JP4395412B2 - Constant voltage circuit - Google Patents

Constant voltage circuit Download PDF

Info

Publication number
JP4395412B2
JP4395412B2 JP2004160559A JP2004160559A JP4395412B2 JP 4395412 B2 JP4395412 B2 JP 4395412B2 JP 2004160559 A JP2004160559 A JP 2004160559A JP 2004160559 A JP2004160559 A JP 2004160559A JP 4395412 B2 JP4395412 B2 JP 4395412B2
Authority
JP
Japan
Prior art keywords
transistor
circuit
voltage
reference voltage
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004160559A
Other languages
Japanese (ja)
Other versions
JP2005339423A (en
Inventor
俊幸 永井
晴彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2004160559A priority Critical patent/JP4395412B2/en
Publication of JP2005339423A publication Critical patent/JP2005339423A/en
Application granted granted Critical
Publication of JP4395412B2 publication Critical patent/JP4395412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electrical Variables (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Description

本発明は、基準電圧発生回路を使用した定電圧回路に係り、特に基準電圧に含まれるノイズの吸収と電源投入時の立ち上がりの高速化の双方を同時に図った定電圧回路に関するものである。   The present invention relates to a constant voltage circuit that uses a reference voltage generation circuit, and more particularly to a constant voltage circuit that simultaneously absorbs noise contained in a reference voltage and speeds up rising when power is turned on.

バンドギャップ電圧を利用して温度補償を行う基準電圧発生回路を使用した従来の定電圧回路は、図3に示すように、ベースが共通接続されたNPNトランジスタQ1,Q2、トランジスタQ1と接地間に接続され且つトランジスタQ2のエミッタが共通接続点に接続された抵抗R1,R2、トランジスタQ1,Q2のコレクタ電流を供給するカレントミラー接続のPNPトランジスタQ4,Q5、バッファアンプとして働くPNPトランジスタQ3からなる基準電圧発生回路1(例えば、特許文献1参照)と、抵抗R3とキャパシタC1からなるCRフィルタ回路2とで構成されている。3は出力端子、4は基準電圧ノードである。トランジスタQ1,Q2の面積比はN1:1に設定されている。   As shown in FIG. 3, a conventional constant voltage circuit using a reference voltage generation circuit that performs temperature compensation using a bandgap voltage has NPN transistors Q1 and Q2, whose bases are commonly connected, and between the transistor Q1 and the ground. A reference composed of resistors R1 and R2 connected to each other and having the emitter of the transistor Q2 connected to a common connection point, PNP transistors Q4 and Q5 in current mirror connection for supplying collector currents of the transistors Q1 and Q2, and a PNP transistor Q3 serving as a buffer amplifier The voltage generating circuit 1 (see, for example, Patent Document 1) and a CR filter circuit 2 including a resistor R3 and a capacitor C1 are included. 3 is an output terminal, and 4 is a reference voltage node. The area ratio of the transistors Q1 and Q2 is set to N1: 1.

この定電圧回路では、トランジスタQ1,Q2のコレクタにトランジスタQ4,Q5により同じ電流を供給すると、基準電圧ノード4に得られる基準電圧Vrefは、
Vref=VBE2+VR2
=VBE2+2・R2/R1・VT・ln(N1) (1)
で与えられる。VBE2はトランジスタQ2のベース・エミッタ間電圧、VR2は抵抗R2に発生する電圧、R2/R1は抵抗R1,R2の抵抗比、VTは負の温度係数を持つサーマル電圧(=kT/q)、lnは自然対数である。なお、kはボルツマン定数、Tは絶対温度、qは電子の電荷である。
In this constant voltage circuit, when the same current is supplied to the collectors of the transistors Q1 and Q2 by the transistors Q4 and Q5, the reference voltage Vref obtained at the reference voltage node 4 is
Vref = V BE2 + V R2
= V BE2 +2 ・ R 2 / R 1・ V T・ ln (N1) (1)
Given in. V BE2 is a base-emitter voltage of the transistor Q2, V R2 is a voltage generated in the resistor R2, R 2 / R 1 is a resistance ratio of the resistors R1 and R2, and V T is a thermal voltage having a negative temperature coefficient (= kT / q), ln is the natural logarithm. Here, k is a Boltzmann constant, T is an absolute temperature, and q is an electron charge.

そして、基準電圧Vrefが温度変化dTに対して安定化するようにトランジスタQ1,Q2の面積比N1や抵抗R1,R2の値R2,R1が設定される。すなわち、
BE2/dT+2・R2/R1・VT・ln(N1)=0 (2)
となるように条件を設定し、(2)式の左式の第1項(負の温度特性)の温度による変化を第2項(正の温度特性)が打ち消すようにしている。
The reference voltage Vref has a value R 2, R 1 of the area ratio of to stabilize the transistor Q1, Q2 N1 and resistors R1, R2 are set to temperature changes dT. That is,
V BE2 / dT + 2 ・ R 2 / R 1・ V T・ ln (N1) = 0 (2)
The conditions are set so that the second term (positive temperature characteristic) cancels the change of the first term (negative temperature characteristic) in the left expression of equation (2) due to temperature.

また、この定電圧回路では、基準電圧Vrefに含まれるノイズが抵抗R3とキャパシタC1からなるCRフィルタ回路2によって除去され、そのカットオフ周波数fcは、
fc=1/(2π・C1・R3) (3)
となる。C1はキャパシタC1の容量、R3は抵抗R3の抵抗値である。さらに、電源電圧Vccの立ち上がり時の出力電圧Vo(t)の特性は、CRフィルタ回路2の時定数τ(=C1・R3)によって、
Vo(t)=Vo[1−exp(−t/τ)] (4)
となり、図4に示す特性となる。
特開平11−45126号公報
In this constant voltage circuit, noise included in the reference voltage Vref is removed by the CR filter circuit 2 including the resistor R3 and the capacitor C1, and the cut-off frequency fc is
fc = 1 / (2π · C 1 · R 3 ) (3)
It becomes. C 1 is the capacitance of the capacitor C 1 , and R 3 is the resistance value of the resistor R 3 . Further, the characteristics of the output voltage Vo (t) at the rise of the power supply voltage Vcc are determined by the time constant τ (= C 1 · R 3 ) of the CR filter circuit 2.
Vo (t) = Vo [1-exp (−t / τ)] (4)
Thus, the characteristics shown in FIG. 4 are obtained.
JP-A-11-45126

ところが、上記した定電圧回路では、ノイズを低減するためにカットオフ周波数fcを下げるには、抵抗R3又はキャパシタC1の値を大きくする必要があるが、このようにすると時定数τが大きくなってしまい、電源電圧Vccの立ち上がり時の出力電圧Voの立ち上がりが遅くなるという問題があった。   However, in the above-described constant voltage circuit, in order to reduce the cut-off frequency fc in order to reduce noise, it is necessary to increase the value of the resistor R3 or the capacitor C1, but this increases the time constant τ. As a result, the rise of the output voltage Vo at the rise of the power supply voltage Vcc is delayed.

本発明の目的は、基準電圧発生回路で発生するノイズを低減でき、しかも電源電圧立ち上がり時の出力電圧の立ち上がりも高速化できるようにした定電圧回路を提供することである。   An object of the present invention is to provide a constant voltage circuit that can reduce noise generated in a reference voltage generation circuit and that can also speed up the rise of the output voltage when the power supply voltage rises.

請求項1にかかる発明は、基準電圧発生回路と、該基準電圧発生回路で発生した基準電圧に含まれるノイズを吸収するためのCRフィルタ回路と、電源投入時の前記基準電圧発生回路の立ち上がりを検出して前記CRフィルタ回路のキャパシタを急速充電するコンパレータ回路と、を具備する定電圧回路において、前記基準電圧発生回路は、前記基準電圧が生成される基準電圧ノードにベースが共通接続された第1導電型の第1,第2のトランジスタと、該第1のトランジスタのエミッタと接地間に直列接続され且つ共通接続点に前記第2のトランジスタのエミッタが接続された第1,第2の抵抗と、エミッタが電源端子に接続されベースが前記第1のトランジスタのコレクタに接続され、コレクタが前記基準電圧ノードに接続された第2導電型の第3のトランジスタと、エミッタが前記電源端子に接続されコレクタが前記第1のトランジスタのコレクタに接続された第2の導電型の第4のトランジスタと、エミッタが前記電源端子に接続されコレクタが前記第2のトランジスタのコレクタに接続され、ベースが前記第4のトランジスタのベースに接続され且つベースとコレクタが共通接続された第2の導電型の第5のトランジスタと、を具備し、且つ出力電圧の立ち上がり後の前記第3のトランジスタのベース・エミッタ間電圧が前記第5のトランジスタのベース・エミッタ間電圧より小さくなるよう設定され、前記コンパレータ回路は、前記第3のトランジスタのベース電圧と前記第5のトランジスタのベース電圧を比較し、前者が後者より低いときのみ、前記CRフィルタ回路への急速充電電流を供給する、ことを特徴とする。 The invention according to claim 1 includes a reference voltage generation circuit, a CR filter circuit for absorbing noise included in the reference voltage generated by the reference voltage generation circuit, and a rise of the reference voltage generation circuit when the power is turned on. A constant voltage circuit that detects and rapidly charges a capacitor of the CR filter circuit , wherein the reference voltage generating circuit has a base commonly connected to a reference voltage node where the reference voltage is generated. First and second transistors of one conductivity type, and first and second resistors connected in series between the emitter of the first transistor and the ground and having the emitter of the second transistor connected to a common connection point A second conductor having an emitter connected to the power supply terminal, a base connected to the collector of the first transistor, and a collector connected to the reference voltage node. A third transistor of the type, a fourth transistor of the second conductivity type having an emitter connected to the power supply terminal and a collector connected to the collector of the first transistor, and an emitter connected to the power supply terminal Is connected to the collector of the second transistor, the base is connected to the base of the fourth transistor, and the base and the collector are connected in common. The base-emitter voltage of the third transistor after the rising of the output voltage is set to be smaller than the base-emitter voltage of the fifth transistor, and the comparator circuit has the base voltage of the third transistor The base voltage of the fifth transistor is compared, and only when the former is lower than the latter, the CR filter circuit Supplying a rapid charging current to, characterized in that.

本発明によれば、基準電圧発生回路の立ち上がりタイミングをコンパレータ回路で検出してCRフィルタ回路のキャパシタへの急速充電を行うので、時定数τの大きなCRフィルタ回路を使用してカットオフ周波数を低下させて基準電圧に含まれるノイズ低減を図っても、電源電圧立ち上がり時の出力電圧立ち上がりを高速化することができる。つまり、ノイズ低減と出力電圧立ち上がり高速化の両者を満足させることができる。よって、特にノイズを低減するためにカットオフ周波数の低いCRフィルタ回路を使用する場合に効果的である。   According to the present invention, the rise timing of the reference voltage generation circuit is detected by the comparator circuit and the capacitor of the CR filter circuit is rapidly charged, so the cut-off frequency is lowered by using the CR filter circuit having a large time constant τ. Even if the noise included in the reference voltage is reduced, the rise of the output voltage at the rise of the power supply voltage can be accelerated. That is, both noise reduction and output voltage rise speed can be satisfied. Therefore, this is particularly effective when a CR filter circuit having a low cut-off frequency is used in order to reduce noise.

図1は本発明の1つの実施例の定電圧回路の構成を示す回路図である。本実施例の定電圧回路では、ベースが共通接続されたNPNトランジスタQ1,Q2と、トランジスタQ1と接地間に接続され且つ共通接続点にトランジスタQ2のエミッタが接続された抵抗R1,R2と、トランジスタQ1,Q2に同じコレクタ電流を供給するカレントミラー接続のPNPトランジスタQ4,Q5(トランジスタQ5が基準側、トランジスタQ4が出力側)と、バッファアンプとして働くPNPトランジスタQ3とからなる基準電圧発生回路1が構成されている。また、基準電圧ノード4と出力端子3の間には、抵抗R3とキャパシタC1からなるCRフィルタ回路2が接続されている。さらに、NPNトランジスタQ6,Q7と、カレントミラー接続のPNPトランジスタQ8,Q9と、定電流源I2と、、PNPトランジスタQ10とにより、トランジスタQ1,Q2のコレクタ電圧を比較してキャパシタC1への充電電流を供給するコンパレータ回路5が構成されている。トランジスタQ1,Q2の面積比はN1:1に設定され、トランジスタQ3,Q5の面積比はN2:1に設定されている。   FIG. 1 is a circuit diagram showing a configuration of a constant voltage circuit according to one embodiment of the present invention. In the constant voltage circuit of this embodiment, NPN transistors Q1 and Q2 whose bases are connected in common, resistors R1 and R2 connected between the transistor Q1 and the ground, and the emitter of the transistor Q2 connected to the common connection point, A reference voltage generating circuit 1 comprising PNP transistors Q4 and Q5 in a current mirror connection for supplying the same collector current to Q1 and Q2 (transistor Q5 is a reference side, transistor Q4 is an output side) and a PNP transistor Q3 serving as a buffer amplifier is provided. It is configured. A CR filter circuit 2 including a resistor R3 and a capacitor C1 is connected between the reference voltage node 4 and the output terminal 3. Further, the NPN transistors Q6 and Q7, the current mirror-connected PNP transistors Q8 and Q9, the constant current source I2, and the PNP transistor Q10 compare the collector voltages of the transistors Q1 and Q2, and charge the capacitor C1. Is provided. The area ratio of the transistors Q1 and Q2 is set to N1: 1, and the area ratio of the transistors Q3 and Q5 is set to N2: 1.

さて、電源電圧Vccの立ち上がり時は、トランジスタQ3のコレクタ電流は、トランジスタQ1,Q2のベースに、および抵抗R3を介してキャパシタC1に流れ込む。そのとき、トランジスタQ3,Q5のコレクタ電流をIC3,IC5、ベース・エミッタ間電圧をVBE3、VBE5とすると、通常IC3>IC5となるため、VBE3>VBE5となる。よって、コンパレータ回路5のトランジスタQ6はオフし、トランジスタQ7はオンして、トランジスタQ10がオンとなり、そのトランジスタQ10のコレクタ電流がキャパシタC1に流れ込む。このとき、トランジスタQ10のコレクタ電流をIC10、電流源I2の電流をI2とすると、
C10=βp・I2 (5)
となる。βpはPNPトランジスタの電流増幅率である。
When the power supply voltage Vcc rises, the collector current of the transistor Q3 flows into the bases of the transistors Q1 and Q2 and into the capacitor C1 via the resistor R3. At this time, assuming that the collector currents of the transistors Q3 and Q5 are I C3 and I C5 and the base-emitter voltages are V BE3 and V BE5 , since usually I C3 > I C5 , V BE3 > V BE5 . Therefore, the transistor Q6 of the comparator circuit 5 is turned off, the transistor Q7 is turned on, the transistor Q10 is turned on, and the collector current of the transistor Q10 flows into the capacitor C1. At this time, if the collector current of the transistor Q10 is I C10 and the current of the current source I2 is I 2 ,
I C10 = βp · I 2 (5)
It becomes. βp is the current amplification factor of the PNP transistor.

よって、電源電圧Vccの立ち上がりの時のキャパシタC1への充電電流をI1(t)、抵抗R3に流れる電流をIR3(t)、抵抗R3の両端の電圧をVR3(t)とすると、
1(t)=IC10+IR3(t) (6)
R3(t)=VR3(t)/R3 (7)
となる。この電流I1(t)は、コンパレータ回路5がない図3の従来回路の場合の充電電流がIR3(t)のみとなるのに対し、IC10だけ大きな電流値であり、このような急速充電により、電源電圧立ち上がり時の出力電圧Vo(t)の遅延時間を従来回路よりも小さくできる。さらに、この電流IC10は(5)式のように定電流源I2の電流I2によって決まる値であり、CRフィルタ回路2を構成するキャパシタC1と抵抗R3の値に関係なく設定することができるので、CRフィルタ回路2のカットオフ周波数fcに影響を与えない。
Therefore, if the charging current to the capacitor C1 at the rise of the power supply voltage Vcc is I 1 (t), the current flowing through the resistor R3 is I R3 (t), and the voltage across the resistor R3 is V R3 (t),
I 1 (t) = I C10 + I R3 (t) (6)
I R3 (t) = V R3 (t) / R3 (7)
It becomes. The current I 1 (t) has a large current value by I C10 while the charging current in the conventional circuit of FIG. 3 without the comparator circuit 5 is only I R3 (t). By charging, the delay time of the output voltage Vo (t) when the power supply voltage rises can be made smaller than that of the conventional circuit. Further, the current I C10 is a value determined by the current I 2 of the constant current source I2 as shown in the equation (5), and can be set regardless of the values of the capacitor C1 and the resistor R3 constituting the CR filter circuit 2. Therefore, the cutoff frequency fc of the CR filter circuit 2 is not affected.

本実施例の定電圧回路の出力電圧Vo(t)の立ち上がり特性を図2に示す。電流IC10は電流IR3(t)が出力電圧の立ち上がりとともに減少するため、電流IC3も減少するので、VBE3=VBE5となる時刻t1まで流れる。VBE3<VBE5となった時刻t1以降では、コンパレータ回路5のトランジスタQ6はオン、トランジスタQ7はオフとなり、トランジスタQ10がオフとなるため、充電電流I1(t)は抵抗R3を流れるIR3(t)のみとなり、出力電圧Vo(t)は時定数τに従って立ち上がることになる。 FIG. 2 shows the rising characteristics of the output voltage Vo (t) of the constant voltage circuit of this embodiment. Since the current I C10 decreases with the rise of the current I R3 (t) is the output voltage, the current I C3 is also reduced, it flows until time t1 when the V BE3 = V BE5. After time t1 when V BE3 <V BE5 , the transistor Q6 of the comparator circuit 5 is turned on, the transistor Q7 is turned off, and the transistor Q10 is turned off, so that the charging current I 1 (t) flows through the resistor R3 I R3 (t) only, and the output voltage Vo (t) rises according to the time constant τ.

また、出力電圧Vo(t)が完全に立ち上がった後では、基準電圧Vrefの変動や素子の不均一性などによりコンパレータ回路5のトランジスタQ10から出力端子3に電流が流れ込むことがないように、トランジスタQ3のベース・エミッタ間電圧VBE3とトランジスタQ5のベース・エミッタ間電圧VBE5との間にオフセット電圧ΔVを持たせる必要がある。すなわち、VBE3<VBE5が保持できるように、トランジスタQ3,Q5のエミッタ面積比をそれぞれの電流比に応じて適切な値N2:1に設定し、通常動作においてコンパレータ回路5が定電圧回路の特性に影響を及ぼさないようにする。 Further, after the output voltage Vo (t) has risen completely, the transistor is prevented from flowing into the output terminal 3 from the transistor Q10 of the comparator circuit 5 due to fluctuations in the reference voltage Vref, element non-uniformity, or the like. It is necessary to provide an offset voltage ΔV between the base-emitter voltage V BE3 of Q3 and the base-emitter voltage V BE5 of the transistor Q5. That is, the emitter area ratio of the transistors Q3 and Q5 is set to an appropriate value N2: 1 according to the respective current ratios so that V BE3 <V BE5 can be maintained, and the comparator circuit 5 is connected to the constant voltage circuit in normal operation. Do not affect the characteristics.

なお、基準電圧発生回路1で発生するノード4の基準電圧Vrefは、前述したように温度特性を持たない電圧であり、この基準電圧Vrefに含まれるノイズがCRフィルタ回路2で吸収されて、ノイズ低減された安定化電圧が出力端子3に得られる。   Note that the reference voltage Vref of the node 4 generated in the reference voltage generation circuit 1 is a voltage having no temperature characteristic as described above, and noise included in the reference voltage Vref is absorbed by the CR filter circuit 2 to generate noise. A reduced stabilized voltage is obtained at the output terminal 3.

本発明の定電圧回路の回路図である。It is a circuit diagram of the constant voltage circuit of the present invention. 図1の定電圧回路の出力電圧特性図である。It is an output voltage characteristic view of the constant voltage circuit of FIG. 従来の定電圧回路の回路図である。It is a circuit diagram of the conventional constant voltage circuit. 図3の定電圧回路の出力電圧特性図である。FIG. 4 is an output voltage characteristic diagram of the constant voltage circuit of FIG. 3.

符号の説明Explanation of symbols

1:基準電圧発生回路
2:CRフィルタ回路
3:出力端子
4:基準電圧ノード
5:コンパレータ回路
1: Reference voltage generation circuit 2: CR filter circuit 3: Output terminal 4: Reference voltage node 5: Comparator circuit

Claims (1)

基準電圧発生回路と、該基準電圧発生回路で発生した基準電圧に含まれるノイズを吸収するためのCRフィルタ回路と、電源投入時の前記基準電圧発生回路の立ち上がりを検出して前記CRフィルタ回路のキャパシタを急速充電するコンパレータ回路と、を具備する定電圧回路において、
前記基準電圧発生回路は、前記基準電圧が生成される基準電圧ノードにベースが共通接続された第1導電型の第1,第2のトランジスタと、該第1のトランジスタのエミッタと接地間に直列接続され且つ共通接続点に前記第2のトランジスタのエミッタが接続された第1,第2の抵抗と、エミッタが電源端子に接続されベースが前記第1のトランジスタのコレクタに接続され、コレクタが前記基準電圧ノードに接続された第2導電型の第3のトランジスタと、エミッタが前記電源端子に接続されコレクタが前記第1のトランジスタのコレクタに接続された第2の導電型の第4のトランジスタと、エミッタが前記電源端子に接続されコレクタが前記第2のトランジスタのコレクタに接続され、ベースが前記第4のトランジスタのベースに接続され且つベースとコレクタが共通接続された第2の導電型の第5のトランジスタと、を具備し、且つ出力電圧の立ち上がり後の前記第3のトランジスタのベース・エミッタ間電圧が前記第5のトランジスタのベース・エミッタ間電圧より小さくなるよう設定され、
前記コンパレータ回路は、前記第3のトランジスタのベース電圧と前記第5のトランジスタのベース電圧を比較し、前者が後者より低いときのみ、前記CRフィルタ回路への急速充電電流を供給する、
ことを特徴とする定電圧回路。
A reference voltage generation circuit, a CR filter circuit for absorbing noise included in the reference voltage generated by the reference voltage generation circuit, and a rise of the reference voltage generation circuit when the power is turned on to detect the CR filter circuit A constant voltage circuit comprising a comparator circuit for rapidly charging a capacitor ;
The reference voltage generation circuit includes a first conductivity type first and second transistor having a base commonly connected to a reference voltage node where the reference voltage is generated, and a series connection between the emitter of the first transistor and the ground. A first resistor connected to a common connection point and an emitter connected to a power supply terminal; a base connected to a collector of the first transistor; a collector connected to a common connection point; A third transistor of the second conductivity type connected to a reference voltage node; a fourth transistor of the second conductivity type having an emitter connected to the power supply terminal and a collector connected to the collector of the first transistor; The emitter is connected to the power supply terminal, the collector is connected to the collector of the second transistor, and the base is connected to the base of the fourth transistor. And a fifth transistor of the second conductivity type whose base and collector are commonly connected, and the base-emitter voltage of the third transistor after rising of the output voltage is that of the fifth transistor. It is set to be smaller than the base-emitter voltage,
The comparator circuit compares the base voltage of the third transistor and the base voltage of the fifth transistor, and supplies a quick charging current to the CR filter circuit only when the former is lower than the latter.
A constant voltage circuit characterized by that.
JP2004160559A 2004-05-31 2004-05-31 Constant voltage circuit Expired - Lifetime JP4395412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004160559A JP4395412B2 (en) 2004-05-31 2004-05-31 Constant voltage circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004160559A JP4395412B2 (en) 2004-05-31 2004-05-31 Constant voltage circuit

Publications (2)

Publication Number Publication Date
JP2005339423A JP2005339423A (en) 2005-12-08
JP4395412B2 true JP4395412B2 (en) 2010-01-06

Family

ID=35492893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004160559A Expired - Lifetime JP4395412B2 (en) 2004-05-31 2004-05-31 Constant voltage circuit

Country Status (1)

Country Link
JP (1) JP4395412B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100836529B1 (en) 2007-01-15 2008-06-10 (주)태진기술 Regulator circuit for generating stability voltage
CN101578561B (en) * 2007-06-08 2012-06-27 松下电器产业株式会社 High-speed reset circuit
JP2009020550A (en) * 2007-07-10 2009-01-29 Sanyo Electric Co Ltd Quick charging circuit
JP5353548B2 (en) 2009-08-14 2013-11-27 富士通セミコンダクター株式会社 Band gap reference circuit
JP7271227B2 (en) * 2019-02-27 2023-05-11 ローム株式会社 power circuit

Also Published As

Publication number Publication date
JP2005339423A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP3759513B2 (en) Band gap reference circuit
TW201830188A (en) Under voltage lockout circuit and device integrating the same and reference voltage generating circuit
US20100237926A1 (en) Voltage generating circuit
JP4395412B2 (en) Constant voltage circuit
US5831473A (en) Reference voltage generating circuit capable of suppressing spurious voltage
JP3315921B2 (en) Temperature detection circuit
JP4647130B2 (en) Reference voltage generation circuit
JP2003344181A (en) Temperature sensor circuit
JP2009053069A (en) Temperature detection circuit
JP2000124744A (en) Constant voltage generation circuit
JP2001092545A (en) Self-bias circuit
TWI688205B (en) Bandgap voltage reference circuit
JP3998487B2 (en) Constant voltage generator
JPH11205045A (en) Current supplying circuit and bias voltage circuit
JPH08185236A (en) Reference voltage generating circuit
JP3091520B2 (en) Constant voltage circuit
KR100187640B1 (en) Temperature independance type voltage inspection circuit
JP2000065872A (en) Voltage detection circuit
JP2006059001A (en) Reference voltage generation circuit
KR100577552B1 (en) Internal voltage converter of a semiconductor memory device
JP6036961B2 (en) Differential amplifier
JPS62182819A (en) Power supply circuit
JP2012107980A (en) Temperature detector
JP2848330B2 (en) Current mirror circuit
JP3358301B2 (en) Constant voltage generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

R150 Certificate of patent or registration of utility model

Ref document number: 4395412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151023

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250