JP4359915B2 - Piezoelectric ceramic vibrator and piezoelectric resonator - Google Patents

Piezoelectric ceramic vibrator and piezoelectric resonator Download PDF

Info

Publication number
JP4359915B2
JP4359915B2 JP2003297792A JP2003297792A JP4359915B2 JP 4359915 B2 JP4359915 B2 JP 4359915B2 JP 2003297792 A JP2003297792 A JP 2003297792A JP 2003297792 A JP2003297792 A JP 2003297792A JP 4359915 B2 JP4359915 B2 JP 4359915B2
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
electrode
piezoelectric
ceramic plate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003297792A
Other languages
Japanese (ja)
Other versions
JP2005072797A (en
Inventor
勇二 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003297792A priority Critical patent/JP4359915B2/en
Publication of JP2005072797A publication Critical patent/JP2005072797A/en
Application granted granted Critical
Publication of JP4359915B2 publication Critical patent/JP4359915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、圧電磁器振動体及び圧電共振装置に関し、特に圧電磁器板の両主面に振動電極を形成してなる圧電磁器振動体及び圧電共振装置に関するものである。   The present invention relates to a piezoelectric ceramic vibrator and a piezoelectric resonator, and more particularly to a piezoelectric ceramic vibrator and a piezoelectric resonator formed by forming vibrating electrodes on both main surfaces of a piezoelectric ceramic plate.

従来、圧電共振子等の圧電磁器振動体に使用される圧電磁器板は、作製の過程で高温・高電界の状態に置かれることによって自発分極が誘発され、これにより圧電性を発現する。圧電磁器振動体は、圧電磁器板の両主面に対向するように振動電極を形成してなり、この振動電極の対向する部分において振動が生じる。   2. Description of the Related Art Conventionally, a piezoelectric ceramic plate used for a piezoelectric ceramic vibrator such as a piezoelectric resonator induces spontaneous polarization by being placed in a state of high temperature and high electric field during the production process, thereby expressing piezoelectricity. The piezoelectric ceramic vibrating body is formed with a vibrating electrode so as to face both main surfaces of the piezoelectric ceramic plate, and vibration is generated at a portion where the vibrating electrode faces.

圧電磁器振動体の振動電極は、従来、蒸着等の方法によって圧電磁器板上に膜状に形成されていた(特許文献1参照)。   Conventionally, a vibrating electrode of a piezoelectric ceramic vibrating body has been formed into a film shape on a piezoelectric ceramic plate by a method such as vapor deposition (see Patent Document 1).

蒸着で形成された振動電極は、圧電磁器板に対する固着を強固なものとするために、振動電極を加熱処理(アニール)することが行われている。   The vibration electrode formed by vapor deposition is subjected to heat treatment (annealing) in order to strengthen the adhesion to the piezoelectric ceramic plate.

また、圧電磁器振動体の一種である圧電共振子は、容量成分を有する容量素子と一体化されて圧電共振装置を構成し、これによって全体としての小型化が図られる。圧電共振子と容量素子の一体化は、圧電共振子、容量素子の各々を個別に作製したものを、ハンダによって貼り合わせることによって行われていた。
特開2000−151343号公報
In addition, a piezoelectric resonator, which is a type of piezoelectric ceramic vibrating body, is integrated with a capacitive element having a capacitive component to constitute a piezoelectric resonator, whereby the overall size can be reduced. The integration of the piezoelectric resonator and the capacitive element has been performed by pasting together each of the piezoelectric resonator and the capacitive element, which is manufactured by soldering.
JP 2000-151343 A

圧電性を発揮させるために圧電磁器板の分極処理が施されるが、この分極処理後においても加熱を伴う工程を経て圧電磁器振動体等の製品が作製される。例えば、振動電極の圧電磁器板上への固着力を向上させるため振動電極を圧電磁器板に形成した状態でアニールする工程や、圧電共振子と容量素子とを一体化させるためにハンダ付けする工程などがあり、また、圧電磁器板に振動電極を形成してなる素子を外部ケースに収納する場合、外部ケースの電極と素子の振動電極間の導通を取るためにハンダ付け処理する工程もある。   A piezoelectric ceramic plate is subjected to a polarization process in order to exhibit piezoelectricity, and a product such as a piezoelectric ceramic vibrator is manufactured through a process involving heating even after the polarization process. For example, a step of annealing in a state where the vibration electrode is formed on the piezoelectric ceramic plate in order to improve the fixing force of the vibration electrode on the piezoelectric ceramic plate, and a step of soldering to integrate the piezoelectric resonator and the capacitive element In addition, when an element formed by forming a vibrating electrode on a piezoelectric ceramic plate is housed in an external case, there is also a process of soldering in order to establish conduction between the electrode of the external case and the vibrating electrode of the element.

このような分極処理後の加熱を伴う工程を経ることにより、圧電磁器板に付与された自発分極が失われて圧電磁器板の圧電性が低下し、場合によっては圧電性を示さなくなる。従って、圧電磁器板の特性によっては分極後の加熱処理温度が制限されことになる。   By passing through such a process involving heating after the polarization treatment, the spontaneous polarization imparted to the piezoelectric ceramic plate is lost, and the piezoelectricity of the piezoelectric ceramic plate is lowered. In some cases, the piezoelectricity is not exhibited. Therefore, the heat treatment temperature after polarization is limited depending on the characteristics of the piezoelectric ceramic plate.

従来、振動電極はしてCrまたはCuなどを蒸着して形成されていた。振動電極としてCuを用いた場合、広く用いられるAg系のハンダに対する振動電極の耐性が良好で容量素子と圧電共振子とのハンダ付け状況が良好である。   Conventionally, the vibrating electrode has been formed by vapor deposition of Cr or Cu. When Cu is used as the vibration electrode, the resistance of the vibration electrode to the widely used Ag-based solder is good and the soldering state between the capacitive element and the piezoelectric resonator is good.

蒸着で形成された電極は圧電磁器との固着が弱いため、上記したように高温でアニール処理することで固着強度の増大を図っている。一方、Cuは空気中で約170℃以上の温度に晒されると酸化してしまうため、蒸着で振動電極を形成した後に固着強度を増大させようと、前述した温度以上の温度でアニールすると逆に剥がれてしまう。そのため蒸着でCuを形成して空気中でアニールをしようとする場合、アニール温度を低くして固着強度を犠牲にするか、または固着強度がそれほど要求されない用途に限定されていた。   Since the electrode formed by vapor deposition is weakly fixed to the piezoelectric ceramic, the fixing strength is increased by annealing at a high temperature as described above. On the other hand, Cu is oxidized when it is exposed to a temperature of about 170 ° C. or higher in air. Therefore, when annealing is performed at a temperature higher than the aforementioned temperature, conversely, an attempt is made to increase the fixing strength after forming a vibrating electrode by vapor deposition. It will come off. Therefore, when Cu is formed by vapor deposition and annealing is performed in the air, the annealing temperature is lowered to sacrifice the bonding strength, or the application is limited to applications where the bonding strength is not so required.

従来、固着強度を確保するために高温でアニール処理をしようとする場合、振動電極としてCrを蒸着して用いるが、Crはハンダに対する耐性が悪く、しばしばハンダ喰われを起こしてしまうという問題があった。   Conventionally, when annealing treatment is performed at a high temperature in order to secure the bonding strength, Cr is vapor-deposited as a vibrating electrode. However, Cr has a poor resistance to solder and often causes solder erosion. It was.

従って、本発明は、分極後の熱処理で圧電磁器板が脱分極したり振動電極が酸化されることなく、振動電極を圧電磁器板に強固に固着できる圧電磁器振動体及び圧電共振装置を提供すること目的とする。   Accordingly, the present invention provides a piezoelectric ceramic vibrating body and a piezoelectric resonator capable of firmly fixing a vibrating electrode to the piezoelectric ceramic plate without causing the piezoelectric ceramic plate to be depolarized or oxidized by the heat treatment after polarization. It is intended.

本発明の圧電磁器振動体は、圧電磁器板の両主面に振動電極を形成してなる圧電磁器振動体であって、前記振動電極が、前記圧電磁器板上に無電解メッキにより形成されたCuからなる下地層と、該下地層に設けられたAgからなる蒸着膜とから形成されていることを特徴とする。 The piezoelectric ceramic vibrator of the present invention is a piezoelectric ceramic vibrator formed by forming vibrating electrodes on both main surfaces of a piezoelectric ceramic plate, wherein the vibrating electrode is formed on the piezoelectric ceramic plate by electroless plating. It is formed of a base layer made of Cu and a vapor deposition film made of Ag provided on the base layer.

本発明の圧電磁器振動体は、下地層の厚みが0.2〜0.4μmであること、蒸着膜の厚みが0.8〜1.6μmであること、振動電極の厚みが1〜2μmであることを特徴とする。 Piezoelectric ceramic vibrator of the present invention, the thickness of the underlayer is 0.2 to 0.4 [mu] m, the thickness of the deposited film is 0.8 to 1.6 [mu] m, the thickness of the vibrating electrode 1~2μm It is characterized by being.

本発明の圧電共振装置は、上記圧電磁器振動体と、容量素子とを有することを特徴とする。   A piezoelectric resonance device according to the present invention includes the piezoelectric ceramic vibrator and a capacitive element.

本発明の圧電磁器振動体では、圧電磁器板上に無電解メッキにより振動電極の下地層を形成するため、高温のアニール処理をすることなく、振動電極と圧電磁器板との固着強度を向上できる。即ち、従来、Cuを蒸着して振動電極を形成した場合には、振動電極と圧電磁器板との固着強度を向上するために高温でのアニールが必要であったが、本発明では、Cuを無電界メッキして圧電磁器板に下地層を形成したので、メッキ液が磁器の微小な凹凸内部まで浸入するため、磁器とメッキがより複雑な接触面を構成することで圧電磁器板に下地層を高い固着強度で固着できる。 In the piezoelectric ceramic vibrator of the present invention, since the base layer of the vibrating electrode is formed by electroless plating on the piezoelectric ceramic plate, the fixing strength between the vibrating electrode and the piezoelectric ceramic plate can be improved without performing high-temperature annealing. . That is, conventionally, in the case of forming the vibration electrodes by depositing a C u is the annealing at a high temperature was necessary in order to improve the adhesion strength between the vibration electrode and the piezoelectric ceramic plate, in the present invention, C Since the base layer was formed on the piezoelectric ceramic plate by electroless plating of u, the plating solution penetrates into the fine irregularities of the porcelain. The underlayer can be fixed with high fixing strength.

また、本発明では、無電界メッキにより形成された下地層上に、Agを蒸着して蒸着膜を形成したため、振動電極を広い範囲で均一な任意の厚みに形成することができる。これにより、振動電極と磁器との界面により複雑な接触面を形成しつつ内部応力による剥離を抑制し、かつ蒸着にAgを用いる事で、広く使われているAg系の半田との好適な接着が可能となる。 In the present invention, on an underlying layer formed by electroless plating, since the formation of the deposited film by depositing A g, it is possible to form a uniform arbitrary thickness vibration electrodes in a wide range. This makes it possible to suppress peeling due to internal stress while forming a complex contact surface at the interface between the vibrating electrode and the porcelain, and by using Ag for vapor deposition, it is suitable for bonding with widely used Ag-based solders. Is possible.

即ち、無電解メッキによって形成されたメッキ膜は面方向の内部応力が高いと考えられ、厚みを大きくすると内部応力も大きくなり、磁器表面と良好な接触をしていてもその応力によって剥離しやすくなってしまう。そこで、本発明では無電界メッキによる下地層を薄く形成し、この上に、十分な厚みを形成するためにAgを蒸着して形成したのである。   In other words, the plating film formed by electroless plating is considered to have high internal stress in the surface direction. When the thickness is increased, the internal stress also increases, and even if it is in good contact with the porcelain surface, it is easy to peel off due to the stress. turn into. Therefore, in the present invention, the base layer is formed thinly by electroless plating, and Ag is deposited thereon to form a sufficient thickness.

また、本発明では、振動電極の下地層をCuから形成することにより、広く使われているAg系の半田に対する振動電極の耐性が良好となり、半田食われを防止できる。また、蒸着膜をAgから形成することにより、広く使われているAg系の半田との好適な接着が可能となる。   Further, in the present invention, by forming the base layer of the vibration electrode from Cu, the resistance of the vibration electrode to the widely used Ag-based solder is improved, and solder erosion can be prevented. Further, by forming the vapor deposition film from Ag, it is possible to suitably bond with a widely used Ag-based solder.

さらに、本発明では、無電解メッキによる下地層の厚みを0.2〜0.4μmと薄く形成することにより、下地層の内部応力による圧電磁器板からの剥離を抑制しつつ、圧電磁器板上により複雑で十分に接触した界面を形成して、アニ−ル処理を行わなくても十分に圧電磁器板に固着した振動電極を得ることができる。   Furthermore, in the present invention, by forming the thickness of the underlayer by electroless plating as thin as 0.2 to 0.4 μm, the peeling from the piezoelectric ceramic plate due to the internal stress of the underlayer is suppressed, and on the piezoelectric ceramic plate. Therefore, it is possible to obtain a vibrating electrode that is sufficiently fixed to the piezoelectric ceramic plate without forming an complicated and sufficiently contacted interface.

また、蒸着膜の厚みを0.8〜1.6とすることにより、広く使われているAg系の半田との好適な接着が可能となり、かつ、振動電極自体が重みになって圧電振動の鋭さを阻害することを防止できる。   In addition, by setting the thickness of the deposited film to 0.8 to 1.6, it is possible to achieve suitable adhesion with widely used Ag-based solder, and the vibration electrode itself is weighted to reduce piezoelectric vibration. Inhibiting sharpness can be prevented.

さらに、振動電極の厚みを1〜2μmとすることにより、振動電極が電極面全体で十分な導電性を有することができ、かつ、振動電極自体が重みになって圧電振動の鋭さを阻害することを防止できる。   Furthermore, by setting the thickness of the vibrating electrode to 1 to 2 μm, the vibrating electrode can have sufficient conductivity over the entire electrode surface, and the vibrating electrode itself becomes a weight and inhibits the sharpness of piezoelectric vibration. Can be prevented.

上記圧電磁器振動体が、アニール処理することなく、振動電極を圧電磁器板に強固に固着でき、優れた振動特性を得ることができるとともに、製造歩留まりを向上できるため、本発明の圧電共振装置としても、優れた特性と高い製造歩留まりを得ることができる。   Since the piezoelectric ceramic vibrator can firmly fix the vibrating electrode to the piezoelectric ceramic plate without annealing, and can obtain excellent vibration characteristics and improve the manufacturing yield, the piezoelectric resonator of the present invention can be obtained. However, excellent characteristics and a high production yield can be obtained.

本発明の圧電磁器振動体を図1に基づき詳細に説明する。本発明の圧電磁器振動体は、図1に示すように、圧電磁器板1の両主面に振動電極3を形成してなるもので、振動電極3が、圧電磁器板1上に無電解メッキにより形成された下地層3aと、該下地層3a上に形成された蒸着膜3bとにより構成されている。   The piezoelectric ceramic vibrator of the present invention will be described in detail with reference to FIG. As shown in FIG. 1, the piezoelectric ceramic vibrator of the present invention is formed by forming vibrating electrodes 3 on both main surfaces of a piezoelectric ceramic plate 1, and the vibrating electrode 3 is electrolessly plated on the piezoelectric ceramic plate 1. The underlayer 3a formed by the above and the vapor deposition film 3b formed on the underlayer 3a.

圧電磁器板1の上面に形成された振動電極3は、圧電磁器板1の一方側端から中央部まで延設され、圧電磁器板1の下面に形成された振動電極3は、圧電磁器板1の他方側端から中央部まで延設されており、圧電磁器板1の長さ方向中央部において重畳している。この重畳部分において、圧電磁器板1が振動することになる。   The vibration electrode 3 formed on the upper surface of the piezoelectric ceramic plate 1 extends from one side end of the piezoelectric ceramic plate 1 to the central portion, and the vibration electrode 3 formed on the lower surface of the piezoelectric ceramic plate 1 is connected to the piezoelectric ceramic plate 1. The other end of the piezoelectric ceramic plate 1 extends from the other end to the central portion, and overlaps at the central portion in the longitudinal direction of the piezoelectric ceramic plate 1. In this overlapping portion, the piezoelectric ceramic plate 1 vibrates.

圧電磁器板1は圧電磁器材料から構成されており、圧電性を有するセラミック材料であれば特に限定されるものではないが、少なくともPb、Zr、Tiを含有するPbZrTiO(いわゆるPZT)系材料からなることが望ましい。圧電磁器板1は、特に、Pb、Zr、Ti、La、Sr、Sbを含有するPZT系材料からなることが望ましい。尚、図1(c)における符号1aは、圧電磁器板1のセラミック粒子を模式的に示すものである。 The piezoelectric ceramic plate 1 is made of a piezoelectric ceramic material and is not particularly limited as long as it is a ceramic material having piezoelectricity. However, the piezoelectric ceramic plate 1 is made of a PbZrTiO 3 (so-called PZT) -based material containing at least Pb, Zr, and Ti. It is desirable to become. The piezoelectric ceramic plate 1 is particularly preferably made of a PZT-based material containing Pb, Zr, Ti, La, Sr, and Sb. In addition, the code | symbol 1a in FIG.1 (c) shows the ceramic particle | grains of the piezoelectric ceramic board 1 typically.

このような圧電磁器板1は、圧電セラミック粉末と有機成分を含有するスラリーをシート状に成形し、任意の面積に切断したものを脱脂・焼成することにより作製できる。また圧電セラミック粉末と有機成分を含有する原料をブロック状に成形し,このブロック状の成形体を焼成し、任意の厚みに切断することにより、平板状の圧電磁器板1を作製することができる。   Such a piezoelectric ceramic plate 1 can be produced by forming a slurry containing a piezoelectric ceramic powder and an organic component into a sheet shape, and degreasing and firing a sheet cut into an arbitrary area. Moreover, the raw material containing a piezoelectric ceramic powder and an organic component is shape | molded in a block shape, This block-shaped molded object is baked, By cutting to arbitrary thickness, the flat piezoelectric ceramic board 1 can be produced. .

厚み縦振動または厚み滑り振動などのモードを利用する圧電磁器振動体の場合、磁器厚みが発振周波数を支配する重要な因子であるため、圧電磁器板1をラップ等の工程を経て均一な厚みに加工することが望ましい。   In the case of a piezoelectric ceramic vibrating body using a mode such as thickness longitudinal vibration or thickness sliding vibration, the thickness of the ceramic ceramic ceramic 1 is made uniform through a process such as lapping because the ceramic thickness is an important factor governing the oscillation frequency. It is desirable to process.

また、振動電極3は、上記したように、下地層3aと蒸着膜3bとから構成されるものであり、下地層3aとしてはCuを用いたことからハンダに対する耐性が良好となるため、ハンダ喰われを防止でき、これにより安定した振動電極を形成することができる。 The vibration electrode 3, as described above, which is composed of a base layer 3a and the deposited film 3b, since the resistance to solder because using C u becomes good as a base layer 3a, the solder The biting can be prevented, and thus a stable vibrating electrode can be formed.

また、本発明では、下地層3aを無電界メッキにより形成するため、下地を蒸着で形成する場合と比べてより圧電磁器板1の加熱を低減できる。また、Agを焼き付ける場合に比べて圧電磁器板1に対する加熱を抑えることができるとともに、薄く均一な厚みの下地層を得ることができる。   Moreover, in this invention, since the base layer 3a is formed by electroless plating, the heating of the piezoelectric ceramic plate 1 can be further reduced as compared with the case where the base is formed by vapor deposition. In addition, heating to the piezoelectric ceramic plate 1 can be suppressed as compared with the case of baking Ag, and a thin and uniform underlayer can be obtained.

本発明では、下地層3aの厚みは0.2〜0.4μmであることが望ましい。下地層3aの厚みを0.2〜0.4μmとすることにより、無電解メッキの内部応力による剥離を抑制しつつ、圧電磁器板上により複雑で十分に接触した界面を有してアニ−ル処理を行わなくても十分に固着した振動電極を形成することができる。   In the present invention, the thickness of the base layer 3a is preferably 0.2 to 0.4 μm. By controlling the thickness of the base layer 3a to 0.2 to 0.4 μm, the peeling due to the internal stress of the electroless plating is suppressed, and an annealed interface having a more complex and sufficient contact on the piezoelectric ceramic plate A vibration electrode that is sufficiently fixed can be formed without any treatment.

振動電極3を構成する蒸着膜3bは、無電解メッキで形成された下地層3aの上にさらに蒸着法により形成するもので、このような蒸着法により形成された蒸着膜3bは、金属上への蒸着であるため、磁器に直接蒸着する場合と比べて高い固着を有することができる。   The vapor deposition film 3b constituting the vibrating electrode 3 is further formed by vapor deposition on the base layer 3a formed by electroless plating. The vapor deposition film 3b formed by such vapor deposition is applied to the metal. Since it is vapor deposition of this, it can have high adhering compared with the case where it vapor-deposits directly to a ceramic.

本発明では、無電界メッキにより形成された下地層3aの表面に蒸着膜3bを形成することにより、振動電極形成後に固着力向上のためのアニール処理を省くことができる。   In the present invention, by forming the vapor deposition film 3b on the surface of the base layer 3a formed by electroless plating, it is possible to omit the annealing treatment for improving the adhesion after the vibration electrode is formed.

蒸着膜3bは、Agからなるもので、これにより広く使われているAg系の半田と好適に接着できる。 Deposited film 3b is intended A g or Ranaru, Ru can be suitably adhered to the solder Ag system is thereby widely used.

また、蒸着膜3bの厚みは、無電解メッキで形成された下地層3aの内部応力に抗するという理由から、下地層3aの厚みよりも厚いことが望ましく、特に0.8〜1.6μmであることが望ましい。蒸着膜3bの厚みを0.8〜1.6μmとすることにより、無電解メッキで形成された下地層3aの内部応力に抗することができる。特に1.0〜1.6μmであることが望ましい。   Moreover, the thickness of the vapor deposition film 3b is desirably thicker than the thickness of the underlayer 3a because it resists the internal stress of the underlayer 3a formed by electroless plating, and is particularly 0.8 to 1.6 μm. It is desirable to be. By setting the thickness of the vapor deposition film 3b to 0.8 to 1.6 μm, it is possible to resist the internal stress of the base layer 3a formed by electroless plating. In particular, the thickness is desirably 1.0 to 1.6 μm.

下地層3a上に蒸着膜3bを形成してなる振動電極3の厚みは、1〜2μmであることが望ましい。振動電極3の厚みを1〜2μmとすことにより、振動電極3中に部分的に導電性が低い個所が発生することを防止するとともに、振動電極3自体の重みで磁器の圧電振動が阻害されることを抑制することができる。特に、振動電極3の厚みは電極が部分的に導電性が低い個所ができることを防ぐという理由から1.3〜2.0μmであることが望ましい。   The thickness of the vibrating electrode 3 formed by forming the vapor deposition film 3b on the base layer 3a is preferably 1 to 2 μm. By setting the thickness of the vibrating electrode 3 to 1 to 2 μm, it is possible to prevent the occurrence of a part having a low conductivity in the vibrating electrode 3 and to inhibit the piezoelectric vibration of the porcelain by the weight of the vibrating electrode 3 itself. Can be suppressed. In particular, the thickness of the vibrating electrode 3 is desirably 1.3 to 2.0 μm for the reason that the electrode partially prevents a portion having low conductivity from being formed.

平板状の圧電磁器板1の厚み方向に対向する主面に振動電極3が形成されるが、振動電極3を形成する金属量が多くなると、金属の重量等が問題となって発振強度が低減するおそれがあるため、振動電極3として圧電磁器板1上に形成される金属の量はできるだけ少なく均等に形成されることが望ましい。   The vibration electrode 3 is formed on the main surface facing the thickness direction of the flat piezoelectric ceramic plate 1, but if the amount of metal forming the vibration electrode 3 increases, the weight of the metal becomes a problem and the oscillation intensity decreases. Therefore, it is desirable that the amount of metal formed on the piezoelectric ceramic plate 1 as the vibrating electrode 3 is as small as possible and evenly formed.

以上のように構成された圧電磁器振動体では、圧電磁器板1上に無電解メッキにより下地層3aを形成したため、高温のアニール処理を必要とせず、かつ振動電極3と圧電磁器板1との固着強度を向上できるとともに、無電界メッキにより形成された下地層上に、Agを蒸着して蒸着膜3bを形成したため、アニール処理を行わなくても圧電磁器板1上に固着が良好な振動電極3を形成することができる。
In the piezoelectric ceramic vibrator configured as described above, since the base layer 3a is formed on the piezoelectric ceramic plate 1 by electroless plating, high-temperature annealing is not required, and the vibration electrode 3 and the piezoelectric ceramic plate 1 it is possible to improve the fixing strength, on an underlying layer formed by electroless plating, since the formation of the deposited film 3b by depositing a g, a good fixation on the piezoelectric ceramic plate 1 without performing an annealing treatment vibration The electrode 3 can be formed.

図2は、圧電磁器振動体31に容量素子35を接合した圧電共振装置(容量内蔵型発振子)を示すもので、容量素子35は、誘電体基板35aの上面に容量電極35b、35cを形成し、下面に容量電極35dを形成して構成されている。そして、圧電磁器板1の上面に形成された振動電極3と、容量素子35の容量電極35cが端面電極37aで接続され、圧電磁器板1の下面に形成された振動電極3と、容量素子35の容量電極35bが端面電極37bで接続されている。   FIG. 2 shows a piezoelectric resonance device (capacitor built-in type resonator) in which a capacitive element 35 is joined to a piezoelectric ceramic vibrator 31. The capacitive element 35 has capacitive electrodes 35b and 35c formed on the upper surface of a dielectric substrate 35a. The capacitor electrode 35d is formed on the lower surface. The vibrating electrode 3 formed on the upper surface of the piezoelectric ceramic plate 1 and the capacitive electrode 35c of the capacitive element 35 are connected by the end surface electrode 37a, and the vibrating electrode 3 formed on the lower surface of the piezoelectric ceramic plate 1 and the capacitive element 35 The capacitor electrodes 35b are connected by an end face electrode 37b.

図3は、図2の容量内蔵型発振子を収納容器37内に収容した圧電共振装置を示している。尚、図示していないが、端面電極37a、37b、容量電極37dは収納容器37の外面に引き出されている。   FIG. 3 shows a piezoelectric resonance device in which the built-in capacitor type oscillator of FIG. Although not shown, the end surface electrodes 37 a and 37 b and the capacitor electrode 37 d are drawn out to the outer surface of the storage container 37.

図2、図3に示すような圧電共振装置では、上記したように圧電磁器振動体の振動電極の固着強度をアニール処理することなく向上できるとともに、Ag系の半田との好適な接着となるため、圧電共振装置の製造歩留まりを向上できるとともに、良好な特性を得ることができる。   In the piezoelectric resonance apparatus as shown in FIGS. 2 and 3, as described above, the adhesion strength of the vibrating electrode of the piezoelectric ceramic vibrating body can be improved without annealing, and it can be suitably bonded to the Ag-based solder. In addition, the manufacturing yield of the piezoelectric resonance device can be improved and good characteristics can be obtained.

Pb、ZrO、TiO、La、SrCO、Sb、Co、MnCO原料粉末を混合し、これを空気中にて1000℃で3〜5時間仮焼した仮焼粉を粉砕し、その粉砕粉をスプレードライして顆粒を作製し、圧電セラミック粉末を作製した。 Pb 3 O 4 , ZrO 2 , TiO 2 , La 2 O 3 , SrCO 3 , Sb 2 O 3 , Co 2 O 4 , MnCO 3 raw material powders were mixed and mixed in air at 1000 ° C. for 3 to 5 hours. The calcined calcined powder was pulverized, and the pulverized powder was spray-dried to produce granules, thereby producing a piezoelectric ceramic powder.

この圧電セラミック粉末に有機バインダを添加し、これをプレス成形して30mm角のブロック形状に成形し、空気中にて450℃で20時間脱バインダーを行い、その後空気中にて1150℃で4時間焼成を行い、焼結した。   An organic binder is added to the piezoelectric ceramic powder, and this is press-molded to form a 30 mm square block shape. The binder is removed in air at 450 ° C. for 20 hours, and then in air at 1150 ° C. for 4 hours. Firing and sintering were performed.

焼結体をワイヤソーにてカットし、ラップ加工することによって30mm角、厚み200μmの平板状に加工し、圧電磁器板を作製し、この圧電磁器板を洗浄した。   The sintered body was cut with a wire saw and lapped to form a 30 mm square plate with a thickness of 200 μm to produce a piezoelectric ceramic plate, and this piezoelectric ceramic plate was washed.

洗浄された圧電磁器板に、表1に示すような金属を、真空蒸着機にて又は無電界メッキにより、表1に示す厚みt1で形成して、下地層を形成した。下地層は処理時間を変更させて厚みを変更し、その厚みt1は断面のX線マイクロアナライザー(EPMA)面分析にて求めた。   A metal as shown in Table 1 was formed on the cleaned piezoelectric ceramic plate with a thickness t1 shown in Table 1 by a vacuum vapor deposition machine or by electroless plating to form an underlayer. The thickness of the underlayer was changed by changing the processing time, and the thickness t1 was obtained by X-ray microanalyzer (EPMA) surface analysis of the cross section.

無電解メッキによって下地層が形成された圧電磁器板は水中にて超音波洗浄し、イソプロピルアルコールに洗浄された後に120℃の乾燥機中にて乾燥した。圧電磁器板の下地層に、真空蒸着機にて表1に示す厚さのAgからなる蒸着膜を形成した。また、真空蒸着機に供給する金属の量を変化させて蒸着膜を形成し、その厚みt2を断面のEPMA面分析にて求めた。   The piezoelectric ceramic plate on which the base layer was formed by electroless plating was ultrasonically washed in water, washed with isopropyl alcohol, and then dried in a dryer at 120 ° C. A deposited film made of Ag having a thickness shown in Table 1 was formed on the base layer of the piezoelectric ceramic plate by a vacuum deposition machine. Moreover, the vapor deposition film was formed by changing the amount of metal supplied to the vacuum vapor deposition machine, and the thickness t2 was obtained by EPMA plane analysis of the cross section.

また、振動電極の固着強度を、振動電極を形成した圧電磁器板を空気中で260℃90分間のアニール処理前後で、図4に示すようにして評価した。評価は先ず、幅15mmの粘着テープ11を約10cm程度切って30mm角の圧電磁器板1上に形成された振動電極3に貼り付け、テープ11の一端を剛体棒13に巻き付け、その剛体棒13に糸を通して重量ゲージ17につなげ、テープ11が圧電磁器板1と直角になる様にゲージ17ごとテープ11を引き上げて剥がした。テープ11が全て剥がれるまでにゲージ17に示された最大重量を読み取った。5個について評価し、読み取った数値の平均値を表1に示した。さらに、テープ11を引き上げた際に振動電極3と圧電磁器板1の間が離れたか、もしくはテープ11と振動電極3間が離れたかを表1に示す。   Further, the adhesion strength of the vibrating electrode was evaluated as shown in FIG. 4 before and after annealing treatment of the piezoelectric ceramic plate on which the vibrating electrode was formed at 260 ° C. for 90 minutes in air. In the evaluation, first, the adhesive tape 11 having a width of 15 mm is cut by about 10 cm and attached to the vibration electrode 3 formed on the 30 mm square piezoelectric ceramic plate 1, and one end of the tape 11 is wound around the rigid rod 13. The thread 11 was connected to the weight gauge 17 and the tape 11 was pulled up and peeled off together with the gauge 17 so that the tape 11 was perpendicular to the piezoelectric ceramic plate 1. The maximum weight indicated on the gauge 17 was read before all the tape 11 was peeled off. Five samples were evaluated, and the average value of the read values is shown in Table 1. Further, Table 1 shows whether the vibration electrode 3 and the piezoelectric ceramic plate 1 are separated when the tape 11 is pulled up, or whether the tape 11 and the vibration electrode 3 are separated.

更に、図5に示すように、銅線21を振動電極3上の5箇所にハンダ付け作業し、作業に伴って振動電極3のハンダ食われの有無を観察した。尚、半田付けの過程で磁器が露出したものをハンダ食われ有りと判断した。これらの結果を表1に記載した。

Figure 0004359915
Furthermore, as shown in FIG. 5, the copper wire 21 was soldered to five locations on the vibrating electrode 3, and the presence or absence of solder erosion of the vibrating electrode 3 was observed along with the work. In addition, it was judged that the porcelain exposed during the soldering process was eaten by solder. These results are shown in Table 1.
Figure 0004359915

この表1から、無電解メッキにてCuの下地層を形成した後にAgの蒸着膜を形成することにより、電極のハンダ喰われを防ぐことができ、振動電極形成後の加熱処理(アニール)がなくとも振動電極を強固に圧電磁器板上に固着できることが判る。   From Table 1, it is possible to prevent solder erosion of the electrode by forming an Ag vapor deposition film after forming a Cu underlayer by electroless plating, and heat treatment (annealing) after forming the vibrating electrode It can be seen that the vibration electrode can be firmly fixed on the piezoelectric ceramic plate even if not.

一方、CrやCuを蒸着して下地層を形成した試料No.1、2では、アニール処理しなければ振動電極と圧電磁器板とが充分に固着されず、振動電極が剥離し易いことが判る。   On the other hand, sample No. 1 was formed by depositing Cr or Cu to form an underlayer. In Nos. 1 and 2, it can be seen that the vibration electrode and the piezoelectric ceramic plate are not sufficiently fixed without annealing, and the vibration electrode is easily peeled off.

また、圧電磁器板表面に形成される無電解メッキによる下地層の厚みが0.2μmより薄いと(試料No.3)、Cuが下地層としての役割を十分に果たさず、振動電極に貼った粘着テープを剥がす際に粘着テープと共に振動電極の全面または一部が剥がれ易くなることが判る。   Further, when the thickness of the base layer formed by electroless plating formed on the surface of the piezoelectric ceramic plate is thinner than 0.2 μm (Sample No. 3), Cu does not sufficiently play a role as the base layer and is stuck to the vibrating electrode. It can be seen that when the adhesive tape is peeled off, the whole or part of the vibrating electrode is easily peeled off together with the adhesive tape.

さらに、無電解メッキによる下地層のCuが過剰で厚みが0.4μmよりも厚い場合(試料No.7)では、無電界メッキの内部応力によって、振動電極に部分的な剥離が発生しやすくなることが判る。   Furthermore, when Cu of the underlayer by electroless plating is excessive and the thickness is thicker than 0.4 μm (sample No. 7), partial peeling is likely to occur on the vibrating electrode due to internal stress of electroless plating. I understand that.

本発明の圧電磁器振動体を示すもので、(a)は断面図、(b)は平面図、(c)は(a)の一部を拡大して示す断面模式図である。The piezoelectric ceramic vibrating body of this invention is shown, (a) is sectional drawing, (b) is a top view, (c) is a cross-sectional schematic diagram which expands and shows a part of (a). 圧電磁器振動体に容量素子を接合した圧電共振装置を示す説明図である。It is explanatory drawing which shows the piezoelectric resonance apparatus which joined the capacitive element to the piezoelectric ceramic vibrating body. 圧電磁器振動体に容量素子を接合した容量内蔵型発振子を、収納容器内に収納した圧電共振装置を示す説明図である。It is explanatory drawing which shows the piezoelectric resonance apparatus which accommodated the capacity | capacitance built-in type resonator which joined the capacitive element to the piezoelectric ceramic vibrating body in the storage container. 圧電磁器板と振動電極との固着力を測定する状態を示す説明図である。It is explanatory drawing which shows the state which measures the adhering force of a piezoelectric ceramic board and a vibration electrode. 圧電磁器板表面の振動電極のハンダ喰われ性を評価する状態を示す説明図である。It is explanatory drawing which shows the state which evaluates the solder erosion property of the vibration electrode of a piezoelectric ceramic board surface.

符号の説明Explanation of symbols

1・・・圧電磁器板
3a・・・下地層
3b・・・蒸着層
3・・・振動電極
31・・・圧電磁器振動体
35・・・容量素子
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric ceramic board 3a ... Underlayer 3b ... Deposition layer 3 ... Vibrating electrode 31 ... Piezoelectric ceramic vibrating body 35 ... Capacitance element

Claims (5)

圧電磁器板の両主面に振動電極を形成してなる圧電磁器振動体であって、前記振動電極が、前記圧電磁器板上に無電解メッキにより形成されたCuからなる下地層と、該下地層に設けられたAgからなる蒸着膜とから形成されていることを特徴とする圧電磁器振動体。 A piezoelectric ceramic vibrating body in which vibration electrodes are formed on both principal surfaces of a piezoelectric ceramic plate, wherein the vibration electrode includes a base layer made of Cu formed by electroless plating on the piezoelectric ceramic plate, A piezoelectric ceramic vibrator characterized by being formed from a vapor deposition film made of Ag provided in a formation. 前記下地層の厚みが0.2〜0.4μmであることを特徴とする請求項1に記載の圧電磁器振動体。 2. The piezoelectric ceramic vibrator according to claim 1, wherein the foundation layer has a thickness of 0.2 to 0.4 μm. 前記蒸着膜の厚みが0.8〜1.6μmであることを特徴とする請求項1又は2に記載の圧電磁器振動体。 Piezoelectric ceramic vibrator according to claim 1 or 2 thickness of the deposited film characterized in that it is a 0.8~1.6Myuemu. 前記振動電極の厚みが1〜2μmであることを特徴とする請求項1乃至のうちいずれかに記載の圧電磁器振動体。 Piezoelectric ceramic vibrator according to any one of claims 1 to 3 the thickness of the vibrating electrode is characterized by a 1 to 2 [mu] m. 請求項1乃至のうちいずれかに記載の圧電磁器振動体と、容量素子とを有することを特徴とする圧電共振装置。 A piezoelectric ceramic vibrator according to any one of claims 1 to 4, a piezoelectric resonator, characterized in that it comprises a capacitive element.
JP2003297792A 2003-08-21 2003-08-21 Piezoelectric ceramic vibrator and piezoelectric resonator Expired - Fee Related JP4359915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003297792A JP4359915B2 (en) 2003-08-21 2003-08-21 Piezoelectric ceramic vibrator and piezoelectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297792A JP4359915B2 (en) 2003-08-21 2003-08-21 Piezoelectric ceramic vibrator and piezoelectric resonator

Publications (2)

Publication Number Publication Date
JP2005072797A JP2005072797A (en) 2005-03-17
JP4359915B2 true JP4359915B2 (en) 2009-11-11

Family

ID=34403519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297792A Expired - Fee Related JP4359915B2 (en) 2003-08-21 2003-08-21 Piezoelectric ceramic vibrator and piezoelectric resonator

Country Status (1)

Country Link
JP (1) JP4359915B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5308808B2 (en) * 2008-12-26 2013-10-09 学校法人 中央大学 Ultrasonic motor
JP5905292B2 (en) * 2012-02-21 2016-04-20 日本碍子株式会社 Piezoelectric element and method for manufacturing the same
GB201810184D0 (en) * 2018-06-21 2018-08-08 Ionix Advanced Tech Ltd Process
JP7452107B2 (en) * 2020-03-06 2024-03-19 Tdk株式会社 piezoelectric device
CN111817679B (en) * 2020-06-09 2021-10-15 见闻录(浙江)半导体有限公司 Film bulk acoustic resonator and manufacturing process thereof
CN114249592A (en) * 2021-12-24 2022-03-29 无锡市惠丰电子有限公司 Preparation method of hard piezoelectric ceramic material

Also Published As

Publication number Publication date
JP2005072797A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP6441961B2 (en) Multilayer capacitor and mounting structure
JP6345208B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP5533387B2 (en) Ceramic electronic components
US9673383B2 (en) Multilayer ceramic electronic component and method of manufacturing the same
EP2267808A1 (en) Piezoelectric/electrostrictive element and manufacturing method thereof
JP6442881B2 (en) Manufacturing method of ceramic electronic component
JP4147954B2 (en) Method for manufacturing piezoelectric element
JP2020136298A (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4359915B2 (en) Piezoelectric ceramic vibrator and piezoelectric resonator
CN104838589A (en) Piezoelectric component
JP6483400B2 (en) Multilayer capacitor and mounting structure
JP5129067B2 (en) Piezoelectric / electrostrictive porcelain composition and piezoelectric / electrostrictive element
TW200924253A (en) Method for producing piezoelectric ceramic
JP3982267B2 (en) Manufacturing method of multilayer piezoelectric ceramic element
JP4992796B2 (en) Oscillator
CN103700764A (en) Method for manufacturing piezoelectric element comprising HfO2 stress buffer body
JP2020068226A (en) Multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component
JP6313177B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JP4605879B2 (en) Piezoelectric vibrator
JP2003201173A (en) Piezoelectric ceramic composition and piezoelectric element using this piezoelectric ceramic composition
JP2006193413A (en) Method of manufacturing piezoelectric porcelain and piezoelectric element
JP4486127B2 (en) Ultrasonic probe and manufacturing method thereof
JP2651277B2 (en) Manufacturing method of piezoelectric sounding body
JP2004107141A (en) Piezoelectric ceramic composition and piezoelectric device using the same
JP2024075431A (en) Multilayer ceramic electronic component and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees