JP2003344181A - Temperature sensor circuit - Google Patents
Temperature sensor circuitInfo
- Publication number
- JP2003344181A JP2003344181A JP2002147896A JP2002147896A JP2003344181A JP 2003344181 A JP2003344181 A JP 2003344181A JP 2002147896 A JP2002147896 A JP 2002147896A JP 2002147896 A JP2002147896 A JP 2002147896A JP 2003344181 A JP2003344181 A JP 2003344181A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- resistor
- circuit
- power supply
- supply voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Amplifiers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は温度センサ回路に関
し、特に、周囲温度に応じた電圧の温度信号を出力する
温度センサ回路に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature sensor circuit, and more particularly to a temperature sensor circuit that outputs a temperature signal having a voltage according to ambient temperature.
【0002】[0002]
【従来の技術】図3は、従来の温度センサ回路の一例の
回路図を示す。同図中、定電圧源10の出力する電源電
圧Vccが抵抗R1及び抵抗R2それぞれの一端に供給
される。抵抗R1の他端は非反転増幅器12を構成する
演算増幅器14の非反転入力端子に接続されると共に、
ダイオードD1のアノードに接続され、ダイオードD1
のカソードはダイオードD2のアノードに接続され、ダ
イオードD2のカソードは接地されている。2. Description of the Related Art FIG. 3 shows a circuit diagram of an example of a conventional temperature sensor circuit. In the figure, the power supply voltage Vcc output from the constant voltage source 10 is supplied to one end of each of the resistors R1 and R2. The other end of the resistor R1 is connected to the non-inverting input terminal of the operational amplifier 14 which constitutes the non-inverting amplifier 12, and
The diode D1 is connected to the anode of the diode D1.
Is connected to the anode of the diode D2, and the cathode of the diode D2 is grounded.
【0003】ダイオードD1,D2それぞれは温度係数
−2mV/°Cを有し、抵抗R1の他端とダイオードD
1のアノードとの接続点Aにおける温度係数は−4mV
/°Cとされている。演算増幅器14の出力端子は端子
16に接続されると共に、抵抗R4を介して演算増幅器
14の反転入力端子及び抵抗R5の一端に接続されてい
る。Each of the diodes D1 and D2 has a temperature coefficient of -2 mV / ° C, and the other end of the resistor R1 and the diode D2.
The temperature coefficient at the connection point A with the anode of No. 1 is -4 mV
/ ° C. The output terminal of the operational amplifier 14 is connected to the terminal 16, and is also connected to the inverting input terminal of the operational amplifier 14 and one end of the resistor R5 via the resistor R4.
【0004】抵抗R2の他端には抵抗R3の一端及び演
算増幅器18の非反転入力端子に接続されている。抵抗
R3の他端は接地されており、抵抗R2,R3で電源電
圧Vccを分圧している。演算増幅器18の出力端子と
反転入力端子は短絡されてバッファアンプを構成してお
り、演算増幅器18の出力端子は抵抗R5の他端に接続
されている。この抵抗R3,R4とバッファアンプは基
準電圧Vrefを生成して演算増幅器14の反転入力端
子に供給している。これにより、演算増幅器14で構成
される非反転増幅器12は、接続点Aの電圧を増幅し端
子16から温度信号として出力する。The other end of the resistor R2 is connected to one end of the resistor R3 and the non-inverting input terminal of the operational amplifier 18. The other end of the resistor R3 is grounded, and the power source voltage Vcc is divided by the resistors R2 and R3. The output terminal and the inverting input terminal of the operational amplifier 18 are short-circuited to form a buffer amplifier, and the output terminal of the operational amplifier 18 is connected to the other end of the resistor R5. The resistors R3 and R4 and the buffer amplifier generate the reference voltage Vref and supply it to the inverting input terminal of the operational amplifier 14. As a result, the non-inverting amplifier 12 including the operational amplifier 14 amplifies the voltage at the connection point A and outputs it as a temperature signal from the terminal 16.
【0005】[0005]
【発明が解決しようとする課題】従来の温度センサ回路
では、常温において定電圧源10の出力する電源電圧V
ccにノイズ成分Vnが含まれる場合、端子16から出
力される温度信号に混入するノイズ成分が大きくなると
いう問題があった。In the conventional temperature sensor circuit, the power supply voltage V output from the constant voltage source 10 at room temperature.
When the noise component Vn is included in cc, there is a problem that the noise component mixed in the temperature signal output from the terminal 16 becomes large.
【0006】これは、抵抗R2,R3の抵抗値が同一の
場合、演算増幅器18の出力する基準電圧VrefにV
n/2で表されるノイズ成分が含まれ、このノイズ成分
Vn/2が非反転増幅器12のゲインA(A=1+R4
/R5)だけ増幅され、温度信号に混入するノイズ成分
がVn・A/2となるためである。なお、通常、ゲイン
Aは数倍から数10倍程度であり、Vn<Vn・A/2
であるために、ノイズ成分が増大してしまう。This is because when the resistance values of the resistors R2 and R3 are the same, the reference voltage Vref output from the operational amplifier 18 becomes V.
A noise component represented by n / 2 is included, and this noise component Vn / 2 is gain A (A = 1 + R4) of the non-inverting amplifier 12.
/ R5) is amplified, and the noise component mixed in the temperature signal becomes Vn · A / 2. Note that the gain A is usually several times to several tens times, and Vn <Vn · A / 2
Therefore, the noise component increases.
【0007】本発明は、上記の点に鑑みなされたもの
で、電源電圧に含まれるノイズの影響で出力信号に混入
するノイズを低減できる温度センサ回路を提供すること
を目的とする。The present invention has been made in view of the above points, and an object of the present invention is to provide a temperature sensor circuit capable of reducing noise mixed in an output signal due to the influence of noise included in a power supply voltage.
【0008】[0008]
【課題を解決するための手段】請求項1に記載の発明
は、正の温度係数を持つ第1抵抗(R11)と、第1抵
抗(R11)に直列接続され負の温度係数を持つ第2抵
抗(R12)とからなり、電源電圧を分圧して分圧電圧
を得る第1分圧回路(R11,R12)と、第3抵抗
(R13)と、第3抵抗(R13)に直列接続され第4
抵抗(R14)とからなり、電源電圧を分圧し常温で第
1分圧回路(R11,R12)と同一の分圧電圧を得る
第2分圧回路(R13,R14)と、第1分圧回路(R
11,R12)の分圧電圧と、第2分圧回路(R13,
R14)の分圧電圧とを差動増幅する差動回路(25)
と、電源電圧を分圧しバッファリングして得た基準電圧
を差動回路(25)の出力に加算する基準電圧回路を有
することにより、第1分圧回路(R11,R12)の分
圧電圧と第2分圧回路(R13,R14)の分圧電圧と
を差動増幅することで電源電圧に含まれるノイズを相殺
し、電源電圧を分圧した基準電圧を増幅することなく差
動回路(25)の出力に加算することで電源電圧に含ま
れるノイズに対し出力信号に混入するノイズを低減でき
る。According to a first aspect of the present invention, there is provided a first resistor (R11) having a positive temperature coefficient and a second resistor (R11) having a negative temperature coefficient connected in series. A first voltage divider circuit (R11, R12), which is composed of a resistor (R12) and divides the power supply voltage to obtain a divided voltage; a third resistor (R13); and a third resistor (R13) connected in series. Four
A second voltage dividing circuit (R13, R14), which is composed of a resistor (R14) and divides the power supply voltage to obtain the same voltage dividing voltage as the first voltage dividing circuit (R11, R12) at room temperature, and a first voltage dividing circuit. (R
11, R12) and the second voltage dividing circuit (R13,
Differential circuit (25) for differentially amplifying the divided voltage of R14)
And a reference voltage circuit that divides the power supply voltage and adds the reference voltage obtained by buffering to the output of the differential circuit (25) to obtain the divided voltage of the first voltage dividing circuit (R11, R12). By differentially amplifying the divided voltage of the second voltage dividing circuit (R13, R14), noise included in the power supply voltage is canceled, and the differential circuit (25 The noise included in the output signal with respect to the noise included in the power supply voltage can be reduced by adding it to the output of FIG.
【0009】請求項2に記載の発明は、第3抵抗(R1
3)は負の温度係数を持ち、第4抵抗(R14)は正の
温度係数を持つことにより、温度センサの感度を高くす
ることができる。The invention according to claim 2 is the third resistor (R1
Since 3) has a negative temperature coefficient and the fourth resistor (R14) has a positive temperature coefficient, the sensitivity of the temperature sensor can be increased.
【0010】なお、上記括弧内の参照符号は、理解を容
易にするために付したものであり、一例にすぎず、図示
の態様に限定されるものではない。It should be noted that the reference numerals in the above parentheses are given for easy understanding and are merely examples, and the present invention is not limited to the illustrated modes.
【0011】[0011]
【発明の実施の形態】図1は、本発明の温度センサ回路
の一実施例の回路図を示す。同図中、定電圧源20は電
源電圧Vccを出力する。直列接続された抵抗R11,
R12は上記電源電圧Vccを分圧する分圧回路であ
り、同様に、直列接続された抵抗R13,R14は電源
電圧Vccを分圧する分圧回路である。1 is a circuit diagram of an embodiment of a temperature sensor circuit according to the present invention. In the figure, the constant voltage source 20 outputs a power supply voltage Vcc. Resistor R11 connected in series,
R12 is a voltage divider circuit that divides the power supply voltage Vcc, and similarly resistors R13 and R14 connected in series are voltage divider circuits that divide the power supply voltage Vcc.
【0012】抵抗R11,R14は、正の温度係数を持
つ例えば拡散抵抗で構成され、互いに同一の抵抗値を有
する。抵抗R12,R13は、負の温度係数を持つ例え
ばポリシリコン抵抗で構成され、互いに同一の抵抗値を
有する。The resistors R11 and R14 are, for example, diffusion resistors having a positive temperature coefficient and have the same resistance value. The resistors R12 and R13 are made of, for example, polysilicon resistors having a negative temperature coefficient, and have the same resistance value.
【0013】拡散抵抗は、図2(A)に示すように、p
型半導体基板30にn型ウエル32を形成し、このn型
ウエル32上にp型拡散層34を形成する。p型拡散層
34の両端に金属電極35,36それぞれを設け、p型
拡散層34を抵抗体として使用する。The diffusion resistance is p, as shown in FIG.
An n-type well 32 is formed on the type semiconductor substrate 30, and a p-type diffusion layer 34 is formed on the n-type well 32. Metal electrodes 35 and 36 are provided on both ends of the p-type diffusion layer 34, and the p-type diffusion layer 34 is used as a resistor.
【0014】ポリシリコン抵抗は、図2(B)に示すよ
うに、p型半導体基板40にn型ウエル42を形成し、
型ウエル42上に絶縁層43を設け、その上にポリシリ
コン層44を形成する。ポリシリコン層42の両端に金
属電極45,46それぞれを設け、ポリシリコン層44
を抵抗体として使用する。The polysilicon resistor has an n-type well 42 formed in a p-type semiconductor substrate 40 as shown in FIG.
An insulating layer 43 is provided on the mold well 42, and a polysilicon layer 44 is formed thereon. Metal electrodes 45 and 46 are provided on both ends of the polysilicon layer 42, and the polysilicon layer 44
Is used as a resistor.
【0015】抵抗R11は正の温度係数で抵抗R12は
負の温度係数であるため、周囲温度が上昇すると抵抗R
11,R12の接続点Bの電位は下がる。また、抵抗R
13は負の温度係数で抵抗R14は正の温度係数である
ため、周囲温度が上昇すると抵抗R13,R14の接続
点Cの電位は上がる。Since the resistance R11 has a positive temperature coefficient and the resistance R12 has a negative temperature coefficient, the resistance R11 increases as the ambient temperature rises.
The potential of the connection point B of 11 and R12 decreases. Also, the resistance R
Since 13 has a negative temperature coefficient and resistor R14 has a positive temperature coefficient, the potential at the connection point C between resistors R13 and R14 rises when the ambient temperature rises.
【0016】接続点BにはnpnトランジスタQ1のベ
ースが接続され、接続点CにはnpnトランジスタQ2
のベースが接続されている。トランジスタQ1のコレク
タはpnpトランジスタQ3のコレクタ及びベースとp
npトランジスタQ4のベースに接続され、トランジス
タQ1のエミッタは定電流源22を介して接地されると
共に抵抗R15の一端に接続されている。The base of the npn transistor Q1 is connected to the connection point B, and the npn transistor Q2 is connected to the connection point C.
The base of is connected. The collector of the transistor Q1 is p and the collector and base of the pnp transistor Q3.
It is connected to the base of the np transistor Q4, the emitter of the transistor Q1 is grounded via the constant current source 22, and is connected to one end of the resistor R15.
【0017】また、トランジスタQ2のコレクタはpn
pトランジスタQ4のコレクタに接続され、トランジス
タQ2のエミッタは定電流源24を介して接地されると
共に抵抗R15の他端に接続されている。トランジスタ
Q3,Q4それぞれはエミッタに電源電圧Vccを供給
されてカレントミラー回路を構成しており、トランジス
タQ1,Q2はトランジスタQ3,Q4を電流源とする
差動回路25を構成している。また、トランジスタQ2
のコレクタは端子26及び抵抗R16の一端に接続され
ている。The collector of the transistor Q2 is pn
It is connected to the collector of the p-transistor Q4, the emitter of the transistor Q2 is grounded via the constant current source 24, and is connected to the other end of the resistor R15. The transistors Q3 and Q4 each have a power supply voltage Vcc supplied to their emitters to form a current mirror circuit, and the transistors Q1 and Q2 form a differential circuit 25 using the transistors Q3 and Q4 as current sources. Also, the transistor Q2
Is connected to the terminal 26 and one end of the resistor R16.
【0018】更に、直列接続された抵抗R17,R18
は電源電圧Vccを分圧する。抵抗R17,R18の接
続点は、演算増幅器28の非反転入力端子に接続されて
いる。演算増幅器28の出力端子と反転入力端子は短絡
されてバッファアンプを構成しており、演算増幅器28
の出力端子は抵抗R16の他端に接続されている。この
抵抗R17,R18とバッファアンプ28は基準電圧V
refを生成し、抵抗R16を介し差動回路25に供給
している。Further, resistors R17 and R18 connected in series are provided.
Divides the power supply voltage Vcc. The connection point of the resistors R17 and R18 is connected to the non-inverting input terminal of the operational amplifier 28. The output terminal and the inverting input terminal of the operational amplifier 28 are short-circuited to form a buffer amplifier.
The output terminal of is connected to the other end of the resistor R16. The resistors R17, R18 and the buffer amplifier 28 have a reference voltage V
ref is generated and supplied to the differential circuit 25 via the resistor R16.
【0019】差動回路25は、接続点B,C間の電位差
を電流に変換し、この変換電流が抵抗R16を流れるこ
とによって電圧に変換している。なお、差動回路25の
増幅度AはA=R16/R15で表される。The differential circuit 25 converts the potential difference between the connection points B and C into a current, and the converted current flows into the voltage by flowing through the resistor R16. The amplification degree A of the differential circuit 25 is represented by A = R16 / R15.
【0020】ここで、抵抗R11,R12が同一抵抗値
となる所定温度(常温)で接続点B,Cは同電位であ
り、抵抗R16に電流が流れないため端子26の出力電
圧Voutは基準電圧Vrefとなる。Here, the connection points B and C are at the same potential at a predetermined temperature (normal temperature) at which the resistors R11 and R12 have the same resistance value, and since no current flows through the resistor R16, the output voltage Vout of the terminal 26 is the reference voltage. It becomes Vref.
【0021】この状態で電源電圧Vccにノイズ成分V
nが含まれる場合、接続点B,Cそれぞれの電位は(V
cc+Vn)/2となり、差動回路25によって上記ノ
イズ成分は相殺されて除去される。In this state, the noise component V is added to the power supply voltage Vcc.
When n is included, the potentials at the connection points B and C are (V
cc + Vn) / 2, and the noise component is canceled and removed by the differential circuit 25.
【0022】抵抗R17,R18の抵抗値が同一の場
合、演算増幅器28の出力する基準電圧VrefはVr
ef=(Vcc+Vn)/2となって、ノイズ成分Vn
/2が含まれるが、このノイズ成分は差動回路25で増
幅されることはない。これによって、出力電圧Vout
におけるノイズ成分は電源電圧Vccのノイズ成分に対
し1/2に減少する。When the resistors R17 and R18 have the same resistance value, the reference voltage Vref output from the operational amplifier 28 is Vr.
ef = (Vcc + Vn) / 2, and the noise component Vn
/ 2 is included, but this noise component is not amplified by the differential circuit 25. As a result, the output voltage Vout
The noise component at is reduced to 1/2 of the noise component of the power supply voltage Vcc.
【0023】ところで、周囲温度が上昇すると接続点B
の電位は下がり接続点Cの電位は上がるため、抵抗R1
5のトランジスタQ2側からトランジスタQ1側に向け
て電流が流れ、そのために抵抗R16からトランジスタ
Q2のコレクタに向けて電流が流れ、これにより、抵抗
R16で生じる電圧Vrと基準電圧Vrefとの和が出
力電圧Voutとなり、出力電圧Voutは上昇する。
また、これとは逆に周囲温度が低下すると出力電圧Vo
utは低下する。By the way, when the ambient temperature rises, the connection point B
Potential of the resistor R1 decreases and the potential of the connection point C increases.
5, a current flows from the transistor Q2 side toward the transistor Q1 side, and therefore a current flows from the resistor R16 toward the collector of the transistor Q2, whereby the sum of the voltage Vr generated at the resistor R16 and the reference voltage Vref is output. The voltage becomes Vout, and the output voltage Vout rises.
On the contrary, when the ambient temperature decreases, the output voltage Vo
ut decreases.
【0024】なお、上記実施例では、抵抗R11,R1
4を正の温度係数とし抵抗R12,R13を負の温度係
数としているが、抵抗R12,R13のいずれか一方を
正の温度係数のものとしたり、抵抗R11,R14のい
ずれか一方を負の温度係数のものとすることも可能であ
る。但し、上記実施例の構成が温度センサとしての感度
が高くなる。In the above embodiment, the resistors R11 and R1 are
Although 4 has a positive temperature coefficient and resistors R12 and R13 have a negative temperature coefficient, either one of resistors R12 and R13 has a positive temperature coefficient, or one of resistors R11 and R14 has a negative temperature coefficient. It is also possible to use a coefficient. However, the structure of the above-described embodiment has high sensitivity as a temperature sensor.
【0025】[0025]
【発明の効果】上述の如く、請求項1に記載の発明は、
正の温度係数を持つ第1抵抗と、第1抵抗に直列接続さ
れ負の温度係数を持つ第2抵抗とからなり、電源電圧を
分圧して分圧電圧を得る第1分圧回路と、第3抵抗と、
第3抵抗に直列接続され第4抵抗とからなり、電源電圧
を分圧し常温で第1分圧回路と同一の分圧電圧を得る第
2分圧回路と、第1分圧回路の分圧電圧と、第2分圧回
路の分圧電圧とを差動増幅する差動回路と、電源電圧を
分圧しバッファリングして得た基準電圧を差動回路の出
力に加算する基準電圧回路を有することにより、第1分
圧回路の分圧電圧と第2分圧回路の分圧電圧とを差動増
幅することで電源電圧に含まれるノイズを相殺し、電源
電圧を分圧した基準電圧を増幅することなく差動回路の
出力に加算することで電源電圧に含まれるノイズに対し
出力信号に混入するノイズを低減できる。As described above, the invention according to claim 1 is
A first voltage divider circuit comprising a first resistor having a positive temperature coefficient and a second resistor connected in series with the first resistor and having a negative temperature coefficient, for dividing a power supply voltage to obtain a divided voltage; 3 resistors,
A second voltage divider circuit, which is connected in series with the third resistor and includes a fourth resistor, which divides the power supply voltage to obtain the same divided voltage as the first voltage divider circuit at room temperature, and the divided voltage of the first voltage divider circuit. A differential circuit for differentially amplifying the divided voltage of the second voltage dividing circuit, and a reference voltage circuit for adding a reference voltage obtained by dividing and buffering the power supply voltage to the output of the differential circuit. Thus, by differentially amplifying the divided voltage of the first voltage dividing circuit and the divided voltage of the second voltage dividing circuit, noise included in the power supply voltage is canceled and the reference voltage obtained by dividing the power supply voltage is amplified. It is possible to reduce the noise included in the output signal with respect to the noise included in the power supply voltage by adding the noise to the output of the differential circuit without the need.
【0026】請求項2に記載の発明は、第3抵抗は負の
温度係数を持ち、第4抵抗は正の温度係数を持つことに
より、温度センサの感度を高くすることができる。According to the second aspect of the present invention, the third resistor has a negative temperature coefficient and the fourth resistor has a positive temperature coefficient, whereby the sensitivity of the temperature sensor can be increased.
【図1】本発明の温度センサ回路の一実施例の回路図で
ある。FIG. 1 is a circuit diagram of an embodiment of a temperature sensor circuit of the present invention.
【図2】拡散抵抗とポリシリコン抵抗の断面構造図であ
る。FIG. 2 is a cross-sectional structure diagram of a diffusion resistance and a polysilicon resistance.
【図3】従来の温度センサ回路の一例の回路図である。FIG. 3 is a circuit diagram of an example of a conventional temperature sensor circuit.
20 定電圧源 22,24 定電流源 25 差動回路 30,40 p型半導体基板 32,42 n型ウエル 34 p型拡散層 35,36,45,46 金属電極 43 絶縁層 44 ポリシリコン層 Q1,Q2 npnトランジスタ Q3,Q4 pnpトランジスタ R11〜R18 抵抗 20 constant voltage source 22, 24 constant current source 25 differential circuit 30, 40 p-type semiconductor substrate 32, 42 n-type well 34 p-type diffusion layer 35, 36, 45, 46 Metal electrodes 43 Insulation layer 44 Polysilicon layer Q1, Q2 npn transistor Q3, Q4 pnp transistor R11-R18 resistance
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5J066 AA01 AA12 CA46 FA09 HA08 HA19 HA25 KA01 KA02 KA05 MA13 MA21 ND12 ND23 PD01 QA02 5J500 AA01 AA12 AC46 AF09 AH08 AH19 AH25 AK01 AK02 AK05 AM13 AM21 AQ02 DN12 DN23 DP01 ─────────────────────────────────────────────────── ─── Continued front page F term (reference) 5J066 AA01 AA12 CA46 FA09 HA08 HA19 HA25 KA01 KA02 KA05 MA13 MA21 ND12 ND23 PD01 QA02 5J500 AA01 AA12 AC46 AF09 AH08 AH19 AH25 AK01 AK02 AK05 AM13 AM21 AQ02 DN12 DN23 DP01
Claims (2)
1抵抗に直列接続され負の温度係数を持つ第2抵抗とか
らなり、電源電圧を分圧して分圧電圧を得る第1分圧回
路と、 第3抵抗と、前記第3抵抗に直列接続され第4抵抗とか
らなり、前記電源電圧を分圧し常温で前記第1分圧回路
と同一の分圧電圧を得る第2分圧回路と、 前記第1分圧回路の分圧電圧と、前記第2分圧回路の分
圧電圧とを差動増幅する差動回路と、 前記電源電圧を分圧しバッファリングして得た基準電圧
を前記差動回路の出力に加算する基準電圧回路を有する
ことを特徴とする温度センサ回路。1. A first resistor comprising a first resistor having a positive temperature coefficient and a second resistor connected in series with the first resistor and having a negative temperature coefficient, for dividing a power supply voltage to obtain a divided voltage. A second voltage divider circuit, a third resistor, and a fourth resistor connected in series with the third resistor, which divides the power supply voltage to obtain the same divided voltage as the first voltage divider circuit at room temperature. A voltage circuit, a differential circuit for differentially amplifying the divided voltage of the first voltage dividing circuit and the divided voltage of the second voltage dividing circuit, and a reference obtained by dividing and buffering the power supply voltage. A temperature sensor circuit comprising a reference voltage circuit for adding a voltage to the output of the differential circuit.
て、 前記第3抵抗は負の温度係数を持ち、前記第4抵抗は正
の温度係数を持つことを特徴とする温度センサ回路。2. The temperature sensor circuit according to claim 1, wherein the third resistor has a negative temperature coefficient and the fourth resistor has a positive temperature coefficient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002147896A JP2003344181A (en) | 2002-05-22 | 2002-05-22 | Temperature sensor circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002147896A JP2003344181A (en) | 2002-05-22 | 2002-05-22 | Temperature sensor circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003344181A true JP2003344181A (en) | 2003-12-03 |
Family
ID=29766722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002147896A Pending JP2003344181A (en) | 2002-05-22 | 2002-05-22 | Temperature sensor circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003344181A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006284301A (en) * | 2005-03-31 | 2006-10-19 | Mitsubishi Materials Corp | Temperature detector |
JP2009289795A (en) * | 2008-05-27 | 2009-12-10 | Renesas Technology Corp | Semiconductor integrated circuit, and operation method thereof |
US7741692B2 (en) | 2004-03-30 | 2010-06-22 | Nec Electronics Corporation | Integrated circuit device with temperature monitor members |
JP2010203978A (en) * | 2009-03-04 | 2010-09-16 | Mitsumi Electric Co Ltd | Temperature sensor, and oscillation circuit having the same |
JP2010239138A (en) * | 2010-05-06 | 2010-10-21 | Renesas Electronics Corp | Integrated circuit device |
JP2011198209A (en) * | 2010-03-23 | 2011-10-06 | Seiko Epson Corp | Temperature control circuit, and constant-temperature piezoelectric oscillator |
WO2019150745A1 (en) * | 2018-02-05 | 2019-08-08 | 株式会社デンソー | Sensor device |
WO2021177024A1 (en) * | 2020-03-05 | 2021-09-10 | Tdk株式会社 | Pressure sensor |
-
2002
- 2002-05-22 JP JP2002147896A patent/JP2003344181A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7741692B2 (en) | 2004-03-30 | 2010-06-22 | Nec Electronics Corporation | Integrated circuit device with temperature monitor members |
JP2006284301A (en) * | 2005-03-31 | 2006-10-19 | Mitsubishi Materials Corp | Temperature detector |
JP2009289795A (en) * | 2008-05-27 | 2009-12-10 | Renesas Technology Corp | Semiconductor integrated circuit, and operation method thereof |
JP2010203978A (en) * | 2009-03-04 | 2010-09-16 | Mitsumi Electric Co Ltd | Temperature sensor, and oscillation circuit having the same |
JP2011198209A (en) * | 2010-03-23 | 2011-10-06 | Seiko Epson Corp | Temperature control circuit, and constant-temperature piezoelectric oscillator |
JP2010239138A (en) * | 2010-05-06 | 2010-10-21 | Renesas Electronics Corp | Integrated circuit device |
WO2019150745A1 (en) * | 2018-02-05 | 2019-08-08 | 株式会社デンソー | Sensor device |
JP2019135465A (en) * | 2018-02-05 | 2019-08-15 | 株式会社デンソー | Sensor device |
CN111670348A (en) * | 2018-02-05 | 2020-09-15 | 株式会社电装 | Sensor device |
WO2021177024A1 (en) * | 2020-03-05 | 2021-09-10 | Tdk株式会社 | Pressure sensor |
JP2021139758A (en) * | 2020-03-05 | 2021-09-16 | Tdk株式会社 | Pressure sensor |
JP7443833B2 (en) | 2020-03-05 | 2024-03-06 | Tdk株式会社 | pressure sensor |
EP4116689A4 (en) * | 2020-03-05 | 2024-03-13 | TDK Corporation | Pressure sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0561558A (en) | Reference voltage generating circuit | |
JPH0681013U (en) | Current source circuit | |
US20100237926A1 (en) | Voltage generating circuit | |
JP2003344181A (en) | Temperature sensor circuit | |
JP2953383B2 (en) | Voltage-current converter | |
JPH0446009B2 (en) | ||
JP3315921B2 (en) | Temperature detection circuit | |
JP3643389B2 (en) | Constant voltage circuit | |
JP4674947B2 (en) | Constant voltage output circuit | |
JP4395412B2 (en) | Constant voltage circuit | |
JPH09105763A (en) | Comparator circuit | |
US5914637A (en) | Gain-variable amplifier with wide control range | |
JP3134343B2 (en) | Bandgap reference voltage generation circuit | |
JP2695787B2 (en) | Voltage-current conversion circuit | |
JPH0379123A (en) | Constant current source circuit | |
JP3294355B2 (en) | Current source circuit | |
JPH0624298B2 (en) | Current amplifier circuit | |
JPH06236219A (en) | Constant current circuit | |
JP2908149B2 (en) | Operational amplifier | |
JP3255226B2 (en) | Voltage controlled amplifier | |
JP2902277B2 (en) | Emitter follower output current limiting circuit | |
JPS6222485B2 (en) | ||
JPH05127766A (en) | Band gap constant voltage circuit | |
JPH0347010B2 (en) | ||
JP2776019B2 (en) | Constant voltage circuit |