JP4385488B2 - Film adhesive for circuit connection - Google Patents

Film adhesive for circuit connection Download PDF

Info

Publication number
JP4385488B2
JP4385488B2 JP2000132879A JP2000132879A JP4385488B2 JP 4385488 B2 JP4385488 B2 JP 4385488B2 JP 2000132879 A JP2000132879 A JP 2000132879A JP 2000132879 A JP2000132879 A JP 2000132879A JP 4385488 B2 JP4385488 B2 JP 4385488B2
Authority
JP
Japan
Prior art keywords
adhesive
film
connection
thickness
circuit connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000132879A
Other languages
Japanese (ja)
Other versions
JP2001313313A (en
Inventor
和也 松田
伊津夫 渡辺
孝 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2000132879A priority Critical patent/JP4385488B2/en
Publication of JP2001313313A publication Critical patent/JP2001313313A/en
Application granted granted Critical
Publication of JP4385488B2 publication Critical patent/JP4385488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ICチップ等の電子部品と配線基板の接続に用いられる回路接続用フィルム状接着剤に関する。
【0002】
【従来の技術】
ICチップ等の電子部品と回路基板とを電気的に接続する際には、接着剤又は導電粒子を分散させた異方導電接着剤が用いられている。すなわち、これらの接着剤を相対峠する電極間に配置して、加熱加圧によつて電極同士を接続後、加圧方向に導電性を持たせることによつて、電気的接続を行うことができる。例えば、特開平3−16147号公報には、エポキシ樹脂をベースとした回路接続用接着剤が提案されている。
【0003】
【発明が解決しようとする課題】
従来の回路接続用フィルム状接着剤は加熱加圧時の接着剤の流動性が低いために、接着工程中に電子部品と配線基板の間から外部へ染み出した接着剤(以下フィレツトと称す)中の気泡が消泡できずに残存してしまい、十分な耐湿性、機械的強度を維持できず、高温高湿試験や熱衝撃試験において信頼性が低下する不具合を生じることがあつた。
本発明は、加熱加圧時に外部へ染み出した接着剤中の気泡が消去され、それに基づく耐湿性、機械的強度を維持し高温高湿試験や熱衝撃試験において信頼性に優れる回路接続用フィルム状接着剤を提供するものである。
【0004】
【課題を解決するための手段】
本発明の回路接続用フィルム状接着剤は、相対峙する回路電極を加熱加圧によって、加圧方向の電極間を電気的に接続する加熱接着性接着剤において、ビスフェノール型液状エポキシ樹脂、フィルム形成材及び潜在性硬化剤を含有し、厚さ40μm、5×5mmの大きさに切出し、15×15mmの大きさのガラス基板間において180℃、20秒、24.5N(2.5kgf)の条件で加熱、加圧した際の接着前の面積(A)と接着後の面積(B)の比(B/A)が、3.5〜7.0倍であることを特徴とする。上記ビスフェノール型液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂が挙げられる。また、上記フィルム形成材としては、フェノキシ樹脂が挙げられる。また上記接着剤には、0.2〜15体積%の導電粒子を分散することができる。
【0005】
【発明の実施の形態】
本発明の接着剤は、接着後の面積が接着前の面積の3.5〜7.0倍であることを特徴とする。面積比が3.5倍未満では、流動性が低いためフィレツト中に生じた気泡が消泡できずに残存してしまい、十分な耐湿性、機械的強度が維持できず、接続信頼性が低下する。また、7.0倍を超えて大きくなると、フィレツト中には気泡は残らないが、電子部品と配線板との間に気泡が残りやすくなり、十分な耐湿性、機械的強度が維持できなくなる。
本発明における接着剤の接着前後の面積の比率とは、厚み40μmの接着剤を5×5mmの大きさに切出し、15×15mmの大きさのガラス基板(コーニング社製、♯7059、厚み0.7mm)間において180℃、20秒、24.5N(2.5kgf)の条件で加熱、加圧した際の接着前の面積(A)と接着後の面積(B)の比(B/A)を示したものである。
本発明において用いられる接着剤は、エポキシ樹脂とフィルム形成材及び潜在性硬化材を含有しているものが好ましい。
【0006】
本発明において用いられるエポキシ樹脂は、エピクロルヒドリンとビスフェノールAやF、AD等から誘導されるビスフェノール型エポキシ樹脂である。また、エポキシ樹脂として、エピクロルヒドリンとフェノールノボラックやクレゾールノボラックから誘導されるエポキシノボラック樹脂やナフタレン環を含んだ骨格を有するナフタレン系エポキシ樹脂、グリシジルアミン、グリシジルエーテル、ビフェニル、脂環式等の1分子内に2個以上のグリシジル基を有する各種のエポキシ化合物等を単独、あるいは2種以上を混合して用いること可能である。これらのエポキシ樹脂は、不純物イオン(Na、Cl等)や、加水分解性塩素を300ppm以下に低減した高純度品を用いることがエレクトロンマイグレーション防止のために好ましい。
【0007】
本発明において用いられるフィルム形成材としては、フェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂等の熱可塑性樹脂を用いることができる。特に、フェノキシ樹脂は、エポキシ樹脂と構造が類似しているため、エポキシ樹脂との相溶性、接着性に優れる等の特徴を有するので好ましい。
【0008】
本発明に用いられる潜在性硬化材としてはイミダゾール系、ヒドラジド系、3フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等が使用可能である。
【0009】
フィルム形成は、これら少なくともエポキシ樹脂、フィルム形成材、潜在性硬化材からなる接着組成物を有機溶剤に溶解あるいは分散により、液状化して、剥離性基材上にロールコータ等で塗布し、硬化材の活性温度以下で溶剤を除去することにより行われる。この時用いる溶剤は、芳香族炭化水素系と含酸素系の混合溶剤が材料の溶解性を向上させるため好ましい。
【0010】
本発明の接着剤には、チップの バンプや基板電極の高さばらつきを吸収するために、異方導電性を積極的に付与する目的で導電粒子を混入・分散することもできる。本発明において導電粒子は、例えばAu、Ag、Cuやはんだ等の金属の粒子であり、ポリスチレン等の高分子の球状の核材にNi、Cu、Au、はんだ等の導電層を設けたものがより好ましい。さらに導電性の粒子の表面にSn、Au、はんだ等の表面層を形成することもできる。粒径は基板の電極の最小の間隔よりも小さいことが必要で、電極の高さばらつきがある場合、高さばらつきよりも大きいことが好ましく、1〜10μmが好ましい。また、接着剤に分散される導電粒子の量は、0.1〜30体積%であり、好ましくは0.2〜15体積%である。
【0011】
フィルム状接着剤で接着剤層を多層化することもできる。例えば、異方導電性を付与するために導電粒子を充填させた接着フィルムと導電粒子を充填していない接着剤層をラミネート化した二層構成異方導電フィルムや導電粒子を充填させた接着フィルムの両側に導電粒子を充填していない接着剤層をラミネート化した三層構成異方導電フィルムを用いることができる。これらの多層構成異方導電フィルムは接続電極上に効率良く、導電粒子を捕獲できるため、狭ピッチ接続に有利である。
【0012】
本発明において、回路部材としては半導体チップ、抵抗体チップ、コンデンサチップ等のチップ部品、プリント基板、ポリイミドやポリエステルを基材としたフレキシル配線板等の基板等が用いられる。
【0013】
本発明の回路接続用フィルム状接着剤によれば、加熱加圧時の接着剤の流動性が高いために、接着工程中にフィレット内に生じる気泡は速やかに消泡され、硬化後のフィレット中に気泡が残存することがなく、気泡による耐湿性、機械的強度の低下を防止することが可能である。
【0014】
【実施例】
(実施例1)
フェノキシ樹脂(ユニオンカーバイド社製、PKHC)30gをトルエンと酢酸エチルの混合溶媒(混合重量比1:1)45gに溶解し、40重量%溶液を得た。次いで、液状エポキシ樹脂(油化シェルエポキシ株式会社製、YL980)40gとマイクロカプセル型潜在性硬化材を含有する液状エポキシ(エポキシ当量185、旭化成工業株式会社製、ノバキュアHX−3941)30gを加え、攪拌し、さらにニッケル粒子(直径3μm)を1容積%分散してフィルム塗工用溶液を得た。この溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み50μm)にロールコータで塗布し、80℃、10分乾燥し厚み40μmの接着フィルムを作製した。この接着フィルムを5×5mmの大きさに切出し、15×15mmの大きさのガラス基板(コーニング社製、#7059、厚み0.7mm)間において180℃、20秒、24.5N(2.5kgf)の条件で加熱、加圧したところ、接着後の面積は接着前の面積の3.7倍であつた。
次に、作製した接着フィルムを用いて、金 バンプ(面積:100×100μm、スペース:100μm、高さ:15μm、 バンプ数:186)付きチツプ(サイズ:10×10mm、厚み:500μm)とにNi/AuめつきCu回路プリント基板の接続を以下に示すように行つた。接着フィルム(12×12mm)をNi/AuめっきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)に90℃、0.98MPa(10kgf/cm2)、5秒の条件で貼り付けた後、セパレータを剥離し、チップのバンプとNi/AuめつきCu回路プリント基板の位置合わせを行った。次いで、180℃、0.98N/バンプ(100gf/バンプ)、20秒の条件でチップ上方から加熱、加圧を行い、本接続を行つた。本接続後のフィレット内部を顕微鏡にて観察したところ、気泡は観察されなかつた。また、本接続後の接続抵抗は1バンプあたり最高で15mΩ、平均で4mΩ、絶縁抵抗は108Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、0.2MPa(2気圧))200時間、ピーク温度240℃のIRリフロ一試験においても変化がなく、良好な接続信頼性を示した。
【0015】
(実施例2)
フェノキシ樹脂(ユニオンカーバイド社製、PKHC)30gをトル工ンと酢酸エチルの混合溶媒(混合比1:1)45gに溶解し、40重量%溶液を得た。次いで、液状エポキシ樹脂(油化シェル工ポキシ株式会社製、YL980)50gとマイクロカプセル型潜在性硬化材を含有する液状エポキシ(エポキシ当量185、旭化成工業株式会社製、ノバキュアHX−3941)20gを加え、攪拌し、さらにニッケル粒子(直径3μm)を1容積%分散してフィルム塗工用溶液を得た。この溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み50μm)にロールコータで塗布し、80℃、10分乾燥し厚み40μmの接着フィルムを作製した。この接着フィルムを5×5mmの大きさに切出し、15×15mmの大きさのガラス基板(コーニング社製、♯7059、厚み0.7mm)間において180℃、20秒、24.5N(2.5kgf)の条件で加熱、加圧したところ、接着後の面積は接着前の面積の4.3倍であった。
次に、作製した接着フィルムを用いて、金バンプ(面積:100×100μm、スペース:100μm、高さ:15μm、 バンプ数:186)付きチツプ(サイズ:10×10mm、厚み:500μm)とNi/AuめつきCu回路プリント基板の接続を以下に示すように行った。接着フィルム(12×12mm)をNi/AuめつきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)に90℃、0.98MPa(10kgf/cm2)、5秒の条件で貼り付けた後、セパレータを剥離し、チツプの バンプとNi/AuめつきCu回路プリント基板の位置合わせを行った。次いで、180℃、0.98N/バンプ(100gf/ バンプ)、20秒の条件でチツプ上方から加熱、加圧を行い、本接続を行つた。本接続後のフィレツト内部を顕微鏡にて観察したとこる、気泡は観察されなかった。また、本接続後の接続抵抗は1 バンプあたり最高で16mΩ、平均で3mΩ、絶縁抵抗は108Ω以上であり、これらの値は、−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、0.2MPa(2気圧))200時間、ピーク温度240℃のIRリフロー試験においても変化がなく、良好な接続信頼性を示した。
【0016】
(実施例3)フェノキシ樹脂(ユニオンカーバイド社製、PKHC)20gをトルエンと酢酸エチルの混合溶媒(混合重量比1:1)30gに溶解し、40重量%溶液を得た。次いで、液状エポキシ樹脂(油化シェルエポキシ株式会社製、YL980)60gとマイクロカプセル型潜在性硬化材を含有する液状エポキシ(エポキシ当量185、旭化成工業株式会社製、ノバキュアHX−3941)20gを加え、攪拌し、さらにニッケル粒子(直径3μm)を1容積%分散してフィルム塗工用溶液を得た。この溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み50μm)にロールコータで塗布し、80℃、10分乾燥し厚み40μmの接着フィルムを作製した。この接着フィルムを5×5mmの大きさに切出し、15×15mmの大きさのガラス基板(コーニング社製、♯7059、厚み0.7mm)間において180℃、20秒、24.5N(2.5kgf)の条件で加熱、加圧したところ、接着後の面積は接着前の面積の6.5倍であった。次に、作製した接着フィルムを用いて、金バンプ(面積:100×100μm、スペース:100μm、高さ:15μm、 バンプ数:186)付きチップ(サイズ:10×10mm、厚み:500μm)とNi/AuめっきCu回路プリント基板の接続を以下に示すように行った。接着フィルム(12×12mm)をNi/AuめっきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)に90℃、0.98MPa(10kgf/cm)、5秒の条件で貼り付けた後、セパレータを剥離し、チップのバンプとNi/AuめつきCu回路プリント基板の位置合わせを行った。次いで、180℃、0.98N/バンプ(100gf/バンプ)、20秒の条件でチップ上方から加熱、加圧を行い、本接続を行った。本接続後のフィレット内部を顕微鏡にて観察したところ、気泡は観察されなかった。また、本接続後の接続抵抗は1バンプあたり最高で13mΩ、平均で5mΩ、絶縁抵抗は10Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、0.2MPa(2気圧))200時間、ピーク温度240℃のIRリフロー試験においても変化がなく、良好な接続信頼性を示した。
【0017】
(比較例1)フェノキシ樹脂(ユニオンカーバイド社製、PKHC)40gをトルエンと酢酸エチルの混合溶媒(混合重量比1:1)60gに溶解し、40重量%溶液を得た。次いで、液状エポキシ樹脂(油化シェルエポキシ株式会社製、YL980)20gとマイクロカプセル型潜在性硬化材を含有する液状エポキシ(エポキシ当量185、旭化成工業株式会社製、ノバキュアHX−3941)40gを加え、攪拌し、さらにニッケル粒子(直径3μm)を1容積%分散してフィルム塗工用溶液を得た。この溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み50μm)にロールコータで塗布し、80℃、10分乾燥し厚み40μmの接着フィルムを作製した。この接着フィルムを5×5mmの大きさに切出し、15×15mmの大きさのガラス基板(コーニング社製、♯7059、厚み0.7mm)間において180℃、20秒、24.5N(2.5kgf)の条件で加熱、加圧したところ、接着後の面積は接着前の面積の2.5倍であった。次に、作製した接着フィルムを用いて、金バンプ(面積:100×100mm、スペース:100μm、高さ:15μm、バンプ数:186)付きチップ(サイズ:10×10mm、厚み:500μm)とNi/AuめっきCu回路プリント基板の接続を以下に示すように行った。接着フィルム(12×12mm)をNi/AuめつきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)に90℃、0.98MPa(10kgf/cm)、5秒の条件で貼り付けた後、セパレータを剥離し、チップのバンプとNi/AuめっきCu回路プリント基板の位置合わせを行った。次いで、180℃、0.98Nバンプ(100gf/バンプ)、20秒の条件でチップ上方から加熱、加圧を行い、本接続を行った。本接続後のフィレット内部を顕微鏡にて観察したところ、多数の気泡が観察された。また、本接続後の接続抵抗は1バンプあたり最高で15mΩ、平均で8mΩ、絶縁抵抗は10Ω以上であり、これらの値は、−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、0.2MPa(2気圧))200時間、ピーク温度240℃のIRリフロー試験において電気的導通が不良になつた。接続部の断面観察の結果、導通不良の接続部の一部で界面剥離が観察された。また赤外線顕微鏡により接続部を観察したところ、アルミパッドの一部に腐食が観察された。
【0018】
(比較例2)
フェノキシ樹脂(ユニオンカーバイド社製、PKHC)15gをトルエンと酢酸エチルの混合溶媒(混合重量比1:1)22.5gに溶解し、40重量%溶液を得た。次いで、液状エポキシ樹脂(油化シェルエポキシ株式会社製、YL980)65gとマイクロカプセル型潜在性硬化材を含有する液状エポキシ(エポキシ当量185、旭化成工業株式会社製、ノバキュアHX−3941)20gを加え、攪拌し、さらにニッケル粒子(直径3μm)を1容積%分散してフィルム塗工用溶液を得た。この溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み50μm)にロールコータで塗布し、80℃、10分乾燥し厚み40μmの接着フィルムを作製した。この接着フィルムを5×5mmの大きさに切出し、15×15mmの大きさのガラス基板(コーニング社製、♯7059、厚み0.7mm)間において180℃、20秒、24.5N(2.5kgf)の条件で加熱、加圧したところ、接着後の面積は接着前の面積の8.0倍であった。
次に、作製した接着フィルムを用いて、金バンプ(面積:100×100μm、スペース:100μm、高さ:15μm、バンフ数:186)付きチップ(サイズ:10×10mm、厚み:500μm)とNi/AuめつきCu回路プリント基板の接続を以下に示すように行った。接着フィルム(12×12mm)をNi/AuめつきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)に90℃、0.98MPa(10kgf/cm2)、5秒の条件で貼り付けた後、セパレータを剥離し、チップの バンプとNi/AuめっきCu回路プリント基板の位置合わせを行った。次いで、180℃、0.98N/バンプ(100gf/バンプ)、20秒の条件でチップ上方から加熱、加圧を行い、本接続を行った。本接続後のフィレツト内部を顕微鏡にて観察したところ、気泡は観察されなかった。本接続後の接続抵抗は1バンプあたり最高で15mΩ、平均で9mΩ、絶縁抵抗は108Ω以上であり、これらの値は、−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、0.2MPa(2気圧))200時間、ピーク温度240℃のIRリフロー試験において電気的導通が不良になつた。接続部の断面観察の結果、チップと基板の間に多数の気泡が観察され、導通不良の接続部の一部で界面剥離が観察された。また赤外線顕微鏡により接続部を観察したところ、アルミパッドの一部に腐食が観察された。
【0019】
【発明の効果】
本発明の回路接続用フィルム状接着剤によれば、加熱加圧時の接着剤の流動性が高いために、接着工程中にフィレット内に生じる気泡は速やかに消泡され、硬化後のフィレット中に気泡が残存することがなく、気泡による耐湿性、機械的強度の低下を防止することが可能である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a film-like adhesive for circuit connection used for connecting an electronic component such as an IC chip and a wiring board.
[0002]
[Prior art]
When electrically connecting an electronic component such as an IC chip and a circuit board, an anisotropic conductive adhesive in which an adhesive or conductive particles are dispersed is used. In other words, these adhesives are arranged between the electrodes facing each other, and the electrodes are connected to each other by heat and pressure, and then electrically connected by giving conductivity in the pressing direction. it can. For example, JP-A-3-16147 proposes an adhesive for circuit connection based on an epoxy resin.
[0003]
[Problems to be solved by the invention]
Conventional film-like adhesive for circuit connection has low fluidity of adhesive during heating and pressurization, so that adhesive oozes out between the electronic component and the wiring board during the bonding process (hereinafter referred to as fillet) Bubbles inside remained without being defoamed, and sufficient moisture resistance and mechanical strength could not be maintained, resulting in a problem that reliability was lowered in a high temperature and high humidity test and a thermal shock test.
The present invention eliminates the bubbles in the adhesive that have exuded to the outside during heating and pressurization, maintains the moisture resistance and mechanical strength based thereon, and is excellent in reliability in high temperature and high humidity tests and thermal shock tests. An adhesive is provided.
[0004]
[Means for Solving the Problems]
The film-like adhesive for circuit connection of the present invention is a bisphenol-type liquid epoxy resin, film formation, in a heat-adhesive adhesive that electrically connects circuit electrodes facing each other by heating and pressurizing. The material and the latent curing agent are contained, cut into a thickness of 40 μm and a size of 5 × 5 mm, and a condition of 180 ° C., 20 seconds, 24.5 N (2.5 kgf) between glass substrates of a size of 15 × 15 mm The ratio (B / A) between the area (A) before bonding and the area (B) after bonding when heated and pressurized in (3) is 3.5 to 7.0 times. Examples of the bisphenol type liquid epoxy resin include bisphenol A type epoxy resins. Moreover, a phenoxy resin is mentioned as said film forming material. In the adhesive, 0.2 to 15% by volume of conductive particles can be dispersed.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The adhesive of the present invention is characterized in that the area after bonding is 3.5 to 7.0 times the area before bonding. If the area ratio is less than 3.5 times, the flowability is low, and bubbles generated in the fillet cannot be removed and remain, so that sufficient moisture resistance and mechanical strength cannot be maintained, and connection reliability is lowered. To do. On the other hand, if it exceeds 7.0, bubbles do not remain in the fillet, but bubbles are likely to remain between the electronic component and the wiring board, and sufficient moisture resistance and mechanical strength cannot be maintained.
The ratio of the area before and after bonding of the adhesive in the present invention is that a 40 μm-thick adhesive is cut into a size of 5 × 5 mm and a glass substrate with a size of 15 × 15 mm (Corning Corporation, # 7059, thickness 0. 7 mm), the ratio (B / A) of the area before bonding (A) and the area after bonding (B) when heated and pressed under the conditions of 180 ° C., 20 seconds, and 24.5 N (2.5 kgf) Is shown.
The adhesive used in the present invention preferably contains an epoxy resin, a film forming material, and a latent curing material.
[0006]
Epoxy resins used in the present invention is a bisphenol type epoxy resins derived epichlorohydrin and Bisufu E Bruno Lumpur A and F, from AD or the like. In addition, as an epoxy resin , an epoxy novolak resin derived from epichlorohydrin and phenol novolak or cresol novolak, a naphthalene epoxy resin having a skeleton containing a naphthalene ring, glycidylamine, glycidyl ether, biphenyl, alicyclic, etc. within one molecule it is also possible to use such various epoxy compounds having two or more glycidyl groups alone or in combination of two or more. For these epoxy resins, it is preferable to use a high-purity product in which impurity ions (Na + , Cl −, etc.) and hydrolyzable chlorine are reduced to 300 ppm or less to prevent electron migration.
[0007]
As the film forming material used in the present invention, thermoplastic resins such as phenoxy resin, polyester resin, and polyamide resin can be used. In particular, a phenoxy resin is preferable because it has a similar structure to an epoxy resin and has characteristics such as excellent compatibility with an epoxy resin and excellent adhesion.
[0008]
As the latent curing material used in the present invention, imidazole, hydrazide, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide, and the like can be used.
[0009]
The film is formed by liquefying an adhesive composition composed of at least an epoxy resin, a film forming material, and a latent curing material in an organic solvent, and applying the composition on a peelable substrate with a roll coater or the like. This is done by removing the solvent below the activation temperature. The solvent used at this time is preferably an aromatic hydrocarbon-based and oxygen-containing mixed solvent because the solubility of the material is improved.
[0010]
In the adhesive of the present invention, conductive particles can be mixed and dispersed for the purpose of positively imparting anisotropic conductivity in order to absorb the height variation of the bumps of the chip and the substrate electrodes. In the present invention, the conductive particles are, for example, metal particles such as Au, Ag, Cu, and solder, and a polymer spherical core material such as polystyrene provided with a conductive layer such as Ni, Cu, Au, and solder. More preferred. Furthermore, a surface layer of Sn, Au, solder or the like can be formed on the surface of the conductive particles. The particle size needs to be smaller than the minimum distance between the electrodes of the substrate, and when there is a variation in the height of the electrodes, it is preferably larger than the variation in height, and preferably 1 to 10 μm. Moreover, the quantity of the electroconductive particle disperse | distributed to an adhesive agent is 0.1-30 volume%, Preferably it is 0.2-15 volume%.
[0011]
The adhesive layer can be multilayered with a film adhesive. For example, an anisotropic conductive film filled with conductive particles for imparting anisotropic conductivity and an adhesive film filled with conductive particles and a two-layer anisotropic conductive film laminated with an adhesive layer not filled with conductive particles An anisotropic conductive film having a three-layer structure in which adhesive layers not filled with conductive particles are laminated on both sides can be used. Since these multilayered anisotropic conductive films can efficiently capture conductive particles on the connection electrodes, they are advantageous for narrow pitch connection.
[0012]
In the present invention, as the circuit member, a chip component such as a semiconductor chip, a resistor chip, a capacitor chip, a printed board, a substrate such as a flexible wiring board based on polyimide or polyester, and the like are used.
[0013]
According to the film-like adhesive for circuit connection of the present invention, since the fluidity of the adhesive at the time of heating and pressurization is high, bubbles generated in the fillet during the bonding process are quickly defoamed, and in the fillet after curing No bubbles remain on the surface, and it is possible to prevent a decrease in moisture resistance and mechanical strength due to the bubbles.
[0014]
【Example】
(Example 1)
30 g of phenoxy resin (PKHC, manufactured by Union Carbide) was dissolved in 45 g of a mixed solvent of toluene and ethyl acetate (mixing weight ratio 1: 1) to obtain a 40 wt% solution. Next, 40 g of a liquid epoxy resin (YL980 manufactured by Yuka Shell Epoxy Co., Ltd.) and 30 g of a liquid epoxy (epoxy equivalent 185, manufactured by Asahi Kasei Kogyo Co., Ltd., NovaCure HX-3941) containing a microcapsule type latent curing material are added, The mixture was further stirred, and nickel particles (diameter 3 μm) were dispersed by 1% by volume to obtain a film coating solution. This solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 50 μm) with a roll coater, and dried at 80 ° C. for 10 minutes to produce an adhesive film having a thickness of 40 μm. This adhesive film was cut to a size of 5 × 5 mm, and it was 180 ° C., 20 seconds, 24.5 N (2.5 kgf) between 15 × 15 mm glass substrates (Corning Corp., # 7059, thickness 0.7 mm). The area after bonding was 3.7 times the area before bonding.
Next, using the prepared adhesive film, Ni (on a size: 10 × 10 mm, thickness: 500 μm) with a gold bump (area: 100 × 100 μm, space: 100 μm, height: 15 μm, number of bumps: 186) and Ni The connection of Cu circuit printed circuit board with / Au plating was performed as shown below. Adhesive film (12 x 12 mm) is attached to Ni / Au plated Cu circuit printed circuit board (electrode height: 20 μm, thickness: 0.8 mm) at 90 ° C., 0.98 MPa (10 kgf / cm 2 ) for 5 seconds. Then, the separator was peeled off, and the bumps of the chip and the Ni / Au plated Cu circuit printed board were aligned. Next, the main connection was performed by heating and pressing from above the chip under the conditions of 180 ° C., 0.98 N / bump (100 gf / bump), and 20 seconds. When the inside of the fillet after this connection was observed with a microscope, no bubbles were observed. In addition, the connection resistance after this connection is 15 mΩ at the maximum per bump, the average is 4 mΩ, and the insulation resistance is 10 8 Ω or more. These values are the thermal shock test 1000 cycle treatment at −55 to 125 ° C., the PCT test ( There was no change in the IR reflow test at a temperature of 121 ° C. and 0.2 MPa (2 atm) for 200 hours and a peak temperature of 240 ° C., indicating good connection reliability.
[0015]
(Example 2)
30 g of phenoxy resin (manufactured by Union Carbide, PKHC) was dissolved in 45 g of a mixed solvent of toluene and ethyl acetate (mixing ratio 1: 1) to obtain a 40 wt% solution. Next, 50 g of a liquid epoxy resin (YL980, manufactured by Yuka Shell Engineering Poxy Co., Ltd.) and 20 g of a liquid epoxy (epoxy equivalent 185, manufactured by Asahi Kasei Kogyo Co., Ltd., NovaCure HX-3941) containing a microcapsule type latent hardener are added The mixture was stirred and further nickel particles (diameter 3 μm) were dispersed by 1% by volume to obtain a film coating solution. This solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 50 μm) with a roll coater, and dried at 80 ° C. for 10 minutes to produce an adhesive film having a thickness of 40 μm. This adhesive film was cut out to a size of 5 × 5 mm, and it was 180 ° C., 20 seconds, 24.5 N (2.5 kgf) between 15 × 15 mm glass substrates (Corning Corp., # 7059, thickness 0.7 mm). The area after bonding was 4.3 times as large as the area before bonding.
Next, using the produced adhesive film, a chip (size: 10 × 10 mm, thickness: 500 μm) with gold bumps (area: 100 × 100 μm, space: 100 μm, height: 15 μm, number of bumps: 186) and Ni / The connection of the Au plated Cu circuit printed circuit board was performed as follows. Adhesive film (12 x 12 mm) is applied to Ni / Au-attached Cu circuit printed circuit board (electrode height: 20 μm, thickness: 0.8 mm) at 90 ° C. and 0.98 MPa (10 kgf / cm 2 ) for 5 seconds. After attaching, the separator was peeled off, and the chip bump and the Ni / Au plated Cu circuit printed circuit board were aligned. Subsequently, heating and pressurization were carried out from above the chip under the conditions of 180 ° C., 0.98 N / bump (100 gf / bump), and 20 seconds to make the main connection. No bubbles were observed when the inside of the fillet after this connection was observed with a microscope. Moreover, the connection resistance after this connection is 16 mΩ at the maximum per bump, 3 mΩ on average, and the insulation resistance is 10 8 Ω or more. These values are the thermal shock test at −55 to 125 ° C., 1000 cycle treatment, PCT test (121 ° C., 0.2 MPa (2 atm)) There was no change in the IR reflow test at a peak temperature of 240 ° C. for 200 hours, and good connection reliability was shown.
[0016]
(Example 3) 20 g of a phenoxy resin (PKHC, manufactured by Union Carbide) was dissolved in 30 g of a mixed solvent of toluene and ethyl acetate (mixing weight ratio 1: 1) to obtain a 40 wt% solution. Next, 60 g of liquid epoxy resin (YL980, manufactured by Yuka Shell Epoxy Co., Ltd.) and 20 g of liquid epoxy (epoxy equivalent 185, manufactured by Asahi Kasei Kogyo Co., Ltd., Novacure HX-3941) containing a microcapsule type latent curing material are added, The mixture was further stirred, and nickel particles (diameter 3 μm) were dispersed by 1% by volume to obtain a film coating solution. This solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 50 μm) with a roll coater, and dried at 80 ° C. for 10 minutes to produce an adhesive film having a thickness of 40 μm. This adhesive film was cut out to a size of 5 × 5 mm, and it was 180 ° C., 20 seconds, 24.5 N (2.5 kgf) between 15 × 15 mm glass substrates (Corning Corp., # 7059, thickness 0.7 mm). The area after bonding was 6.5 times the area before bonding. Next, using the produced adhesive film, a chip (size: 10 × 10 mm, thickness: 500 μm) with gold bumps (area: 100 × 100 μm, space: 100 μm, height: 15 μm, number of bumps: 186) and Ni / The connection of the Au plated Cu circuit printed circuit board was performed as shown below. Adhesive film (12 x 12 mm) is attached to Ni / Au plated Cu circuit printed circuit board (electrode height: 20 μm, thickness: 0.8 mm) at 90 ° C. and 0.98 MPa (10 kgf / cm 2 ) for 5 seconds. Then, the separator was peeled off, and the bumps of the chip and the Ni / Au plated Cu circuit printed board were aligned. Next, the main connection was performed by heating and pressing from above the chip under the conditions of 180 ° C., 0.98 N / bump (100 gf / bump), and 20 seconds. When the inside of the fillet after this connection was observed with a microscope, no bubbles were observed. In addition, the connection resistance after this connection is 13 mΩ at the maximum per bump, the average is 5 mΩ, and the insulation resistance is 10 8 Ω or more. These values are the thermal shock test 1000 cycle treatment at −55 to 125 ° C., the PCT test ( There was no change in the IR reflow test at 121 ° C., 0.2 MPa (2 atm) for 200 hours and a peak temperature of 240 ° C., indicating good connection reliability.
[0017]
Comparative Example 1 40 g of a phenoxy resin (PKHC, manufactured by Union Carbide) was dissolved in 60 g of a mixed solvent of toluene and ethyl acetate (mixing weight ratio 1: 1) to obtain a 40 wt% solution. Next, 20 g of a liquid epoxy resin (YL980 manufactured by Yuka Shell Epoxy Co., Ltd.) and 40 g of a liquid epoxy (epoxy equivalent 185, manufactured by Asahi Kasei Kogyo Co., Ltd., Novacure HX-3941) containing a microcapsule type latent curing material are added, The mixture was further stirred, and nickel particles (diameter 3 μm) were dispersed by 1% by volume to obtain a film coating solution. This solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 50 μm) with a roll coater, and dried at 80 ° C. for 10 minutes to produce an adhesive film having a thickness of 40 μm. This adhesive film was cut out to a size of 5 × 5 mm, and it was 180 ° C., 20 seconds, 24.5 N (2.5 kgf) between 15 × 15 mm glass substrates (Corning Corp., # 7059, thickness 0.7 mm). When heated and pressurized under the conditions of), the area after bonding is the area before bonding 2. It was 5 times . Next, using the produced adhesive film, a chip (size: 10 × 10 mm, thickness: 500 μm) with gold bumps (area: 100 × 100 mm, space: 100 μm, height: 15 μm, number of bumps: 186) and Ni / The connection of the Au plated Cu circuit printed circuit board was performed as shown below. Adhesive film (12 x 12 mm) is applied to Ni / Au-attached Cu circuit printed circuit board (electrode height: 20 μm, thickness: 0.8 mm) at 90 ° C. and 0.98 MPa (10 kgf / cm 2 ) for 5 seconds. After attaching, the separator was peeled off, and the bumps of the chip and the Ni / Au plated Cu circuit printed circuit board were aligned. Subsequently, heating and pressurization were performed from above the chip under the conditions of 180 ° C., 0.98 N bumps (100 gf / bump), and 20 seconds to perform the main connection. When the inside of the fillet after this connection was observed with a microscope, a large number of bubbles were observed. In addition, the connection resistance after this connection is 15 mΩ at the maximum per bump, the average is 8 mΩ, and the insulation resistance is 10 8 Ω or more. These values are the thermal shock test at −55 to 125 ° C., 1000 cycles treatment, PCT test (121 ° C., 0.2 MPa (2 atm)) 200 hours, In an IR reflow test at a peak temperature of 240 ° C., electrical continuity was poor. As a result of cross-sectional observation of the connection part, interface peeling was observed in a part of the connection part with poor conduction. Moreover, when the connection part was observed with the infrared microscope, corrosion was observed in a part of the aluminum pad.
[0018]
(Comparative Example 2)
15 g of phenoxy resin (PKHC, manufactured by Union Carbide) was dissolved in 22.5 g of a mixed solvent of toluene and ethyl acetate (mixing weight ratio 1: 1) to obtain a 40 wt% solution. Next, 65 g of liquid epoxy resin (YL980, manufactured by Yuka Shell Epoxy Co., Ltd.) and 20 g of liquid epoxy (epoxy equivalent 185, manufactured by Asahi Kasei Kogyo Co., Ltd., NovaCure HX-3941) containing a microcapsule type latent curing material are added, The mixture was further stirred, and nickel particles (diameter 3 μm) were dispersed by 1% by volume to obtain a film coating solution. This solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 50 μm) with a roll coater, and dried at 80 ° C. for 10 minutes to produce an adhesive film having a thickness of 40 μm. This adhesive film was cut out to a size of 5 × 5 mm, and it was 180 ° C., 20 seconds, 24.5 N (2.5 kgf) between 15 × 15 mm glass substrates (Corning Corp., # 7059, thickness 0.7 mm). The area after bonding was 8.0 times the area before bonding.
Next, using the produced adhesive film, a chip (size: 10 × 10 mm, thickness: 500 μm) with gold bumps (area: 100 × 100 μm, space: 100 μm, height: 15 μm, banff number: 186) and Ni / The connection of the Au plated Cu circuit printed circuit board was performed as follows. Adhesive film (12 x 12 mm) is applied to Ni / Au-attached Cu circuit printed circuit board (electrode height: 20 μm, thickness: 0.8 mm) at 90 ° C. and 0.98 MPa (10 kgf / cm 2 ) for 5 seconds. After attaching, the separator was peeled off, and the bumps of the chip and the Ni / Au plated Cu circuit printed circuit board were aligned. Next, the main connection was performed by heating and pressing from above the chip under the conditions of 180 ° C., 0.98 N / bump (100 gf / bump), and 20 seconds. When the inside of the fillet after this connection was observed with a microscope, no bubbles were observed. The connection resistance after this connection is a maximum of 15 mΩ per bump, an average of 9 mΩ, and an insulation resistance of 10 8 Ω or more. These values are the thermal shock test at −55 to 125 ° C., 1000 cycle treatment, PCT test (121 In an IR reflow test at 200 ° C. and 0.2 MPa (2 atm) for 200 hours and a peak temperature of 240 ° C., electrical continuity was poor. As a result of cross-sectional observation of the connection portion, many bubbles were observed between the chip and the substrate, and interface peeling was observed at a part of the connection portion having poor conduction. Moreover, when the connection part was observed with the infrared microscope, corrosion was observed in a part of the aluminum pad.
[0019]
【The invention's effect】
According to the film-like adhesive for circuit connection of the present invention, since the fluidity of the adhesive at the time of heating and pressurization is high, bubbles generated in the fillet during the bonding process are quickly eliminated, and the cured fillet No bubbles remain on the surface, and it is possible to prevent a decrease in moisture resistance and mechanical strength due to the bubbles.

Claims (4)

相対峙する回路電極を加熱加圧によって、加圧方向の電極間を電気的に接続する加熱接着性接着剤において、
ビスフェノール型液状エポキシ樹脂、フィルム形成材及び潜在性硬化剤を含有し、
厚さ40μm、5×5mmの大きさに切出し、15×15mmの大きさのガラス基板間において180℃、20秒、24.5N(2.5kgf)の条件で加熱、加圧した際の接着前の面積(A)と接着後の面積(B)の比(B/A)が、3.5〜7.0倍であることを特徴とする、回路接続用フィルム状接着剤。
In the heat-adhesive adhesive that electrically connects the electrodes in the pressing direction by heating and pressing the circuit electrodes facing each other,
Contains bisphenol-type liquid epoxy resin, film forming material and latent curing agent,
Cut out to a thickness of 40 μm and 5 × 5 mm, and before bonding when heated and pressed at 180 ° C., 20 seconds, 24.5 N (2.5 kgf) between 15 × 15 mm glass substrates A film-like adhesive for circuit connection, wherein the ratio (B / A) of the area (A) to the area (B) after bonding is 3.5 to 7.0 times.
前記ビスフェノール型液状エポキシ樹脂は、ビスフェノールA型エポキシ樹脂である、請求項1に記載の回路接続用フィルム状接着剤。The film-like adhesive for circuit connection according to claim 1, wherein the bisphenol-type liquid epoxy resin is a bisphenol A-type epoxy resin. 前記フィルム形成材は、フェノキシ樹脂である、請求項1又は2に記載の回路接続用フィルム状接着剤。The film-like adhesive for circuit connection according to claim 1, wherein the film forming material is a phenoxy resin. 0.2〜15体積%の導電粒子を含有する、請求項1〜3のいずれか一項に記載の回路接続用フィルム状接着剤。The film-like adhesive for circuit connection according to any one of claims 1 to 3 , comprising 0.2 to 15% by volume of conductive particles.
JP2000132879A 2000-04-27 2000-04-27 Film adhesive for circuit connection Expired - Fee Related JP4385488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000132879A JP4385488B2 (en) 2000-04-27 2000-04-27 Film adhesive for circuit connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000132879A JP4385488B2 (en) 2000-04-27 2000-04-27 Film adhesive for circuit connection

Publications (2)

Publication Number Publication Date
JP2001313313A JP2001313313A (en) 2001-11-09
JP4385488B2 true JP4385488B2 (en) 2009-12-16

Family

ID=18641490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000132879A Expired - Fee Related JP4385488B2 (en) 2000-04-27 2000-04-27 Film adhesive for circuit connection

Country Status (1)

Country Link
JP (1) JP4385488B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103360976B (en) 2006-04-26 2016-08-03 日立化成株式会社 Splicing tape and use its solar module

Also Published As

Publication number Publication date
JP2001313313A (en) 2001-11-09

Similar Documents

Publication Publication Date Title
JP3342703B2 (en) Film adhesive for circuit connection and circuit board
US8273457B2 (en) Adhesive for bonding circuit members, circuit board and process for its production
JP4775377B2 (en) Adhesive film for circuit connection, circuit member connection structure, and circuit member connection method
JP2009194359A (en) Adhesive film for circuit connection, and connection structure of circuit member and method of connecting circuit member using the same
JP4433564B2 (en) Adhesive for circuit connection
JP2002204052A (en) Circuit connecting material and method for connecting circuit terminal using the same as well as connecting structure
JPH1150032A (en) Connection member for circuit and circuit board
JP4254995B2 (en) Anisotropic conductive adhesive and circuit board
JP4631984B2 (en) Circuit member connecting adhesive, circuit board, and manufacturing method thereof
JP4631979B2 (en) Circuit member connecting adhesive, circuit board and manufacturing method thereof
JPH11148059A (en) Adhesive and electronic parts
JP4110589B2 (en) Circuit connection member and circuit board manufacturing method
JP4385488B2 (en) Film adhesive for circuit connection
JP4815648B2 (en) Film adhesive for circuit connection
JP2006028521A (en) Addhesive for circuit connection
JPH09162235A (en) Method for packaging ic chip and member for connecting ic chip
JP4631998B1 (en) Circuit member connecting adhesive, circuit board, and manufacturing method thereof
JP4626495B2 (en) Adhesive for circuit connection
JP3877089B2 (en) Circuit connection adhesive and circuit board manufacturing method
EP1454973B1 (en) Adhesive for bonding circuit members, circuit board and process for its production
JP3835583B2 (en) Electronic component equipment
JP3925746B2 (en) Circuit board
JP2007107008A (en) Film-shaped adhesive and method for producing laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees