JP4361568B2 - Substrate processing apparatus and substrate processing method - Google Patents

Substrate processing apparatus and substrate processing method Download PDF

Info

Publication number
JP4361568B2
JP4361568B2 JP2007008306A JP2007008306A JP4361568B2 JP 4361568 B2 JP4361568 B2 JP 4361568B2 JP 2007008306 A JP2007008306 A JP 2007008306A JP 2007008306 A JP2007008306 A JP 2007008306A JP 4361568 B2 JP4361568 B2 JP 4361568B2
Authority
JP
Japan
Prior art keywords
conductive layer
substrate
substrate processing
film
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007008306A
Other languages
Japanese (ja)
Other versions
JP2008177289A (en
JP2008177289A5 (en
Inventor
卓也 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2007008306A priority Critical patent/JP4361568B2/en
Priority to TW097100472A priority patent/TW200849455A/en
Priority to KR1020080003358A priority patent/KR100967923B1/en
Priority to CN2008100023991A priority patent/CN101226877B/en
Publication of JP2008177289A publication Critical patent/JP2008177289A/en
Publication of JP2008177289A5 publication Critical patent/JP2008177289A5/ja
Application granted granted Critical
Publication of JP4361568B2 publication Critical patent/JP4361568B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Description

本発明は、絶縁性基板の表面部分を加熱して所定の処理を施す基板処理装置および基板処理方法に関し、例えば絶縁性基板の表面に形成された導電層を加熱してその上に膜形成する基板処理装置および基板処理方法に関する。   The present invention relates to a substrate processing apparatus and a substrate processing method for heating a surface portion of an insulating substrate to perform a predetermined process, and for example, heating a conductive layer formed on the surface of an insulating substrate to form a film thereon. The present invention relates to a substrate processing apparatus and a substrate processing method.

基板上に金属、半導体、絶縁物質などの薄膜を形成する方法として、化学気相成長法、熱酸化法、プラズマ酸化法、真空蒸着法、スパッタリング法、分子線エピタキシー法、コーティング法など各種の方法が実用化されている。これらの方法においては膜特性を制御するため成膜時に基板を加熱する。例えば、太陽電池等に適用可能な光―電気変換デバイスの製造においては、被処理基板表面に導電層、例えばZnO薄膜を形成し、さらに形成した薄膜表面にポリシリコン(Poly−Si)膜等を形成するが、このPoly−Si膜を形成する際に基板を所定の温度に加熱する。   Various methods such as chemical vapor deposition, thermal oxidation, plasma oxidation, vacuum deposition, sputtering, molecular beam epitaxy, and coating can be used to form thin films of metals, semiconductors, and insulating materials on a substrate. Has been put to practical use. In these methods, the substrate is heated during film formation in order to control film characteristics. For example, in the manufacture of a photoelectric conversion device applicable to a solar cell or the like, a conductive layer such as a ZnO thin film is formed on the surface of the substrate to be processed, and a polysilicon (Poly-Si) film or the like is further formed on the formed thin film surface. The substrate is heated to a predetermined temperature when the Poly-Si film is formed.

従来、この種の処理における基板の加熱は、抵抗ヒーターやランプの輻射熱により間接的に基板を加熱する方法が主に用いられている。   Conventionally, the heating of the substrate in this type of processing is mainly performed by a method of indirectly heating the substrate by a radiant heat of a resistance heater or a lamp.

近年、薄膜ディスプレーの大型化や安価な太陽電池パネルの需要増大などから、大型のガラス基板上部にPoly−Si膜を形成する要求が高まっている。ガラス基板のサイズは年々大型化しており、一辺が2mを超える巨大なものが出現するに至っている。このような大型のガラス基板を抵抗ヒーターやランプ等を用いて輻射により間接的に加熱する方法では、ヒーター等のサイズも大型化する必要が生じるため、製造コストの増加が懸念される。 In recent years, demands for forming a Poly-Si film on a large glass substrate have increased due to an increase in the size of thin film displays and an increase in demand for inexpensive solar cell panels. The size of the glass substrate is increasing year by year, and huge ones with a side exceeding 2 m have appeared. In the method of indirectly heating such a large glass substrate by radiation using a resistance heater, a lamp or the like, it is necessary to increase the size of the heater or the like, and there is a concern that the manufacturing cost increases.

一方、特許文献1には、基板の裏面に電極を配し、基板に直接通電して加熱する技術が開示されている。   On the other hand, Patent Document 1 discloses a technique in which an electrode is disposed on the back surface of a substrate, and the substrate is directly energized and heated.

しかしながら、この技術は基板が導電性のものであることを前提とした技術であり、上述したような絶縁材料であるガラス基板にPoly−Si膜等を成膜する用途には適用することができない。
特開2001−279430号公報
However, this technique is based on the assumption that the substrate is conductive, and cannot be applied to the use of forming a Poly-Si film or the like on a glass substrate that is an insulating material as described above. .
JP 2001-279430 A

本発明はかかる事情に鑑みてなされたものであって、絶縁性基板の表面部分を簡易にかつ効率良く加熱して所定の処理を行うことができる基板処理装置および基板処理方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a substrate processing apparatus and a substrate processing method capable of performing predetermined processing by simply and efficiently heating a surface portion of an insulating substrate. Objective.

上記課題を解決するために、本発明の第1の観点では、表面に導電層が形成された絶縁性基板が導電層を上にした状態で載置される基板保持部と、前記導電層に通電して加熱するために前記導電層に接続する給電電極と、前記給電電極を介して前記導電層に給電するための電力供給手段と、前記導電層の表面に膜を形成するための反応ガスを前記導電層に供給するガス供給手段と、少なくとも前記膜を形成する際に、膜形成部位に光を照射する光源とを具備し、前記絶縁性基板を加熱して成膜処理を施すことを特徴とする基板処理装置を提供する。 In order to solve the above problems, according to a first aspect of the present invention, an insulating substrate having a conductive layer formed on a surface thereof is mounted on a substrate holding portion placed in a state where the conductive layer is placed on the conductive layer. A power supply electrode connected to the conductive layer for energization and heating, a power supply means for supplying power to the conductive layer via the power supply electrode, and a reaction gas for forming a film on the surface of the conductive layer A gas supply means for supplying the conductive layer to the conductive layer, and at least a light source for irradiating the film formation site with light when forming the film, and heating the insulating substrate to perform a film formation process. A featured substrate processing apparatus is provided.

上記第1の観点において、前記ガス供給手段は、前記反応ガスとしてSi含有ガスを供給し、前記導電層表面にポリシリコン膜を形成するものとすることができる。前記ガス供給手段は、前記反応ガスとしてSiHガスを含むガスを供給する構成とすることができる。 The Te first aspect odor, before SL gas supply means, wherein the Si-containing gas is supplied as a reaction gas, can be made of a polysilicon layer on the conductive layer surface. The gas supply means may be configured to supply a gas containing SiH 4 gas as the reaction gas.

また、透明材料で形成された前記絶縁性基板および前記導電層を処理するようにすることが好ましい。また、前記絶縁性基板および前記導電層は透明材料で形成されており、前記光源は、前記絶縁性基板の裏面側から前記膜形成部位に光を照射する構成とすることができる。これらの場合に、前記導電層としてはZnO薄膜層を用いることが好ましい。 Furthermore, it preferably is adapted to process the formed of a transparent material wherein the insulating substrate and the conductive layer. The insulating substrate and the conductive layer may be formed of a transparent material, and the light source may be configured to irradiate the film forming site with light from the back side of the insulating substrate. In these cases, it is preferable to use a ZnO thin film layer as the conductive layer.

た、前記絶縁性基板として矩形基板が好適である。矩形基板の場合に、前記給電電極としては、前記導電層の一端部と他端部とに接続される構成とすることができ、その場合に、前記給電電極は、前記矩形基板の導電層端部全幅にわたって形成された電極に接続される構成とすることができる。また、前記絶縁性基板の前記導電層の端部位置に対応する部分に前記導電層に到達する孔部を設け、前記電極が前記孔部内において前記導電層の裏面に形成された構成とすることもできる。 Also, a rectangular substrate as the insulating substrate is preferred. In the case of a rectangular substrate, the power supply electrode can be configured to be connected to one end and the other end of the conductive layer. In this case, the power supply electrode is connected to the end of the conductive layer of the rectangular substrate. It can be set as the structure connected to the electrode formed over the full width. In addition, a hole reaching the conductive layer is provided in a portion corresponding to the end position of the conductive layer of the insulating substrate, and the electrode is formed on the back surface of the conductive layer in the hole. You can also.

本発明の第2の観点では、表面に透明材料からなる導電層が形成された透明材料からなる絶縁性基板が導電層を上にした状態で載置される基板保持部と、前記導電層に通電して加熱するために前記導電層に接続される給電電極と、前記給電電極を介して前記導電層に給電するための電力供給手段と、前記導電層の表面部分にポリシリコン膜を形成するための反応ガスであるSi含有ガスを前記導電層の表面に供給するガス供給手段と、少なくとも前記ポリシリコン膜形成時に、前記絶縁性基板の裏面側から前記ポリシリコン膜の形成部位に光を照射する光源とを具備することを特徴とする基板処理装置を提供する。In the second aspect of the present invention, an insulating substrate made of a transparent material having a conductive layer made of a transparent material formed on the surface thereof is placed on the conductive layer with the substrate holding portion placed with the conductive layer facing up. A power supply electrode connected to the conductive layer for energization and heating, a power supply means for supplying power to the conductive layer through the power supply electrode, and a polysilicon film formed on a surface portion of the conductive layer And a gas supply means for supplying a Si-containing gas, which is a reactive gas, to the surface of the conductive layer, and at least when the polysilicon film is formed, the polysilicon film formation site is irradiated with light from the back side of the insulating substrate A substrate processing apparatus is provided.

上記第2の観点において、前記絶縁性基板として矩形状のガラス基板を用い、前記導電層としてZnO薄膜層を用いることができる。In the second aspect, a rectangular glass substrate can be used as the insulating substrate, and a ZnO thin film layer can be used as the conductive layer.

本発明の第3の観点では、表面に導電層が形成された絶縁性基板が導電層を上にした状態で載置される基板保持部と、前記導電層に通電して加熱するために前記導電層に接続する給電電極と、前記給電電極を介して前記導電層に給電するための電力供給手段とを具備し、前記絶縁性基板を加熱して処理を施す基板処理装置であって、前記絶縁性基板は、前記導電層の端部位置に対応する部分に前記導電層に到達する孔部を有し、前記給電電極は前記孔部内において前記導電層の裏面側に接続されることを特徴とする基板処理装置を提供する。In a third aspect of the present invention, the insulating substrate having a conductive layer formed on the surface thereof is mounted on the substrate holding portion placed with the conductive layer facing up, and the conductive layer is energized to heat the conductive layer. A substrate processing apparatus comprising: a power supply electrode connected to a conductive layer; and a power supply means for supplying power to the conductive layer via the power supply electrode, wherein the insulating substrate is heated to perform processing. The insulating substrate has a hole reaching the conductive layer in a portion corresponding to the end position of the conductive layer, and the power feeding electrode is connected to the back surface side of the conductive layer in the hole. A substrate processing apparatus is provided.

本発明の第の観点では、絶縁性基板の表面部分を加熱して所定の処理を施す基板処理方法であって、表面に導電層が形成された絶縁性基板を導電層を上にした状態で基板保持部に載置し、前記導電層に接続する給電電極を介して前記導電層に通電して加熱し、前記導電層に反応ガスを供給して、加熱されている前記導電層の表面に膜を形成し、少なくとも前記膜を形成する際に、膜形成部位に光を照射し、成膜しつつある膜の電気抵抗を低下させることを特徴とする基板処理方法を提供する。 According to a fourth aspect of the present invention, there is provided a substrate processing method for performing a predetermined treatment by heating a surface portion of an insulating substrate, wherein the insulating substrate having a conductive layer formed on the surface is placed with the conductive layer facing up. The surface of the conductive layer being heated by supplying the reaction gas to the conductive layer and heating the conductive layer through the power supply electrode connected to the conductive layer and heating the conductive layer A substrate processing method is provided, in which a film is formed, and at least when the film is formed, light is applied to the film forming site to reduce the electrical resistance of the film being formed .

上記第の観点において、前記反応ガスとしてSi含有ガスを供給し、前記導電層の表面にポリシリコン膜を形成するものとすることができ、この場合に、前記反応ガスとしてSiHガスを含むガスを供給するようにすることができる。 The Te fourth aspect odor, supplying Si-containing gas as a pre-Symbol reaction gas, the the surface of the conductive layer can be for forming a polysilicon film, in this case, SiH 4 gas as the reaction gas The gas containing can be supplied.

また、前記絶縁性基板および前記導電層は透明材料で形成されていることが好ましい。また、前記絶縁性基板および前記導電層を透明材料で形成し、前記絶縁性基板の裏面側から前記膜形成部位に光を照射するようにすることができる。これらの場合に、前記導電層としてはZnO薄膜層を用いることが好ましい。 Further, the insulative substrate and the conductive layer has preferably to be formed of a transparent material. In addition, the insulating substrate and the conductive layer can be formed of a transparent material, and light can be applied to the film forming portion from the back side of the insulating substrate. In these cases, it is preferable to use a ZnO thin film layer as the conductive layer.

た、前記絶縁性基板として矩形基板が好適である。 Also, a rectangular substrate as the insulating substrate is preferred.

本発明の第の観点では、表面に透明材料からなる導電層が形成された透明材料からなる絶縁性基板が導電層を上にした状態で基板保持部に載置し、前記導電層に接続する給電電極を介して前記導電層に通電して加熱し、前記導電層に反応ガスとしてSi含有ガスを供給して、加熱されている前記導電層の表面にポリシリコン膜を形成し、少なくとも前記ポリシリコン膜形成時に、前記絶縁性基板の裏面側から前記ポリシリコン膜の形成部位に光を照射し、成膜しつつある膜の電気抵抗を低下させることを特徴とする基板処理方法を提供する。 In the fifth aspect of the present invention, an insulating substrate made of a transparent material having a conductive layer made of a transparent material on the surface is placed on the substrate holding portion with the conductive layer facing upward, and connected to the conductive layer. The conductive layer is energized and heated through a power supply electrode, and a Si-containing gas is supplied as a reaction gas to the conductive layer to form a polysilicon film on the surface of the heated conductive layer , at least the Provided is a substrate processing method characterized in that, when forming a polysilicon film, light is irradiated from the back surface side of the insulating substrate to the formation part of the polysilicon film to reduce the electrical resistance of the film being formed. .

上記第の観点において、前記絶縁性基板として矩形状のガラス基板を用い、前記導電層としてZnO薄膜層を用いることができる。
In the fifth aspect, using the rectangular glass substrate as the insulating substrate, Ru can be used a ZnO thin film layer as the conductive layer.

本発明によれば、絶縁性基板の表面に接続する導電層に給電電極を介して直接通電加熱を行うので、簡易な構成により効率良く加熱することができ、その上にポリシリコン膜を形成する等の処理を高効率かつ低コストで行うことができる。   According to the present invention, since the conductive layer connected to the surface of the insulating substrate is directly energized and heated via the feeding electrode, it can be efficiently heated with a simple configuration, and a polysilicon film is formed thereon. Such processing can be performed with high efficiency and at low cost.

以下、添附図面を参照して本発明に係る実施形態について詳細に説明する。以下の説明は、太陽電池パネル材料となる光―電気変換基板を製造可能な基板処理装置について説明する。   Embodiments according to the present invention will be described below in detail with reference to the accompanying drawings. In the following description, a substrate processing apparatus capable of manufacturing a photoelectric conversion substrate as a solar cell panel material will be described.

〔第1の実施の形態〕
本実施の形態においては、絶縁性基板の表面に形成された導電層に電流を流して加熱する機能を備えた基板処理装置を基本とする。
[First Embodiment]
In this embodiment mode, a substrate processing apparatus having a function of supplying current to a conductive layer formed on the surface of an insulating substrate and heating it is basically used.

まず図1ないし図5を参照して本発明に係る一実施形態の基板処置装置について説明する。図1は、本発明に係る一実施形態の基板処置装置の基本原理を説明するための概略断面図、図2は、図1の基板処理装置のステージを示す平面図、図3は基板部分に電流を流した状態を示す概略断面図、図4は基板部分に電流を流した状態を示す概略平面図、図5は加熱中の導電膜20の表面に膜を形成するための反応ガスを導入した状態を説明するための図である。   First, a substrate treatment apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 is a schematic cross-sectional view for explaining the basic principle of a substrate treatment apparatus according to an embodiment of the present invention, FIG. 2 is a plan view showing a stage of the substrate processing apparatus of FIG. 1, and FIG. FIG. 4 is a schematic plan view showing a state in which a current is passed through the substrate portion, and FIG. 5 is a diagram illustrating introducing a reaction gas for forming a film on the surface of the conductive film 20 being heated. It is a figure for demonstrating the state which carried out.

まず、絶縁性基板10は、例えばガラス基板であり、典型的には矩形状をなしている。そしてこの絶縁性基板10の表面には、均一の厚さとなるように導電材料からなる導電薄膜(導電層)20が形成されている。ここでは、太陽電池パネルあるいはTFTパネルを形成する場合の例を示しており、透明なガラス基板の表面に導電薄膜を、例えば蒸着により形成している。導電薄膜20は透明電極となるもので、透明導電性材料として従来用いられている種々のものを用いることができ、従来から用いられているITO(インジウム−スズ酸化物)膜等を用いることができるが、特に、酸化亜鉛(ZnO)膜が好ましい。ZnO膜は膜厚2μmにおいて可視光に対する透過率が90%に近く、かつ10−4Ωcm台の低い抵抗率を有している。また、ZnOは融点が1975℃と高温であるため、加熱処理中の安定性が高い。 First, the insulating substrate 10 is a glass substrate, for example, and typically has a rectangular shape. A conductive thin film (conductive layer) 20 made of a conductive material is formed on the surface of the insulating substrate 10 so as to have a uniform thickness. Here, an example in the case of forming a solar cell panel or a TFT panel is shown, and a conductive thin film is formed on the surface of a transparent glass substrate by, for example, vapor deposition. The conductive thin film 20 becomes a transparent electrode, and various conventional materials can be used as the transparent conductive material, and a conventionally used ITO (indium-tin oxide) film or the like can be used. In particular, a zinc oxide (ZnO) film is preferable. The ZnO film has a visible light transmittance of nearly 90% at a film thickness of 2 μm and a low resistivity on the order of 10 −4 Ωcm. Further, since ZnO has a high melting point of 1975 ° C., the stability during the heat treatment is high.

導電薄膜20の基板両端近傍には、金属電極30が形成されている。この金属電極30は、蒸着等により形成することができる。金属電極30の素材としては、融点の高いクロム(Cr)、チタン(Ti)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)などが適している(融点:Cr=1907℃、Ti=1941℃、Mo=2623℃、Ta=3017℃、W=3442℃)。しかし、金属電極材料はこれらに限定されるものではなく他の金属を用いてもよい。   Metal electrodes 30 are formed in the vicinity of both ends of the conductive thin film 20 on the substrate. The metal electrode 30 can be formed by vapor deposition or the like. Suitable materials for the metal electrode 30 include chromium (Cr), titanium (Ti), molybdenum (Mo), tantalum (Ta), tungsten (W), etc. (melting point: Cr = 1907 ° C., Ti = high). 1941 ° C., Mo = 2623 ° C., Ta = 3017 ° C., W = 3442 ° C.). However, the metal electrode material is not limited to these, and other metals may be used.

本実施形態の装置は、基板を載置する基板載置台であるステージ80を備え、このステージ80上に導電薄膜20および金属電極30が形成されたガラス基板10が位置決め載置される。   The apparatus of the present embodiment includes a stage 80 which is a substrate mounting table on which a substrate is mounted, and the glass substrate 10 on which the conductive thin film 20 and the metal electrode 30 are formed is positioned and mounted on the stage 80.

ステージ80は、図2に示すように、格子状に構成されており、軽量化を図りながら十分な強度を確保できる形状となっている。ステージ80を構成する材料としては金属、半導体、絶縁体のいずれでもよいが、石英等の耐熱性の高いものを用いることが好ましい。   As shown in FIG. 2, the stage 80 is configured in a lattice shape, and has a shape that can ensure sufficient strength while reducing the weight. The material constituting the stage 80 may be any of metal, semiconductor, and insulator, but it is preferable to use a material having high heat resistance such as quartz.

一方、ガラス基板10をステージ80に載置し、位置決めした状態で、金属電極30に対向する位置に位置決め可能に装置側電極40が設けられており、装置側電極40を金属電極30に接触させることにより、導電薄膜20に給電可能となる。   On the other hand, with the glass substrate 10 placed on the stage 80 and positioned, the device-side electrode 40 is provided at a position facing the metal electrode 30 so as to be positioned, and the device-side electrode 40 is brought into contact with the metal electrode 30. As a result, power can be supplied to the conductive thin film 20.

図1に示すように、装置側電極40には、電源(例えば直流電源)60が給電線45により接続されており、給電線45にはスイッチ50が設けられている。装置側電極40を構成する金属材料は特に限定されるものではないが、金属電極30と同様、高融点金属を用いることが好ましい。   As shown in FIG. 1, a power source (for example, a DC power source) 60 is connected to the device-side electrode 40 via a power supply line 45, and a switch 50 is provided on the power supply line 45. Although the metal material which comprises the apparatus side electrode 40 is not specifically limited, Like the metal electrode 30, it is preferable to use a refractory metal.

そして、スイッチ50を閉接することにより金属電極30間の導電薄膜20に所定の電流を流せるように構成されている。電極30を導電薄膜20の端部の横幅全幅にわたって形成することにより、導電薄膜面内にほぼ均一に電流を流すことができる。 The switch 50 is closed so that a predetermined current can flow through the conductive thin film 20 between the metal electrodes 30. By forming the electrode 30 over the entire width of the end portion of the conductive thin film 20, a current can be made to flow substantially uniformly in the surface of the conductive thin film.

導電薄膜20の膜厚を例えば1マイクロメートル程度とした場合には、シート抵抗は1個当たり2オーム/□を下回るように構成することができる。したがって、この場合には、図3に示すようにスイッチ50を閉接すると、導電薄膜20に電流が流れ、電熱効果により導電薄膜20が加熱される。この場合に、電流の流れる範囲は、装置側電極40の電極形状に加え、基板10上に形成された金属電極30や導電薄膜20の形状によっても制御可能であり、ガラス基板サイズが変化した場合においても装置構造を大きく変えることなく基板を加熱することが可能となる。   When the thickness of the conductive thin film 20 is, for example, about 1 micrometer, the sheet resistance can be configured to be less than 2 ohm / □ per piece. Therefore, in this case, when the switch 50 is closed as shown in FIG. 3, a current flows through the conductive thin film 20, and the conductive thin film 20 is heated by the electrothermal effect. In this case, the current flow range can be controlled by the shape of the metal electrode 30 and the conductive thin film 20 formed on the substrate 10 in addition to the electrode shape of the device-side electrode 40, and the glass substrate size changes. In this case, the substrate can be heated without significantly changing the structure of the apparatus.

このとき、ガラス基板10として矩形のものを用いることにより、図4に示すように、導電薄膜20の全面にほぼ均一に電流を流すことができる。   At this time, by using a rectangular glass substrate 10, a current can flow almost uniformly over the entire surface of the conductive thin film 20, as shown in FIG.

このように、導電薄膜20に電流を流すだけで、複雑な制御を行うことなく電熱効果により導電薄膜20の全体がほぼ均一に加熱され昇温されていくことになる。   In this way, the entire conductive thin film 20 is heated substantially uniformly and heated by the electrothermal effect without performing complicated control only by passing a current through the conductive thin film 20.

ステージ80の上方には、ステージ80に対向するように、ガス供給機構70が設けられている。ガス供給機構70は、例えば通常この種の装置のガス供給機構として用いられるシャワーヘッドとして構成することができるが、これに限るものではない。このガス供給機構70から反応ガスを供給することにより、加熱されている導電薄膜20上に所定の膜が形成される。   A gas supply mechanism 70 is provided above the stage 80 so as to face the stage 80. The gas supply mechanism 70 can be configured as, for example, a shower head that is normally used as a gas supply mechanism of this type of apparatus, but is not limited thereto. By supplying the reaction gas from the gas supply mechanism 70, a predetermined film is formed on the heated conductive thin film 20.

なお、このように構成される基板処理装置は、清浄度を高める観点等から、図示しないカバーでステージ80上のガラス基板10を覆うようにすることが好ましい。このようなカバーを構成する材料としては石英が好適である。   In addition, it is preferable that the substrate processing apparatus comprised in this way covers the glass substrate 10 on the stage 80 with the cover which is not illustrated from a viewpoint etc. which raises a cleanliness. Quartz is suitable as a material constituting such a cover.

この基板処理装置において導電薄膜20を加熱しつつ、その上に膜形成処理を行う際には、まず、ガラス基板10に導電薄膜20および金属電極30を形成し、その後、ステージ80にこのガラス基板10を載置し、位置決めする。   In the substrate processing apparatus, when the conductive thin film 20 is heated and a film forming process is performed thereon, first, the conductive thin film 20 and the metal electrode 30 are formed on the glass substrate 10, and then the glass substrate is placed on the stage 80. 10 is placed and positioned.

この状態で、スイッチ50を閉接して電源60から導電薄膜20に電流を流す。これにより電熱効果により導電薄膜20が加熱される。この状態で、図5に示すように、ガス供給機構70から反応ガスを供給することにより、膜形成を行うことができる。具体的には、反応ガスとしてSi含有ガスとドーピングガス、例えば、SiHおよびBを加熱されている導電薄膜20に供給することにより、導電薄膜20の表面にPoly−Si膜が成膜される。この場合に、導電薄膜20の通電量を制御してその温度を制御し、例えばSiHガスが分解する500℃以上とすることにより、Poly−Si膜の成膜が進行する。なお、図5で説明した例においてはドーピングガスとしてBを用いているが、ドーピングガスはこれに限定されるものではなく、目的とする膜の組成に応じてPH等の他のドーピングガスを用いてもよい。 In this state, the switch 50 is closed and a current flows from the power source 60 to the conductive thin film 20. Thereby, the conductive thin film 20 is heated by the electrothermal effect. In this state, as shown in FIG. 5, a film can be formed by supplying a reaction gas from a gas supply mechanism 70. Specifically, a poly-Si film is formed on the surface of the conductive thin film 20 by supplying a Si-containing gas and a doping gas such as SiH 4 and B 2 H 6 as reaction gases to the heated conductive thin film 20. Be filmed. In this case, the amount of energization of the conductive thin film 20 is controlled to control the temperature thereof, for example, at a temperature of 500 ° C. or higher at which the SiH 4 gas is decomposed, whereby the Poly-Si film is formed. In the example described with reference to FIG. 5, B 2 H 6 is used as a doping gas. However, the doping gas is not limited to this, and other gases such as PH 3 may be used depending on the composition of the target film. A doping gas may be used.

この場合において、導電薄膜20として、例えばZnOを用いた場合には、ZnOの融点は1975℃と高温であるため、例えばSiHガスを分解する温度領域(>500℃)においても安定である。また、本実施の形態例の方法によれば、成膜されたPoly―Siの厚みが増加するのに従って、Poly−Si層と導電薄膜20とからなる層のシート抵抗が下がるため、よりエネルギー効率が向上し、より低い消費電力で加熱することが可能であるという利点がある。 In this case, for example, when ZnO is used as the conductive thin film 20, since the melting point of ZnO is as high as 1975 ° C., it is stable even in a temperature region (> 500 ° C.) in which, for example, SiH 4 gas is decomposed. Further, according to the method of the present embodiment, as the thickness of the deposited Poly-Si increases, the sheet resistance of the layer composed of the Poly-Si layer and the conductive thin film 20 decreases, so that it is more energy efficient. There is an advantage that heating can be performed with lower power consumption.

以上に説明した第1の実施の形態によれば、導電薄膜20を直接発熱源とすることにより、基板がガラス基板のような絶縁性のものであっても、簡単な構成で効率の良い加熱を行うことができ、容易に所定厚さのPoly―Si膜を形成することができる。そして、このように形成されたPoly―Si膜の上に成膜、酸化、拡散、エッチング等の後工程のプロセスを施すことで、太陽電池パネルやTFTパネル等のデバイスを作製することができる。なお、これら後工程のプロセスにおいて、本装置を用いることもできる。   According to the first embodiment described above, even when the conductive thin film 20 is directly used as a heat source, even if the substrate is an insulating material such as a glass substrate, efficient heating can be achieved with a simple configuration. And a Poly-Si film having a predetermined thickness can be easily formed. A device such as a solar cell panel or a TFT panel can be manufactured by performing post-processes such as film formation, oxidation, diffusion, and etching on the thus formed Poly-Si film. In addition, this apparatus can also be used in these post-processes.

〔第2の実施の形態〕
以上の説明では、導電薄膜20に電流を流して薄膜温度を上昇させる基本構成を説明したが、本実施の形態では、これに加えて、ステージ80の裏面側からガラス基板10および透明のZnO膜からなる導電薄膜20を介して導電薄膜20上の膜形成部位に光を照射する構成を加えている。
[Second Embodiment]
In the above description, the basic configuration in which a current is passed through the conductive thin film 20 to increase the thin film temperature has been described. In the present embodiment, in addition to this, the glass substrate 10 and the transparent ZnO film are formed from the back side of the stage 80. The structure which irradiates light to the film formation site | part on the conductive thin film 20 through the conductive thin film 20 which consists of is added.

この第2の実施の形態を図6を参照して説明する。図6は本発明の第2の実施の形態に係る基板処理装置を示す概略断面図である。   The second embodiment will be described with reference to FIG. FIG. 6 is a schematic sectional view showing a substrate processing apparatus according to the second embodiment of the present invention.

図6において、図1〜図5に示す第1の実施の形態例と同様構成には同一符号を付し、詳細説明を省略し、主に異なる構成について説明をする。図6に示すように第2の実施の形態では、ガラス基板10の裏面側のステージ80下部にランプなどの光源100を配設している。   In FIG. 6, the same components as those in the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, detailed description thereof is omitted, and different configurations are mainly described. As shown in FIG. 6, in the second embodiment, a light source 100 such as a lamp is disposed below the stage 80 on the back side of the glass substrate 10.

そして、少なくとも、導電薄膜20を所定温度まで加熱してその上にPoly−Si膜25を形成する際には、光源100から光を射出する。ガラス基板10および導電薄膜20が透明な材料であれば、この光はステージ80の格子の間の空間部、ガラス基板10および導電薄膜20を介してPoly−Si膜の成膜部位に照射される。この場合に、ステージ80自体も石英等の透明材料で構成されることにより、光の効率を向上させることができる。この光の照射により、Poly−Si膜の電気抵抗が低下し、光照射のない場合と比較してより高いエネルギー効率で基板を加熱することが可能となる。なお、光源100をステージの上方に設けて、ガラス基板10の表面側から光を照射するようにしてもよい。このような構成は、基板や導電薄膜が透明体でない場合にも適用可能である。   At least when the conductive thin film 20 is heated to a predetermined temperature and the Poly-Si film 25 is formed thereon, light is emitted from the light source 100. If the glass substrate 10 and the conductive thin film 20 are transparent materials, this light is applied to the space between the lattices of the stage 80, the poly-Si film deposition site via the glass substrate 10 and the conductive thin film 20. . In this case, the stage 80 itself is also made of a transparent material such as quartz, so that the light efficiency can be improved. By this light irradiation, the electrical resistance of the Poly-Si film is lowered, and the substrate can be heated with higher energy efficiency compared to the case without light irradiation. The light source 100 may be provided above the stage so that light is irradiated from the surface side of the glass substrate 10. Such a configuration is applicable even when the substrate or the conductive thin film is not a transparent body.

この実施形態においても、このように形成されたPoly―Si膜の上に成膜、酸化、拡散、エッチング等の後工程のプロセスを施すことで、太陽電池パネルやTFTパネル等のデバイスを作製することができる。   Also in this embodiment, devices such as a solar cell panel and a TFT panel are manufactured by performing post-processes such as film formation, oxidation, diffusion and etching on the poly-Si film thus formed. be able to.

〔第3の実施の形態〕
上記第1および第2の実施の形態では、導電薄膜20の表面両端部近傍に金属電極を配設してこの導電薄膜20上部より電力を供給する例について説明した。しかし、導電薄膜20の上部に基板側の金属電極30や装置電極40等を配置すると、これら電極30、40にも同時にPoly−Si膜が成膜されてしまう。
[Third Embodiment]
In the first and second embodiments described above, examples have been described in which metal electrodes are provided near both ends of the surface of the conductive thin film 20 and power is supplied from the upper part of the conductive thin film 20. However, when the metal electrode 30 on the substrate side and the device electrode 40 are disposed on the conductive thin film 20, a Poly-Si film is simultaneously formed on these electrodes 30 and 40.

そこで、本実施形態ではこのような不都合を回避可能な例について図7を参照して説明する。図7は本発明の第3の実施の形態に係る基板処理装置を示す概略断面図である。   In the present embodiment, an example in which such inconvenience can be avoided will be described with reference to FIG. FIG. 7 is a schematic sectional view showing a substrate processing apparatus according to the third embodiment of the present invention.

図7において、図1〜図5に示す第1の実施の形態と同じものには同一符号を付し、詳細説明を省略し、主に異なる構成について説明をする。   In FIG. 7, the same components as those in the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, detailed description thereof is omitted, and different configurations are mainly described.

図7に示すように、本実施形態では、ガラス基板10の導電薄膜20の両端部に対応する位置に、導電薄膜20まで達する孔部15を形成し、孔部15内に基板10表面と同じ面となるように導電薄膜20の裏面側に電極110を形成する。そして、基板10の裏面側の電極110から下方へ給電線45を配線し、この給電線45に電源60、スイッチ50を設け、従前の実施形態と同様に、スイッチ50を閉接することにより、電源60から電極110を介して導電薄膜20に通電し、導電薄膜20を加熱する。   As shown in FIG. 7, in the present embodiment, holes 15 reaching the conductive thin film 20 are formed at positions corresponding to both ends of the conductive thin film 20 of the glass substrate 10, and the same as the surface of the substrate 10 in the holes 15. The electrode 110 is formed on the back surface side of the conductive thin film 20 so as to be a surface. Then, a power supply line 45 is wired downward from the electrode 110 on the back surface side of the substrate 10, and a power source 60 and a switch 50 are provided on the power supply line 45. By closing the switch 50 in the same manner as in the previous embodiment, The conductive thin film 20 is energized from 60 through the electrode 110 to heat the conductive thin film 20.

このような構成では、ガラス基板10の表面には電極が存在しないため、電極に成膜されてしまうという不都合を回避することができる。また、ガラス基板の上面側に給電のための機構が不要となるため、上述したように清浄度を高める目的でカバーを設ける場合に、カバーを小型化することができる。図7には、このようなカバー120を図示している。このカバー120内の上部にガス供給機構70を設け、ガス供給配管75からSiHおよびB等の反応ガスを導入するようにする。また、カバー120の側面には、排気孔125を設けるようにする。 In such a configuration, since there is no electrode on the surface of the glass substrate 10, it is possible to avoid the inconvenience of being deposited on the electrode. In addition, since a power feeding mechanism is not required on the upper surface side of the glass substrate, the cover can be reduced in size when the cover is provided for the purpose of increasing the cleanliness as described above. FIG. 7 illustrates such a cover 120. A gas supply mechanism 70 is provided in the upper part of the cover 120 so that reaction gases such as SiH 4 and B 2 H 6 are introduced from the gas supply pipe 75. An exhaust hole 125 is provided on the side surface of the cover 120.

第3の実施の形態において基板処理を行う場合にも、スイッチ50を閉接してガラス基板10の貫通孔15、電極110を介して導電薄膜20に直接電流を流すことにより、導電薄膜20の温度を所定温度、例えば500℃を超える温度に加熱し、その際にSiHガスとBを導入することで、導電薄膜20表面にPoly−Si膜25を成膜することができる。 Also in the case where the substrate processing is performed in the third embodiment, the temperature of the conductive thin film 20 is closed by closing the switch 50 and passing a current directly to the conductive thin film 20 through the through hole 15 and the electrode 110 of the glass substrate 10. Is heated to a temperature exceeding a predetermined temperature, for example, 500 ° C., and SiH 4 gas and B 2 H 6 are introduced at that time, whereby the Poly-Si film 25 can be formed on the surface of the conductive thin film 20.

以上の第1〜第3の実施の形態例によれば、絶縁性基板であるガラス基板10の表面に形成された導電薄膜20に膜形成する際に、ガラス基板毎熱輻射により加熱するのではなく、導電薄膜20に通電することによる電熱効果で加熱するので、特別なヒーターが不要で構造が簡単かつ装置コストを軽減できると共に、高いエネルギー効率と均一な温度分布での加熱を実現することができる基板処理装置が提供される。   According to the first to third embodiments described above, when the film is formed on the conductive thin film 20 formed on the surface of the glass substrate 10 which is an insulating substrate, the glass substrate is heated by thermal radiation. In addition, since the heating is performed by the electrothermal effect by energizing the conductive thin film 20, a special heater is not required, the structure is simple and the apparatus cost can be reduced, and heating with high energy efficiency and uniform temperature distribution can be realized. A substrate processing apparatus is provided.

なお、本発明は上記実施の形態に限定されることなく、本発明の思想の範囲内で種々変形可能である。例えば、上記実施形態では導電薄膜表面にSiHガスとBを導入することにより、Poly−Si膜を成膜する場合について示したが、これに限定されるものではなく、他の膜を成膜する場合にも適用することができるし、成膜に限らず、導電薄膜表面の酸化処理、窒化処理、アニール処理、拡散処理等、被処理対象を加熱する必要がある処理であれば適用可能である。さらに、上記実施形態では、絶縁性基板であればガラス基板に限らず、セラミックス基板等の他の基板であってもよいし、透明でなくてもよい。また、導電薄膜としては、ZnO膜等の透明なものに限るものではない。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the idea of the present invention. For example, in the above-described embodiment, the case where the Poly-Si film is formed by introducing SiH 4 gas and B 2 H 6 on the surface of the conductive thin film has been described. Can be applied to the film formation, and is not limited to film formation, but any process that requires heating of the object to be processed, such as oxidation treatment, nitridation treatment, annealing treatment, and diffusion treatment of the surface of the conductive thin film. Applicable. Furthermore, in the said embodiment, if it is an insulating substrate, it will not be restricted to a glass substrate but other substrates, such as a ceramic substrate, may not be transparent. Further, the conductive thin film is not limited to a transparent one such as a ZnO film.

本発明は、絶縁性基板の表面部分に設けられた導電薄膜を加熱して所定の処理を施す用途全般、例えば太陽電池パネルの製造における導電性薄膜上へのPoly−Si膜形成に有効である。   INDUSTRIAL APPLICABILITY The present invention is effective for general applications in which a predetermined treatment is performed by heating a conductive thin film provided on a surface portion of an insulating substrate, for example, for forming a Poly-Si film on a conductive thin film in manufacturing a solar cell panel. .

本発明の第1の実施の形態に係る基板処理装置を示す概略断面図。1 is a schematic sectional view showing a substrate processing apparatus according to a first embodiment of the present invention. 図1の基板処理装置のステージの構成例を示す平面図。The top view which shows the structural example of the stage of the substrate processing apparatus of FIG. 図1の基板処理装置の基板部分に電流を流した状態を示す概略断面図。FIG. 2 is a schematic cross-sectional view showing a state in which a current is passed through a substrate portion of the substrate processing apparatus of FIG. 図1の基板処理装置の基板部分に電流を流した状態を示す概略平面図。FIG. 2 is a schematic plan view showing a state in which a current is passed through a substrate portion of the substrate processing apparatus of FIG. 1. 図1の基板処理装置において、加熱中の導電薄膜上にPoly−Si膜を形成するために反応ガスとしてSiHガスおよびBガスを供給した状態を示す図。FIG. 2 is a view showing a state in which SiH 4 gas and B 2 H 6 gas are supplied as reaction gases in order to form a Poly-Si film on a conductive thin film being heated in the substrate processing apparatus of FIG. 1. 本発明の第2の実施の形態に係る基板処理装置を示す概略断面図。The schematic sectional drawing which shows the substrate processing apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る基板処理装置を示す概略断面図。The schematic sectional drawing which shows the substrate processing apparatus which concerns on the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

10;基板
15;孔部
20;導電薄膜
30,40,110;電極
50;スイッチ
60;電源
70;ガス供給機構
80;ステージ
100;光源
120;カバー部材
125;排気口
10; Substrate 15; Hole 20; Conductive thin film 30, 40, 110; Electrode 50; Switch 60; Power supply 70; Gas supply mechanism 80;

Claims (22)

表面に導電層が形成された絶縁性基板が導電層を上にした状態で載置される基板保持部と、
前記導電層に通電して加熱するために前記導電層に接続する給電電極と、
前記給電電極を介して前記導電層に給電するための電力供給手段と、
前記導電層の表面に膜を形成するための反応ガスを前記導電層に供給するガス供給手段と、
少なくとも前記膜を形成する際に、膜形成部位に光を照射する光源と
を具備し、前記絶縁性基板を加熱して成膜処理を施すことを特徴とする基板処理装置。
A substrate holder on which an insulating substrate having a conductive layer formed on the surface is placed with the conductive layer facing upward;
A feeding electrode connected to the conductive layer to energize and heat the conductive layer;
Power supply means for supplying power to the conductive layer via the power supply electrode;
A gas supply means for supplying a reaction gas for forming a film on the surface of the conductive layer to the conductive layer;
A substrate processing apparatus comprising: a light source for irradiating light to a film forming portion at least when forming the film; and heating the insulating substrate to perform a film forming process.
前記ガス供給手段は、前記反応ガスとしてSi含有ガスを供給し、前記導電層表面にポリシリコン膜を形成することを特徴とする請求項に記載の基板処理装置。 The substrate processing apparatus according to claim 1 , wherein the gas supply unit supplies a Si-containing gas as the reaction gas to form a polysilicon film on the surface of the conductive layer. 前記ガス供給手段は、前記反応ガスとしてSiHガスを含むガスを供給することを特徴とする請求項に記載の基板処理装置。 The substrate processing apparatus according to claim 2 , wherein the gas supply unit supplies a gas containing SiH 4 gas as the reaction gas. 透明材料で形成された前記絶縁性基板および前記導電層を処理することを特徴とする請求項1から請求項のいずれか1項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 3 , wherein the insulating substrate and the conductive layer formed of a transparent material are processed. 前記絶縁性基板および前記導電層記光源は透明材料で形成されており、前記絶縁性基板の裏面側から前記膜形成部位に光を照射することを特徴とする請求項1から請求項3のいずれか1項に記載の基板処理装置。 It said insulating substrate and said conductive layer before Symbol source is formed of a transparent material, wherein the back surface side of the insulating substrate of claims 1 to 3, characterized in that irradiates light to the film forming region The substrate processing apparatus of any one of Claims . 前記導電層はZnO薄膜層であることを特徴とする請求項4または請求項5に記載の基板処理装置。 The substrate processing apparatus according to claim 4, wherein the conductive layer is a ZnO thin film layer. 前記絶縁性基板は矩形基板であることを特徴とする請求項1から請求項のいずれか1項に記載の基板処理装置。 The insulating substrate is a substrate processing apparatus according to claims 1, which is a rectangular substrate in any one of claims 6. 前記給電電極は、前記導電層の一端部と他端部とに接続されることを特徴とする請求項に記載の基板処理装置。 The substrate processing apparatus according to claim 7 , wherein the power supply electrode is connected to one end and the other end of the conductive layer. 前記給電電極は、前記矩形基板の導電層端部全幅にわたって形成された電極に接続されることを特徴とする請求項に記載の基板処理装置。 The substrate processing apparatus according to claim 8 , wherein the power supply electrode is connected to an electrode formed over the entire width of the conductive layer end portion of the rectangular substrate. 前記絶縁性基板は、前記導電層の端部位置に対応する部分に前記導電層に到達する孔部を有し、前記給電電極は前記孔部内において前記導電層の裏面側に接続されることを特徴とする請求項1から請求項のいずれか1項に記載の基板処理装置。 The insulating board has a hole which reaches the conductive layer in the portion corresponding to the end position of the conductive layer, wherein the feeding electrode is to be connected to the rear surface side of the conductive layer within the hole the substrate processing apparatus according to any one of claims 1 to 7, characterized in. 表面に透明材料からなる導電層が形成された透明材料からなる絶縁性基板が導電層を上にした状態で載置される基板保持部と、
前記導電層に通電して加熱するために前記導電層に接続される給電電極と、
前記給電電極を介して前記導電層に給電するための電力供給手段と、
前記導電層の表面部分にポリシリコン膜を形成するための反応ガスであるSi含有ガスを前記導電層の表面に供給するガス供給手段と
少なくとも前記ポリシリコン膜形成時に、前記絶縁性基板の裏面側から前記ポリシリコン膜の形成部位に光を照射する光源と
を具備することを特徴とする基板処理装置。
A substrate holding portion on which an insulating substrate made of a transparent material having a conductive layer made of a transparent material formed on the surface is placed with the conductive layer facing upward;
A feeding electrode connected to the conductive layer to energize and heat the conductive layer;
Power supply means for supplying power to the conductive layer via the power supply electrode;
Gas supply means for supplying Si-containing gas, which is a reaction gas for forming a polysilicon film on the surface portion of the conductive layer, to the surface of the conductive layer ;
A substrate processing apparatus, comprising: a light source that irradiates light to a formation portion of the polysilicon film from a back surface side of the insulating substrate at least when the polysilicon film is formed .
前記絶縁性基板は矩形状のガラス基板であり、前記導電層はZnO薄膜層であることを特徴とする請求項11に記載の基板処理装置。 The substrate processing apparatus according to claim 11 , wherein the insulating substrate is a rectangular glass substrate, and the conductive layer is a ZnO thin film layer. 表面に導電層が形成された絶縁性基板が導電層を上にした状態で載置される基板保持部と、A substrate holder on which an insulating substrate having a conductive layer formed on the surface is placed with the conductive layer facing upward;
前記導電層に通電して加熱するために前記導電層に接続する給電電極と、  A feeding electrode connected to the conductive layer to energize and heat the conductive layer;
前記給電電極を介して前記導電層に給電するための電力供給手段と  Power supply means for supplying power to the conductive layer via the power supply electrode;
を具備し、前記絶縁性基板を加熱して処理を施す基板処理装置であって、A substrate processing apparatus for heating and processing the insulating substrate,
前記絶縁性基板は、前記導電層の端部位置に対応する部分に前記導電層に到達する孔部を有し、前記給電電極は前記孔部内において前記導電層の裏面側に接続されることを特徴とする基板処理装置。  The insulating substrate has a hole reaching the conductive layer at a portion corresponding to the end position of the conductive layer, and the power supply electrode is connected to the back side of the conductive layer in the hole. A substrate processing apparatus.
絶縁性基板の表面部分を加熱して所定の処理を施す基板処理方法であって、
表面に導電層が形成された絶縁性基板を導電層を上にした状態で基板保持部に載置し、
前記導電層に接続する給電電極を介して前記導電層に通電して加熱し、
前記導電層に反応ガスを供給して、加熱されている前記導電層の表面に膜を形成し、
少なくとも前記膜を形成する際に、膜形成部位に光を照射し、成膜しつつある膜の電気抵抗を低下させることを特徴とする基板処理方法。
A substrate processing method for performing a predetermined process by heating a surface portion of an insulating substrate,
An insulating substrate having a conductive layer formed on the surface is placed on the substrate holding portion with the conductive layer facing up,
Heating the conductive layer by energizing the conductive layer through a power supply electrode connected to the conductive layer ,
Supplying a reactive gas to the conductive layer to form a film on the surface of the conductive layer being heated;
A substrate processing method characterized in that, at least when the film is formed, the film formation site is irradiated with light to reduce the electrical resistance of the film being formed .
前記反応ガスとしてSi含有ガスを供給し、前記導電層の表面にポリシリコン膜を形成することを特徴とする請求項14に記載の基板処理方法。 The substrate processing method according to claim 14 , wherein a Si-containing gas is supplied as the reaction gas to form a polysilicon film on the surface of the conductive layer. 前記反応ガスとしてSiHガスを含むガスを供給することを特徴とする請求項15に記載の基板処理方法。 The substrate processing method according to claim 15 , wherein a gas containing SiH 4 gas is supplied as the reaction gas. 前記絶縁性基板および前記導電層は透明材料で形成されていることを特徴とする請求項14から請求項16のいずれか1項に記載の基板処理方法。 The substrate processing method according to any one of claims 14 to 16 , wherein the insulating substrate and the conductive layer are formed of a transparent material. 前記絶縁性基板および前記導電層は透明材料で形成されており、記絶縁性基板の裏面側から前記膜形成部位に光を照射することを特徴とする請求項14から請求項16のいずれか1項に記載の基板処理方法。 Said insulating substrate and said conductive layer is formed of a transparent material, any one of claims 16 from the back side of the front Symbol insulating substrate of claims 14, characterized in that irradiates light to the film forming region 2. The substrate processing method according to item 1 . 前記導電層はZnO薄膜層であることを特徴とする請求項17または請求項18に記載の基板処理方法。 The substrate processing method according to claim 17, wherein the conductive layer is a ZnO thin film layer. 前記絶縁性基板は矩形基板であることを特徴とする請求項14から請求項19のいずれか1項に記載の基板処理方法。 The substrate processing method according to claim 14 in any one of claims 19, wherein the insulating substrate is a rectangular substrate. 表面に透明材料からなる導電層が形成された透明材料からなる絶縁性基板が導電層を上にした状態で基板保持部に載置し、
前記導電層に接続する給電電極を介して前記導電層に通電して加熱し、
前記導電層に反応ガスとしてSi含有ガスを供給して、加熱されている前記導電層の表面にポリシリコン膜を形成し、
少なくとも前記ポリシリコン膜形成時に、前記絶縁性基板の裏面側から前記ポリシリコン膜の形成部位に光を照射し、成膜しつつある膜の電気抵抗を低下させることを特徴とする基板処理方法。
An insulating substrate made of a transparent material having a conductive layer made of a transparent material formed on the surface is placed on the substrate holding portion with the conductive layer facing up,
Heating the conductive layer by energizing the conductive layer through a power supply electrode connected to the conductive layer,
Supplying a Si-containing gas as a reaction gas to the conductive layer, forming a polysilicon film on the surface of the conductive layer being heated ;
At least during the formation of the polysilicon film, the substrate is processed by irradiating light from the back surface side of the insulating substrate to the polysilicon film formation site to reduce the electrical resistance of the film being formed .
前記絶縁性基板は矩形状のガラス基板であり、前記導電層はZnO薄膜層であることを特徴とする請求項21に記載の基板処理方法。 The substrate processing method according to claim 21 , wherein the insulating substrate is a rectangular glass substrate, and the conductive layer is a ZnO thin film layer.
JP2007008306A 2007-01-17 2007-01-17 Substrate processing apparatus and substrate processing method Expired - Fee Related JP4361568B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007008306A JP4361568B2 (en) 2007-01-17 2007-01-17 Substrate processing apparatus and substrate processing method
TW097100472A TW200849455A (en) 2007-01-17 2008-01-04 Apparatus and method for processing substrate
KR1020080003358A KR100967923B1 (en) 2007-01-17 2008-01-11 Substrate processing apparatus and substrate processing method
CN2008100023991A CN101226877B (en) 2007-01-17 2008-01-17 Substrate processing device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007008306A JP4361568B2 (en) 2007-01-17 2007-01-17 Substrate processing apparatus and substrate processing method

Publications (3)

Publication Number Publication Date
JP2008177289A JP2008177289A (en) 2008-07-31
JP2008177289A5 JP2008177289A5 (en) 2008-10-02
JP4361568B2 true JP4361568B2 (en) 2009-11-11

Family

ID=39704110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008306A Expired - Fee Related JP4361568B2 (en) 2007-01-17 2007-01-17 Substrate processing apparatus and substrate processing method

Country Status (4)

Country Link
JP (1) JP4361568B2 (en)
KR (1) KR100967923B1 (en)
CN (1) CN101226877B (en)
TW (1) TW200849455A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988667B1 (en) 2009-01-23 2010-10-18 장석호 Electric generator improved in power generation efficiency and rottary power
US20110217486A1 (en) * 2010-02-23 2011-09-08 Teoss Co., Ltd. Method for processing a chemical vapor deposition (cvd) and a cvd device using the same
JP5902073B2 (en) * 2012-09-25 2016-04-13 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
CN107217240A (en) * 2017-07-11 2017-09-29 江苏星特亮科技有限公司 A kind of preparation method of graphene film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235391A (en) * 1991-03-07 1993-09-10 Mitsubishi Electric Corp Thin film solar cell and its manufacture and manufacture of semiconductor device
JPH1126470A (en) * 1997-07-08 1999-01-29 Sony Corp Semiconductor substrate, semiconductor device and solar cell, method for manufacturing semiconductor substrate and method for manufacturing thin-film semiconductor, processing device for semiconductor substrate
JP4433858B2 (en) * 2004-03-31 2010-03-17 パナソニック電工株式会社 Electron source equipment

Also Published As

Publication number Publication date
CN101226877B (en) 2010-12-01
KR100967923B1 (en) 2010-07-06
TW200849455A (en) 2008-12-16
CN101226877A (en) 2008-07-23
JP2008177289A (en) 2008-07-31
TWI353649B (en) 2011-12-01
KR20080067965A (en) 2008-07-22

Similar Documents

Publication Publication Date Title
KR101103453B1 (en) Heating apparatus and method for making the same
Cranton et al. Enhanced electrical and optical properties of room temperature deposited Aluminium doped Zinc Oxide (AZO) thin films by excimer laser annealing
CN102898037B (en) The method of stringer and the product of acquisition
JP5236405B2 (en) Method for modifying transparent electrode film and method for producing substrate with transparent electrode film
CN101395706B (en) Method for crystallization of amorphous silicon by joule heating
US20130005139A1 (en) Techniques for manufacturing planar patterned transparent contact and/or electronic devices including same
TWI362704B (en) Method for annealing silicon thin films using conductive layer and polycrystalline silicon thin films prepared therefrom
TW200816362A (en) Heating and cooling of substrate support
JP4361568B2 (en) Substrate processing apparatus and substrate processing method
JP4110752B2 (en) A method of reducing the resistance of a transparent conductive film provided on a substrate.
JP2012025004A (en) Base material with graphene sheet and method for producing graphene sheet
Liao et al. Oxygen-deficient indium tin oxide thin films annealed by atmospheric pressure plasma jets with/without air-quenching
KR101870686B1 (en) Transparent Heater and Method for fabricating the same
JP2003247062A (en) Method and apparatus for depositing thin film
KR20170123111A (en) Method of manufacturing Graphene layer using joule heating
TWI492305B (en) Method and apparatus for manufacturing semiconductor device
JP2017193755A (en) Method of manufacturing transparent conductive film, and transparent conductive film
KR20200037547A (en) Planar-type heating film and manufacturing method thereof
JP2011192908A (en) Method of manufacturing polysilicon film, solar cell, and electronic device
JP2016527688A (en) Fabrication of gate electrodes by dewetting silver
Choe et al. Influence of Ag interlayer Thickness on the Optical, Electrical and Mechanical Properties of Ti-doped In 2 O 3/Ag/Ti-doped In 2 O 3 Multilayer Flexible Transparent Conductive Electrode
TWI619847B (en) Blackening method of silver line and display device
JP2011029148A (en) Post-treatment method and deposition/post-treatment device for conductive metal oxide
KR101293212B1 (en) Manufacturing method for mosi2 heatingelement and furnace comprising mosi2 heatingelement manufactured by the same
JP2002184790A (en) Plate material for heating substrate, and method of manufacturing cadmium telluride film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150821

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees