JP4369629B2 - ケミカルフィルタ用濾材およびケミカルフィルタユニット - Google Patents

ケミカルフィルタ用濾材およびケミカルフィルタユニット Download PDF

Info

Publication number
JP4369629B2
JP4369629B2 JP2001046759A JP2001046759A JP4369629B2 JP 4369629 B2 JP4369629 B2 JP 4369629B2 JP 2001046759 A JP2001046759 A JP 2001046759A JP 2001046759 A JP2001046759 A JP 2001046759A JP 4369629 B2 JP4369629 B2 JP 4369629B2
Authority
JP
Japan
Prior art keywords
layer
chemical filter
ion exchange
exchange resin
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001046759A
Other languages
English (en)
Other versions
JP2002248308A (ja
Inventor
達郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP2001046759A priority Critical patent/JP4369629B2/ja
Publication of JP2002248308A publication Critical patent/JP2002248308A/ja
Application granted granted Critical
Publication of JP4369629B2 publication Critical patent/JP4369629B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Filtering Materials (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【従来の技術】
【発明の属する技術分野】
本発明は、半導体や液晶の生産施設、または半導体や液晶の周辺技術に関連して用いられるクリーンルームなどにおいて、該生産施設内または該クリーンルーム内の空気や雰囲気中に含まれる有機系ガス状汚染物質や無機系ガス状汚染物質を除去するケミカルフィルタ用濾材およびケミカルフィルタユニットに関する。
【0002】
【従来の技術】
半導体や液晶の生産施設、または半導体や液晶の周辺技術関連で用いるクリーンルーム等においては、生産施設内または該クリーンルーム内の空気や雰囲気に対して高い清浄度が要求される。しかし、このような空気や雰囲気中には有機系ガス状汚染物質や無機系ガス状汚染物質が含まれていたり、クリーンルーム構成部材や作業員等からも有機系ガス状汚染物質や無機系ガス状汚染物質が発生するため、このようなガス状汚染物質を除去するためにケミカルフィルタ用濾材およびケミカルフィルタユニットが使用されている。
【0003】
ガス状汚染物質のうち二酸化硫黄のような酸性ガスは、アルミニウム配線層等金属部分に直接触れると空気中の水分の存在により腐蝕の原因になると言われている。また、アンモニアのような塩基性ガスが存在すると、化学増幅型レジストの生成プロトンを消耗して、パターン解像度低下の原因になったり、ガラスやミラー表面上に吸着または反応して析出物を生成し、トラブルを起こすと言われている。
【0004】
また、ガス状汚染物質のうち極性の低い有機物質は、シリコンウェハやガラス基板表面上に物理吸着しても少量であれば表面洗浄や加熱により除去可能であるが、多量に存在すると除去は困難になる。そして、特に汚染物質のうち添加剤のような極性の高い有機物質は、ガス状となった後、シリコンウェハやガラス基板表面上に強固に吸着し、簡単には除去出来なくなる。例えば、高分子材料に対して用いられる可塑剤のフタル酸ジオクチルエステルはウェハ上への付着力が強く、既にウェハ上に付着している付着力の弱い物質を追い出して置き換わると考えられている。
【0005】
このような添加剤は、高分子材料等の機能性を向上させる為に添加される物質であり、たとえば可塑剤、酸化防止剤、紫外線吸収剤、光安定剤、難燃剤、滑剤、帯電防止剤、造核剤、発泡剤等がある。そして、これら添加剤の材質として、特に、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、脂肪族二塩基酸エステル系可塑剤、脂肪化エステル系可塑剤、エポキシ系可塑剤、リン酸エステル系可塑剤、ポリエステル系可塑剤、フェノール系酸化防止剤、チオ系酸化防止剤、リン系酸化防止剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、UVA紫外線吸収剤、ヒンダードアミン系光安定剤、リン系難燃剤等が問題となっている。
【0006】
これら有機物質のウェハ表面への吸着を防止するには、クリーンルーム雰囲気中の該有機物質の濃度をできるだけ低いレベルで管理しなければならない。1999年版SIA(Semiconductor Industry Association)ロードマップによれば、西暦2000年のウェハ表面上での有機物質管理レベルは6.6×1013Catoms/cm2と言われている。これをトルエン換算すると1.44ng/cm2となる。また、一般に、ウェハ上への付着力の強いフタル酸ジオクチルエステルは、ウェハ上に0.2ng/cm2付着するとゲート酸化膜の絶縁破壊が起こるといわれており、この値がウェハ表面上での管理レベルと考えられる。これらウェハ表面上での管理レベルの値と、一般に知られている付着確率から、下記の算出式によりクリーンルーム空気中での管理レベルの推定値を算出すると、総有機物質の管理濃度は41.7μg/m3、フタル酸ジオクチルエステル等の付着力の強い物質の管理濃度は0.007μg/m3となる。
算出式: N=As/(v・t・γ)
N;空気中の汚染物質濃度(空気中の管理濃度)(μg/m3
As;ウェハ表面の汚染物質濃度(ウェハ表面上での管理レベル)
(μg/m2
v;クリーンルーム空気の流速(0.4m/sec)
t;ウェハの空気中暴露時間(86400sec)
γ;付着確率
芳香族炭化水素類の付着確率1×10-5
フタル酸ジオクチルエステル等の付着確率1/120〜1/160
【0007】
このような汚染物質を吸着するケミカルフィルタ用濾材には吸着材として、活性炭,活性炭繊維,ゼオライト,イオン交換樹脂,イオン交換繊維,その他化学吸着材が利用され、例えば特開平11−221414号公報では、通気性を有する2層以上の濾材の間に、これらの吸着材が保持され使用されている。
【0008】
また、上記の吸着材の中でも、特にイオン交換樹脂およびイオン交換繊維は酸性もしくは塩基性ガスに対しては、非常に優れた吸着能力を持っている。しかし、イオン交換樹脂およびイオン交換繊維を用いたケミカルフィルタ用濾材により被処理気体中の上記汚染物質を除去する際、イオン交換樹脂およびイオン交換繊維自身から前述のような有機系の汚染物質を発生してしまうという問題があった。そして、その優れた吸着能力にもかかわらず半導体や液晶の生産施設、または半導体や液晶の周辺技術に関連して用いられるクリーンルームなどにおいて、それら全てに対してはこのようなケミカルフィルタ用濾材を使用することができないという問題があった。
【0009】
【発明が解決しようとする課題】
本発明は、クリーンルームなどで使用される、特に酸性若しくは塩基性ガスの除去が可能なケミカルフィルタ用濾材およびケミカルフィルタユニットにおいて、該ケミカルフィルタ用濾材およびケミカルフィルタユニット自身よりガス状汚染物質が発生しないか、または発生するガス状汚染物質が極めて少なく、クリーンルーム内の製品などへ悪影響を及ぼすことのないケミカルフィルタ用濾材およびケミカルフィルタユニットを提供することを課題とする。
【0010】
【課題を解決するための手段】
上記課題を解決するための手段は、請求項1の発明では、イオン交換樹脂層の下流に、該イオン交換樹脂層より発生する汚染物質を吸着する物理吸着層を積層してなるケミカルフィルタ用濾材であって、前記イオン交換樹脂層と前記物理吸着層とが、熱融着性の樹脂によって接合一体化しており、前記イオン交換樹脂層は、粒子状のイオン交換樹脂が集積してシート状になるか、又は粒子状のイオン交換樹脂が熱融着性の樹脂で互いに接合されてシート状となった層、或いは、シート状の支持体に粒子状のイオン交換樹脂を担持して得られる層であり、前記物理吸着層は、粒子状の物理吸着材が集積してシート状になるか、又は粒子状の物理吸着材が熱融着性の樹脂で互いに接合してシート状となった層、或いはシート状の支持体に粒子状の物理吸着材を担持して得られる層であることを特徴とするケミカルフィルタ用濾材であり、被処理気体に対しイオン交換樹脂層の下流位置に物理吸着層を設けることにより、被処理気体はイオン交換樹脂層から発生する汚染物質を物理吸着層で除去でき、被処理気体中へ汚染物質を放出せずに酸性もしくは塩基性ガスの除去を実現できる。また、このような構造とすることによりプリーツ加工がし易く、またフィルターの枠体に設置する場合ユニット化が容易である。
【0012】
また、請求項の発明では、前記物理吸着層が、酸性ガス吸着材及び/またはアルカリガス吸着材を含むことを特徴とする請求項1に記載のケミカルフィルタ用濾材であり、物理吸着層に酸性もしくは塩基性ガスに対する吸着能力を有する吸着材を用いることにより、イオン交換樹脂もしくはイオン交換繊維から発生する汚染物質を除去でき、酸性ガスもしくは塩基性ガスに対する吸着能力をさらに向上させることができる。
【0013】
また、請求項の発明では、複数の積層単位で構成され、該積層単位がホットメルト不織布が熱溶融することで形成された、ホットメルト樹脂から成る連結部と樹脂凝集部とで構成されたウエブの一方の表面に、該樹脂凝集部を介してイオン交換樹脂粉粒体または物理吸着粉粒体を固着して成り、該ウエブの他方の表面と、他の積層単位を構成するイオン交換樹脂粉粒体または物理吸着粉粒体とが樹脂凝集部を介して固着して成り、かつ該積層単位が前記イオン交換樹脂層または前記物理吸着層であることを特徴とする、請求項1または2に記載のケミカルフィルタ用濾材であり、このような構造とすることによりプリーツ加工がし易く、圧力損失も高くならず、またフィルターの枠体に設置する場合ユニット化が容易である。
【0014】
また、請求項の発明では、最下流位置に積層された層の更に下流側に有機系素材である高分子材料の不織布からなるカバー材を設けた請求項1〜に記載のケミカルフィルタ用濾材からなるケミカルフィルタユニットにおいて、該カバー材から発生する総有機物質量(トルエン換算重量)を発生ガス推測法により23℃において算出すると、該総有機物質量がケミカルフィルタユニットの間口面積あたり、また単位時間あたり、1.0(pg/m・hr)以上10(μg/m・hr)以下であるケミカルフィルタユニットであり、飛散の恐れのある物理吸着材を使用する際に、物理吸着材の飛散を防止するための通気性の該カバー材を被処理気体に対し物理吸着層より下流側に設けることにより、物理吸着材の飛散によるクリーンルーム内の製品への影響を低減することができる。
【0015】
また、請求項の発明では、最下流位置に積層された層の更に下流側に有機系素材である高分子材料の不織布からなるカバー材を設けた請求項1〜に記載のケミカルフィルタ用濾材からなるケミカルフィルタユニットにおいて、該カバー材から発生する添加剤量(トルエン換算重量)を発生ガス推測法により23℃において算出すると、該添加剤量が該ケミカルフィルタユニットの間口面積あたり、また単位時間あたり、1.0(pg/m・hr)以上0.15(μg/m・hr)以下であるケミカルフィルタユニットであり、飛散の恐れのある物理吸着材を使用する際に、物理吸着材の飛散を防止するための通気性の該カバー材を被処理気体に対し物理吸着層より下流側に設けることにより、物理吸着材の飛散によるクリーンルーム内の製品への影響を低減することができる。
【0016】
【発明の実施の形態】
以下、本発明にかかるケミカルフィルタ用濾材およびケミカルフィルタユニットの好ましい実施の形態について詳細に説明する。
【0017】
本発明のイオン交換樹脂層は、粒子状のイオン交換樹脂が集積してシート状になるか、又は粒子状のイオン交換樹脂が熱融着性の樹脂で互いに接合されてシート状となった層、或いは、支持体に粒子状のイオン交換樹脂を担持して得られる層である。イオン交換樹脂を担持する支持体は通気性を有するシート状物ならばいずれも使用可能であり、このようなシート状物としては、不織布、織物、膜、ろ紙、スポンジなどの多孔質体などが挙げられ、なかでも不織布は通気性が高いので好ましい。また、支持体としてのシート状物が高分子材料であれば、フィルタ加工におけるプリーツ折り加工などへの追従性が高く、耐久性に優れているので好ましく用いることができる。また、イオン交換樹脂を接合する熱融着性の樹脂は発生ガスの少ない樹脂を用いることが望ましい。
【0018】
本発明の物理吸着層は、粒子状の物理吸着材が熱融着性の樹脂で互いに接合してシート状となった層、或いは支持体に物理吸着材を担持して得られる層である。物理吸着材を担持する支持体は通気性を有するシート状物ならばいずれも使用可能であり、このような通気性を有するシート状物としては、不織布、織物、膜、ろ紙、スポンジなどの多孔質体などが挙げられ、なかでも不織布は通気性が高いので好ましい。また、支持体に用いるシート状物が高分子材料であれば、フィルタ加工におけるプリーツ折り加工などへの追従性が高く、耐久性に優れているので好ましく用いることができる。次に、物理吸着材は、脱臭用途に使用できるものならばいずれも使用可能で、活性炭、ゼオライトなどを好ましく使用でき、このような、物理吸着材にさらに、酸性ガスもしくは塩基性ガスを吸着する能力を付加されている物理吸着材を用いても良い。また、物理吸着材は、比表面積が200m/g以上の多孔質のものを選択して使用するのが好ましく、500m/g以上のものがより好ましい。また、物理吸着材を接合する熱融着性の樹脂は発生ガスの少ない樹脂を用いることが望ましい。このようにして得られた物理吸着層は、イオン交換樹脂層の下流において、イオン交換樹脂より発生する汚染物質を吸着することができる。
【0019】
本発明のケミカルフィルタ用濾材においては、上記イオン交換樹脂層や上記物理吸着層以外にも、ガス状汚染物質を発生しない層やガス状汚染物質の発生が少ない層を積層してもかまわない。このような層には、無機吸着材や無機触媒の粒子が集積してシート状になるか、又は粒子状の無機吸着材や無機触媒が熱融着性の樹脂で互いに接合してシート状となった層、或いは支持体に無機吸着材や無機触媒を担持して得られる層、或いは除塵層などがある。上記支持体は通気性を有するシート状物ならばいずれも使用可能であり、このような通気性を有するシート状物としては、不織布、織物、膜、ろ紙、スポンジなどの多孔質体などが挙げられる。また上記除塵層としては不織布、織物、膜、ろ紙、スポンジなどの多孔質体などが挙げられる。
【0020】
本発明のケミカルフィルタ用濾材において、積層の方法は、イオン交換樹脂層の数も物理吸着層の数も任意で良く、積層する順序も任意で良いが、イオン交換樹脂層の下流位置に、イオン交換樹脂より発生する汚染物質を吸着する物理吸着層が少なくとも一層積層されていることが必要である。このように被処理気体に対しイオン交換樹脂層の下流位置に物理吸着層を設けることにより、イオン交換樹脂層から発生する汚染物質を物理吸着層で除去できるので、被処理気体中へ汚染物質を放出せずに、被処理気体より酸性もしくは塩基性ガスの除去を実現できる。また、最下流位置に積層された層が吸着材などを含む層である場合は、その層より吸着材などが飛散しにくい形態が好ましい。積層された各層の間は必ずしも接合されている必要はないが、接合一体化されている方が、プリーツ加工し易く、またフィルターの枠体に設置してユニットと称する形態に加工し易く好ましい。
【0021】
積層された各層の間を接合一体化するには、熱可塑性ポリアミド系樹脂、熱可塑性ポリエステル樹脂、熱可塑性ウレタン樹脂、ポリオレフィン樹脂、エチレン−酢酸ビニル共重合体樹脂などの熱融着性の樹脂を粒子状や不織布状にして用いることができる。接合の方法は、例えば支持体に粒子状のイオン交換樹脂を担持して得られる層と支持体に物理吸着材を担持して得られる層の場合、層間に熱融着性の樹脂からなる不織布を積層して、積層物全体を加熱して接合することができる。また、例えばポリエステルなどのスパンボンド不織布を支持体として、その上に粒子状のイオン交換樹脂粒子と熱融着性の樹脂粒子とを混合した粒子層を形成した後、その層の上に粒子状の活性炭粒子と熱融着性の樹脂粒子とを混合した粒子層を形成した後、層全体を加圧下に加熱することにより、各層間を接合することができる。この場合は、各層間の接合と同時に各層においてイオン交換樹脂粒子同士または活性炭粒子同士の接合も行うことができる。
【0022】
また、イオン交換樹脂層がイオン交換樹脂粒子が集積してシート状になった層であり、物理吸着層が物理吸着材の粒子が集積してシート状になった層である場合の接合一体化の方法としては、例えば、図3に例示するように複数の積層単位8で構成され、該積層単位がホットメルト樹脂から成る連結部5と樹脂凝集部6とで構成されたウエブの一方の表面に、該樹脂凝集部6を介してイオン交換樹脂粉粒体7または物理吸着粉粒体7を固着して成り、該ウエブの他方の表面と、他の積層単位を構成するイオン交換樹脂粉粒体または物理吸着粉粒体とが樹脂凝集部を介して固着して成り、かつ該積層単位がイオン交換樹脂層または物理吸着層であるように構成して一体化する方法があり、このようにして、得られるケミカルフィルタ用濾材はプリーツ加工がし易く、圧力損失も高くならない。また、フィルターの枠体に設置してユニット化する場合、ユニット加工も容易であるため、ケミカルフィルタ用濾材として好ましい形態である。
【0023】
本発明のケミカルフィルタユニットは前記ケミカルフィルタ用濾材をフィルターの枠体に設置してユニット化したものである。ユニットの形態には、図1に例示するプリーツ折りの直交流及び平行流型、図2に例示する平板のパネル型,ハニカム形状型等がある。また、枠体には金属、合成樹脂等の材料を用いるが、いづれの材料もガス状汚染物質発生の少ないものの使用が望ましい。
【0024】
被処理気体の通過方向に対して最下流位置となる物理吸着層より、物理吸着材などの飛散を防止する必要がある場合は、該物理吸着層の下流側に通気性を有するカバー材をさらに配置するのが好ましい。カバー材としては、有機系素材である高分子材料の不織布や膜、天然素材の紙やパルプ、無機系素材であるアルミニウムやステンレス等のメッシュ、等が使用できるが、無機系材料のメッシュは圧力損失が高かったり、重量が重いことが問題となることがあるのに対して、高分子材料にはそのような問題が少ないので好ましく、特に通気性が良好な不織布が好適である。但し、カバー材には、被処理気体を汚染してクリーンルーム内の製品に悪影響を及ぼすガス状の有機物質等が発生しにくい材料を使用することが必要である。カバー材は物理吸着層と密着させて配置することも、前記ケミカルフィルタユニットからの空気出口部分に配置することもできる。また、より飛散防止効果を高める為、図4に例示するように、カバー材3には熱可塑性樹脂5aとの複合体を使用して、物理吸着層8cとカバー材3を密着させることもできる。また、図4に例示するように、イオン交換樹脂層と物理吸着層とカバー材をすべて一体化することもでき、この場合、プリーツ加工もし易く、またフィルターの枠体に設置してユニットの形態に加工するのも容易となり好ましい。
【0025】
カバー材に高分子材料を用いる場合、高分子材料はモノマーの重合によって製造されるため、製造過程で残存する未反応のモノマーがガス状汚染物質の原因となる。また、高分子材料の、酸化、機械的応力、薬品、水などによる劣化を防止するため、また高分子材料に耐性をもたせるため、高分子材料に加える添加剤が発生ガスとなりガス状汚染物質の原因となる。このように、微量の有機物質発生は避けがたい。また、カバー材に用いる高分子材料は、枠体に用いる高分子材料よりも、繊維化したり柔軟性を持たせたりする等の特性が要求されるため、有機物質がより発生し易い。
【0026】
しかし、発生する有機物質の濃度が、管理レベルよりも十分低ければ、クリーンルーム内で発生する問題は回避出来る。本発明のケミカルフィルタ用濾材では、カバー材のすぐ上流側にある物理吸着層が、そのさらに上流のイオン交換樹脂層で発生する有機物質を吸着するため、カバー材からの発生ガスについてのみ考えれば良く、クリーンルームの標準条件温度23℃,におけるカバー材から発生する総有機物質及び添加剤の量を、ダイナミックヘッドスペース法と発生ガス推測法(詳細後述)により算出した値が、ケミカルフィルタユニットの間口面積あたり、総有機物質量において1.0(pg/m2・hr)以上10μg/m2・hr以下、添加剤においては1.0(pg/m2・hr)以上0.15μg/m2・hr以下であれば、クリーンルーム内で発生する問題は回避出来る。本発明のケミカルフィルタユニットはこの条件に合致するカバー材を選択して使用する。
【0027】
例えば、図4に例示するような、下流側にカバー材3を設けたケミカルフィルタ用濾材をプリーツ折りして、図1に例示するようなケミカルフィルタユニットを作成した場合、例えばプリーツ折りの山高さが3.3cm、山間5mm、ユニットの間口50cm×50cmとすると、このケミカルフィルタユニットに用いたケミカルフィルタ用濾材の面積は、3.3cm×2×(50cm/5mm)×50cm=3.3m2の計算式から約3.3m2の面積となる。ここで、例えばこのケミカルフィルタ用濾材のカバー材からの発生ガスが、総有機物質量において1.233μg/m2・hr、添加剤量においては0.0364μg/m2・hrとすると、このケミカルフィルタユニットのカバー材から発生する総有機物質量はケミカルフィルタユニットの間口面積あたり4.07μg/m2・hr、添加剤量においては0.12μg/m2・hrとなる。このカバー材からの発生ガス量は前述の、ケミカルフィルタユニットの間口面積あたり、総有機物質量において1.0(pg/m2・hr)以上10μg/m2・hr以下、添加剤においては1.0(pg/m2・hr)以上0.15μg/m2・hr以下の範囲に入るので、このケミカルフィルタユニットは本発明の請求項5および6に係るケミカルフィルタユニットに適合する。
【0028】
次に、本発明の請求項4および5に係るケミカルフィルタユニットをクリーンルームに使用した場合の効果を示す。例えば、ケミカルフィルタユニットを設置して、その時のユニット間口を通過する風速を0.3m/secに設定したとすると、ケミカルフィルタユニットのカバー材から発生する総有機物質量が10μg/m2・hrである場合、空気中の汚染物質濃度は10μg/m2・hr÷0.3m/sec=9×10-3μg/m3となり、前述の管理基準値の41.7μg/m3を十分に満足できる。同様にして、発生する添加剤質量が0.15μg/m2・hrである場合、空気中の汚染物質濃度は0.15μg/m2・hr÷0.3m/sec=1.4×10-4μg/m3となり、前述の管理基準値の7×10-3μg/m3を十分に満足できる。また、仮に上流のガス状汚染物質のうち90〜95%をケミカルフィルタユニットで除去した場合、残り10〜5%のガス状汚染物質はカバー材からの発生ガスと合わさりクリーンルーム内に入ってしまうことになる。この合計のガス状汚染物質濃度が管理基準値以下である必要があり、また上流、特に外気のガス状汚染物質の濃度が高いことも考慮すると、カバー材からの発生ガスはできるだけ0に近いことが望ましい。しかし、本発明によれば総有機物質による汚染物質濃度が上記のように9×10-3μg/m3という、非常に小さい値の濃度となるので、この要求を満たすことができる。さらにまた、クリーンルームへ入った空気のほとんどは再びケミカルフィルタユニットにリターン空気として戻ってくるので、ケミカルフィルタユニットのカバー材からの発生ガスは、ケミカルフィルタユニット自身で除去されることになる。しかし、ガス状汚染物質量があまり多いとケミカルフィルタユニットの寿命を縮めてしまうことになる。従って、ケミカルフィルタユニットのカバー材からの発生ガスはできるだけ少ないことが必要である。しかし、本発明によれば総有機物質による汚染物質濃度が上記のように9×10-3μg/m3という、非常に小さい値の濃度となるので、この空気がリターン空気としてケミカルフィルタユニットに戻ってきても、ケミカルフィルタユニットの寿命を縮めてしまうという問題は発生しない。
【0029】
ダイナミックヘッドスペース法とは、発生ガスは試験片の質量には比例せず、表面積に比例する原理を用いた方法であり、図5はこの方法に用いる発生ガス捕集装置(ジーエルサイエンス(株)製 MSTD−258M)の説明図である。まず、測定したい素材を直径7cmの円形に切り、試料1を作成する。試料1をチャンバー10内の中央のガス吹き出し口13の上に設置する。次に、清浄なヘリウムガス11をチャンバー内に流速120ml/minで連続的に流通させながら所定の温度(60℃または80℃)で加熱する。ヘリウムガス11は試料1と接触する際、試料1から発生する汚染物質がヘリウムガス中に混入するので、気体濃度が平衡になった後、捕集速度100ml/minで固体吸着材12(成分;2,6-diphenylene oxide)に捕集する。次いで、固体吸着材12に捕集した物質をガスクロマトグラフ質量分析計で分析する。((株)島津製作所製 QP−5050を使用)加熱の温度は60℃と80℃の2条件で測定する。
【0030】
次に、発生ガス推測法とは、高温下で発生ガスの促進試験を行ない、実験式を用いて、室温での結果を推測する方法であり、以下、発生ガス推測法について具体的に説明する。実際のクリーンルームの室温23℃での発生ガスは極微量なので実測では分析感度の点で長時間の測定が必要になるなど、現実的には測定困難なため、前述のダイナミックヘッドスペース法により、試験条件を例えば60℃、80℃の高温下に設定して、試料から発生する有機物質量を定性定量的に測定した結果から下記の式を用いて室温23℃での結果を推測する。(株)住化分析センターの竹田らによれば、試験温度と発生ガスの関係については、経験則として下記の式が成り立つことがわかっている。(平成11年第17回コンンタミネーションコントロール研究大会予稿集などに記載)
ln(M/A・h)=−C1/T+C2
M;トルエン換算の発生ガス量(μg)
A;測定試料面積(m2
h;捕集に要した時間(h)
T;試験温度(絶対温度K)
C1およびC2;定数
【0031】
以下、本発明の実施例につき説明するが、これは発明の理解を容易とするための好適例に過ぎず、本願発明はこれら実施例の内容に限定されるものではない。
【実施例】
(実施例1)
図4に例示するように、支持体としてポリエステルのスパンボンド不織布2(面密度30g/m2)を準備し、その片面に、熱可塑性ポリアミド系樹脂(190℃におけるメルトインデックス:80)からなる面密度20g/m2のホットメルト不織布5を接着層として積層した。次に、該接着層の上に粒径0.3mm〜1.2mmに分級した市販の強酸性陽イオン交換樹脂粒子7aを、1m2当たり350gの量になるように散布した。続いて、約5Kg/cm2の水蒸気処理を支持体側から約7秒間行ない、該接着層を可塑化溶融せしめた後、固着されていない強酸性陽イオン交換樹脂粒子を除去することにより、支持体に樹脂凝集部6を介して強酸性陽イオン交換樹脂粒子7aを固着し1層目の積層単位8aを得た。更にこの状態の積層単位8aに上記と同様の熱可塑性ポリアミド不織布5を積層し、強酸性陽イオン交換樹脂粒子7b散布、水蒸気処理、並びに固着されていない強酸性陽イオン交換粒子の除去を経て2層目の積層単位8bを形成した。最後に上記と同様のポリアミド樹脂不織布5を積層し、粒径0.3〜0.5mmの活性炭粒子8cを散布し、水蒸気処理、並びに固定されていない活性炭粒子の除去を経て3層目の積層単位8cを得た。以上の手順により、被処理気体の通過方向4に対してイオン交換樹脂層8bの下流側に物理吸着層(活性炭層)8cを積層したケミカルフィルタ用濾材を得た。
【0032】
(実施例2)
実施例1における活性炭のかわりに、活性炭1g当たり10重量%のリン酸を添着した活性炭を使用した以外は実施例1と同様な方法でケミカルフィルタ用濾材を得た。
【0033】
(実施例3)
図4に例示するように、実施例1で得られたケミカルフィルタ用濾材の活性炭側にさらに熱可塑性ポリエチレン樹脂(190℃におけるメルトインデックス:200)からなる面密度20g/m2のホットメルト不織布5aを接着層として積層し、その上のカバー材として面密度30g/m2のポリエステルスパンボンド不織布3を積層した後、約5Kg/cm2の水蒸気処理を支持体側から約7秒間行なった。以上の手順により、被処理気体の通過方向4に対しイオン交換樹脂層8bの下流側に物理吸着層(活性炭層)8cを設け、該物理吸着層8cの下流側にホットメルト樹脂を介してポリエステルスパンボンド不織布3をカバー材として固着したケミカルフィルタ用濾材を得た。
【0034】
(比較例1)
3層目の積層単位である物理吸着層(活性炭層)8cを積層しなかったこと以外は実施例1と同様にして、イオン交換樹脂層を2層積層して形成したケミカルフィルタ用濾材を得た。
【0035】
(比較例2)
図4に例示するように、実施例1で得られたケミカルフィルタ用濾材の活性炭側にさらに熱可塑性ポリアミド樹脂(190℃におけるメルトインデックス:80)からなる面密度20g/m2のホットメルト不織布5aを接着層として積層し、その上のカバー材として面密度30g/m2のポリプロピレンスパンボンド不織布3を積層した後、約5Kg/cm2の水蒸気処理を支持体側から約7秒間行なった。以上の手順により、被処理気体の通過方向4に対しイオン交換樹脂層8bの下流側に物理吸着層(活性炭層)8cを設け、該物理吸着層8cの下流側にホットメルト樹脂を介してポリプロピレンスパンボンド不織布3をカバー材として固着したケミカルフィルタ用濾材を得た。
【0036】
(カバー材からのガス発生量の評価方法)
カバー材からのガス発生量の評価方法についての捕集装置の説明図である図5を用いて説明する。カバー材を使用した実施例3または比較例2に用いたカバー材を直径7cmの円形に切り、試料9として各々2枚ずつ用意した。試料9の1枚をチャンバー10内の中央のガス吹き出し口13の上に設置し、次いで、清浄なヘリウムガス11をチャンバー10内に流速120ml/minで連続的に流通させながらチャンバー10を60℃に加熱した。30分後に捕集速度100ml/minで固体吸着剤13(成分;2,6-diphenylene oxide)に1時間捕集した。試料9のもう1枚は、チャンバー10の加熱速度を80℃にして同様の手順で発生ガスを捕集した。前述した発生ガス推測法により、23℃での発生ガスを推測し、ケミカルフィルタ用濾材をプリーツ型ユニット(山高さ3.3cm、山間5mm)に成型したときの、ユニットの単位間口面積当たりのカバー材からのガス発生量に換算して表1にまとめた。
【0037】
(ケミカルフィルタ用濾材からのガス発生量の評価方法)
ケミカルフィルタ用濾材からのガス発生量の評価方法について、発生ガス捕集装置の説明図である図5を用いて説明する。まず、各実施例および比較例のケミカルフィルタ用濾材を、その周縁を覆うことができる内径2.5cmの円筒形のガラスセル(図示無し)2枚の間に挟み込んで周囲をPTFE製テープ(テフロンテープ)で封じ、被処理気体であるヘリウムガス11が試料9を通過後に再度回り込んで吸着剤に接することのないようにした。次に、試料9がはめ込まれたセルを、発生ガス捕集装置(ジーエルサイエンス(株)製 MSTD−258Mのチャンバー中央のガス吹き出し口13の上に試料9の支持体側が下側(ガス吹き出し口13に面した状態)になるよう置いた。次いで、清浄なヘリウムガス11を流速240ml/minで連続的に流通させながらチャンバー10内を60℃にて加熱し、30分後に捕集速度100ml/minで固体吸着剤13(成分;2,6-diphenylene oxiside)に1時間捕集した。試料9のもう1枚は、チャンバー10の加熱速度を80℃にして同様の手順で発生ガスを捕集した。発生ガス推定法により、23℃での発生ガスを推測し、ケミカルフィルタ用濾材をプリーツ型ユニット(山高さ3.3cm、山間5mm)に成型したときの、ユニットの単位間口面積あたりのガス発生量に換算して表1にまとめた。
【表1】
Figure 0004369629
【0038】
表1に示すように、カバー材を用いず、被処理気体の通過方向に対してイオン交換樹脂層の下流に物理吸着層を設けた実施例1,2のケミカルフィルタ用濾材は、ユニットの単位間口面積あたり発生する有機物質量が少なく、添加剤量は定量限界以下(1.0pg/m2・hr以下)であった。カバー材を用いた実施例3はカバー材の総有機物質発生量が少なく、ケミカルフィルタ用濾材としても総有機物質発生量と添加剤量が少ないものであった。
【0039】
(ケミカルフィルタ用濾材のガス除去物性評価方法)
ケミカルフィルタ用濾材のガス除去物性の評価方法は、汚染ガスとしてアンモニアを用い、初期濃度25ppm、風速3.5cm/秒、温度23℃、相対湿度45%RHの条件で行なった。初期濃度(上流濃度)とケミカルフィルタ用濾材を通過した後の下流濃度との差を初期濃度で割り、百分率で求め汚染ガス除去効率とした。その後経時的に上流濃度と下流濃度を測定し、除去効率が90%に低下した時点で寿命に達したと判断し、破過時間とした。その結果を表2に示した。
【表2】
Figure 0004369629
*初期除去率:汚染ガスをケミカルフィルタに流通し始めてから1分後の汚染ガス除去率
【0040】
表2に示すように、実施例1または実施例3は物理吸着層を用いない比較例1より破過時間が長いものであった。また、添着活性炭を用いた実施例2は添着炭を用いていない実施例1、実施例3、または比較例1よりも2割程度破過時間が長いものであった。
【0041】
【発明の効果】
本発明のケミカルフィルタ用濾材およびケミカルフィルタユニットは、クリーンルームなどで使用した場合、特に酸性若しくは塩基性ガスの除去が可能であり、しかもケミカルフィルタ用濾材およびケミカルフィルタユニット自身よりガス状汚染物質が発生しないか、または発生するガス状汚染物質が極めて少なく、クリーンルーム内の製品などへ悪影響を及ぼすことがない。
【図面の簡単な説明】
【図1】本発明のプリーツ型のケミカルフィルタユニットの見取り図
【図2】本発明のパネル型のケミカルフィルタユニットの見取り図
【図3】本発明のケミカルフィルタ用濾材の模式的断面図
【図4】本発明のカバー材を有するケミカルフィルタ用濾材の模式的断面図
【図5】ダイナミックヘッドスペース法に用いる発生ガス捕集装置の説明図
【符号の説明】
1 ユニット枠体
2 支持体
3 カバー材
4 比処理気体の通過方向
5 連結部
5a 接着層
6 樹脂凝集部
6a 樹脂凝集部
7a イオン交換樹脂
7b イオン交換樹脂または物理吸着材
7c 物理吸着材
8a イオン交換樹脂層
8b イオン交換樹脂層または物理吸着層
8c 物理吸着層
9 試料
10 チャンバー
11 ヘリウムガス
12 固体吸着剤
13 ガス吹出し口

Claims (5)

  1. イオン交換樹脂層の下流に、該イオン交換樹脂層より発生する汚染物質を吸着する物理吸着層を積層してなるケミカルフィルタ用濾材であって、
    前記イオン交換樹脂層と前記物理吸着層とが、熱融着性の樹脂によって接合一体化しており、
    前記イオン交換樹脂層は、粒子状のイオン交換樹脂が集積してシート状になるか、又は粒子状のイオン交換樹脂が熱融着性の樹脂で互いに接合されてシート状となった層、或いは、シート状の支持体に粒子状のイオン交換樹脂を担持して得られる層であり、
    前記物理吸着層は、粒子状の物理吸着材が集積してシート状になるか、又は粒子状の物理吸着材が熱融着性の樹脂で互いに接合してシート状となった層、或いはシート状の支持体に粒子状の物理吸着材を担持して得られる層であることを特徴とするケミカルフィルタ用濾材。
  2. 前記物理吸着層が、酸性ガス吸着材及び/またはアルカリガス吸着材を含むことを特徴とする請求項1に記載のケミカルフィルタ用濾材。
  3. 複数の積層単位で構成され、該積層単位がホットメルト不織布が熱溶融することで形成された、ホットメルト樹脂から成る連結部と樹脂凝集部とで構成されたウエブの一方の表面に、該樹脂凝集部を介してイオン交換樹脂粉粒体または物理吸着粉粒体を固着して成り、該ウエブの他方の表面と、他の積層単位を構成するイオン交換樹脂粉粒体または物理吸着粉粒体とが樹脂凝集部を介して固着して成り、かつ該積層単位が前記イオン交換樹脂層または前記物理吸着層であることを特徴とする、請求項1または2に記載のケミカルフィルタ用濾材。
  4. 最下流位置に積層された層の更に下流側に有機系素材である高分子材料の不織布からなるカバー材を設けた請求項1〜に記載のケミカルフィルタ用濾材からなるケミカルフィルタユニットにおいて、該カバー材から発生する総有機物質量(トルエン換算重量)を発生ガス推測法により23℃において算出すると、該総有機物質量がケミカルフィルタユニットの間口面積あたり、また単位時間あたり、1.0(pg/m・hr)以上10(μg/m・hr)以下であるケミカルフィルタユニット。
  5. 最下流位置に積層された層の更に下流側に有機系素材である高分子材料の不織布からなるカバー材を設けた請求項1〜に記載のケミカルフィルタ用濾材からなるケミカルフィルタユニットにおいて、該カバー材から発生する添加剤量(トルエン換算重量)を発生ガス推測法により23℃において算出すると、該添加剤量が該ケミカルフィルタユニットの間口面積あたり、また単位時間あたり、1.0(pg/m・hr)以上0.15(μg/m・hr)以下であるケミカルフィルタユニット。
JP2001046759A 2001-02-22 2001-02-22 ケミカルフィルタ用濾材およびケミカルフィルタユニット Expired - Fee Related JP4369629B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001046759A JP4369629B2 (ja) 2001-02-22 2001-02-22 ケミカルフィルタ用濾材およびケミカルフィルタユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001046759A JP4369629B2 (ja) 2001-02-22 2001-02-22 ケミカルフィルタ用濾材およびケミカルフィルタユニット

Publications (2)

Publication Number Publication Date
JP2002248308A JP2002248308A (ja) 2002-09-03
JP4369629B2 true JP4369629B2 (ja) 2009-11-25

Family

ID=18908318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001046759A Expired - Fee Related JP4369629B2 (ja) 2001-02-22 2001-02-22 ケミカルフィルタ用濾材およびケミカルフィルタユニット

Country Status (1)

Country Link
JP (1) JP4369629B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181368A (ja) * 2002-12-03 2004-07-02 Nippon Muki Co Ltd ガス除去フィルタ用ろ材及びガス除去フィルタ
JP4465347B2 (ja) 2003-01-22 2010-05-19 カムフィル アクチボラゲッド フィルタ構造体、フィルタ構造体を備えたフィルタパネル及びフィルタ構造体を作製する方法
JP4932564B2 (ja) * 2007-03-29 2012-05-16 日本バイリーン株式会社 ガス除去用濾材及びその製造方法、並びにガス除去用濾材を用いたガス除去エレメント
JP5841718B2 (ja) * 2010-10-18 2016-01-13 積水樹脂株式会社 浄化ユニット及び浄化ユニットを用いた浄化構造体
JPWO2021193137A1 (ja) * 2020-03-27 2021-09-30

Also Published As

Publication number Publication date
JP2002248308A (ja) 2002-09-03

Similar Documents

Publication Publication Date Title
US6331351B1 (en) Chemically active filter material
US10322363B2 (en) Filter media construction
US7250387B2 (en) Filter system
KR0169209B1 (ko) 개량된 극-저 투과 공기 필터
KR100639280B1 (ko) 다공성의 강산성 중합체를 채용한 필터
EP0803275A1 (en) Air filter
CN102387849A (zh) 可再生折叠过滤介质
KR19990023033A (ko) 필터 및 필터를 제조하는 방법
CN101952008A (zh) 折叠再循环过滤器
WO1998006477A1 (fr) Milieu filtrant et filtre a air
JP4369629B2 (ja) ケミカルフィルタ用濾材およびケミカルフィルタユニット
CN108290105A (zh) 用于闭合件保护的吸附剂通气装置
TWI417130B (zh) 過濾系統
JP4256570B2 (ja) 汚染ガス除去フィルタ
US20210046410A1 (en) Multilayer filter material
JP4454886B2 (ja) ケミカルフィルタ
JP4454952B2 (ja) エアフィルタ用濾材、エアフィルタユニット、及びその製造方法、並びにその包装体
JP2003079715A (ja) ガス除去用濾材及びその製造方法
CN108770347B (zh) 用于闭合件保护的层状过滤组件
JP4932564B2 (ja) ガス除去用濾材及びその製造方法、並びにガス除去用濾材を用いたガス除去エレメント
US9199189B1 (en) Filter medium having ozone and odor removal properties
JP2007038091A (ja) エアフィルタ用濾材およびエアフィルタ
JP3552140B2 (ja) 気体の清浄化方法及びその装置
JP3831281B2 (ja) エアフィルタ用濾材およびエアフィルタユニットの製造方法
JPH078752A (ja) 清浄気体の調製方法および調製装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

R150 Certificate of patent or registration of utility model

Ref document number: 4369629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees