JP4486127B2 - Ultrasonic probe and manufacturing method thereof - Google Patents

Ultrasonic probe and manufacturing method thereof Download PDF

Info

Publication number
JP4486127B2
JP4486127B2 JP2007526959A JP2007526959A JP4486127B2 JP 4486127 B2 JP4486127 B2 JP 4486127B2 JP 2007526959 A JP2007526959 A JP 2007526959A JP 2007526959 A JP2007526959 A JP 2007526959A JP 4486127 B2 JP4486127 B2 JP 4486127B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
electrode
main surface
grooves
ultrasonic probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007526959A
Other languages
Japanese (ja)
Other versions
JP2007537818A (en
Inventor
リ、サンゴ
リム、スンミン
ジュン、ホ
キム、サホン
Original Assignee
ヒューマンスキャン・カンパニー・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヒューマンスキャン・カンパニー・リミテッド filed Critical ヒューマンスキャン・カンパニー・リミテッド
Publication of JP2007537818A publication Critical patent/JP2007537818A/en
Application granted granted Critical
Publication of JP4486127B2 publication Critical patent/JP4486127B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/0677Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface and a high impedance backing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/0681Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface and a damping structure
    • B06B1/0685Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface and a damping structure on the back only of piezoelectric elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、独自に設計された電極を有する超音波プローブ及びその製造方法に関する。   The present invention relates to an ultrasonic probe having a uniquely designed electrode and a method for manufacturing the same.

超音波映像装置は、広く使用されており、通常、超音波を電気的信号に変換するための超音波プローブと、その電気的信号を映像へと処理する処理装置と、その映像を表示する表示装置とを含んでいる。この超音波プローブは、高解像度映像を得るのに重要な役割を果たしており、高い電気機械的結合係数だけでなく、優れた超音波パルス及び超音波ビームのフォーカシング特性を必要とする。   Ultrasound imaging devices are widely used, and usually an ultrasound probe for converting ultrasound into an electrical signal, a processing device for processing the electrical signal into an image, and a display for displaying the image Including the device. This ultrasonic probe plays an important role in obtaining a high-resolution image and requires not only a high electromechanical coupling coefficient but also excellent ultrasonic pulse and ultrasonic beam focusing characteristics.

一般に、超音波プローブは、一対の電極を有する圧電素子からなる超音波発信/受信素子を含んでおり、その圧電素子としては、従来は、ジルコン酸チタン酸鉛系セラミックス(PZT)が用いられていたが、最近では、ジルコニウムニオブ酸チタン酸鉛−チタン酸鉛(Pb(Zn1/3Nb2/3)O3−PbTiO3、「PZN−PT」)又はマグネシウムニオブ酸鉛−チタン酸鉛(Pb(Mg1/3Nb2/3)O3−PbTiO3、「PMN−PT」)系の圧電性単結晶が好まれるようになってきている。しかし、PZN−PT及びPMT−PTには、相転移温度が低く、熱安定性が良くないという問題がある。例えば、PZTは相転移温度が約200〜385℃の範囲内にあるのに対して、0.67PMN−0.33PTの場合、約150℃で相転移現象を示す。圧電素子はその相転移温度よりも高い温度では非分極化するので、そのような圧電素子を用いた超音波プローブの製造工程は高温段階を含んではならない。 In general, an ultrasonic probe includes an ultrasonic transmission / reception element composed of a piezoelectric element having a pair of electrodes. Conventionally, lead zirconate titanate ceramic (PZT) is used as the piezoelectric element. Recently, however, lead zirconium niobate titanate-lead titanate (Pb (Zn 1/3 Nb 2/3 ) O 3 —PbTiO 3 , “PZN-PT”) or lead magnesium niobate-lead titanate ( Pb (Mg 1/3 Nb 2/3 ) O 3 —PbTiO 3 , “PMN-PT”)-type piezoelectric single crystals have come to be preferred. However, PZN-PT and PMT-PT have a problem that the phase transition temperature is low and the thermal stability is not good. For example, PZT has a phase transition temperature in the range of about 200 to 385 ° C, whereas 0.67PMN-0.33PT exhibits a phase transition phenomenon at about 150 ° C. Since a piezoelectric element becomes non-polarized at a temperature higher than its phase transition temperature, the manufacturing process of an ultrasonic probe using such a piezoelectric element should not include a high temperature stage.

従って、超音波プローブにおける電気的接続は、通常のソルダリングに比べて高温を要しないエポキシペーストによってなされている。しかし、エポキシペースト層の挿入はプローブの性能を低下させる傾向があり、それにフレキシブルプリント回路基板(FPCB)を接続させるには複雑な製作工程を要する。最近、エポキシペースト層の厚さを減らすために、非銀系エポキシペーストよりも優れた導電性を有する銀エポキシペーストを用いることが試みられたが、上述した低性能の問題は依然として解決されていない。   Therefore, the electrical connection in the ultrasonic probe is made by an epoxy paste that does not require a high temperature as compared with normal soldering. However, the insertion of the epoxy paste layer tends to reduce the performance of the probe, and a complicated manufacturing process is required to connect the flexible printed circuit board (FPCB) thereto. Recently, in order to reduce the thickness of the epoxy paste layer, an attempt was made to use a silver epoxy paste having a conductivity superior to that of a non-silver based epoxy paste, but the above-mentioned low-performance problem has not been solved yet. .

従って、本発明の目的は、取り付けに用いるペーストに影響を受けないように独自に設計された電極及びそれに取り付けられたFPCBを有する圧電素子を含んだ新規な超音波プローブを提供することにある。   Accordingly, an object of the present invention is to provide a novel ultrasonic probe including a piezoelectric element having an electrode uniquely designed so as not to be affected by a paste used for attachment and an FPCB attached thereto.

本発明の一側面によると、
圧電性単結晶からなり、第1主面と第2主面と第1側面と第2側面とを有する圧電素子と、
前記圧電素子の前記第1主面の相当部分と前記第1側面と前記第2主面の一部との上に堆積した第1電極及び前記圧電素子の前記第2主面の相当部分と前記第2側面と前記第1主面の一部との上に堆積した第2電極,前記第1及び第2電極は、前記圧電素子の前記第1及び第2主面上であって前記圧電素子の前記側面の辺に対してそれぞれ平行に及び前記第2及び第1側面の辺からそれぞれ所定距離だけ離れた位置に形成された2つの溝によって互いから分離されている,と、
前記圧電素子の前記第2主面上に堆積した前記電極に取り付けられたバッキング層と、
前記圧電素子の前記第1側面の位置で前記第1電極に取り付けられた接地用電極と、
前記圧電素子の前記第2側面から延び、末端部が直角に曲げられることにより、第1主面上に位置した前記溝の前で前記第2電極に取り付けられたフレキシブルプリント回路基板と
を含んだ超音波プローブが提供される。
According to one aspect of the invention,
A piezoelectric element made of a piezoelectric single crystal and having a first main surface, a second main surface, a first side surface, and a second side surface;
A first electrode deposited on a portion corresponding to the first main surface of the piezoelectric element, the first side surface, and a portion of the second main surface; a portion corresponding to the second main surface of the piezoelectric element; The second electrode deposited on the second side surface and a part of the first main surface, the first and second electrodes are on the first and second main surfaces of the piezoelectric element, and the piezoelectric element Are separated from each other by two grooves formed in parallel to the sides of the side and at a predetermined distance from the sides of the second and first sides, respectively.
A backing layer attached to the electrode deposited on the second major surface of the piezoelectric element;
A grounding electrode attached to the first electrode at the position of the first side surface of the piezoelectric element;
A flexible printed circuit board attached to the second electrode in front of the groove located on the first main surface by extending from the second side surface of the piezoelectric element and having a distal end bent at a right angle. An ultrasound probe is provided.

また、本発明の他の側面によると、
圧電素子の第1主面と第2主面と第1側面と第2側面との上に電極層を堆積させ、
前記圧電素子の前記第1及び第2主面上であって前記圧電素子の前記側面の辺に対してそれぞれ平行に及び前記圧電素子の前記第2及び第1側面の辺からそれぞれ所定距離だけ離れた位置に2つの溝を形成して、前記電極層を2つの電極へと分離し、
前記圧電素子の前記第2主面上に堆積した前記電極層にバッキング層を取り付け、
前記圧電素子の前記側面の位置で前記第1電極に接地用電極を取り付け、
フレキシブルプリント回路基板を、前記圧電素子の前記第2側面から延ばし、末端部を直角に曲げることにより、第1主面上に位置した前記溝の前で前記第2電極に取り付けること
を含んだ超音波プローブの製造方法が提供される。
According to another aspect of the present invention,
Depositing an electrode layer on the first main surface, the second main surface, the first side surface and the second side surface of the piezoelectric element;
On the first and second main surfaces of the piezoelectric element, parallel to the side of the side surface of the piezoelectric element and separated from the side of the second and first side surface of the piezoelectric element by a predetermined distance, respectively. Forming two grooves in the position, separating the electrode layer into two electrodes,
Attaching a backing layer to the electrode layer deposited on the second main surface of the piezoelectric element;
A grounding electrode is attached to the first electrode at the position of the side surface of the piezoelectric element,
Including a flexible printed circuit board attached to the second electrode in front of the groove located on the first major surface by extending a flexible printed circuit board from the second side surface of the piezoelectric element and bending the end portion at a right angle. A method of manufacturing an acoustic probe is provided.

本発明の超音波プローブは、取り付けに用いるペーストによって影響を受けない独自に設計された電極及びそれに取り付けられたFPCBを含んでいることを特徴とする。   The ultrasonic probe according to the present invention includes a uniquely designed electrode that is not affected by the paste used for attachment and the FPCB attached thereto.

超音波プローブは、一般に、圧電性単結晶からなる圧電素子と、その圧電素子の超音波発信/受信面及びこの発信/受信面の反対側面にそれぞれ形成された第1及び第2電極と、第1電極上に形成された音響整合層と、その音響整合層の全面を覆うように形成された音響レンズと、第1電極に接続された接地用電極と、第2電極に接続された信号用フレキシブルプリント回路基板とを含んだ圧電装置(超音波発信/受信素子)を含んでいる。   The ultrasonic probe generally includes a piezoelectric element made of a piezoelectric single crystal, first and second electrodes formed on an ultrasonic wave transmission / reception surface of the piezoelectric element and opposite side surfaces of the transmission / reception surface, An acoustic matching layer formed on one electrode, an acoustic lens formed to cover the entire surface of the acoustic matching layer, a grounding electrode connected to the first electrode, and a signal connected to the second electrode A piezoelectric device (ultrasonic transmission / reception element) including a flexible printed circuit board is included.

本発明による超音波プローブは、圧電素子の第1主面の相当部分と第1側面と第2主面の一部との上に第1電極が形成され、圧電素子の第2主面の相当部分と第2側面と第1主面の一部との上に第2電極が形成され、それら2つの電極は、圧電素子の第1及び第2主面上であって圧電素子の側面の辺に対してそれぞれ平行に及び第2及び第1側面の辺からそれぞれ所定距離だけ離れた位置に形成された2つの溝によって互いから分離されていることを特徴とする。   In the ultrasonic probe according to the present invention, the first electrode is formed on a portion corresponding to the first main surface of the piezoelectric element, the first side surface, and a part of the second main surface, and the corresponding portion of the second main surface of the piezoelectric element A second electrode is formed on the portion, the second side surface, and a part of the first main surface, and the two electrodes are on the first and second main surfaces of the piezoelectric element and are on sides of the side surface of the piezoelectric element. Are separated from each other by two grooves formed in parallel to each other and at a predetermined distance from the sides of the second and first side surfaces.

本発明による超音波プローブは、図2及び図3に示すように製造できる。具体的には、単結晶圧電素子又はウエハー(10)の第1主面(10a)、第2主面(10b)、第1側面(10c)及び第2側面(10d)上に電極層(20”)を堆積させて(図2a参照)、コーティングされたウエハーを得る(図2b参照)。   The ultrasonic probe according to the present invention can be manufactured as shown in FIGS. Specifically, the electrode layer (20 on the first main surface (10a), the second main surface (10b), the first side surface (10c), and the second side surface (10d) of the single crystal piezoelectric element or wafer (10). ”) (See FIG. 2 a) to obtain a coated wafer (see FIG. 2 b).

圧電素子は、振動方向に20〜500,000μmの範囲内の厚さを有することができ、望ましくは50〜400μmの範囲内の厚さを有する。   The piezoelectric element can have a thickness in the range of 20 to 500,000 μm in the vibration direction, and preferably has a thickness in the range of 50 to 400 μm.

電極層は、Cr、Cu、Ni、Auなどのような導電性金属又はこれらの組合せで構成される。電極層は、スパッタリング、電子ビーム又は熱蒸着、或いは電気メッキ法を用いて堆積させることができ、堆積した電極の厚さは、望ましくは100〜10,000Åの範囲内にある。   The electrode layer is made of a conductive metal such as Cr, Cu, Ni, Au, or a combination thereof. The electrode layer can be deposited using sputtering, electron beam or thermal evaporation, or electroplating, and the thickness of the deposited electrode is desirably in the range of 100 to 10,000 mm.

図2cに示すように、上記の2つの溝(30、30’)を形成して、電極層(20”)を、主に第1主面(10a)及び第1側面(10c)上に形成された第1電極(20)(超音波発信/受信面)と、主に第2主面(10b)及び第2側面(10d)上に形成された第2電極(20’)(超音波発信/受信面の反対側の面)とに分離する。   As shown in FIG. 2c, the two grooves (30, 30 ′) are formed, and the electrode layer (20 ″) is formed mainly on the first main surface (10a) and the first side surface (10c). First electrode (20) (ultrasonic wave transmission / reception surface) and second electrode (20 ′) (ultrasonic wave transmission) formed mainly on the second main surface (10b) and the second side surface (10d) / Surface on the opposite side of the receiving surface).

溝(30、30’)は、ダイシングソーを用いて、圧電素子の側面の辺からそれぞれ所定の距離,例えば後工程で電極をフレキシブルプリント回路基板又は接地用電極に接続するためのエポキシペーストを塗布するための余地を確保できる距離,だけ離れた位置に形成される。それら溝は、それぞれ側面の辺から1〜1.5mm程度内側の位置に、ウエハー厚さの70〜80%の深さで形成され得るが、これは望ましくない振動を抑制するという点で好ましい。   For the grooves (30, 30 '), use a dicing saw to apply epoxy paste for connecting the electrodes to the flexible printed circuit board or the grounding electrode in a predetermined distance from the side of the side surface of the piezoelectric element. It is formed at a position separated by a distance that can secure a room for the operation. These grooves can be formed at a depth of about 70 to 80% of the wafer thickness at a position about 1 to 1.5 mm from the side of each side surface, which is preferable in terms of suppressing undesirable vibrations.

このようにして得られる組立体(100)は、図3a〜3dに示すように、本発明の超音波プローブ製造に適用する。   The assembly (100) thus obtained is applied to the production of the ultrasonic probe of the present invention as shown in FIGS.

図3aは、圧電素子の第2主面(10b)上に位置した電極層に、通常の方法でエポキシペーストを用いてバッキング層(40)を取り付ける工程を示し、図3bは、接地用電極板(50)と信号用フレキシブルプリント回路基板(60)とを取り付ける段階を示している。   FIG. 3a shows a process of attaching a backing layer (40) to the electrode layer located on the second main surface (10b) of the piezoelectric element by using an epoxy paste by a normal method, and FIG. 3b shows an electrode plate for grounding. (50) and the signal flexible printed circuit board (60) are shown.

本発明によれば、図3bに示すように、接地用電極板(50)は、圧電素子(10)の第1側面(10c)の位置で第1電極(20)に取り付けられ、フレキシブルプリント回路基板(60)は、圧電素子の第2側面(10d)から延び、第1主面(10a)の溝(30)の前の位置で末端部分が直角に曲げられて、第2電極(20’)に取り付けられる。   According to the present invention, as shown in FIG. 3b, the grounding electrode plate (50) is attached to the first electrode (20) at the position of the first side surface (10c) of the piezoelectric element (10). The substrate (60) extends from the second side surface (10d) of the piezoelectric element, the end portion is bent at a right angle at a position before the groove (30) of the first main surface (10a), and the second electrode (20 ′). ).

接地用電極板及びフレキシブルプリント回路基板をそれぞれ第1及び第2電極に取り付けることは、図3cに示すように、導電性エポキシペースト(70),望ましくは導電性銀エポキシペースト,を用いて通常に行うことができ、上記のように曲げた末端部を用いることで電極とフレキシブルプリント回路基板との結合がより強くなる。   The attachment of the ground electrode plate and the flexible printed circuit board to the first and second electrodes, respectively, is usually done using a conductive epoxy paste (70), preferably a conductive silver epoxy paste, as shown in FIG. 3c. It can be performed, and the connection between the electrode and the flexible printed circuit board becomes stronger by using the end portion bent as described above.

その次に、図3dのように、圧電素子の第1主面上に堆積した電極層上に、少なくとも1つの音響整合層(80)を形成し、その上に音響レンズを被せることができる。   Next, as shown in FIG. 3d, at least one acoustic matching layer (80) can be formed on the electrode layer deposited on the first main surface of the piezoelectric element, and an acoustic lens can be placed thereon.

本発明の方法によって製造された超音波プローブは、優れた振動特性、広周波数帯域及び高感度を示し得る。   The ultrasonic probe manufactured by the method of the present invention can exhibit excellent vibration characteristics, a wide frequency band and high sensitivity.

本発明の超音波プローブに用いられる圧電性単結晶は、強誘電性の均質単結晶であって、例えば下記式(I)の組成を有するPMN−PTであるのが好ましい。   The piezoelectric single crystal used in the ultrasonic probe of the present invention is a ferroelectric homogeneous single crystal, and is preferably, for example, PMN-PT having the composition of the following formula (I).

x[A]y[B]z[C]−p[P]n[N] (I)
式中、
[A]はPb(Mg1/3Nb2/3)O3又はPb(Zn1/3Nb2/3)O3であり、
[B]はPbTiO3であり、
[C]はLiTaO3であり、
[P]はPt、Au、Ag、Pd及びRhからなる群より選択される金属であり、
[N]はNi、Co、Fe、Sr、Sc、Ru、Cu及びCdからなる群より選択される金属の酸化物であり、
xは0.65〜0.98の範囲内の数値であり、
yは0.01〜0.34の範囲内の数値であり、
zは0.01〜0.1の範囲内の数値であり、
pは0.01〜5の範囲内の数値であり、
nは0.01〜5の範囲内の数値である。
x [A] y [B] z [C] -p [P] n [N] (I)
Where
[A] is Pb (Mg 1/3 Nb 2/3 ) O 3 or Pb (Zn 1/3 Nb 2/3 ) O 3 ,
[B] is PbTiO 3 ,
[C] is LiTaO 3 ,
[P] is a metal selected from the group consisting of Pt, Au, Ag, Pd and Rh,
[N] is an oxide of a metal selected from the group consisting of Ni, Co, Fe, Sr, Sc, Ru, Cu and Cd,
x is a numerical value within the range of 0.65 to 0.98,
y is a numerical value within the range of 0.01 to 0.34,
z is a numerical value within the range of 0.01 to 0.1,
p is a numerical value within the range of 0.01 to 5,
n is a numerical value within the range of 0.01-5.

式(I)の単結晶は、韓国登録特許第392754号に開示された方法による固相反応後、溶融結晶化させることで製造できる。   The single crystal of the formula (I) can be produced by melt crystallization after a solid phase reaction by the method disclosed in Korean Patent No. 392754.

式(I)の圧電性単結晶は、周囲温度における約5,500以上の高い誘電定数と、−20〜90℃の広い温度範囲内における低い温度係数とを有している。   The piezoelectric single crystal of formula (I) has a high dielectric constant of about 5,500 or more at ambient temperature and a low temperature coefficient within a wide temperature range of -20 to 90 ° C.

本発明の超音波プローブは、約1,000〜10,000の相対誘電定数と、1,200〜4,000m/s(周波数定数:1,400〜2,000Hz.m)の(001)面で発散される音波の速度と、80〜95%の高い電気機械的結合係数(k33’)を有する。従って、本発明の超音波プローブは、医療用、軍事用及びその他産業分野で超音波診断に有利に適用され得る。   The ultrasonic probe of the present invention has a relative dielectric constant of about 1,000 to 10,000 and a (001) plane of 1,200 to 4,000 m / s (frequency constant: 1,400 to 2,000 Hz.m). And has a high electromechanical coupling coefficient (k33 ′) of 80-95%. Therefore, the ultrasonic probe of the present invention can be advantageously applied to ultrasonic diagnosis in medical, military and other industrial fields.

下記実施例は、本発明を例示する目的でのみ与えられ、発明の範囲を限定するものではない。   The following examples are given solely for the purpose of illustrating the invention and are not intended to limit the scope of the invention.

(実施例)
図2及び図3に示す工程を含んだ方法によって、本発明による図1の超音波プローブを製作した。
(Example)
The ultrasonic probe of FIG. 1 according to the present invention was manufactured by a method including the steps shown in FIGS.

25−20mm×15−20mm×0.4−0.5mmの大きさ及び(001)面(表面10a)を有する圧電性単結晶基板(10)を準備し、この基板の表面10a、10b、10c及び10d上に(表面10e及び10f上を除く)、DCスパッタリング法を用いて、常温、1.2×10-7mmHgの圧力下で、金属層(Cr/Cu/Au)(20”)を堆積させた(図2a及び2b参照)。 A piezoelectric single crystal substrate (10) having a size of 25-20 mm × 15-20 mm × 0.4-0.5 mm and a (001) plane (surface 10a) is prepared, and the surfaces 10a, 10b, 10c of the substrate are prepared. And 10d (except on the surfaces 10e and 10f), a metal layer (Cr / Cu / Au) (20 ″) is formed at room temperature under a pressure of 1.2 × 10 −7 mmHg using a DC sputtering method. Deposited (see Figures 2a and 2b).

次に、ダイシングソーを用いて、金属を堆積させた圧電性単結晶基板の表面10a及び10b上にそれぞれ溝(30、30’)を形成して、金属層(20”)を2つの電極(20、20’)に分離した。この時、溝(30)は、表面10a上に堆積させた電極層(20”)上であって表面10dの辺に対して平行に及びその辺から1−1.5mm離れた位置に形成し、溝(30’)は、表面10b上に堆積させた電極層(20”)上であって表面10cの辺から1−1.5mm離れた位置に形成した。これら2つの溝(30、30’)のそれぞれの深さは0.25−0.35mmであった。   Next, using a dicing saw, grooves (30, 30 ′) are formed on the surfaces 10a and 10b of the piezoelectric single crystal substrate on which the metal is deposited, respectively, and the metal layer (20 ″) is formed with two electrodes ( At this time, the groove (30) is on the electrode layer (20 ″) deposited on the surface 10a, parallel to the side of the surface 10d and 1− The groove (30 ′) was formed on the electrode layer (20 ″) deposited on the surface 10b and at a position 1-1.5 mm away from the side of the surface 10c. The depth of each of these two grooves (30, 30 ') was 0.25-0.35 mm.

この圧電基板(10)の表面10b上に堆積させた電極層上に、エポキシペーストを用いてバッキング層(40)を積層し、この圧電基板(10)の第1側面10cに電極(20)に接地用電極板(50)を取り付けた。この際、圧電基板(10)の第2側面10dの溝(30)の前部分で、電極(20’)にフレキシブルプリント回路基板を直角に曲げて取り付けた(図3b参照)。その次に、圧電基板(10)の表面10a上に堆積させた電極層上に音響整合層(80)を積層し、その上に音響レンズを被せて図1に示す本発明の超音波プローブを製作した。   A backing layer (40) is laminated on the electrode layer deposited on the surface 10b of the piezoelectric substrate (10) using an epoxy paste, and the electrode (20) is formed on the first side surface 10c of the piezoelectric substrate (10). A grounding electrode plate (50) was attached. At this time, the flexible printed circuit board was attached to the electrode (20 ') by bending at a right angle at the front portion of the groove (30) of the second side surface 10d of the piezoelectric substrate (10) (see FIG. 3b). Next, the acoustic matching layer (80) is laminated on the electrode layer deposited on the surface 10a of the piezoelectric substrate (10), and the acoustic lens is put on the acoustic matching layer (80), and the ultrasonic probe of the present invention shown in FIG. Produced.

(比較例)
分離させるべき部分(30、30’)上にマスキングテープを付着させた後、電極材料をコーティングし、その後、マスキングテープを除去することで2つの電極(20、20’)を形成したことを除き、実施例の工程を繰り返して超音波プローブを製造した。
(Comparative example)
Except that the masking tape was deposited on the part to be separated (30, 30 '), then the electrode material was coated, and then the masking tape was removed to form two electrodes (20, 20') The ultrasonic probe was manufactured by repeating the steps of the example.

振動特性
実施例及び比較例によって電極を堆積させた圧電素子の振動特性を試験し、その結果をそれぞれ図4a及び4bに示した。
Vibration characteristics The vibration characteristics of the piezoelectric elements with electrodes deposited according to the examples and comparative examples were tested, and the results are shown in FIGS. 4a and 4b, respectively.

図4bから、比較例による圧電素子は、点線のボックスで見られるように、望ましくない振動が発生することが分かる。これに対して、図4aは、本発明による圧電素子では前記のような望ましくない振動が生じなかったことを示している。   From FIG. 4b, it can be seen that the piezoelectric element according to the comparative example generates undesirable vibrations as seen in the dotted box. In contrast, FIG. 4a shows that the above-described undesirable vibration did not occur in the piezoelectric element according to the present invention.

プロービング特性
パルス−エコー法を用いて実施例及び比較例で製作したプローブのプロービング特性(相対感度及び帯域幅)を測定して、その結果を下記表1に示した。

Figure 0004486127
Probing characteristics Using the pulse-echo method, the probing characteristics (relative sensitivity and bandwidth) of the probes manufactured in Examples and Comparative Examples were measured, and the results are shown in Table 1 below.
Figure 0004486127

表1は、電極分離溝を有する本発明のプローブは単純分離部を有する比較例のプローブに比べて感度及び帯域幅において特性に優れていることを示している。   Table 1 shows that the probe of the present invention having the electrode separation groove is superior in sensitivity and bandwidth in comparison with the comparative probe having the simple separation portion.

以上、本発明を具体例と関連付けて記述したが、添付された請求の範囲によって限定される本発明の範疇でなくても当業者は本発明を多様に変化及び変更し得ることを認識しなければならない。   Although the present invention has been described in connection with specific examples, those skilled in the art should recognize that the present invention can be variously changed and modified without departing from the scope of the present invention limited by the appended claims. I must.

本発明による超音波プローブの概略図。1 is a schematic view of an ultrasonic probe according to the present invention. 本発明によって圧電素子上に2つの電極を形成する過程を示す図。The figure which shows the process in which two electrodes are formed on a piezoelectric element by this invention. 本発明によって圧電素子上に2つの電極を形成する過程を示す図。The figure which shows the process in which two electrodes are formed on a piezoelectric element by this invention. 本発明によって圧電素子上に2つの電極を形成する過程を示す図。The figure which shows the process in which two electrodes are formed on a piezoelectric element by this invention. 本発明によって、図2cの組立体を用いて本発明の超音波プローブを製造する過程を示す図。FIG. 3 is a diagram illustrating a process of manufacturing the ultrasonic probe of the present invention using the assembly of FIG. 2c according to the present invention. 本発明によって、図2cの組立体を用いて本発明の超音波プローブを製造する過程を示す図。FIG. 3 is a diagram illustrating a process of manufacturing the ultrasonic probe of the present invention using the assembly of FIG. 2c according to the present invention. 本発明によって、図2cの組立体を用いて本発明の超音波プローブを製造する過程を示す図。FIG. 3 is a diagram illustrating a process of manufacturing the ultrasonic probe of the present invention using the assembly of FIG. 2c according to the present invention. 本発明によって、図2cの組立体を用いて本発明の超音波プローブを製造する過程を示す図。FIG. 3 is a diagram illustrating a process of manufacturing the ultrasonic probe of the present invention using the assembly of FIG. 2c according to the present invention. 本発明の実施例によって形成された電極を有する圧電素子の振動特性を示すグラフ。The graph which shows the vibration characteristic of the piezoelectric element which has the electrode formed by the Example of this invention. 比較例で形成された電極を有する圧電素子の振動特性を示すグラフ。The graph which shows the vibration characteristic of the piezoelectric element which has the electrode formed in the comparative example.

符号の説明Explanation of symbols

10…圧電素子又は単結晶ウエハー、10a…圧電素子の第1主面、10b…圧電素子の第2主面、10c…圧電素子の第1側面、10d…圧電素子の第2側面、20”…電極層、20…第1電極、20’…第2電極、30、30’…溝、40…バッキング層、50…接地用電極板、60…フレキシブルプリント回路基板、70…導電性エポキシペースト、80…音響整合層、100…組立体。   DESCRIPTION OF SYMBOLS 10 ... Piezoelectric element or single crystal wafer, 10a ... 1st main surface of piezoelectric element, 10b ... 2nd main surface of piezoelectric element, 10c ... 1st side surface of piezoelectric element, 10d ... 2nd side surface of piezoelectric element, 20 "... Electrode layer, 20 ... first electrode, 20 '... second electrode, 30, 30' ... groove, 40 ... backing layer, 50 ... grounding electrode plate, 60 ... flexible printed circuit board, 70 ... conductive epoxy paste, 80 ... acoustic matching layer, 100 ... assembly.

Claims (8)

(A)圧電性単結晶からなり、第1主面と第2主面と第1側面と第2側面とを有する圧電素子と、
(B)前記圧電素子の前記第1主面の相当部分と前記第1側面と前記第2主面の一部との上に堆積した第1電極及び前記圧電素子の前記第2主面の相当部分と前記第2側面と前記第1主面の一部との上に堆積した第2電極,前記第1及び第2電極は、前記圧電素子の前記第1及び第2主面上であって前記圧電素子の前記側面の辺に対してそれぞれ平行に及び前記第2及び第1側面の辺からそれぞれ所定距離だけ離れた位置に形成された2つの溝によって互いから分離されている,と、
(C)前記圧電素子の前記第2主面上に堆積した前記電極に取り付けられたバッキング層と、
(D)前記圧電素子の前記第1側面の位置で前記第1電極に取り付けられた接地用電極と、
(E)前記圧電素子の前記第2側面から延び、末端部が直角に曲げられることにより、第1主面上に位置した前記溝の前で前記第2電極に取り付けられたフレキシブルプリント回路基板とを含み、前記2つの溝は、前記圧電素子の総厚さの70〜80%の深さを有している超音波プローブ。
(A) a piezoelectric element made of a piezoelectric single crystal and having a first main surface, a second main surface, a first side surface, and a second side surface;
(B) A first electrode deposited on a portion corresponding to the first main surface of the piezoelectric element, the first side surface, and a part of the second main surface, and a portion corresponding to the second main surface of the piezoelectric element. A second electrode deposited on a portion, the second side surface, and a part of the first main surface, the first and second electrodes are on the first and second main surfaces of the piezoelectric element; Separated from each other by two grooves formed in parallel to the sides of the side surface of the piezoelectric element and at a predetermined distance from the sides of the second and first side surfaces, respectively.
(C) a backing layer attached to the electrode deposited on the second main surface of the piezoelectric element;
(D) a grounding electrode attached to the first electrode at the position of the first side surface of the piezoelectric element;
(E) a flexible printed circuit board attached to the second electrode in front of the groove located on the first main surface by extending from the second side surface of the piezoelectric element and having a distal end bent at a right angle; only containing the two grooves, the piezoelectric total thickness 70-80% of which have a depth ultrasound probe device.
前記溝は、エポキシペーストを塗布して前記電極を前記フレキシブルプリント回路基板又は前記接地用電極に取り付けるための余地を確保する距離で、前記圧電素子の各側面の辺から内側に位置している請求項1に記載の超音波プローブ。  The groove is located on an inner side from a side of each side surface of the piezoelectric element at a distance that secures a room for applying an epoxy paste to attach the electrode to the flexible printed circuit board or the grounding electrode. Item 2. The ultrasonic probe according to Item 1. 前記2つの溝は、前記圧電素子の各側面の辺から1〜1.5mm内側に位置している請求項2に記載の超音波プローブ。  The ultrasonic probe according to claim 2, wherein the two grooves are located 1 to 1.5 mm inside from each side of the piezoelectric element. (A)圧電素子の第1主面と第2主面と第1側面と第2側面との上に電極層を堆積させ、
(B)前記圧電素子の前記第1及び第2主面上であって前記圧電素子の前記側面の辺に対してそれぞれ平行に及び前記圧電素子の前記第2及び第1側面の辺からそれぞれ所定距離だけ離れた位置に2つの溝を形成して、前記電極層を2つの電極へと分離し、
(C)前記圧電素子の前記第2主面上に堆積した前記電極層にバッキング層を取り付け、
(D)前記圧電素子の前記側面の位置で前記第1電極に接地用電極を取り付け、
(E)フレキシブルプリント回路基板を、前記圧電素子の前記第2側面から延ばし、末端部を直角に曲げることにより、第1主面上に位置した前記溝の前で前記第2電極に取り付けることを含み、前記2つの溝は、前記圧電素子の総厚さの70〜80%の深さに形成される超音波プローブの製造方法。
(A) depositing an electrode layer on the first main surface, the second main surface, the first side surface, and the second side surface of the piezoelectric element;
(B) Predetermined on the first and second main surfaces of the piezoelectric element, parallel to the side of the side surface of the piezoelectric element and from the side of the second and first side surface of the piezoelectric element, respectively. Forming two grooves at a distance apart to separate the electrode layer into two electrodes;
(C) attaching a backing layer to the electrode layer deposited on the second main surface of the piezoelectric element;
(D) A grounding electrode is attached to the first electrode at the position of the side surface of the piezoelectric element,
(E) A flexible printed circuit board is attached to the second electrode in front of the groove located on the first main surface by extending from the second side surface of the piezoelectric element and bending the end portion at a right angle. unrealized, the two grooves, the manufacturing method of the ultrasonic probe is formed to a total thickness of 70-80% of the depth of the piezoelectric element.
前記2つの溝は、エポキシペーストを塗布して前記電極を前記フレキシブルプリント回路基板又は前記接地用電極に取り付けるための余地を確保する距離で、前記圧電素子の各側面の辺から内側に形成される請求項4に記載の方法。The two grooves are formed on the inner side from the side of each side surface of the piezoelectric element at a distance that secures a space for applying the epoxy paste to attach the electrode to the flexible printed circuit board or the grounding electrode. The method of claim 4 . 前記2つの溝は、前記圧電素子の各側面の辺から1〜1.5mm内側の位置に形成される請求項5に記載の方法。The method according to claim 5 , wherein the two grooves are formed at a position 1 to 1.5 mm inside from a side of each side surface of the piezoelectric element. 前記エポキシペーストは銀エポキシペーストである請求項5に記載の方法。The method of claim 5 , wherein the epoxy paste is a silver epoxy paste. 前記2つの溝はダイシングソーを用いて形成される請求項4に記載の方法。The method of claim 4 , wherein the two grooves are formed using a dicing saw.
JP2007526959A 2004-05-17 2004-05-17 Ultrasonic probe and manufacturing method thereof Expired - Lifetime JP4486127B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2004/001164 WO2005110235A1 (en) 2004-05-17 2004-05-17 Ultrasonic probe and method for the fabrication thereof

Publications (2)

Publication Number Publication Date
JP2007537818A JP2007537818A (en) 2007-12-27
JP4486127B2 true JP4486127B2 (en) 2010-06-23

Family

ID=35393947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007526959A Expired - Lifetime JP4486127B2 (en) 2004-05-17 2004-05-17 Ultrasonic probe and manufacturing method thereof

Country Status (4)

Country Link
EP (1) EP1765175B1 (en)
JP (1) JP4486127B2 (en)
CN (1) CN100473353C (en)
WO (1) WO2005110235A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106446752B (en) * 2015-08-04 2019-07-02 上海箩箕技术有限公司 Electronic product

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158648A (en) * 1980-05-09 1981-12-07 Tokyo Shibaura Electric Co Ultrasonic diagnostic apparatus
KR830004828A (en) * 1981-03-31 1983-07-20 시바 쇼오이찌 Ultrasonic Diagnostic Device
JPS61112500A (en) * 1984-11-06 1986-05-30 Matsushita Electric Ind Co Ltd Ultrasonic probe
US5423220A (en) * 1993-01-29 1995-06-13 Parallel Design Ultrasonic transducer array and manufacturing method thereof
DE4427798C2 (en) * 1993-08-06 1998-04-09 Toshiba Kawasaki Kk Piezoelectric single crystal and its use in an ultrasonic probe and ultrasonic array probe
US5810009A (en) 1994-09-27 1998-09-22 Kabushiki Kaisha Toshiba Ultrasonic probe, ultrasonic probe device having the ultrasonic probe, and method of manufacturing the ultrasonic probe
US5857974A (en) * 1997-01-08 1999-01-12 Endosonics Corporation High resolution intravascular ultrasound transducer assembly having a flexible substrate
JP4153576B2 (en) * 1997-11-25 2008-09-24 株式会社東芝 Ultrasonic transducer
US20040054287A1 (en) * 2002-08-29 2004-03-18 Stephens Douglas Neil Ultrasonic imaging devices and methods of fabrication

Also Published As

Publication number Publication date
EP1765175A1 (en) 2007-03-28
EP1765175A4 (en) 2017-07-12
CN100473353C (en) 2009-04-01
CN1953710A (en) 2007-04-25
EP1765175B1 (en) 2019-01-16
JP2007537818A (en) 2007-12-27
WO2005110235A1 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP4778003B2 (en) Multilayer ultrasonic transducer and manufacturing method thereof
US9263663B2 (en) Method of making thick film transducer arrays
NL8003428A (en) METHOD FOR MANUFACTURING AN ULTRA-ACOUSTIC TRANSDUCER AND TRANSDUCER OBTAINED BY THIS METHOD
JP2005523816A (en) Ultrasonic membrane transducer
JP2007195138A (en) Piezoelectric vibration device
JP2008522538A (en) Piezoelectric vibrator with multi-action vibrator
US6951135B2 (en) Ultrasonic probe and method for the fabrication thereof
JP5452115B2 (en) Power generation device
JP4630998B2 (en) Speaker device or microphone device
JP4486127B2 (en) Ultrasonic probe and manufacturing method thereof
JP2000014672A (en) Ultrasonic probe and its manufacture
KR100642677B1 (en) Ultrasonic probe and preparing method thereof
JP3362966B2 (en) Piezoelectric single crystal, ultrasonic probe and array type ultrasonic probe
JP2013026682A (en) Medical composite single-crystal piezoelectric vibrator, medical ultrasonic probe, method of manufacturing medical composite single-crystal piezoelectric vibrator, and method of manufacturing medical ultrasonic probe
JP3251727B2 (en) Ultrasonic probe
JP3679957B2 (en) Ultrasonic probe and manufacturing method thereof
JP2001102651A (en) Piezoelectric element, manufacturing method of piezoelectric element and ultrasonic oscillator
JP2001250995A (en) Piezoelectric thin-film element
JP3302124B2 (en) Ultrasonic probe and manufacturing method thereof
JP2001285995A (en) Ultrasonic probe
JP2000340851A (en) Piezoelectric element
JPH0510479Y2 (en)
JPS58176918A (en) Ceramics with electrode
JPS61172546A (en) Ultrasonic probe
JPH0759768A (en) Ultrasonic probe

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4486127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250