JP5010797B2 - Vertical boat for heat treatment and manufacturing method thereof - Google Patents

Vertical boat for heat treatment and manufacturing method thereof Download PDF

Info

Publication number
JP5010797B2
JP5010797B2 JP2003300526A JP2003300526A JP5010797B2 JP 5010797 B2 JP5010797 B2 JP 5010797B2 JP 2003300526 A JP2003300526 A JP 2003300526A JP 2003300526 A JP2003300526 A JP 2003300526A JP 5010797 B2 JP5010797 B2 JP 5010797B2
Authority
JP
Japan
Prior art keywords
heat treatment
wafer
boat
support
vertical boat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003300526A
Other languages
Japanese (ja)
Other versions
JP2005072277A (en
Inventor
小林武史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2003300526A priority Critical patent/JP5010797B2/en
Publication of JP2005072277A publication Critical patent/JP2005072277A/en
Application granted granted Critical
Publication of JP5010797B2 publication Critical patent/JP5010797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、半導体ウエーハ等の熱処理用縦型ボートに関し、特にシリコンウエーハを熱処理する際に好適な熱処理用縦型ボート及びその製造方法に関する。   The present invention relates to a vertical boat for heat treatment such as a semiconductor wafer, and more particularly to a vertical boat for heat treatment suitable for heat-treating a silicon wafer and a method for manufacturing the same.

シリコン単結晶等の半導体インゴットから切り出したウエーハを用いてデバイスを作製する場合、ウエーハの加工プロセスから素子の形成プロセスまで多数の工程が介在する。それらの工程の一つに熱処理工程がある。この熱処理工程は、ウエーハの表層における無欠陥層の形成、ゲッタリング、結晶化、酸化膜形成、不純物拡散等を目的として行われる非常に重要なプロセスである。   When a device is manufactured using a wafer cut from a semiconductor ingot such as a silicon single crystal, a number of steps are involved from a wafer processing process to an element formation process. One of these processes is a heat treatment process. This heat treatment step is a very important process performed for the purpose of forming a defect-free layer on the surface layer of the wafer, gettering, crystallization, oxide film formation, impurity diffusion, and the like.

このようなウエーハの熱処理工程、例えば、酸化や不純物拡散に用いられる拡散炉(酸化・拡散装置)としては、ウエーハの大口径化に伴い、図9に示すような多数のウエーハWを所定の間隔をあけて水平に支持した状態で熱処理を行う縦型の熱処理炉20が主に用いられている。熱処理炉20内のウエーハWは、反応室22の周囲に設けられたヒータ24によって加熱することができる。熱処理中は、反応室22にはガス導入管26を介してガスが導入され、上方から下方に向かって流れてガス排気管28から外部に排出される。なお、使用するガスは熱処理の目的によって異なるが、主としてH、N、O、Ar等が用いられる。不純物拡散の場合には、これらのガスを不純物化合物ガスのキャリアガスとしても使用する。 As a diffusion furnace (oxidation / diffusion apparatus) used for such a wafer heat treatment step, for example, for oxidation or impurity diffusion, a large number of wafers W as shown in FIG. A vertical heat treatment furnace 20 that performs heat treatment in a state where it is horizontally supported with an opening is mainly used. The wafer W in the heat treatment furnace 20 can be heated by a heater 24 provided around the reaction chamber 22. During the heat treatment, gas is introduced into the reaction chamber 22 through the gas introduction pipe 26, flows from the upper side to the lower side, and is discharged from the gas exhaust pipe 28 to the outside. The gas to be used varies depending on the purpose of the heat treatment, but H 2 , N 2 , O 2 , Ar, etc. are mainly used. In the case of impurity diffusion, these gases are also used as a carrier gas for the impurity compound gas.

このような縦型熱処理炉20を用いてウエーハWを熱処理する際には、多数のウエーハWを水平にセットするための熱処理用縦型ボート11(以下、「熱処理用ボート」、「縦型ボート」、或いは単に「ボート」という場合がある。)が用いられる。
図10(a)は一般的な熱処理用ボート11の概略を示している。4本の棒状(円柱状)の支柱(ロッド)14の両端部に一対の板材(天板16a、底板16b)が連結されている。各支柱14には多数のスリット(溝)15が形成され、各スリット15間の凸部がウエーハWの支持部12として作用する。なお、このように円柱状の支柱14に多数の溝15を形成した熱処理用ボートは、一般的にショートフィンガータイプと呼ばれている。
このようなタイプの熱処理用縦型ボート11を用いてウエーハWを熱処理する際には、図10(b)に示されるように、各支柱14の同じ高さに形成されている支持部12によりウエーハWの外周部が4ヶ所支持されてウエーハWが水平に支持されることになる。
When the wafer W is heat-treated using such a vertical heat treatment furnace 20, a heat treatment vertical boat 11 (hereinafter referred to as “heat treatment boat”, “vertical boat”) for setting a number of wafers W horizontally. Or simply “boat”).
FIG. 10A schematically shows a general heat treatment boat 11. A pair of plate materials (top plate 16a and bottom plate 16b) are connected to both ends of four rod-like (columnar) columns (rods) 14. A large number of slits (grooves) 15 are formed in each support column 14, and a convex portion between the slits 15 acts as a support portion 12 for the wafer W. In addition, the boat for heat processing which formed many groove | channels 15 in the column-shaped support | pillar 14 in this way is generally called the short finger type.
When the wafer W is heat-treated using the vertical boat 11 for heat treatment of this type, as shown in FIG. 10 (b), the support portion 12 formed at the same height of each column 14 is used. The outer periphery of the wafer W is supported at four locations, and the wafer W is supported horizontally.

上記のようにウエーハWの周縁部を支持した場合、ウエーハWの自重が支持部に集中するため、これにより生ずる応力が常に作用している。そして、この応力が臨界剪断応力を越えると、ウエーハ内に転位が発生する。この転位は応力の作用により巨視的な大きさにまで広がり、スリップとなる。スリップの発生はウエーハの品質を大きく低下させるため、これを防ぐことが重要である。   When the peripheral edge portion of the wafer W is supported as described above, the weight of the wafer W is concentrated on the support portion, so that the stress generated thereby acts constantly. When this stress exceeds the critical shear stress, dislocations are generated in the wafer. This dislocation spreads to a macroscopic size due to the action of stress and becomes a slip. The occurrence of slip greatly reduces the quality of the wafer, so it is important to prevent this.

しかし、一般に高温雰囲気下では、ウエーハにスリップが著しく発生し易くなる。特に、半導体デバイスの高集積化に伴いウエーハ一枚当たりのデバイス収率を上げるために、ウエーハの大直径化が進んでいる。その結果、ウエーハの自重が大きくなり、それに伴いウエーハに作用する応力が増大する傾向にあり、ウエーハ中にスリップがより発生し易くなってきている。
また、ウエーハのサイズが大きくなることに起因して、特に昇温時におけるウエーハ中心部と周縁部との温度差が大きくなる傾向にあり、この温度差により生じる熱応力も上記スリップ発生の原因の一つとなっている。
However, generally, a slip is remarkably generated on the wafer under a high temperature atmosphere. In particular, as semiconductor devices are highly integrated, the diameter of wafers is increasing in order to increase the device yield per wafer. As a result, the weight of the wafer increases, and accordingly, the stress acting on the wafer tends to increase, and slip is more likely to occur in the wafer.
In addition, due to the increase in wafer size, the temperature difference between the wafer center and the periphery tends to increase especially during temperature rise, and the thermal stress caused by this temperature difference is also a cause of the occurrence of the slip. It has become one.

このような熱処理時のスリップの発生を防止する手段として、環状又は円弧状の補助治具を用いることが提案されている(特許文献1参照)。具体的には、各支柱の支持部上に載せた環状又は円弧状の補助治具を介してウエーハの下面周縁部を数mmから数十mmの幅で、全周または一部で支持する。また、ウエーハを裏面全面で支持する方法等も提案されている。これらの方法を用いれば、ウエーハを支持する面(支持面)が大きくなり、荷重等が分散されるため、スリップの発生を抑制する効果が得られる。   As a means for preventing the occurrence of slip during such heat treatment, it has been proposed to use an annular or arcuate auxiliary jig (see Patent Document 1). Specifically, the lower surface peripheral edge of the wafer is supported by the entire circumference or a part of a width of several mm to several tens of mm through an annular or arcuate auxiliary jig placed on the support portion of each support column. A method for supporting the wafer on the entire back surface has also been proposed. If these methods are used, the surface (support surface) for supporting the wafer becomes large and the load and the like are dispersed, so that an effect of suppressing the occurrence of slip can be obtained.

しかし、最近は、半導体デバイスの高集積化に伴い、スリップのほか、ウエーハの裏面に発生するキズも重要視されている。これは、ピンチャック方式のステッパーを用いる場合、ピンチャックのピンの上にウエーハの裏面キズが乗ったときに、デフォーカスが起こることが懸念されているためである。そのため、ウエーハを裏面全面で支持するタイプよりも、周縁部で支持するタイプの熱処理用ボートや補助治具が注目されている。   However, recently, with the high integration of semiconductor devices, not only slip but also scratches generated on the back surface of the wafer are regarded as important. This is because in the case of using a pin chuck type stepper, there is a concern that defocusing may occur when a wafer rear surface scratch is placed on the pin chuck pin. For this reason, attention is paid to a boat for heat treatment and an auxiliary jig of the type that supports the wafer at the periphery rather than the type that supports the wafer on the entire back surface.

ウエーハを周縁部で支持して熱処理を行う場合、下面の全周に沿って支持するのが理想的である。しかし、一般の熱処理炉では、ウエーハは図11(a)に示されるようなウエーハWの裏面をすくい上げる方式の治具31や図11(b)に示されるようなウエーハWの裏面を吸着する方式の治具32を用いて搬送するため、ウエーハを補助治具に移載するとき、これらの搬送治具が補助治具と干渉しないよう、図12(a)のように一部に切り欠きを設けた円弧状補助治具37や、図12(b)のような段差39を設けた環状補助治具38が用いられる。   When heat treatment is performed with the wafer supported at the peripheral edge, it is ideal that the wafer be supported along the entire circumference of the lower surface. However, in a general heat treatment furnace, the wafer picks up the back surface of the wafer W as shown in FIG. 11B or the jig 31 that picks up the back surface of the wafer W as shown in FIG. Therefore, when the wafer is transferred to the auxiliary jig, a notch is partially cut out as shown in FIG. 12A so as not to interfere with the auxiliary jig. An arcuate auxiliary jig 37 provided or an annular auxiliary jig 38 provided with a step 39 as shown in FIG. 12B is used.

上記のような円弧状補助治具37は、比較的薄く、ボートの溝ピッチをそれほど広げる必要がないため、バッチ熱処理枚数を増やせるというメリットがある。しかし、面精度を保つのが難しく、切り欠き部の両端の高さが異なると、スリップが発生してしまうおそれがある。
また、段差のある補助治具38の場合は、比較的高い面精度で作製でき、スリップ低減には有利であるが、段差39がある分、治具38が厚くなるため、ボートの溝ピッチも広げる必要があり、バッチ熱処理枚数が減少してしまう。
Since the arc-shaped auxiliary jig 37 as described above is relatively thin and does not need to widen the groove pitch of the boat so much, there is an advantage that the number of batch heat treatments can be increased. However, it is difficult to maintain surface accuracy, and slipping may occur if the heights of both ends of the notch are different.
Further, in the case of the auxiliary jig 38 having a step, it can be manufactured with relatively high surface accuracy and is advantageous for reducing the slip. However, since the jig 38 becomes thicker due to the step 39, the groove pitch of the boat is also increased. It is necessary to widen, and the number of batch heat treatments is reduced.

さらに、これらの補助治具37,38は、円形板状の部材をくり貫いて作製するため手間がかかり、非常に高価であり、バッチ式熱処理用に補助治具数十枚と縦型ボートを一式準備すると、図10に示したようなウエーハを直接支持する通常の縦型ボートと比べ、コストが非常に高くなってしまう。   Furthermore, these auxiliary jigs 37 and 38 are time-consuming because they are made by punching a circular plate-like member, and are very expensive. Dozens of auxiliary jigs and a vertical boat are used for batch-type heat treatment. If a set is prepared, the cost will be very high compared to a normal vertical boat that directly supports a wafer as shown in FIG.

一方、ボート本体となる1つの円筒に円弧状の支持部を一体的に形成した熱処理用ボートも提案されている(特許文献2参照)。この熱処理用ボートは、SiCなどからなる円筒に対し、図13の横断面図に示したように搬送治具通過用の開口部(切り欠き部)34と雰囲気ガス通気用の切り欠き部35として垂直方向(軸方向)に幅の広い縦溝を複数形成し、水平方向に、ウエーハを挿入し、下面周縁部を支持するための横溝を円筒の内側まで形成したものである。このようなボートであれば、支柱33a,33b,33c,33dと円弧状の支持部36a,36b,36c,36dがそれぞれ一体的に形成されているため、円弧状補助治具等を用いずに、ウエーハWの下面周縁部を各支持部36a,36b,36c,36dにより断続的に支持することができる。   On the other hand, there is also proposed a heat treatment boat in which an arc-shaped support portion is integrally formed on one cylinder serving as a boat body (see Patent Document 2). As shown in the cross-sectional view of FIG. 13, this heat treatment boat is provided with an opening (notch) 34 for passing the conveying jig and a notch 35 for venting atmospheric gas, as shown in the cross-sectional view of FIG. A plurality of wide vertical grooves are formed in the vertical direction (axial direction), a wafer is inserted in the horizontal direction, and a horizontal groove for supporting the peripheral edge of the lower surface is formed to the inside of the cylinder. In such a boat, the columns 33a, 33b, 33c, and 33d and the arc-shaped support portions 36a, 36b, 36c, and 36d are integrally formed, so that an arc-shaped auxiliary jig or the like is not used. The lower peripheral edge portion of the wafer W can be intermittently supported by the support portions 36a, 36b, 36c, and 36d.

ところが、上記のような切り欠き部34,35を多数設けたボートでウエーハWを支持すると、熱処理時にウエーハが撓んだ際、円弧状の各支持部36a,36b,36c,36dの端部においてスリップが発生し易いという問題がある。一方、このようなスリップの発生を防ぐため雰囲気ガス通気用の切り欠き部35を設けないとなると、雰囲気ガスの通気や熱の移動が妨げられ、ウエーハWを均一に熱処理することができず、ウエーハ面内の温度差が大きくなり、結果的にスリップが発生し易くなるという問題がある。   However, when the wafer W is supported by a boat provided with a large number of the notches 34 and 35 as described above, when the wafer is bent during heat treatment, the arc-shaped support portions 36a, 36b, 36c, and 36d are at the end portions. There is a problem that slip easily occurs. On the other hand, if the notch 35 for venting the atmospheric gas is not provided in order to prevent the occurrence of such slip, the venting of the atmospheric gas and the movement of heat are hindered, and the wafer W cannot be uniformly heat-treated, There is a problem that the temperature difference in the wafer surface becomes large, and as a result, slip is likely to occur.

特開平6−260438号公報JP-A-6-260438 特開平5−129214号公報JP-A-5-129214

このような問題に鑑み、本発明は、熱処理中のウエーハ等にスリップが発生するのを効果的に防ぐことができ、かつ、均一に熱処理することができる熱処理用縦型ボートを提供することを目的とする。   In view of such a problem, the present invention provides a vertical boat for heat treatment that can effectively prevent the occurrence of slipping on a wafer or the like during heat treatment and can be uniformly heat-treated. Objective.

上記目的を達成するため、本発明によれば、天板と、底板と、該天板と底板の間に固定された支柱部材とを有し、該支柱部材に複数の溝が形成され、各溝間にウエーハ状の被処理体を水平に支持するための支持部が形成されている熱処理用縦型ボートであって、前記支柱部材が、環状又は円弧状の横断面を有し、前記溝が形成されることで前記被処理体を挿入するための挿入口と、該支柱部材の内側に一体的に形成された環状又は連続した円弧状の支持部とが設けられ、さらに前記挿入口と同じ高さに通気口が各支持部ごとに設けられるとともに、前記挿入口と通気口との間に該支柱部材に一体的に形成された支柱部とが設けられた1つの支柱部材からなり、前記ウエーハ状の被処理体が、前記挿入口から挿入されて前記環状又は連続した円弧状の支持部により下面周縁部に沿って支持されるものであることを特徴とする熱処理用縦型ボートが提供される。 In order to achieve the above object, according to the present invention, a top plate, a bottom plate, and a column member fixed between the top plate and the bottom plate, a plurality of grooves are formed in the column member, A vertical boat for heat treatment in which a support portion for horizontally supporting a wafer-like object to be processed is formed between grooves, wherein the support member has an annular or arc-shaped cross section, and the groove Are formed, and an insertion port for inserting the object to be processed, and an annular or continuous arc-shaped support portion integrally formed on the inner side of the column member are provided, and the insertion port A ventilation port is provided at the same height for each support part, and comprises a single column member provided with a column unit formed integrally with the column member between the insertion port and the ventilation port, The wafer-like object to be processed is inserted from the insertion port and is circular or continuous. Vertical boat for heat treatment, characterized in that the Jo of the support portion are intended to be supported along the lower surface peripheral edge portion Ru are provided.

このように環状又は円弧状の横断面を有する1つの支柱部材に、環状又は連続した円弧状の支持部が一体的に設けられ、かつ通気口も有する熱処理用縦型ボートとすれば、円弧状補助治具等が不要となる上、支持部における切り欠き部が1ヶ所以下であるため、ウエーハの下面周縁部を連続的に支持することができ、また、溝ピッチが狭くても、通気口を通じて雰囲気ガスのボート内外への通過を十分確保することができる。
従って、この熱処理用ボートを用いて半導体ウエーハ等の熱処理を行えば、均一に熱処理することができるとともに、支持部の端部からのスリップの発生を効果的に防止することができる。
In this way, if one vertical member having an annular or arc-shaped cross section is provided with an annular or continuous arc-shaped support portion integrally and having a vent, a circular arc-shaped boat is used. Auxiliary jigs are not required, and the number of notches in the support portion is one or less, so that the peripheral edge of the lower surface of the wafer can be supported continuously, and even if the groove pitch is narrow, the vent It is possible to sufficiently ensure the passage of atmospheric gas into and out of the boat through.
Therefore, if heat treatment of the semiconductor wafer or the like is performed using this heat treatment boat, the heat treatment can be performed uniformly and the occurrence of slip from the end portion of the support portion can be effectively prevented.

この場合、前記支柱部材に、中心角が200°以上360°以下の環状又は連続した円弧状の支持部が形成されているものとすることができる(請求項2)。
支柱部材に上記のような大きさの中心角の支持部が形成されていれば、ウエーハの下面周縁部を半分以上支持することができるためウエーハを安定して支持することができ、また、スリップの発生をより効果的に抑制することができる。
In this case, an annular or continuous arc-shaped support portion having a central angle of 200 ° or more and 360 ° or less may be formed on the support member (claim 2).
If the support member having the central angle of the size as described above is formed on the support member, it is possible to support more than half of the peripheral edge of the lower surface of the wafer, so that the wafer can be supported stably and slip. Can be more effectively suppressed.

前記熱処理用縦型ボートは、シリコンウエーハの熱処理用のものとすることができる(請求項3)。
シリコンウエーハの熱処理には縦型ボートが多く使用されており、スリップの発生防止に本発明による構成のボートが特に有効であり、このボートを用いることで、スリップ転位や裏面キズがほとんどないアニールウエーハを低コストで量産することができる。
The vertical boat for heat treatment can be used for heat treatment of a silicon wafer.
A vertical boat is often used for heat treatment of silicon wafers, and the boat having the configuration according to the present invention is particularly effective in preventing the occurrence of slip. By using this boat, an annealed wafer having almost no slip dislocation and no back surface scratches is obtained. Can be mass-produced at low cost.

前記支持部の支持面の縁部が、面取りされていることが好ましい(請求項4)。
このようにウエーハ等の被処理体と接する支持面の縁部を面取りしておけば、スリップやキズの発生をより確実に防ぐことができる。
It is preferable that the edge part of the support surface of the said support part is chamfered (Claim 4).
By chamfering the edge of the support surface in contact with the object to be processed such as a wafer in this way, it is possible to more reliably prevent the occurrence of slip and scratches.

また、前記支持部の支持面が、内側に向けて下方に傾斜しているものとしても良い(請求項5)。
このように支持面が傾斜していれば、ウエーハ等の外周端付近を支持することになり、裏面のキズ等の発生をより効果的に防ぐことができる。
Further, the support surface of the support portion may be inclined downward toward the inside (claim 5).
If the support surface is inclined as described above, the vicinity of the outer peripheral edge of the wafer or the like is supported, and the occurrence of scratches or the like on the back surface can be more effectively prevented.

さらに本発明によれば、前記熱処理用縦型ボートを製造する方法であって、環状又は連続した円弧状の横断面を有する支柱部材を前記天板と底板の間に配置して固定する工程と、該支柱部材に対し、前記被処理体を挿入すべき方向から切削して溝を形成することにより前記被処理体を挿入するための挿入口を形成するとともに該支柱部材の内側に前記被処理体を下面周縁部に沿って支持するための環状又は連続した円弧状の支持部を形成する工程と、該支柱部材に対し、前記挿入口と同じ高さで別の方向から切削して貫通させることにより前記通気口を形成するとともに前記挿入口と通気口との間の支柱部を形成する工程とを含むことを特徴とする熱処理用縦型ボートの製造方法が提供される(請求項6)。
このような方法によれば、本発明に係る熱処理用縦型ボートを効率的に製造することができ、製造コストを低く抑えることができる。
Furthermore, according to the present invention, there is provided a method for manufacturing the vertical boat for heat treatment, the step of disposing and fixing a column member having an annular or continuous arc-shaped cross section between the top plate and the bottom plate; The column member is cut from the direction in which the object to be processed is inserted to form a groove, thereby forming an insertion port for inserting the object to be processed, and the object to be processed inside the column member. A step of forming an annular or continuous arc-shaped support portion for supporting the body along the peripheral edge of the lower surface, and the post member is cut and penetrated from another direction at the same height as the insertion port. Thus, there is provided a method of manufacturing a vertical boat for heat treatment, which includes the step of forming the vent and forming a column portion between the insertion port and the vent (Claim 6). .
According to such a method, the vertical boat for heat treatment according to the present invention can be efficiently manufactured, and the manufacturing cost can be kept low.

また、他の方法として、環状又は連続した円弧状の横断面を有し、外側には梁が形成されている支柱部材を作製する工程と、該支柱部材を前記天板と底板の間に配置して固定する工程と、該支柱部材に対し、半径が前記支柱部材の内周半径よりも大きく、かつ前記梁となる部分の外周半径よりも小さい円周刃を用い、前記被処理体を挿入すべき方向から切削して溝を形成することにより前記被処理体を挿入するための挿入口を形成するとともに該支柱部材の内側に前記被処理体を下面周縁部に沿って支持するための環状又は連続した円弧状の支持部を形成し、さらに前記梁以外の部分を貫通させることにより前記通気口を形成するとともに前記梁の部分を前記支柱部として形成する工程とを含むことを特徴とする熱処理用縦型ボートの製造方法が提供される(請求項7)。   Further, as another method, a step of producing a column member having an annular or continuous arc-shaped cross section and a beam formed on the outside, and the column member is disposed between the top plate and the bottom plate And fixing the workpiece to the support member using a circumferential blade having a radius larger than the inner periphery radius of the support member and smaller than the outer periphery radius of the beam portion. An annular for forming the insertion port for inserting the object to be processed by cutting from the direction to be formed and for supporting the object to be processed along the peripheral edge of the lower surface inside the column member Or forming a continuous arc-shaped support portion, and further forming the vent by penetrating a portion other than the beam, and forming the beam portion as the support column. Manufacturing method of vertical boat for heat treatment There is provided (claim 7).

このような方法によれば、円周刃により、ウエーハの挿入口、支持部、通気口、及び支持部を一度に形成することができ、製造コストを一層低く抑えることができる。   According to such a method, it is possible to form the wafer insertion port, the support portion, the vent hole, and the support portion at a time by the circumferential blade, and the manufacturing cost can be further reduced.

本発明の熱処理用縦型ボートは、スリップを誘発させる支持部の端部が少なく、また、通気口を通じて雰囲気ガスのボート内外への通過が十分確保される。従って、この熱処理用ボートを用いて半導体ウエーハの熱処理を行えば、スリップの発生を極めて効果的に抑制するとともに、ウエーハを均一に熱処理することができる。
また、スリップの発生を抑制し、均一な熱処理を行うことができるため、溝ピッチは一般的なショートフィンガータイプの熱処理用縦型ボートと同じ程度としてバッチ処理枚数を多くすることができ、また、昇温/降温速度を上げて熱処理時間を短縮化することもできるため、生産性を著しく向上させることができる。
The vertical boat for heat treatment of the present invention has few end portions of the support portion that induces slip, and sufficiently passes the atmospheric gas into and out of the boat through the vent. Therefore, if the semiconductor wafer is heat-treated using this heat treatment boat, the occurrence of slip can be suppressed extremely effectively and the wafer can be uniformly heat-treated.
In addition, since the occurrence of slip can be suppressed and uniform heat treatment can be performed, the groove pitch can be increased to the same level as a general short finger type vertical boat for heat treatment, and the number of batch processing can be increased. Since the heat treatment time can be shortened by increasing the temperature raising / lowering rate, the productivity can be remarkably improved.

以下、好適な態様として、シリコンウエーハの熱処理の際に使用する本発明に係る熱処理用縦型ボートについて添付の図面に基づいて具体的に説明する。
図1は、本発明に係る熱処理用縦型ボートの一例の概略を示している。この熱処理用ボート10は、中空円盤状の天板1と、この天板1と対峙するように平行に配設された円盤状の底板2との間に、中心角が300°程度の円弧状の横断面を有する支柱部材3(本発明では、円弧状支柱部材あるいは単に支柱部材と称する場合がある)が固定されている。
Hereinafter, as a preferred embodiment, a vertical boat for heat treatment according to the present invention used for heat treatment of a silicon wafer will be specifically described with reference to the accompanying drawings.
FIG. 1 shows an outline of an example of a vertical boat for heat treatment according to the present invention. This heat treatment boat 10 has an arc shape with a central angle of about 300 ° between a hollow disk-shaped top plate 1 and a disk-shaped bottom plate 2 arranged in parallel to face the top plate 1. A column member 3 having a transverse cross section (in the present invention, it may be referred to as an arc-shaped column member or simply a column member) is fixed.

支柱部材3には、熱処理するウエーハの直径よりも広い幅となるように複数の溝8が支柱部材3に対して直角に等間隔で形成されている。これらの溝8が形成されることで、ウエーハを挿入するための挿入口4と、支柱部材3の内側に一体的に形成された連続した円弧状の支持部6が設けられている。なお、図1ではボート10の中間部分における支持部6の記載は省略されている。
そして、円弧状支持部6の両端部の間が切り欠き部(開口部)9となっているため、搬送治具により挿入口4からウエーハを移載する際、搬送治具は支持部6と干渉せずに通過することができる。
In the column member 3, a plurality of grooves 8 are formed at equal intervals perpendicular to the column member 3 so as to have a width wider than the diameter of the wafer to be heat-treated. By forming these grooves 8, an insertion port 4 for inserting a wafer and a continuous arcuate support portion 6 integrally formed inside the support column member 3 are provided. In FIG. 1, the description of the support portion 6 in the middle portion of the boat 10 is omitted.
And since the notch part (opening part) 9 is between the both ends of the circular arc-shaped support part 6, when transferring a wafer from the insertion port 4 with a conveyance jig, a conveyance jig and the support part 6 are used. It can pass without interference.

一方、挿入口4とは別に、挿入口4と同じ高さに挿入口4と同じ縦幅を有する通気口5が各段ごとに設けられている。
また、挿入口4と通気口5との間には支柱部材3に一体的に形成された支柱部3a,3b,3c,3dが設けられている。これらの支柱部3a,3b,3c,3dは、支柱部材3の垂直方向に一体的に形成されており、ボート全体を支える支柱として機能する。
On the other hand, apart from the insertion port 4, a ventilation port 5 having the same height as the insertion port 4 and the same height as the insertion port 4 is provided for each stage.
Further, between the insertion port 4 and the vent hole 5, column portions 3 a, 3 b, 3 c and 3 d formed integrally with the column member 3 are provided. These column portions 3a, 3b, 3c, 3d are integrally formed in the vertical direction of the column member 3, and function as columns that support the entire boat.

このように構成されたボート10では、各段の円弧状支持部6が連続しており、切り欠き部9が1ヶ所のみであるため、支持部6上に載置されたウエーハは、支持部6の切り欠き部以外の部分で連続的に支持されることになり、スリップの発生を効果的に抑制することができる。   In the boat 10 configured as described above, the arc-shaped support portions 6 of each stage are continuous, and the cutout portion 9 is only one place. Therefore, the wafer placed on the support portion 6 is supported by the support portion. It will be continuously supported by parts other than the 6 notch part, and generation | occurrence | production of a slip can be suppressed effectively.

ただし、本発明に係るボート10の連続した円弧状支持部6でウエーハの下面周縁部を支持しても、昇温速度や降温速度が非常に速くなるような厳しい熱処理を行った場合に、支持面6aに残留した微小な凸部で点接触が起こったり、熱処理時にウエーハが撓んだ際、特に支持部6の端部や内周の角部で点接触が発生したりして、スリップが発生することも考えられる。
したがって、厳しい熱処理条件でもスリップの発生を確実に防止するため、支持面6aを研磨して滑らかにしたり、支持面6aの縁部を面取りしておくことが好ましい。
However, even if the bottom edge of the wafer is supported by the continuous arc-shaped support portion 6 of the boat 10 according to the present invention, the support is provided when severe heat treatment is performed so that the rate of temperature rise or the rate of temperature fall is very high. When the point contact occurs at the minute convex portion remaining on the surface 6a, or when the wafer is bent during the heat treatment, the point contact occurs particularly at the end portion of the support portion 6 or at the corner portion of the inner periphery, and slip occurs. It can also occur.
Therefore, in order to reliably prevent the occurrence of slip even under severe heat treatment conditions, it is preferable that the support surface 6a is polished and smoothed, or the edge of the support surface 6a is chamfered.

また、支持部6の支持面6aは、内側に向けて下方に傾斜するように形成しておいてもよい。本発明のボート10でウエーハを下面周縁部に沿って支持する場合でも、支持部6と接する外周から数mm幅の領域に多少の裏面キズが発生するが、支持面6aを水平面ではなく、皿の縁のようにボート10の内側に下方に傾斜したテーパを付けて形成しておき、ウエーハをエッジ部のみ、あるいはエッジ部近傍で支持するようにすることで、裏面キズをより低減することができる。   Moreover, you may form so that the support surface 6a of the support part 6 may incline below toward inner side. Even when the boat 10 according to the present invention supports the wafer along the peripheral edge of the lower surface, some scratches on the back surface are generated in a region several mm wide from the outer periphery in contact with the support portion 6, but the support surface 6 a is not a horizontal surface but a dish. It is possible to further reduce the scratches on the back surface by forming a taper inclined downward on the inside of the boat 10 like the edge of the boat and supporting the wafer only at the edge portion or in the vicinity of the edge portion. it can.

このような本発明に係る熱処理用ボート10は、連続した円弧状の支持部6が支柱部材3の内側に一体的に形成されているため、円弧状補助治具等を別途使用しなくてもウエーハを下面周縁部に沿って広く支持することができ、しかも支持部6には切り欠き部9が1ヶ所しかないため、切り欠き部に起因するスリップが発生し難い。また、支持部6の各段ごとに通気口5が設けられているため、ガスや熱がボート内外に自由に流通しウエーハを均一に熱処理することができ、ウエーハ面内の温度分布が均一になり易い。従って、本発明による構成のボート10では、ウエーハに対し、スリップの発生を効果的に抑制し、均一に熱処理することができる。   In such a heat treatment boat 10 according to the present invention, since the continuous arc-shaped support portion 6 is integrally formed inside the support member 3, it is not necessary to separately use an arc-shaped auxiliary jig or the like. The wafer can be widely supported along the peripheral edge of the lower surface, and the support portion 6 has only one notch portion 9, so that slip due to the notch portion hardly occurs. Further, since the vents 5 are provided for each stage of the support portion 6, gas and heat can freely flow inside and outside the boat to uniformly heat the wafer, and the temperature distribution in the wafer surface is uniform. Easy to be. Therefore, in the boat 10 having the configuration according to the present invention, the occurrence of slip can be effectively suppressed and the heat treatment can be uniformly performed on the wafer.

なお、円弧状支柱部材3の大きさ(中心角の大きさ)は、搬送治具通過用の空間の幅やウエーハを安定して支持すること等を考慮して設定すればよく、より狭いあるいはより広い中心角を有するものでもよい。また、横断面が環状すなわち円筒状の支柱部材とし、例えば、図12(b)に示した環状の補助治具38のように、搬送治具との干渉を防ぐための段差を設けた環状の支持部が形成されたものとしてもよい。   The size of the arc-shaped support member 3 (the size of the central angle) may be set in consideration of the width of the space for passing the conveying jig, the stable support of the wafer, and the like. It may have a wider central angle. Further, the column member has a circular cross section, that is, a cylindrical support member. For example, an annular support member provided with a step for preventing interference with the transport jig, such as the annular auxiliary jig 38 shown in FIG. A support part may be formed.

ただし、円弧状支持部6はできるだけ大きい方がウエーハの荷重が分散されてスリップの発生を抑制することができ、また、ウエーハを支持した場合の安定性や搬送治具の通過等を考慮すると、支柱部材3に、中心角が200°以上360°以下の環状又は連続した円弧状の支持部が形成されているものとすることが好ましい。特に、中心角が340°以下の支持部6(支持面6a)として切り欠き部9あるいは段差部を設けておけば、支持部6と搬送治具との干渉を確実に防ぐことができる。   However, the larger the arc-shaped support portion 6 is, the more the load of the wafer can be dispersed and the occurrence of slip can be suppressed. In addition, in consideration of the stability when the wafer is supported, the passage of the conveying jig, etc., It is preferable that the support member 3 is formed with an annular or continuous arc-shaped support portion having a central angle of 200 ° to 360 °. In particular, if the cutout portion 9 or the stepped portion is provided as the support portion 6 (support surface 6a) having a central angle of 340 ° or less, interference between the support portion 6 and the conveying jig can be reliably prevented.

このような熱処理用ボート10の製造方法は特に限定されるものではないが、例えば以下のような方法により比較的容易に製造することができる。
図2〜図5は、熱処理用ボート10の製造方法の一例を示している。
まず、天板1と底板2のほか、支柱部材3として、図2に示されるような連続した円弧状の横断面を有し、その外周半径が、天板1、底板2の半径と略同じで、熱処理するウエーハの半径よりも大きく、一方、その内周半径はウエーハの半径よりも小さい支柱部材3を作製する。円弧の中心角θは、ウエーハ搬送治具の形状等を考慮して決めれば良く、例えば、中心角θが300°程度の円弧状の横断面を有する支柱部材3とすれば、ウエーハの下面周縁部を広い領域で支持することができるとともに、搬送治具が通過するための切り欠き部9を十分確保することができる。
Although the manufacturing method of such a heat treatment boat 10 is not particularly limited, for example, it can be manufactured relatively easily by the following method.
2-5 has shown an example of the manufacturing method of the boat 10 for heat processing.
First, in addition to the top plate 1 and the bottom plate 2, the column member 3 has a continuous arc-shaped cross section as shown in FIG. 2, and the outer peripheral radius is substantially the same as the radius of the top plate 1 and the bottom plate 2. Thus, the column member 3 is produced which is larger than the radius of the wafer to be heat-treated, and whose inner peripheral radius is smaller than the radius of the wafer. The center angle θ of the arc may be determined in consideration of the shape of the wafer conveyance jig. For example, if the column member 3 has an arc-shaped cross section with the center angle θ being about 300 °, the peripheral edge of the lower surface of the wafer The portion can be supported in a wide area, and the notch 9 for passing the conveying jig can be sufficiently secured.

これらの天板1、底板2、及び円弧状支柱部材3自体の作製方法は特に限定されないが、シリコンウエーハの熱処理用ボート10の場合には、素材として、例えば石英ガラス、単結晶シリコン、多結晶シリコン等を用いることでウエーハの汚染を防ぐことができ、特に炭化珪素(SiC)等のセラミックス材料をベースとしたものであれば、汚染の防止のほか、耐熱性にも極めて優れるため好ましい。   The manufacturing method of the top plate 1, the bottom plate 2 and the arc-shaped support member 3 itself is not particularly limited. However, in the case of the silicon wafer heat treatment boat 10, as a material, for example, quartz glass, single crystal silicon, polycrystalline Use of silicon or the like can prevent contamination of the wafer, and in particular, a material based on a ceramic material such as silicon carbide (SiC) is preferable because it is extremely excellent in heat resistance in addition to preventing contamination.

次に、作製した円弧状支柱部材3を、天板1と底板2との間に配置し、天板1と底板2に固定する。固定手段は特に限定されず、例えばバインダーによる接着、嵌め込み、ネジ止め等いずれの方法でも良い。   Next, the prepared arcuate column member 3 is disposed between the top plate 1 and the bottom plate 2 and fixed to the top plate 1 and the bottom plate 2. The fixing means is not particularly limited, and any method such as bonding with a binder, fitting, screwing, etc. may be used.

天板1と底板2との間に円弧状支柱部材3を固定した後、支柱部材3に対し、ウエーハを挿入すべき方向(切り欠き部9の位置)から切削して溝8を形成することによりウエーハを挿入するための挿入口4を形成するとともに支柱部材3の内側にウエーハを下面周縁部に沿って支持するための連続した円弧状の支持部6を形成する。
このような溝加工には、支柱部材3の外周半径より小さく、熱処理するウエーハの半径よりも大きい円盤状の円周刃(ダイヤモンドカッター)30を装着した溝切り加工機を好適に用いることができる。溝8を形成する際は、支柱部材の切り欠き部からボート10の中心軸Gに向けて切削し、ボート10と円周刃30の中心軸が一致するまで溝8を切り込む。これにより、図3の横断面図及び図4の斜視図に示されるように、支柱部材3に溝8が形成され、円周刃30を挿入した側にはウエーハの直径よりも横幅が広い溝8が形成されるとともに、支柱部材3の内側にはウエーハの直径よりも内径は小さく、外径は大きい連続した円弧状の支持部6が形成される。
After fixing the arc-shaped column member 3 between the top plate 1 and the bottom plate 2, the groove 8 is formed by cutting the column member 3 from the direction in which the wafer is to be inserted (the position of the notch 9). Thus, the insertion port 4 for inserting the wafer is formed, and a continuous arc-shaped support portion 6 for supporting the wafer along the peripheral edge of the lower surface is formed inside the column member 3.
For such grooving, a grooving machine equipped with a disk-shaped circumferential blade (diamond cutter) 30 that is smaller than the outer peripheral radius of the column member 3 and larger than the radius of the wafer to be heat-treated can be suitably used. . When the groove 8 is formed, the groove 8 is cut from the notch portion of the support member toward the center axis G of the boat 10 until the center axis of the boat 10 and the circumferential blade 30 coincide. As a result, as shown in the cross-sectional view of FIG. 3 and the perspective view of FIG. 4, the groove 8 is formed in the support member 3, and the groove having a width wider than the diameter of the wafer on the side where the circumferential blade 30 is inserted. 8 is formed, and a continuous arc-shaped support portion 6 having an inner diameter smaller than a wafer diameter and a larger outer diameter is formed inside the column member 3.

支柱部材3に対し、上記のようにして所定の高さに溝8(挿入口4及び円弧状支持部6)を形成した後、挿入口4と同じ高さで別の方向から切削して貫通させることにより通気口5を形成するとともに挿入口4と通気口5との間の支柱部3a,3b,3c,3dを形成する。例えば、図5に示されるように、挿入口4(切り欠き部9)とは反対側の三方から小さめの半径を有する円周刃で支柱部材3の外周側から切削して溝を切ることで、3つの通気口5を形成するともに、支柱となる部分(支柱部)3a,3b,3c,3dを残すようにする。このように挿入口4と同じ高さにそれぞれ通気口5を形成すれば、支持部6に新たな切り欠き部を形成することもなく、熱処理中、雰囲気ガスの流通や熱の移動が促されるため、ウエーハに対し、均一な熱処理を施すことができる。   After the groove 8 (insertion port 4 and arcuate support portion 6) is formed at a predetermined height in the column member 3 as described above, it is cut through from another direction at the same height as the insertion port 4. By doing so, the vent hole 5 is formed and the column portions 3a, 3b, 3c, 3d between the insertion port 4 and the vent hole 5 are formed. For example, as shown in FIG. 5, the groove is cut by cutting from the outer peripheral side of the column member 3 with a circumferential blade having a smaller radius from three sides opposite to the insertion port 4 (notch portion 9). The three vent holes 5 are formed, and the portions (post portions) 3a, 3b, 3c, and 3d that become the pillars are left. If the vent holes 5 are formed at the same height as the insertion port 4 in this way, a new notch is not formed in the support portion 6, and the circulation of atmospheric gas and the movement of heat are promoted during the heat treatment. Therefore, uniform heat treatment can be performed on the wafer.

通気口の形状や数は図1のものに限定されず、円形状、方形状のものとしても良いが、上記のようにウエーハを挿入する方向から形成した溝8と同じ高さ位置に、別の方向からも溝切りを行って貫通させることで、幅の広い通気口5を簡便に形成することができる。例えば、図7(a)に示されるように、各段ごとに二方向から切削して2つの通気口5を形成するとともに3つの支柱部3e,3f,3gを形成しても良い。   The shape and number of the vents are not limited to those shown in FIG. 1, but may be circular or rectangular. However, at the same height as the groove 8 formed from the direction in which the wafer is inserted as described above, A wide vent hole 5 can be easily formed by grooving and penetrating from the direction. For example, as shown in FIG. 7A, the two vent holes 5 may be formed by cutting from two directions for each step, and the three support portions 3e, 3f, 3g may be formed.

なお、上記のように溝8(挿入口4、円弧状支持部6)や通気口5を形成する手法としては、ダイヤモンドカッターの円周刃30を用いた溝切り加工機に限らず、同様の精度で同様に加工できるのであれば、レーザー加工機、高圧ジェット流、旋盤などの手法を用いても良い。   In addition, as a method of forming the groove | channel 8 (insertion port 4, arc-shaped support part 6) and the vent hole 5 as mentioned above, it is not restricted to the grooving machine using the circumferential blade 30 of a diamond cutter, but the same A technique such as a laser processing machine, a high-pressure jet flow, or a lathe may be used as long as it can be similarly processed with accuracy.

また、支持部6の端部からのスリップ発生を効果的に抑えるため、熱処理時にウエーハが撓んだ際に点接触が起こらないよう、図6に示したように支持部6の支持面側の端部6bや内側の角部6c等に面取り加工を施して丸めることが有効である。このような面取り加工を施すことで、スリップの発生をより効果的に防ぐことができる。   Further, in order to effectively suppress the occurrence of slip from the end portion of the support portion 6, a point contact on the support surface side of the support portion 6 is prevented as shown in FIG. 6 so that point contact does not occur when the wafer is bent during heat treatment. It is effective to chamfer and round the end 6b and the inner corner 6c. By performing such chamfering, the occurrence of slip can be prevented more effectively.

さらに、図8(a)(b)は本発明に係る熱処理用ボートの別の製造方法を示す図である。
まず、図8(a)の横断面図に示されるように、連続した円弧状の横断面を有し、外側(外周面)には梁49が形成されている支柱部材43を作製する。この支柱部材43の長手方向には、横断面の円弧において、切り欠き部9の反対側に半円をなす位置2箇所と、さらにこの半円をほぼ3等分する位置2箇所、すなわち半円の0°、60°、120°、180°の計4箇所に梁49が形成されている。なお、梁49となる出っ張りの外周半径は天板1、底板2の半径と略同じとなるようにし、梁以外の部分の外周半径は、天板1等の半径よりも小さく、かつウエーハの半径よりも大きくする。
Further, FIGS. 8A and 8B are views showing another manufacturing method of the boat for heat treatment according to the present invention.
First, as shown in the cross-sectional view of FIG. 8A, a column member 43 having a continuous arc-shaped cross section and having a beam 49 formed on the outer side (outer peripheral surface) is prepared. In the longitudinal direction of the column member 43, in the arc of the cross section, two positions that form a semicircle on the opposite side of the notch 9 and two positions that divide the semicircle into approximately three equal parts, that is, a semicircle Beams 49 are formed at four positions of 0 °, 60 °, 120 °, and 180 °. It should be noted that the outer peripheral radius of the protruding portion that becomes the beam 49 is substantially the same as the radius of the top plate 1 and the bottom plate 2, and the outer peripheral radius of the portion other than the beam is smaller than the radius of the top plate 1 and the like, and the radius of the wafer Larger than.

このような形状の支柱部材43を天板1と底板2の間に配置して固定する。次いで、支柱部材43に対し、半径が支柱部材43の内周半径よりも大きく、かつ梁49となる部分の外周半径よりも小さい円周刃、特に、円周刃の大きさが支柱部材43の梁49を除いた外周半径と同じかそれよりやや大きく(梁49との境界部分まで切削できる大きさに)設定した円周刃を用い、図8(b)のように、ウエーハを挿入すべき方向(切り欠き部9の方向)から切削して溝を形成することによりウエーハを挿入するための挿入口44を形成するとともに支柱部材43の内側にウエーハを下面周縁部に沿って支持するための連続した円弧状の支持部46を形成する。
そして、さらに円周刃によりそのまま切削して梁以外の部分を貫通させることにより通気口45を形成するとともに梁の部分を支柱部43a,43b,43c,43dとして形成する。
The column member 43 having such a shape is disposed and fixed between the top plate 1 and the bottom plate 2. Next, a circumferential blade whose radius is larger than the inner peripheral radius of the support member 43 and smaller than the outer periphery radius of the portion that becomes the beam 49, in particular, the size of the support member 43 is smaller than that of the support member 43. The wafer should be inserted as shown in FIG. 8 (b) using a circumferential blade set equal to or slightly larger than the outer radius excluding the beam 49 (size that allows cutting to the boundary with the beam 49). By forming a groove by cutting from the direction (the direction of the notch 9), an insertion port 44 for inserting the wafer is formed and the wafer is supported inside the support member 43 along the peripheral edge of the lower surface. A continuous arc-shaped support portion 46 is formed.
Further, the vent 45 is formed by cutting with a circumferential blade as it is and penetrating the part other than the beam, and the beam part is formed as the column parts 43a, 43b, 43c, 43d.

このような1回の溝切り加工を行うことで、同じ素材から、ウエーハ挿入口44、連続した円弧状支持部46に加え、支柱部43a,43b,43c,43dと通気口45を同時に形成することができ、新たな切り欠き部を形成することもない。すなわち、支柱部材43に溝を形成して残った内側部分が特に支持領域の広い円弧状のウエーハ支持部46となり、削られなかった梁の部分がボート全体を支える支柱の役割を果たし、各支柱部43a,43b,43c,43dの間に通気口45が形成される。従って、溝切り加工が少なくて済み、製造コストを一層低く抑えることができる。   By performing such grooving once, in addition to the wafer insertion port 44 and the continuous arc-shaped support portion 46, the support portions 43a, 43b, 43c and 43d and the vent hole 45 are simultaneously formed from the same material. And no new cutouts are formed. That is, the inner part remaining after forming a groove in the column member 43 becomes an arc-shaped wafer support portion 46 having a particularly wide support area, and the uncut portion of the beam serves as a column supporting the entire boat. A vent 45 is formed between the portions 43a, 43b, 43c, and 43d. Accordingly, less grooving is required and the manufacturing cost can be further reduced.

以下、本発明の実施例及び比較例について説明する。
(実施例1)
熱処理用縦型ボートの製造
支柱となる部材として、横断面の形状が、外側半径165mm、内側半径147mm、中心角300°の連続した円弧状であり、長さが930mmの炭化珪素(SiC)部材を作製した。そして、長手方向の端面の内周側の角部(図6の6cに相当する)はR25にて面取りを行った。
Examples of the present invention and comparative examples will be described below.
Example 1
Manufacture of vertical boat for heat treatment Silicon carbide (SiC) member having a cross-sectional shape of a continuous arc having an outer radius of 165 mm, an inner radius of 147 mm, a central angle of 300 °, and a length of 930 mm Was made. And the corner | angular part (equivalent to 6c of FIG. 6) of the inner peripheral side of the end surface of a longitudinal direction was chamfered in R25.

天板となる部材としては、外径(直径)330mm、内径(直径)270mm、厚さ4mmの中空円盤を、また、底板となる部材としては、(直径)330mm、厚さ5mmの円盤を、それぞれSiCにて作製した。   As a member serving as a top plate, a hollow disk having an outer diameter (diameter) of 330 mm, an inner diameter (diameter) of 270 mm, and a thickness of 4 mm, and as a member serving as a bottom plate, a disk having a diameter of 330 mm and a thickness of 5 mm, Each was made of SiC.

このような天板と底板との間に、上記円弧状の支柱部材を、炭素系のバインダーで接着することにより固定した。このとき、図2のように支柱部材の外周と天板/底板の外周とを一致させて配置した。なお、支柱部材の円弧の両端部とボートの中心軸Gとが成す角度Aは60°であり、搬送治具が通過するための切り欠き部は十分確保されている。
続いて、一体化させた各部材を構成するSiCの粒界にSiを含浸させるため、溶融Siに浸漬させた。
Between the top plate and the bottom plate, the arc-shaped support member was fixed by bonding with a carbon-based binder. At this time, as shown in FIG. 2, the outer periphery of the support member and the outer periphery of the top plate / bottom plate were aligned with each other. In addition, the angle A formed by the both ends of the arc of the column member and the center axis G of the boat is 60 °, and a notch portion through which the conveying jig passes is sufficiently secured.
Subsequently, in order to impregnate Si with SiC grain boundaries constituting the integrated members, they were immersed in molten Si.

溝の形成には、直径303mmのダイヤモンドカッターの円周刃を装着した溝切り加工機を用いた。
まず、溝切り加工機に、上記一体化した支柱部材を、図3に示されるように円周刃の進入方向と、ボートの中心軸Gと、支柱部材の一端部aとが成す角A/2が30°になるようにセットした。そして、溝の鉛直方向の幅を6.6mm、溝間に形成される支持部の厚さを3.0mm、溝数を95個に設定し、円周刃の中心がボートの中心軸Gと一致するまで円周刃を挿入することにより、支柱部材に対し溝を形成するとともに内側に連続した円弧状の支持部を形成した。このような作業により、図4のように各溝(ウエーハ挿入口、円弧状支持部)を順次形成した。
For forming the groove, a grooving machine equipped with a diamond cutter circumferential blade having a diameter of 303 mm was used.
First, in the grooving machine, the integrated strut member is connected to the angle A / the angle formed by the approach direction of the circumferential blade, the center axis G of the boat, and one end a of the strut member as shown in FIG. 2 was set to 30 °. And the width of the groove in the vertical direction is set to 6.6 mm, the thickness of the support portion formed between the grooves is set to 3.0 mm, the number of grooves is set to 95, and the center of the circumferential blade is the center axis G of the boat. By inserting the circumferential blade until it coincided, a groove was formed in the support member and an arc-shaped support portion continuous inside was formed. By such an operation, each groove (wafer insertion port, arcuate support portion) was sequentially formed as shown in FIG.

引き続き、図5のように、円周刃進入方向と、ボート中心軸Gと、支柱部材の一端aとのなす角Bが85°になるように上記一体化した部材を溝切り加工機に固定した。なお、ここでは直径200mmの円周刃を用い、支柱部材に対し、ウエーハを挿入すべき方向から先に形成した溝と同じ高さから切削して貫通させた。さらに、挿入口と対向する側からも同様に貫通させて、支柱部材に対し、各段において横幅が70mmの通気口を3つずつ形成した。   Subsequently, as shown in FIG. 5, the integrated member is fixed to the grooving machine so that the angle B formed by the circumferential blade approach direction, the boat center axis G, and one end a of the support member is 85 °. did. In this case, a circumferential blade having a diameter of 200 mm was used, and the support member was cut and penetrated from the same height as the groove formed earlier from the direction in which the wafer should be inserted. Furthermore, it penetrated from the side facing the insertion port in the same manner, and three vent holes each having a width of 70 mm were formed on each column member.

上記のように各溝(挿入口、支持部、支柱部、通気口)を形成した後、各支持部の支持面の縁部に面取り加工を施し、特に支持部における支持面と端面とが交差する角部(図6の6b)は、R15の面取りを行った。   After forming each groove (insertion slot, support section, support section, and vent hole) as described above, chamfering is applied to the edge of the support surface of each support section, and in particular, the support surface and end face of the support section intersect. The corner (6b in FIG. 6) to be chamfered with R15.

上記のような一連の加工によりボート形状としたものに酸洗浄を行った後、約100μmのSiC−CVDコート膜を形成した。このSiC−CVDコート膜の表面はRaが1μm程度あり、微小な凸面で起こる点接触によりスリップが発生するおそれがあるため、支持面についてはRaが約0.03μmになるまで研磨により平滑化を行った。   After the acid cleaning was performed on the boat shape by the series of processes as described above, an SiC-CVD coat film of about 100 μm was formed. Since the surface of this SiC-CVD coating film has a Ra of about 1 μm and there is a risk of slipping due to point contact occurring on a minute convex surface, the support surface is smoothed by polishing until Ra reaches about 0.03 μm. went.

シリコンウエーハの熱処理
熱処理するウエーハとして、直径300mm、厚さ779μmの鏡面研磨されたシリコンウエーハを用意した。
熱処理用ボートには、実施例1で製造した図1に示されるような円弧状の支持部を有する熱処理用縦型ボート10を用いた。
Heat treatment of silicon wafer As a wafer to be heat-treated, a mirror-polished silicon wafer having a diameter of 300 mm and a thickness of 779 μm was prepared.
As the heat treatment boat, a heat treatment vertical boat 10 having an arcuate support portion as shown in FIG. 1 manufactured in Example 1 was used.

このボートに、ウエーハの下面周縁部が円弧状の支持面に均等に接触するように95枚のウエーハを載置し、図9に示すような熱処理炉内に搬入した。そして、炉内で、アルゴン雰囲気中、1200℃、1時間の熱処理を行った。
熱処理後、熱処理炉からボートを搬出し、上から10枚と下から10枚のウエーハを除く75枚のウエーハに対し、目視及びX線Lang法にてスリップ転位の発生状況を確認した。
その結果、目視及びX線Lang法のどちらでもスリップ転位は全く観察されなかった。
Ninety-five wafers were placed on this boat so that the peripheral edge of the lower surface of the wafer was evenly in contact with the arc-shaped support surface, and carried into a heat treatment furnace as shown in FIG. Then, heat treatment was performed in an oven at 1200 ° C. for 1 hour in an argon atmosphere.
After the heat treatment, the boat was taken out from the heat treatment furnace, and the occurrence of slip dislocation was confirmed visually and by X-ray Lang method on 75 wafers excluding 10 wafers from the top and 10 wafers from the bottom.
As a result, no slip dislocation was observed by either visual observation or X-ray Lang method.

(比較実験1)
図10に示したような一般的な熱処理用縦型ボート(ショートフィンガータイプ)を用いて、上記実験と同様にしてシリコンウエーハの熱処理を行った。
熱処理後、目視及びX線Lang法にてスリップ転位の発生状況を観察したところ、目視によってもスリップ転位の発生をはっきり認識できるウエーハが多く存在し、X線Lang法で評価したスリップ転位発生率は90%以上となり、ほとんどのウエーハでスリップ転位が確認された。
(Comparative Experiment 1)
Using a general vertical boat for heat treatment (short finger type) as shown in FIG. 10, the silicon wafer was heat-treated in the same manner as the above experiment.
After heat treatment, when the occurrence of slip dislocation was observed visually and by X-ray Lang method, there were many wafers that could clearly recognize the occurrence of slip dislocation by visual observation, and the slip dislocation occurrence rate evaluated by X-ray Lang method was 90% or more, and slip dislocation was confirmed in most wafers.

(比較実験2)
また、図13に示したようなボート本体となる1本の円筒に対し、垂直方向(軸方向)に縦溝を形成することにより、上下方向に沿って一定幅の搬送治具通過用と雰囲気ガス通気用の開口部(切り欠き部)をそれぞれ設けた一体型の熱処理用縦型ボートを用い、上記実験と同様にしてシリコンウエーハの熱処理を行った。
熱処理後、目視及びX線Lang法にてスリップ転位の発生状況を観察したところ、目視によってもスリップ転位の発生が確認できるものがあり、また、X線Lang法で評価した場合、スリップ転位発生率はほぼ30%であった。スリップ転位発生率は比較実験1の場合より低かったものの、搬送治具通過用の縦溝34のほかに上下方向に沿って形成したガス通気用の縦溝35によりウエーハ支持部36に複数箇所の断絶部分が存在するためにスリップの発生が促進されたものと考えられる。
(Comparative experiment 2)
Further, by forming vertical grooves in the vertical direction (axial direction) for one cylinder as a boat body as shown in FIG. The silicon wafer was heat-treated in the same manner as in the above experiment, using an integrated vertical boat for heat treatment provided with openings (notches) for gas ventilation.
After heat treatment, the occurrence of slip dislocations was observed visually and by X-ray Lang method. Some slip dislocations could be confirmed by visual observation. Also, when evaluated by X-ray Lang method, slip dislocation occurrence rate Was almost 30%. Although the slip dislocation occurrence rate was lower than in the case of Comparative Experiment 1, in addition to the vertical groove 34 for passing through the conveying jig, a plurality of gas support vertical grooves 35 formed along the vertical direction were formed in the wafer support portion 36 at a plurality of locations. It is considered that the occurrence of slip was promoted due to the presence of the disconnected portion.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above embodiment is merely an example, and the present invention has the same configuration as that of the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

例えば、ウエーハのリフト機構の付いたウエーハ搬送方式を用いる場合には、図7(b)のような横断面が環状の支柱部材13に環状の支持部7を形成して、ウエーハ等を全周で支持するものとしても良い。このように全周で支持するものであれば、スリップの発生をより効果的に抑えることができる。   For example, when using a wafer conveyance system with a wafer lift mechanism, an annular support portion 7 is formed on a support member 13 having an annular cross section as shown in FIG. It may be supported by Thus, if it supports by a perimeter, generation | occurrence | production of a slip can be suppressed more effectively.

本発明に係る熱処理用縦型ボートの一例を示す斜視図である。It is a perspective view which shows an example of the vertical boat for heat processing which concerns on this invention. 図1の熱処理用ボートの溝形成加工前の断面図である。It is sectional drawing before the groove formation process of the boat for heat processing of FIG. 図1の熱処理用ボートの溝形成加工後の断面図である。It is sectional drawing after the groove formation process of the boat for heat processing of FIG. 熱処理用ボートの溝形成加工を説明する斜視図である。It is a perspective view explaining the groove formation process of the boat for heat processing. 図1の熱処理用ボートの通気口形成後の断面図である。FIG. 2 is a cross-sectional view of the heat treatment boat of FIG. 図5のCで囲まれた支持部の端部を拡大した斜視図である。It is the perspective view which expanded the edge part of the support part enclosed by C of FIG. 本発明に係る熱処理用縦型ボートの他の例を示す断面図である。 (a)円弧状の支柱部材 (b)環状の支柱部材It is sectional drawing which shows the other example of the vertical boat for heat processing which concerns on this invention. (A) Arc-shaped column member (b) Ring-shaped column member 本発明に係る熱処理用縦型ボートのさらに他の例を示す断面図である。 (a)溝形成加工前 (b)溝形成加工後It is sectional drawing which shows the further another example of the vertical boat for heat processing which concerns on this invention. (A) Before groove formation processing (b) After groove formation processing 縦型熱処理炉の一例を示す概略図である。It is the schematic which shows an example of a vertical heat processing furnace. 従来の熱処理用縦型ボートの一例を示す概略図である。 (a)正面図 (b)横方向断面図(ウエーハを支持した状態)It is the schematic which shows an example of the conventional vertical boat for heat processing. (A) Front view (b) Cross-sectional view in the lateral direction (state in which the wafer is supported) 搬送治具の例を示す概略図である。 (a)すくい上げ方式 (b)吸着方式It is the schematic which shows the example of a conveyance jig. (A) Scooping method (b) Adsorption method ウエーハ周辺部支持用補助治具の例を示す斜視図である。 (a)円弧状の補助治具 (b)段差を付けた環状の補助治具It is a perspective view which shows the example of the auxiliary | assistant jig | tool for wafer periphery part support. (A) Arc-shaped auxiliary jig (b) An annular auxiliary jig with a step 従来の一体型熱処理用縦型ボートの概略断面図である。It is a schematic sectional drawing of the conventional vertical boat for integrated heat processing.

符号の説明Explanation of symbols

1…天板、 2…底板、 3…支柱部材、 3a〜3g…支柱部、
4…ウエーハ挿入口、 5…通気口、 6…連続した円弧状の支持部、
7…環状の支持部、 6a…ウエーハ支持面、 8…溝、 9…切り欠き部(開口部)、
10…熱処理用縦型ボート、 20…熱処理炉、 30…円周刃、 θ…中心角、
W…ウエーハ。
DESCRIPTION OF SYMBOLS 1 ... Top plate, 2 ... Bottom plate, 3 ... Column member, 3a-3g ... Column part,
4 ... wafer insertion port, 5 ... ventilation port, 6 ... continuous arcuate support,
7 ... Annular support, 6a ... Wafer support surface, 8 ... Groove, 9 ... Notch (opening),
10 ... Vertical boat for heat treatment, 20 ... Heat treatment furnace, 30 ... Circumferential blade, θ ... Center angle,
W ... wah.

Claims (7)

天板と、底板と、該天板と底板の間に固定された支柱部材とを有し、該支柱部材に複数の溝が形成され、各溝間にウエーハ状の被処理体を水平に支持するための支持部が形成されている熱処理用縦型ボートであって、前記支柱部材が、環状又は円弧状の横断面を有し、前記溝が形成されることで前記被処理体を挿入するための挿入口と、該支柱部材の内側に一体的に形成された環状又は連続した円弧状の支持部とが設けられ、さらに前記挿入口と同じ高さに通気口が各支持部ごとに設けられるとともに、前記挿入口と通気口との間に該支柱部材に一体的に形成された支柱部とが設けられた1つの支柱部材からなり、前記ウエーハ状の被処理体が、前記挿入口から挿入されて前記環状又は連続した円弧状の支持部により下面周縁部に沿って支持されるものであることを特徴とする熱処理用縦型ボート。 It has a top plate, a bottom plate, and a column member fixed between the top plate and the bottom plate. A plurality of grooves are formed in the column member, and a wafer-like object to be processed is horizontally supported between the grooves. A vertical boat for heat treatment in which a support portion is formed, wherein the support member has an annular or arc-shaped cross section, and the groove is formed to insert the object to be processed. And an annular or continuous arc-shaped support portion integrally formed on the inner side of the support member, and a vent hole is provided for each support portion at the same height as the insertion port. together is, consists of one strut member is provided with integrally formed struts in the strut member between the insertion opening and vent, the wafer-like object to be processed is, from the insertion port Inserted and supported along the peripheral edge of the lower surface by the annular or continuous arc-shaped support part Vertical boat for heat treatment, characterized in that it is intended to. 前記支柱部材に、中心角が200°以上360°以下の環状又は連続した円弧状の支持部が形成されているものであることを特徴とする請求項1に記載の熱処理用縦型ボート。   2. The vertical boat for heat treatment according to claim 1, wherein the support member is formed with an annular or continuous arc-shaped support portion having a central angle of 200 ° to 360 °. 前記熱処理用縦型ボートが、シリコンウエーハの熱処理用のものであることを特徴とする請求項1又は請求項2に記載の熱処理用縦型ボート。   The vertical boat for heat treatment according to claim 1 or 2, wherein the vertical boat for heat treatment is for heat treatment of a silicon wafer. 前記支持部の支持面の縁部が、面取りされていることを特徴とする請求項1ないし請求項3のいずれか1項に記載の熱処理用縦型ボート。   The vertical boat for heat treatment according to any one of claims 1 to 3, wherein an edge portion of the support surface of the support portion is chamfered. 前記支持部の支持面が、内側に向けて下方に傾斜していることを特徴とする請求項1ないし請求項4のいずれか1項に記載の熱処理用縦型ボート。   The vertical boat for heat treatment according to any one of claims 1 to 4, wherein a support surface of the support portion is inclined downward toward the inside. 前記請求項1ないし請求項5のいずれか1項に記載の熱処理用縦型ボートを製造する方法であって、環状又は連続した円弧状の横断面を有する支柱部材を前記天板と底板の間に配置して固定する工程と、該支柱部材に対し、前記被処理体を挿入すべき方向から切削して溝を形成することにより前記被処理体を挿入するための挿入口を形成するとともに該支柱部材の内側に前記被処理体を下面周縁部に沿って支持するための環状又は連続した円弧状の支持部を形成する工程と、該支柱部材に対し、前記挿入口と同じ高さで別の方向から切削して貫通させることにより前記通気口を形成するとともに前記挿入口と通気口との間の支柱部を形成する工程とを含むことを特徴とする熱処理用縦型ボートの製造方法。   The method for manufacturing a vertical boat for heat treatment according to any one of claims 1 to 5, wherein a column member having an annular or continuous arc-shaped cross section is provided between the top plate and the bottom plate. Forming the insertion port for inserting the object to be processed by forming a groove by cutting the object to be inserted from the direction in which the object is to be inserted. A step of forming an annular or continuous arc-shaped support part for supporting the object to be processed along the peripheral edge of the lower surface inside the support member, and the support member are separated at the same height as the insertion port. A method of manufacturing a vertical boat for heat treatment, comprising the step of forming the vent hole by cutting and penetrating from the direction of, and forming a column portion between the insertion port and the vent hole. 前記請求項1ないし請求項5のいずれか1項に記載の熱処理用縦型ボートを製造する方法であって、環状又は連続した円弧状の横断面を有し、外側には梁が形成されている支柱部材を作製する工程と、該支柱部材を前記天板と底板の間に配置して固定する工程と、該支柱部材に対し、半径が前記支柱部材の内周半径よりも大きく、かつ前記梁となる部分の外周半径よりも小さい円周刃を用い、前記被処理体を挿入すべき方向から切削して溝を形成することにより前記被処理体を挿入するための挿入口を形成するとともに該支柱部材の内側に前記被処理体を下面周縁部に沿って支持するための環状又は連続した円弧状の支持部を形成し、さらに前記梁以外の部分を貫通させることにより前記通気口を形成するとともに前記梁の部分を前記支柱部として形成する工程とを含むことを特徴とする熱処理用縦型ボートの製造方法。   A method for manufacturing a vertical boat for heat treatment according to any one of claims 1 to 5, wherein the boat has a circular or continuous arc-shaped cross section, and a beam is formed outside. A strut member having a radius larger than an inner peripheral radius of the strut member, and a step of arranging the strut member between the top plate and the bottom plate and fixing the strut member. While using a circumferential blade smaller than the outer peripheral radius of the portion to be a beam, forming an insertion port for inserting the object to be processed by forming a groove by cutting the object to be processed in a direction to be inserted An annular or continuous arc-shaped support part for supporting the object to be processed along the peripheral edge of the lower surface is formed inside the support member, and the vent is formed by penetrating a part other than the beam. And the beam portion is connected to the column portion. For heat treatment vertical boat method of manufacturing, which comprises the step of to form.
JP2003300526A 2003-08-25 2003-08-25 Vertical boat for heat treatment and manufacturing method thereof Expired - Fee Related JP5010797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003300526A JP5010797B2 (en) 2003-08-25 2003-08-25 Vertical boat for heat treatment and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003300526A JP5010797B2 (en) 2003-08-25 2003-08-25 Vertical boat for heat treatment and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005072277A JP2005072277A (en) 2005-03-17
JP5010797B2 true JP5010797B2 (en) 2012-08-29

Family

ID=34405436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003300526A Expired - Fee Related JP5010797B2 (en) 2003-08-25 2003-08-25 Vertical boat for heat treatment and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5010797B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700309B2 (en) * 2004-09-21 2011-06-15 株式会社日立国際電気 Semiconductor manufacturing equipment and boat
CN111285364B (en) * 2018-12-06 2022-09-13 株洲弗拉德科技有限公司 Three-dimensional high-temperature continuous heat treatment production system
CN117382001A (en) * 2023-11-16 2024-01-12 江苏晶孚新材料科技有限公司 Double-end tooth-cutting equipment of silicon carbide ceramic wafer boat for sintering and diffusing photovoltaic cell

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265122A (en) * 1988-08-30 1990-03-05 Nec Corp Semiconductor substrate support boat
JP3190079B2 (en) * 1991-11-05 2001-07-16 株式会社日立製作所 Method for manufacturing semiconductor integrated circuit device
JPH06338467A (en) * 1993-05-28 1994-12-06 Shinko Electric Co Ltd Wafer supporting mechanism for semiconductor manufacturing device
JPH0950967A (en) * 1995-05-26 1997-02-18 Tokyo Electron Ltd Wafer boat
JPH09251961A (en) * 1996-03-15 1997-09-22 Toshiba Corp Heat-treating boat
JPH10223547A (en) * 1997-02-03 1998-08-21 Toshiba Ceramics Co Ltd Vertical wafer board and manufacture thereof
WO2000019502A1 (en) * 1998-09-28 2000-04-06 Hitachi, Ltd. Vertical furnace and wafer boat for vertical furnace
JP2001313266A (en) * 2000-04-28 2001-11-09 Asahi Glass Co Ltd Heat treating boat
JP2001313268A (en) * 2000-04-28 2001-11-09 Asahi Glass Co Ltd Heat treating boat

Also Published As

Publication number Publication date
JP2005072277A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP4506125B2 (en) Vertical boat for heat treatment and manufacturing method thereof
US7163393B2 (en) Heat treatment jig for semiconductor silicon substrate
JP5071217B2 (en) Vertical heat treatment boat and silicon wafer heat treatment method using the same
US20080041798A1 (en) Wafer Platform
KR20030063194A (en) Apparatus for fabricating a semiconductor device
JP4380689B2 (en) Vertical heat treatment boat and semiconductor wafer heat treatment method using the same
KR20070083813A (en) Vertical boat for heat treatment and heat treatment method
JP5010797B2 (en) Vertical boat for heat treatment and manufacturing method thereof
JP2009152283A (en) Support tool for semiconductor substrate and method of manufacturing the same
WO2005124848A1 (en) Heat treatment jig and semiconductor wafer heat treatment method
JP2005005379A (en) Method and vertical boat for heat-treating semiconductor wafer
JP5130808B2 (en) Wafer heat treatment jig and vertical heat treatment boat equipped with the jig
JP3687578B2 (en) Heat treatment jig for semiconductor silicon substrate
JP4396105B2 (en) Vertical heat treatment boat and semiconductor wafer heat treatment method
JP2007036105A (en) Susceptor for silicon wafer
JP2005328008A (en) Vertical boat for heat-treating semiconductor wafer, and heat treatment method
JP2009272386A (en) Method for supporting wafer to wafer support tool
JPH1022228A (en) Jig for semiconductor heat treatment
JP2005235906A (en) Wafer holding jig and vapor phase growing apparatus
JP2009076621A (en) Vertical boat for heat treatment
JP2005019748A (en) Thermal treatment jig and thermal treatment method for wafer
JPH07273056A (en) Semiconductor wafer holding device and manufacture thereof
JP3867509B2 (en) Horizontal heat treatment furnace boat and heat treatment method
JP2003282683A (en) Semiconductor production device
JP2001313267A (en) Heat treating boat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5010797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees