely to be in point contact at the tips of the support portions 12 and 13.
[0011]
In particular, in a boat for heat treatment with a CVD-SiC coating, the surface is very rough with an Ra (centerline average roughness) of about 1 μm. It will be supported as a point contact at the part. For this reason, it is said that the internal stress due to the weight of the wafer locally increases and slip is likely to occur.
[0012]
In order to prevent the occurrence of such slip, measures are taken such as chamfering the tip of the support portion or removing the raised portion by polishing the surface of the wafer support portion.
However, since the support portion of the heat treatment boat is thin and fragile, there is a problem that breakage is likely to occur when chamfering or polishing with a machine or the like. If even one support part is damaged, the entire boat will be defective. For this reason, polishing to a perfect mirror surface requires manual work, etc., but the surface roughness of each support portion tends to vary, and a great deal of labor is required to mirror-polish all the support portions. End up with a very expensive boat.
[0013]
In addition, in order to establish the optimum shape such as the surface roughness of the support part and the chamfering of the tip part, it is necessary to produce various heat treatment boats set to various surface roughnesses and chamfering shapes and to carry out many preliminary experiments is there. However, since heat treatment boats are expensive, it is very costly to experiment with various heat treatment boats.
[0014]
On the other hand, in order to reduce the occurrence of slip, an arc-shaped or ring-shaped support member is provided in a groove formed in each column of a heat treatment boat (see Patent Document 3). If such a heat treatment boat is used, the wafer is brought into surface contact with the support member to relieve internal stress and the like, and as a result, the occurrence of slip is reduced.
[0015]
However, for example, silicon wafers having various diameters from 4 inches (100 mm) to 12 inches (300 mm) are manufactured, and the arc-shaped or ring-shaped support members as described above are also in the size of each wafer. It is necessary to prepare a combination. In addition, since the arc-shaped or ring-shaped support member is considerably large, the manufacturing cost is high, and there is a problem that the wafer is easily contaminated because the contact area with the wafer is increased during the heat treatment.
[0016]
[Patent Document 1]
JP-A-6-21201
[Patent Document 2]
Japanese Patent Laid-Open No. 5-291166
[Patent Document 3]
JP-A-6-260438
[0017]
[Problems to be solved by the invention]
In view of these problems, the present invention can effectively prevent the occurrence of slip dislocation and contamination when heat treating a semiconductor wafer or the like with a vertical heat treatment apparatus, and is inexpensive and easy to improve. The main object is to provide a heat treatment boat that can be used for a longer period of time.
[0018]
[Means for Solving the Problems]
  In order to achieve the above object, according to the present invention, at least a plurality of struts and a pair of plate-like members connected to both ends of each strut are provided, and a workpiece is horizontally supported on each strut. A vertical heat treatment boat in which a support portion is formed, and a support auxiliary member on which the workpiece is placed is detachably attached to the support portion of each column. A vertical heat treatment boat is provided.The
[0019]
With such a vertical heat treatment boat, each supporting auxiliary member can be mounted on each supporting portion after being precisely machined into a desired shape by machining. Therefore, since it can be manufactured inexpensively and easily, the improvement is easy, and if a workpiece such as a silicon wafer is placed on the supporting auxiliary member and subjected to heat treatment, the occurrence of slip dislocation is effective. Can be suppressed. Moreover, since a contact area with a support auxiliary member can be made small, contamination etc. can be prevented effectively.
Further, when such a heat treatment boat is used for a long time and the support auxiliary member deteriorates, only the support auxiliary member needs to be replaced with a new one, and it can be used for a long time.
[0020]
  Regarding the means for detachably attaching the support auxiliary member to the support portion of each support column, for example, a guide means is provided on the lower surface of the support auxiliary member, and the support auxiliary member is attached to the support portion by the guide means.of,Alternatively, tenon processing is applied to the support portion and the support auxiliary member, and the support auxiliary member is attached to the support portion by the tenon and the mortise.Notocan do.
[0021]
As described above, if the support auxiliary member is attached to the support portion by the guide means or the tenon and the mortise, the support auxiliary member can be stably fixed to the support portion. Further, since the auxiliary support member can be easily attached and detached, it is very convenient when replacing the auxiliary support member.
[0022]
  In addition, the main body of each support may be provided with a groove into which the support auxiliary member is fitted.Yes.
  If the supporting auxiliary member is fitted in the groove provided in the main body of the support column, the supporting auxiliary member can be positioned not only with respect to the support portion of the support column but also with respect to the main body, and can be further stabilized. Accordingly, it is possible to prevent the position of the support auxiliary member from shifting when the wafer is placed on or removed from the support auxiliary member.
[0023]
  In addition, it is preferable that the upper surface of the support auxiliary member is mirror-polished.TheIn addition, it is preferable that the outer edge portion on the upper surface side of the support auxiliary member is chamfered.Yes.
  If the supporting auxiliary member is thus subjected to mirror polishing or chamfering, the occurrence of slip dislocations such as a silicon wafer to be heat-treated can be more effectively prevented.
[0024]
  The material of at least the surface of the support auxiliary member is made of SiO.2, SiC or Si is preferredYes.
  If the surface of the support auxiliary member is made of a silicon-based material as described above, it can be suitably used particularly during the heat treatment of the silicon wafer.
[0025]
  Furthermore, in the present invention, there is provided a method for heat treating a semiconductor wafer, wherein the semiconductor wafer is placed on a support auxiliary member mounted on a support portion of each support using the heat treatment boat of the present invention. A method for heat treating a semiconductor wafer is provided.The
[0026]
If the supporting auxiliary member is made of a material that does not contaminate the semiconductor wafer, and the semiconductor wafer is mounted on the supporting auxiliary member mounted on the support portion and then heat-treated, the wafer can be effectively prevented from slip dislocation and metal contamination. be able to. In addition, when the support auxiliary member deteriorates due to the long-term (long-term) heat treatment, it is only necessary to replace the support auxiliary member with a new one. As a result, the cost of the heat treatment can be kept low and a high-quality semiconductor wafer can be obtained. Can be manufactured.
[0027]
  In particular, silicon wafers are highly versatile, but slip dislocations are likely to occur, so it is important to suppress this. Therefore, the silicon wafer can be heat-treated using the heat treatment boat according to the present invention.IfThe generation of slip dislocation can be suppressed and the cost of heat treatment can be reduced.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a boat for heat treatment according to the present invention and a heat treatment of a silicon wafer using the boat will be specifically described with reference to the drawings.
FIG. 1 shows an example of a combination of a support portion of a support and a support auxiliary member in a vertical heat treatment boat according to the present invention. This heat treatment boat 1 has four columns 4 (only one is shown) and a pair of plate-like members (not shown) connected to both ends of each column 4. A large number of slits (first grooves) 7 are formed at equal intervals in each support column 4, and the convex portion between the slits 7 acts as a wafer support portion 2. And in this boat 1 for heat processing, the support auxiliary member 3 is attached to the support part 2 of each support | pillar 4 so that attachment or detachment is possible. When the silicon wafer is heat-treated, the wafer can be horizontally supported by placing the wafer on the support auxiliary member 3 mounted on the support portion 2 of the same height of each support column 4.
[0029]
The support auxiliary member 3 will be described in more detail. As shown in FIG. 1B, guide means 5 that matches the shape (rectangular shape) of the upper surface of the support portion 2 is provided on the lower surface of the support auxiliary member 3. The support means 3 can be positioned and attached to the support portion 2 by such guide means 5.
In addition, a groove (second groove) 6 corresponding to the thickness of the support auxiliary member 3 is provided on the upper surface side of the support portion 2 in the support body. Accordingly, the support auxiliary member 3 is positioned not only on the support portion 2 of the support column 4 but also on the main body by being fitted to the support portion 2 by the guide means 5 and fitted in the groove 6 of the support column body, and is stably mounted. can do.
[0030]
When the wafer is placed on the support auxiliary member 3 and heat-treated and then unloaded, the support auxiliary member 3 and the wafer may stick together with a weak force. However, if the support auxiliary member 3 is fitted in the groove 6 provided in the column main body and attached, even if the wafer is weakly attached to the support auxiliary member 3 after the heat treatment, the wafer is supported and supported during unloading. It can be easily pulled away from the member 3. Further, the position of the support auxiliary member 3 is not shifted, and there is no need to correct the position.
[0031]
On the other hand, for example, play may be provided between the guide means 5 of the support auxiliary member 3 and the wafer support portion 2 so that the support auxiliary member 3 can be moved somewhat. During the heat treatment, when the wafer is thermally expanded, there is a possibility that minute scratches may be generated due to friction with the wafer support 2. Such scratches may affect the exposure process during device fabrication. Therefore, if the support auxiliary member 3 is provided with mobility, the friction between the wafer and the support auxiliary member 3 is reduced, and the generation of scratches on the back surface of the wafer can be prevented.
[0032]
FIG. 2 shows another combination of a support part and a support auxiliary member. In this heat treatment boat 1 ′, the support portion 2 ′ and the support auxiliary member 3 ′ are subjected to mortise processing, and concave holes (mortise holes) 8 are formed on both sides of the support portion 2 ′. On the lower surface side of ′, a convex tenon 9 is formed, which matches the mortise 8 of the support portion 2 ′. Thus, the support auxiliary member 3 'can be mounted on the support portion 2' by the mortise 8 and the tenon 9 formed in the support portion 2 'and the support auxiliary member 3', respectively. The tenon 9 may be formed in the support portion 2 ', and the tenon hole 8 may be formed in the support auxiliary member 3'. Further, as in the case of FIG. 1, a groove 6 into which the support auxiliary member 3 ′ is fitted is formed in the column main body, and can be securely fixed to the support portion 2 ′.
[0033]
The means for attaching the support auxiliary member is not limited to the mechanical means as shown in FIGS. 1 and 2, and for example, can be easily removed with a specific solvent without being affected by the heat treatment conditions. A support auxiliary member may be adhered to the support portion using a suitable adhesive or the like.
[0034]
What is necessary is just to determine suitably according to the material of a to-be-processed object regarding the material of supporting auxiliary member 3 and 3 '. When used for heat treatment of silicon wafers, at least the surface material should be SiO2If SiC or Si is used, contamination during heat treatment can be effectively prevented.
[0035]
Further, it is preferable that the upper surfaces of the supporting auxiliary members 3 and 3 ′ are mirror polished. When heat treating the wafer, the wafer is placed on the supporting auxiliary members 3 and 3 'mounted on the supporting portions 2 and 2' of the boat for heat treatment. It will be in contact with the top surface. Therefore, if the surface roughness of the upper surfaces of the supporting auxiliary members 3 and 3 'is large, the wafer and the supporting auxiliary members 3 and 3' are in point contact, and stress may concentrate on the contact points to cause slip dislocation during the heat treatment. is there. Therefore, if at least the upper surfaces of the supporting auxiliary members 3 and 3 'are mirror-polished, the stress concentration on the wafer can be relaxed and the occurrence of slip dislocation can be effectively prevented.
[0036]
In addition, when the wafer is placed on the supporting auxiliary members 3 and 3 ', the wafer slightly bends due to its own weight, so that stress concentrates on the portion contacting the outer edge of the supporting auxiliary members 3 and 3' and slips. Dislocation may occur. Therefore, the occurrence of slip dislocation can be more effectively prevented by chamfering the outer edge portion on the upper surface side of the supporting auxiliary members 3 and 3 ′.
[0037]
As described above, when polishing or chamfering is performed with a conventional boat for heat treatment, the support portion is fragile and it is necessary to perform processing (polishing or chamfering) between fine grooves formed in the support column. Machining was difficult due to the fact that there was. However, in the heat treatment boat of the present invention, the supporting auxiliary members 3 and 3 ′ are manufactured separately from the support 4, and therefore can be individually machined by external setup. For example, as shown in FIGS. 1 and 2, the tips of the supporting auxiliary members 3 and 3 ′ are shaped like an ellipse, the surface that contacts the wafer is smoothed by a polishing apparatus, and the corners are chamfered. The apparatus can be chamfered.
[0038]
Since various types of supporting auxiliary members can be easily manufactured by such machining, the supporting auxiliary members can be appropriately set in a preferable shape according to the heat treatment conditions, the heat treatment apparatus, the form of the support column, and the like. it can. Therefore, it is not necessary to prepare the entire heat treatment boat in a prior experiment or the like as in the prior art, and a heat treatment boat of a preferable form is produced inexpensively and quickly, and confirmation (experiment) of an optimum state suitable for the heat treatment conditions is performed. Can be done in advance.
[0039]
Further, it is possible to easily change the level of the surface roughness and the chamfered shape of the surface that supports the wafer, and to prepare the supporting auxiliary members 3 and 3 'that are less likely to cause slip for each heat treatment condition. In addition, it is easy to replace the auxiliary support members 3 and 3 ', and it is possible to change the shape of only the portion where slip is likely to occur.
[0040]
In order to perform the heat treatment of the silicon wafer using the boat for heat treatment of the present invention, the silicon wafer is placed on the support auxiliary member 3 mounted on the support portion 2 of the same height of each column 4. As a result, the silicon wafer is supported horizontally with the four outer peripheral portions in contact with the supporting auxiliary member 3. Similarly, after a plurality of silicon wafers are horizontally supported through the supporting auxiliary members 3, as shown in FIG. 5, the heat treatment boats 1, 1 'are introduced into the heat treatment furnace, and the gas is introduced into the furnace. Heat treatment may be performed while supplying.
[0041]
The heat treatment boat of the present invention is particularly effective when heat treatment is performed at a high temperature. At high temperatures, the heat treatment boat deteriorates quickly, and slip dislocation is observed at an early stage.However, in the heat treatment boat according to the present invention, if the supporting auxiliary member is replaced, the portion supporting the wafer becomes new, and slip dislocation occurs. Occurrence can be prevented.
[0042]
【Example】
Examples of the present invention and comparative examples will be described below.
(Example)
As a wafer to be heat-treated, a silicon wafer was prepared that was grown by a so-called CZ (Czochralski) method and had a surface orientation (100), a diameter of 200 mm, and a thickness of 725 μm.
A boat for heat treatment was prepared having four prismatic pillars, and a supporting auxiliary member provided with a guide as shown in FIG. The heat treatment boat body (posts and plate-like members) is made of SiC, and the surface is subjected to a CVD-SiC coating so that the surface roughness is about Ra = 1 μm. The support auxiliary member was also made of SiC.
[0043]
In addition, about the support auxiliary member, the thing of various surface roughness and a chamfering form was produced previously, the heat processing test of the wafer was performed, and the thing with the least generation | occurrence | production of a slip was selected. Specifically, the upper surface portion in contact with the wafer is smoothed to about Ra = 0.1 μm by mirror polishing, the outer edge portion on the upper surface side is chamfered with R10, and the tip portion is an elliptical shape as shown in FIG. It was the best. Such a support auxiliary member was mounted on all the support portions of each support column.
[0044]
Using such a heat treatment boat, the above-described silicon wafer is horizontally placed on a support auxiliary member mounted on the support portion of each column, and heat treatment is performed using a vertical heat treatment furnace as shown in FIG. It was. Specifically, a wafer (heat treatment boat) was first introduced from the lower part of the heat treatment furnace at a temperature of 700 ° C., and then heated to 1200 ° C. in an argon atmosphere, and heat treatment was performed at 1200 ° C. for 1 hour. Thereafter, the temperature was lowered to 700 ° C., and the wafer (heat treatment boat) was taken out from the heat treatment furnace. Such heat treatment of the wafer was repeatedly performed using the same heat treatment boat.
[0045]
(Comparative example)
A heat treatment boat in which a groove as shown in FIG. 6B was provided on each column to form a support portion 13 was prepared, and a silicon wafer was directly placed on the support portion to perform heat treatment.
The boat for heat treatment has a main body made of SiC and has a CVD-SiC coating on the surface. Further, the support portion in contact with the wafer was not subjected to processing such as mirror polishing or chamfering, and the surface roughness of the upper surface of the support portion in contact with the wafer was about Ra = 1 μm.
Using such a heat treatment boat, the silicon wafer was repeatedly heat-treated under the same conditions as in the example.
[0046]
(result)
The occurrence of slip dislocation was confirmed by the X-ray Lang method for the wafers after heat treatment in each of the examples and comparative examples.
As a result, when the heat treatment boat of the comparative example was used, slip dislocation having a length of about several millimeters to several centimeters occurred on about 30% of the wafers. With respect to the tendency of slip dislocation generation, as shown in FIG. 7, the starting point of occurrence of slip 18 was found slightly inside the periphery of the wafer W. Most of the starting points corresponded to the tip positions of the wafer support portions of the heat treatment boat. From this, it can be seen that during the heat treatment of the wafer, contact stress was applied particularly by the tip of the support portion of the boat, and slip dislocation occurred.
On the other hand, when the heat treatment boat according to the present invention was used in the examples, almost no occurrence of slip dislocation of the wafer was observed.
[0047]
Note that slip dislocation tends to occur more easily as heat treatment is repeated using the same heat treatment boat. In particular, in the heat treatment boat of the comparative example, as the heat treatment was repeated, the frequency of occurrence of slip dislocation increased significantly, and the boat had to be replaced.
On the other hand, when the heat treatment boat of the example was used repeatedly, the occurrence of slip dislocation was seen in the wafer, but only the support auxiliary member was replaced and the heat treatment boat body was used as it was and the subsequent heat treatment was performed. It was confirmed that the occurrence of slip was reduced to the same level as when new.
[0048]
The present invention is not limited to the above embodiment. The above embodiment is merely an example, and the present invention has the same configuration as that of the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
[0049]
The shapes of the support column, the support portion, and the support auxiliary member are not particularly limited, and the manner of mounting the support auxiliary member, the interval between the support portions, and the like are also arbitrary. For example, a columnar column may be employed, and a support auxiliary member that matches a support portion (for example, a semicircle) formed on each column may be manufactured and detachably mounted. Further, the object to be processed is not limited, and can be suitably applied to heat treatment of a semiconductor wafer other than a silicon wafer.
[0050]
【The invention's effect】
As described above, the vertical heat treatment boat according to the present invention is such that the support auxiliary member is detachably attached to the support portion of each column, and the processing of the support auxiliary member is easy, so the contact surface with the wafer Can be set to a desired form. Therefore, if the silicon wafer is heat-treated using this heat treatment boat, it is possible to prevent the occurrence of slip dislocation due to the mounting portion. Further, when the supporting auxiliary member is deteriorated, it is only necessary to replace the supporting auxiliary member, and the boat body can be used for a long time, which is advantageous in terms of cost.
[0051]
Furthermore, by simply changing the shape and roughness of the support auxiliary member, an experiment on the influence of the contact roughness with the wafer during heat treatment can be easily performed at low cost, and improvement and the like can be easily performed.
A silicon wafer that has been heat-treated using such a heat-treating boat has less slip dislocations, so there is little decrease in yield such as junction leakage at the stage of element formation, and yield in the device process. Will also improve.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a combination of a support portion of a support and a support auxiliary member in a vertical heat treatment boat according to the present invention.
(A) Support part and support auxiliary member (upper surface side)
(B) Supporting auxiliary member (lower side)
FIG. 2 is a schematic view illustrating another example of a combination of a support portion of a support and a support auxiliary member.
(A) Support part and support auxiliary member (upper surface side)
(B) Supporting auxiliary member (lower side)
FIG. 3 is a schematic view showing a general form of a vertical heat treatment boat.
FIG. 4 is a schematic view showing a state in which a wafer is set on a heat treatment boat.
(A) Plan view
(B) Front view
FIG. 5 is a schematic view showing an example of a vertical heat treatment furnace.
FIG. 6 is a schematic view showing a wafer support portion in a conventional heat treatment boat.
(A) Semicircular support
(B) Rectangular support
FIG. 7 is a schematic explanatory diagram showing a situation of occurrence of slip dislocation.
[Explanation of symbols]
1, 1 '... boat for heat treatment, 2, 2' ... support part, 3, 3 '... support auxiliary member,
4 ... post, 5 ... guide means, 6 ... groove (second groove),
7 ... slit (first groove), 8 ... mortise, 9 ... mortise,
DESCRIPTION OF SYMBOLS 10 ... Boat for heat processing, 11 ... Slit (groove), 12, 13 ... Support part,
14, 15 ... struts, 16 ... plate-like members (connection members), 18 ... slips,
20 ... Heat treatment furnace, 22 ... Reaction chamber, 24 ... Heater, 26 ... Gas introduction pipe,
28 ... gas exhaust pipe, W ... wafer.

Claims (9)

少なくとも、複数の支柱と、各支柱の両端部に連結した一対の板状部材とを有し、前記各支柱に、被処理物を水平に支持するための支持部が形成されている縦型熱処理用ボートであって、前記各支柱の支持部に、前記被処理物が載置される支持補助部材が着脱可能に装着されているものであり、前記各支柱の本体に、前記支持補助部材が嵌め込まれる溝が設けられていることを特徴とする縦型熱処理用ボート。A vertical heat treatment including at least a plurality of struts and a pair of plate-like members connected to both end portions of each strut, and each strut having a support portion for horizontally supporting a workpiece. a use boat, the support portion of each post, the all SANYO the auxiliary supporting member to be treated is placed is detachably attached to the main body of the respective strut, the auxiliary supporting member A vertical heat-treating boat characterized in that a groove is provided in which is inserted. 前記支持補助部材が板状のものであることを特徴とする請求項1に記載の縦型熱処理ボート。The vertical heat treatment boat according to claim 1, wherein the supporting auxiliary member has a plate shape. 前記支持補助部材の下面にガイド手段が設けられており、該ガイド手段により前記支持補助部材が前記支持部に装着されるものであることを特徴とする請求項1または請求項2に記載の縦型熱処理用ボート。The longitudinal direction according to claim 1 or 2 , wherein guide means is provided on a lower surface of the support auxiliary member, and the support auxiliary member is attached to the support portion by the guide means. A boat for mold heat treatment. 前記支持部と前記支持補助部材にほぞ加工が施されており、ほぞとほぞ穴により前記支持補助部材が前記支持部に装着されるものであることを特徴とする請求項1または請求項2に記載の縦型熱処理用ボート。The tenon processing is given to the said support part and the said support auxiliary member, The said support auxiliary member is mounted | worn with the said support part by a tenon and a mortise hole, The Claim 1 or Claim 2 characterized by the above-mentioned. The vertical heat treatment boat described. 前記支持補助部材の上面に鏡面研磨加工が施されていることを特徴とする請求項1ないし請求項4のいずれか1項に記載の縦型熱処理用ボート。  5. The vertical heat treatment boat according to claim 1, wherein the upper surface of the supporting auxiliary member is mirror-polished. 6. 前記支持補助部材の上面側の外縁部に面取り加工が施されていることを特徴とする請求項1ないし請求項5のいずれか1項に記載の縦型熱処理用ボート。  The vertical heat treatment boat according to any one of claims 1 to 5, wherein a chamfering process is performed on an outer edge portion on an upper surface side of the support auxiliary member. 前記支持補助部材の少なくとも表面の材質が、SiO、SiCまたはSiであることを特徴とする請求項1ないし請求項6のいずれか1項に記載の縦型熱処理用ボート。Wherein at least the surface of the material of the auxiliary supporting member, a vertical heat treatment boat according to any one of claims 1 to 6, characterized in that a SiO 2, SiC, or Si. 半導体ウエーハを熱処理する方法であって、前記請求項1ないし請求項7のいずれか1項に記載の熱処理用ボートを用い、前記各支柱の支持部に装着されている支持補助部材上に前記半導体ウエーハを載置して熱処理を行うことを特徴とする半導体ウエーハの熱処理方法。  A method for heat-treating a semiconductor wafer, wherein the heat-treating boat according to any one of claims 1 to 7 is used, and the semiconductor is placed on a support auxiliary member mounted on a support portion of each column. A heat treatment method for a semiconductor wafer, wherein a heat treatment is performed by placing a wafer. 前記半導体ウエーハとして、シリコンウエーハを熱処理することを特徴とする請求項8に記載の半導体ウエーハの熱処理方法。  9. The semiconductor wafer heat treatment method according to claim 8, wherein a silicon wafer is heat-treated as the semiconductor wafer.
JP2003028109A 2003-02-05 2003-02-05 Vertical heat treatment boat and semiconductor wafer heat treatment method Expired - Fee Related JP4396105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003028109A JP4396105B2 (en) 2003-02-05 2003-02-05 Vertical heat treatment boat and semiconductor wafer heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003028109A JP4396105B2 (en) 2003-02-05 2003-02-05 Vertical heat treatment boat and semiconductor wafer heat treatment method

Publications (2)

Publication Number Publication Date
JP2004241545A JP2004241545A (en) 2004-08-26
JP4396105B2 true JP4396105B2 (en) 2010-01-13

Family

ID=32955653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003028109A Expired - Fee Related JP4396105B2 (en) 2003-02-05 2003-02-05 Vertical heat treatment boat and semiconductor wafer heat treatment method

Country Status (1)

Country Link
JP (1) JP4396105B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4380689B2 (en) 2006-11-21 2009-12-09 信越半導体株式会社 Vertical heat treatment boat and semiconductor wafer heat treatment method using the same
JP5061663B2 (en) 2007-03-12 2012-10-31 信越半導体株式会社 Vertical heat treatment boat and semiconductor wafer heat treatment method
JP5071217B2 (en) 2008-04-17 2012-11-14 信越半導体株式会社 Vertical heat treatment boat and silicon wafer heat treatment method using the same
JP6086056B2 (en) 2013-11-26 2017-03-01 信越半導体株式会社 Heat treatment method

Also Published As

Publication number Publication date
JP2004241545A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
JP5071217B2 (en) Vertical heat treatment boat and silicon wafer heat treatment method using the same
TWI242248B (en) Holder and method for thermal treating semiconductor substrate
US8469703B2 (en) Vertical boat for heat treatment and heat treatment method of semiconductor wafer using thereof
TW200908199A (en) Wafer supporting jig, vertical heat treatment boat including the same, and manufacturing method of wafer supporting jig
JP4998246B2 (en) Semiconductor substrate support jig and manufacturing method thereof.
JP4396105B2 (en) Vertical heat treatment boat and semiconductor wafer heat treatment method
WO2005124848A1 (en) Heat treatment jig and semiconductor wafer heat treatment method
JP2008227056A (en) Vertical heat treating boat and heat treating method for semiconductor wafer
JP2017208571A (en) Silicon member and method for manufacturing silicon member
KR20010062144A (en) Substrate holder for heat treatment, heat treatment apparatus and method of substrate
JP4370822B2 (en) Semiconductor substrate heat treatment boat and heat treatment method
JP5517354B2 (en) Heat treatment method for silicon wafer
TW200919554A (en) Heat treatment jig for wafer and vertical heat treatment boat provided with the jig
KR20230016383A (en) Boat for vertical haet treatment and heat treatment method of silicon wafer using same
JP5010797B2 (en) Vertical boat for heat treatment and manufacturing method thereof
JP2003100648A (en) Heat treatment jig of semiconductor wafer
JP2005019748A (en) Thermal treatment jig and thermal treatment method for wafer
JP2007036105A (en) Susceptor for silicon wafer
JP2004221435A (en) Semiconductor wafer and manufacturing method thereof
JP2005328008A (en) Vertical boat for heat-treating semiconductor wafer, and heat treatment method
JP2003257881A (en) Boat for heat treatment and method for heat treating wafer
KR100837737B1 (en) Wafer supporter
JP2003282683A (en) Semiconductor production device
JP2006203124A (en) Member for heat treatment and its manufacturing method
KR20030045967A (en) A method for high temperature heating of silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4396105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees