JP2000340851A - Piezoelectric element - Google Patents

Piezoelectric element

Info

Publication number
JP2000340851A
JP2000340851A JP11148221A JP14822199A JP2000340851A JP 2000340851 A JP2000340851 A JP 2000340851A JP 11148221 A JP11148221 A JP 11148221A JP 14822199 A JP14822199 A JP 14822199A JP 2000340851 A JP2000340851 A JP 2000340851A
Authority
JP
Japan
Prior art keywords
surface electrode
piezoelectric
piezoelectric material
piezoelectric element
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11148221A
Other languages
Japanese (ja)
Inventor
Mitsuru Asai
満 浅井
Yasuyoshi Saito
康善 斉藤
Hiroaki Makino
浩明 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP11148221A priority Critical patent/JP2000340851A/en
Publication of JP2000340851A publication Critical patent/JP2000340851A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a piezoelectric element which is superior in transfer efficiency of a voltage from a surface electrode to piezoelectric material and can effectively extract inverse piezoelectric effect of the piezoelectric material. SOLUTION: This piezoelectric element has a piezoelectric material 10 and a surface electrode 2 composed of a metal which is directly jointed to the surface of the piezoelectric material 10 without interposing inclusion. The hardness Hv of the surface electrode 2 is at most 500. The thickness of the surface electrode 2 is preferably at most 2 μm. It is preferable that the surface electrode 2 be formed, by using an electroless plating method or a sputtering method or a vapor deposition method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,アクチュエータ等に用いられる
圧電素子に関する。
TECHNICAL FIELD The present invention relates to a piezoelectric element used for an actuator or the like.

【0002】アクチュエータ等に用いられる従来の圧電
素子9は,図6に示すごとく,圧電セラミックス等の圧
電材料10の両面に表面電極としてのAgペースト焼き
付け電極92を配設してなる。そして,Agペースト焼
き付け電極92に取り出し電極3をそれぞれ接触させ
て,外部と電気的導通を図っている。
2. Description of the Related Art As shown in FIG. 6, a conventional piezoelectric element 9 used for an actuator or the like has an Ag paste firing electrode 92 as a surface electrode on both surfaces of a piezoelectric material 10 such as a piezoelectric ceramic. Then, the lead-out electrodes 3 are brought into contact with the Ag paste baked electrodes 92, respectively, to achieve electrical continuity with the outside.

【0003】圧電素子9をアクチュエータとして用いる
場合には,取り出し電極3の間に電圧を付与することに
より,圧電材料10を逆圧電効果により変形させる。こ
の変形力を利用することにより,圧電素子9はアクチュ
エータとして機能する。また,圧電素子9はこれを積層
して用いられる場合もある。また,圧電素子9をセンサ
として利用することもできる。この場合には,圧電素子
9に付与される応力を,上記取り出し電極3から電気的
な出力として取り出す。
When the piezoelectric element 9 is used as an actuator, a voltage is applied between the extraction electrodes 3 to deform the piezoelectric material 10 by an inverse piezoelectric effect. By utilizing this deformation force, the piezoelectric element 9 functions as an actuator. Further, the piezoelectric element 9 may be used by laminating it. Further, the piezoelectric element 9 can be used as a sensor. In this case, the stress applied to the piezoelectric element 9 is extracted from the extraction electrode 3 as an electrical output.

【0004】[0004]

【解決しようとする課題】ところで,上記従来の圧電素
子9においては,次の問題がある。即ち,上記圧電材料
10に配設したAgペースト焼き付け電極92は,Ag
粉とガラスフリット等を含有したAgペーストを塗布し
て焼き付けることにより形成される。そのため,圧電材
料10とAgとの界面に上記ガラスフリット等からなる
高抵抗層が形成される。この高抵抗層は,例えば圧電素
子9をアクチュエータとして利用する際に,Agペース
ト焼き付け電極92を介して圧電材料10に印加される
電圧の伝達効率を悪化させる要因となり,圧電素子1の
圧電特性を低下させる。
However, the conventional piezoelectric element 9 has the following problems. That is, the Ag paste baking electrode 92 disposed on the piezoelectric material 10
It is formed by applying and baking an Ag paste containing powder and glass frit. Therefore, a high-resistance layer made of the glass frit or the like is formed at the interface between the piezoelectric material 10 and Ag. This high-resistance layer becomes a factor of deteriorating the transmission efficiency of the voltage applied to the piezoelectric material 10 via the Ag paste burning electrode 92 when the piezoelectric element 9 is used as an actuator, for example, and the piezoelectric characteristics of the piezoelectric element 1 are reduced. Lower.

【0005】一方,圧電材料10に配設する表面電極
は,逆圧電効果により変形する圧電材料10と密着して
いるので,その変形の抵抗となりうる。この抵抗が大き
くなれば,表面電極から圧電材料10への電圧の伝達効
率が向上しても,表面電極が受ける拘束力により逆圧電
効果による変形が妨げられる。そこで,従来より,Ag
ペースト焼き付け電極よりも圧電材料への電圧伝達性に
優れ,かつ,Agペースト焼き付け電極と同等以上に拘
束力が小さい表面電極を有する圧電素子の開発が望まれ
ていた。
On the other hand, since the surface electrode provided on the piezoelectric material 10 is in close contact with the piezoelectric material 10 which is deformed by the inverse piezoelectric effect, it can be a resistance to the deformation. If this resistance increases, even if the transmission efficiency of the voltage from the surface electrode to the piezoelectric material 10 is improved, deformation due to the inverse piezoelectric effect is hindered by the restraining force applied to the surface electrode. Therefore, conventionally, Ag
There has been a demand for the development of a piezoelectric element having a surface electrode which is superior to the paste-baked electrode in voltage transfer to the piezoelectric material and has a binding force smaller than or equal to that of the Ag paste-baked electrode.

【0006】本発明は,かかる従来の問題点に鑑みてな
されたもので,表面電極から圧電材料への電圧の伝達効
率に優れ,かつ,圧電材料の逆圧電効果を効率よく引き
出すことができる圧電素子を提供しようとするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has been made in view of the above-mentioned problems. It is intended to provide an element.

【0007】[0007]

【課題の解決手段】請求項1の発明は,圧電材料と該圧
電材料の表面に介在物を介することなく直接接合してな
る金属よりなる表面電極を有してなり,該表面電極はそ
の硬さHvが500以下であることを特徴とする圧電素
子にある。
According to a first aspect of the present invention, there is provided a piezoelectric material having a surface electrode made of a metal which is directly bonded to the surface of the piezoelectric material without any intervening material, and the surface electrode is formed of a hard material. The piezoelectric element is characterized in that Hv is 500 or less.

【0008】本発明において最も注目すべきことは,上
記特定の硬度を有する表面電極を,圧電材料の表面に直
接接合した金属により構成したことである。ここで,直
接接合とは,上記のごとく,介在物を介することなく圧
電材料に表面電極を形成させることを意味する。例え
ば,従来のAgペースト焼き付け電極に含有されるガラ
スフリット等の介在物は使用しない。
What is most remarkable in the present invention is that the surface electrode having the specific hardness is made of a metal directly bonded to the surface of a piezoelectric material. Here, the direct bonding means that the surface electrode is formed on the piezoelectric material without any intervening material as described above. For example, no inclusion such as glass frit contained in a conventional Ag paste baking electrode is used.

【0009】また,上記表面電極としては,導電性に優
れた材料であれば,種々の金属(合金を含む)を用いる
ことができる。そして,予め膜状に作製した表面電極材
を圧電材料に接合することもできるし,また,膜状の表
面電極を圧電材料の表面において形成することにより,
表面電極の形成と圧電材料への接合を同時に行うことも
できる。
As the surface electrode, various metals (including alloys) can be used as long as the material has excellent conductivity. In addition, the surface electrode material prepared in a film shape in advance can be bonded to the piezoelectric material, and the film-shaped surface electrode can be formed on the surface of the piezoelectric material.
The formation of the surface electrode and the bonding to the piezoelectric material can be performed simultaneously.

【0010】また,上記表面電極は,その硬さHvが5
00以下となるよう軟らかく設ける。硬さHvが500
を越える場合には,圧電材料の逆圧電効果による変形の
拘束力が大きくなりすぎるという問題がある。
The surface electrode has a hardness Hv of 5
It is provided softly so as to be 00 or less. Hardness Hv is 500
In the case of exceeding, there is a problem that the restraining force of the deformation due to the inverse piezoelectric effect of the piezoelectric material becomes too large.

【0011】また,上記圧電材料としては,例えば,P
ZT(チタン酸ジルコン酸鉛),BaTiO3(チタン
酸バリウム),LiTaO3,SrXBa1-X,Nb
26,PbZrO3,PVDF+PZT,Li2Nb
3,Li247,Tl3VS4等がある。
Further, as the piezoelectric material, for example, P
ZT (lead zirconate titanate), BaTiO 3 (barium titanate), LiTaO 3 , Sr x Ba 1-x , Nb
2 O 6 , PbZrO 3 , PVDF + PZT, Li 2 Nb
O 3 , Li 2 B 4 O 7 , Tl 3 VS 4 and the like.

【0012】次に,本発明の作用効果につき説明する。
本発明の圧電素子においては,上記のごとく,Hv50
0以下の軟らかい表面電極を上記圧電材料に直接接合し
てなる。そのため,表面電極から圧電材料への電圧の伝
達効率を向上させることができ,かつ,圧電材料の逆圧
電効果を阻害することなく効率よく引き出すことができ
る。
Next, the operation and effect of the present invention will be described.
In the piezoelectric element of the present invention, as described above, Hv50
A soft surface electrode of 0 or less is directly bonded to the piezoelectric material. Therefore, the transmission efficiency of the voltage from the surface electrode to the piezoelectric material can be improved, and the piezoelectric material can be efficiently extracted without disturbing the inverse piezoelectric effect.

【0013】即ち,上記表面電極は金属よりなると共に
圧電材料に直接接合されている。そのため,従来のAg
ペースト焼き付け電極の場合に形成されたような高抵抗
層が形成されることがない。そのため,表面電極を介し
て印加される電圧は,表面電極の優れた導電性をそのま
ま生かして効率よく圧電材料に伝達される。
That is, the surface electrode is made of metal and is directly bonded to the piezoelectric material. Therefore, the conventional Ag
There is no formation of a high-resistance layer as in the case of paste-baked electrodes. Therefore, the voltage applied via the surface electrode is efficiently transmitted to the piezoelectric material while taking advantage of the excellent conductivity of the surface electrode.

【0014】また,上記表面電極は硬さHvが500以
下と軟らかい状態で形成されている。そのため,圧電材
料が逆圧電効果による変形を起こす場合に,それに伴っ
て表面電極が変形しやすく,表面電極により拘束される
力が小さくなる。それ故,上記の電圧の伝達効率の向上
と変形拘束力の低下の相乗効果によって,圧電材料の逆
圧電効果を効率よく引き出すことができる。
The surface electrode is formed in a soft state with a hardness Hv of 500 or less. Therefore, when the piezoelectric material is deformed due to the inverse piezoelectric effect, the surface electrode is easily deformed accordingly, and the force restrained by the surface electrode is reduced. Therefore, the inverse piezoelectric effect of the piezoelectric material can be efficiently obtained by the synergistic effect of the improvement of the voltage transmission efficiency and the reduction of the deformation restraining force.

【0015】なお,上記作用効果は上記圧電素子をアク
チュエータとして用いる場合について示した。しかしな
がら,上記構成を有する上記圧電素子は,これをセンサ
として用いる場合においても,表面電極における導電性
の向上および拘束力の低下により,その圧電特性を従来
よりも向上させることができる。
The above operation and effect have been described for the case where the above piezoelectric element is used as an actuator. However, even when the piezoelectric element having the above configuration is used as a sensor, its piezoelectric characteristics can be improved as compared with conventional piezoelectric elements by improving the conductivity of the surface electrode and reducing the binding force.

【0016】次に,請求項2の発明のように,上記表面
電極の厚さは2μm以下であることが好ましい。この場
合には,さらに,上記圧電材料の変形を表面電極により
拘束する力を小さくすることができ,圧電素子の圧電特
性をより一層向上させることができる。
Next, the thickness of the surface electrode is preferably 2 μm or less. In this case, the force for restraining the deformation of the piezoelectric material by the surface electrode can be further reduced, and the piezoelectric characteristics of the piezoelectric element can be further improved.

【0017】また,請求項3の発明のように,上記表面
電極は,無電解メッキ法,スパッタ法,あるいは蒸着法
により形成されていることが好ましい。この場合には,
表面電極自体の形成と,これの圧電材料への接合を同時
に行うことができる。そのため,表面電極の圧電材料へ
の直接接合を容易かつ確実に行うことができる。ここ
で,上記蒸着法としては,いわゆるCVD法,PVD法
等の種々の方法がある。
Further, it is preferable that the surface electrode is formed by an electroless plating method, a sputtering method, or a vapor deposition method. In this case,
It is possible to simultaneously form the surface electrode itself and join it to the piezoelectric material. Therefore, direct bonding of the surface electrode to the piezoelectric material can be easily and reliably performed. Here, as the vapor deposition method, there are various methods such as a so-called CVD method and a PVD method.

【0018】また,請求項4の発明のように,上記表面
電極は,ろう材により構成することもできる。この場合
にも,電圧の伝達効率向上と上記拘束力の低減を図るこ
とができる。ろう材としては,例えば,BAg系(JI
S規格)の合金,BAu,Ni,Pt,Pd,Ru,R
h等を適用することができる。
The surface electrode may be made of a brazing material. Also in this case, it is possible to improve the voltage transmission efficiency and reduce the binding force. As the brazing material, for example, BAg-based (JI
S standard) alloy, BAu, Ni, Pt, Pd, Ru, R
h etc. can be applied.

【0019】[0019]

【発明の実施の形態】実施形態例1 本発明の実施形態例にかかる圧電素子につき,図1を用
いて説明する。本例の圧電素子1は,図1に示すごと
く,圧電材料10と該圧電材料10の表面に介在物を介
することなく直接接合してなる表面電極2よりなり,該
表面電極2はその硬さHvが500以下である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 A piezoelectric element according to an embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, the piezoelectric element 1 of this embodiment comprises a piezoelectric material 10 and a surface electrode 2 directly bonded to the surface of the piezoelectric material 10 without any intervening material, and the surface electrode 2 has a hardness. Hv is 500 or less.

【0020】以下,この圧電素子1について詳説する。
上記圧電材料10としては,PZT(チタン酸ジルコン
酸鉛)よりなる圧電セラミックを用いた。この圧電材料
10の作製は,市販の原料粉末(PE510,富士チタ
ン工業製)を出発原料として用いて行った。まずこの原
料粉末を,直径φ12mm×厚さ0.5mmの円盤状に
成形した。次いで,これを大気中において1200℃×
4時間の条件で焼成した。次に,得られた焼成体の表面
を#600のダイヤモンド砥石により研磨することによ
り,圧電材料10を得た。
Hereinafter, the piezoelectric element 1 will be described in detail.
As the piezoelectric material 10, a piezoelectric ceramic made of PZT (lead zirconate titanate) was used. The production of the piezoelectric material 10 was performed using a commercially available raw material powder (PE510, manufactured by Fuji Titanium Industry Co., Ltd.) as a starting material. First, this raw material powder was formed into a disk shape having a diameter of 12 mm and a thickness of 0.5 mm. Then, this is 1200 ° C. in the atmosphere.
The firing was performed for 4 hours. Next, the surface of the obtained fired body was polished with a # 600 diamond grindstone to obtain a piezoelectric material 10.

【0021】次に,圧電材料10の両面に表面電極2を
配設した。本例では,次の要領で無電解メッキ法を実施
してNiよりなる表面電極2を設けた。 (1)脱脂;温度50℃の処理液(エースクリーンA-22
0,奥野製薬製)に圧電材料10を3分間浸漬した。 (2)エッチング;温度25℃の42%ホウフッ化水素
酸の希釈液に圧電材料10を60秒間浸漬した。 (3)ディスマット;温度25℃のディスマットTY
(スマット除去材)に圧電材料10を2分間浸漬した。
Next, the surface electrodes 2 were provided on both surfaces of the piezoelectric material 10. In the present example, the surface electrode 2 made of Ni was provided by performing electroless plating in the following manner. (1) Degreasing; treatment liquid at a temperature of 50 ° C (A-screen A-22
0, manufactured by Okuno Pharmaceutical Co., Ltd.) for 3 minutes. (2) Etching; The piezoelectric material 10 was immersed in a dilute solution of 42% borofluoric acid at a temperature of 25 ° C. for 60 seconds. (3) Dismat; Dismat TY at 25 ° C
The piezoelectric material 10 was immersed in the (smut removing material) for 2 minutes.

【0022】(4)センシダイザー;温度25℃のセン
シダイザーの処理液に圧電材料10を3分間浸漬した。
ここで,上記センシダイザーの処理液は,不動体表面に
還元力の強い第1スズイオンを吸着させるものである。 (5)アクテベータ;温度25℃のアクテベータの処理
液に圧電材料10を1分間浸漬した。ここで,上記アク
テベータの処理液は,不動体表面に触媒となる金属層を
形成するものである。 (6)センシダイザー;上記(4)と同じ。 (7)アクテベータ;上記(5)と同じ。
(4) Sensidizer: The piezoelectric material 10 was immersed in a processing solution of a sensidizer at a temperature of 25 ° C. for 3 minutes.
Here, the processing liquid of the above-mentioned sensitizer adsorbs stannous ions having strong reducing power on the surface of the passive body. (5) Activator: The piezoelectric material 10 was immersed in an activator treatment solution at a temperature of 25 ° C. for 1 minute. Here, the treatment liquid of the activator forms a metal layer serving as a catalyst on the surface of a passive body. (6) Sensidizer; same as (4) above. (7) Activator; same as (5) above.

【0023】(8)無電解ニッケルメッキ;Pを10%
含有したメッキ浴液ニコロンSA-98-MとニコロンSA-98-1
との混合液を温度90℃に保持し,該混合液よりなるメ
ッキ浴液に圧電材料10を所定時間浸漬することにより
Niメッキ膜を形成した。本例では,メッキ浴液への浸
漬時間を8分として,Niメッキ膜厚,すなわち表面電
極2の厚さを2μmとした。これにより,圧電材料10
とその表面に介在物を介することなく直接接合してなる
表面電極2を設けた圧電素子1(本発明品E1)が得ら
れた。なお,上記表面電極2はその硬さHvが500で
あった。
(8) Electroless nickel plating; P is 10%
Nicolon SA-98-M and Nicolon SA-98-1
Is maintained at a temperature of 90 ° C., and the Ni plating film is formed by immersing the piezoelectric material 10 in a plating bath solution of the mixed solution for a predetermined time. In this example, the immersion time in the plating bath solution was 8 minutes, and the thickness of the Ni plating, that is, the thickness of the surface electrode 2 was 2 μm. Thereby, the piezoelectric material 10
And a piezoelectric element 1 (product E1 of the present invention) provided with a surface electrode 2 directly joined to the surface thereof without any intervening substance. The hardness Hv of the surface electrode 2 was 500.

【0024】次に,本例においては,本発明品E1とし
ての上記圧電材料1の圧電特性の向上効果を評価するた
め,上記表面電極2と同じ厚みのAgペースト焼き付け
電極を有する比較品C1を作製した。この比較品C1
は,ガラスフリット成分を含有したAgペーストを上記
圧電材料10の表面に塗布し,これを焼成することによ
り厚さ2μmのAgペースト焼き付け電極を設けたもの
である。このAgペースト焼き付け電極の硬さHvは3
0であった。
Next, in this example, in order to evaluate the effect of improving the piezoelectric characteristics of the piezoelectric material 1 as the product E1 of the present invention, a comparative product C1 having an Ag paste baked electrode having the same thickness as the surface electrode 2 was used. Produced. This comparative product C1
Is a method in which an Ag paste containing a glass frit component is applied to the surface of the piezoelectric material 10 and baked to provide a 2 μm-thick Ag paste firing electrode. The hardness Hv of this Ag paste baked electrode is 3
It was 0.

【0025】次に,本発明品E1及び比較品C1の圧電
特性として,Kp及び変位量を測定した。Kpは,電気
機械結合係数であり,共振・反共振法より求めた値であ
る。また,変位量は,圧電材料に電圧を印加したときに
逆圧電効果により電圧印加方向に変位する量である。ま
た,Kpはインピーダンスアナライザー(ヒューレット
パッカード4194A)を用いて,変位量は変位測定器
を用いて,印加電圧−200/600V,圧縮応力20
MPa,周波数0.1Hz,温度は25℃の条件で測定
した。
Next, Kp and displacement were measured as piezoelectric characteristics of the product E1 of the present invention and the comparative product C1. Kp is an electromechanical coupling coefficient and is a value obtained by a resonance / anti-resonance method. Further, the displacement amount is a displacement amount in a voltage application direction due to a reverse piezoelectric effect when a voltage is applied to the piezoelectric material. Kp was measured using an impedance analyzer (Hewlett-Packard 4194A), and the displacement was measured using a displacement measuring instrument.
MPa, frequency 0.1 Hz, and temperature were measured at 25 ° C.

【0026】測定の結果,Kpは,本発明品E1が71
%であり,比較品C1が69%であった。また,変位量
は,本発明品E1が0.4μmであり,比較品C1が
0.34μmであった。即ち,本発明品E1はKp,変
位量のいずれにおいても比較品C1よりも優れた結果を
示した。
As a result of the measurement, Kp was 71% for the product E1 of the present invention.
%, And the comparative product C1 was 69%. The displacement was 0.4 μm for the product E1 of the present invention and 0.34 μm for the comparative product C1. That is, the product E1 of the present invention showed superior results to the comparative product C1 in both Kp and displacement.

【0027】この理由は次のように考えられる。即ち,
本発明品E1の表面電極2は,導電性に優れたNiメッ
キ膜よりなると共に,上記のごとく,圧電材料10に直
接接合されている。そのため,比較例C1のAgペース
ト焼き付け電極の場合のような高抵抗層が表面電極2と
圧電材料10との間に存在しない。そのため,表面電極
2から圧電材料10への電圧の伝達効率を従来よりも向
上させることができる。
The reason is considered as follows. That is,
The surface electrode 2 of the product E1 of the present invention is made of a Ni plating film having excellent conductivity, and is directly bonded to the piezoelectric material 10 as described above. Therefore, there is no high resistance layer between the surface electrode 2 and the piezoelectric material 10 as in the case of the Ag paste baked electrode of Comparative Example C1. Therefore, the transmission efficiency of the voltage from the surface electrode 2 to the piezoelectric material 10 can be improved as compared with the related art.

【0028】また,上記表面電極2は,硬さHvが50
0以下と比較的軟らかい状態で形成されている。そのた
め,圧電材料10の逆圧電効果による変形を表面電極2
により拘束する力をAgペースト焼き付け電極なみに小
さくすることができる。それ故,本発明品E1は,表面
電極2における電圧の伝達効率の向上と変形拘束力の低
下によって,電圧の伝達効率が低いAgペースト焼き付
け電極を用いた比較品C1に比べて,圧電材料10の逆
圧電効果をより効率よく引き出すことができる。
The surface electrode 2 has a hardness Hv of 50.
It is formed in a relatively soft state of 0 or less. Therefore, the deformation of the piezoelectric material 10 due to the reverse piezoelectric effect
Thus, the restraining force can be made as small as that of the Ag paste baking electrode. Therefore, the product E1 of the present invention has the piezoelectric material 10 compared with the comparative product C1 using the Ag paste baked electrode having a low voltage transmission efficiency due to the improvement of the voltage transmission efficiency at the surface electrode 2 and the reduction of the deformation restraining force. The reverse piezoelectric effect can be more efficiently obtained.

【0029】実施形態例2 本例では,図2,図3に示すごとく,実施形態例1の圧
電素子1における,表面電極2の厚さと圧電特性の関係
を定量的に評価した。具体的には,実施形態例1におけ
る(8)無電解ニッケルメッキ処理において,メッキ浴
液への浸漬時間を4分,8分,18分と変えてメッキ膜
厚(表面電極2の厚さ)を1μm,2μm,4μmと変
化させた圧電素子をそれぞれ作製した。得られた表面電
極2の硬さはすべてHv500である。表面電極2の厚
さが1μmのものを試料E21,2μmのものを試料E
22,4μmのものを試料E23とする。
Embodiment 2 In this embodiment, as shown in FIGS. 2 and 3, the relationship between the thickness of the surface electrode 2 and the piezoelectric characteristics of the piezoelectric element 1 of Embodiment 1 was quantitatively evaluated. Specifically, in the (8) electroless nickel plating treatment in the first embodiment, the plating film thickness (thickness of the surface electrode 2) was changed by changing the immersion time in the plating bath solution to 4 minutes, 8 minutes, and 18 minutes. Were changed to 1 μm, 2 μm, and 4 μm, respectively. The hardness of all the obtained surface electrodes 2 is Hv500. Sample E21 having a surface electrode 2 having a thickness of 1 μm and sample E having a thickness of 2 μm
A sample having a size of 22.4 μm is designated as Sample E23.

【0030】各圧電素子の圧電特性としては,Kp及び
変位量を測定した。測定の条件は,実施形態例1と同様
とした。
As the piezoelectric characteristics of each piezoelectric element, Kp and displacement were measured. The measurement conditions were the same as in the first embodiment.

【0031】圧電特性の測定結果を図2及び図3に示
す。図2は,横軸に表面電極2の厚さ(μm)を,縦軸
にKp(%)をとったものである。図3は,横軸に表面
電極2の厚さ(μm)を,縦軸に変位量(μm)をとっ
たものである。図2及び図3より知られるごとく,表面
電極2の厚みを2μm以下にすることにより,Kp及び
変位量により示される圧電特性をより一層向上させるこ
とができることが分かった。
FIGS. 2 and 3 show the measurement results of the piezoelectric characteristics. FIG. 2 shows the thickness (μm) of the surface electrode 2 on the horizontal axis and Kp (%) on the vertical axis. In FIG. 3, the horizontal axis represents the thickness (μm) of the surface electrode 2 and the vertical axis represents the displacement (μm). As is known from FIGS. 2 and 3, it was found that by setting the thickness of the surface electrode 2 to 2 μm or less, the piezoelectric characteristics indicated by Kp and the amount of displacement can be further improved.

【0032】実施形態例3 本例では,図4,図5に示すごとく,実施形態例1の圧
電素子1における,表面電極2の硬さと圧電特性の関係
を定量的に評価した。具体的には,厚さを1μm又は2
μmとし,硬さをHv15〜800の範囲で変化させた
4種類の圧電素子を作製し,その圧電特性を測定した。
準備した圧電素子は,表面電極以外の部分は実施形態例
1と同様である。
Embodiment 3 In this embodiment, as shown in FIGS. 4 and 5, in the piezoelectric element 1 of Embodiment 1, the relationship between the hardness of the surface electrode 2 and the piezoelectric characteristics was quantitatively evaluated. Specifically, the thickness is 1 μm or 2 μm.
Four types of piezoelectric elements were manufactured in which the hardness was set to μm and the hardness was changed in the range of Hv 15 to 800, and the piezoelectric characteristics were measured.
The portion of the prepared piezoelectric element other than the surface electrode is the same as that of the first embodiment.

【0033】準備した圧電素子における表面電極の特徴
は次のとおりである。 (本発明品E31);硬さHv=15,厚さ1μmの金
蒸着膜。金は,イオンコーターにより製膜した。 (本発明品E32);硬さHv=35,厚さ2μmの銀
と銅の合金膜を拡散接合したもの。
The characteristics of the surface electrode in the prepared piezoelectric element are as follows. (Product E31 of the present invention); a gold vapor-deposited film having a hardness of Hv = 15 and a thickness of 1 μm. Gold was formed by an ion coater. (Product E32 of the present invention); diffusion-bonded alloy film of silver and copper having a hardness of Hv = 35 and a thickness of 2 μm.

【0034】(本発明品E33);硬さHv=40,厚
さ2μmの無電解Cuメッキ膜。この場合の無電解メッ
キは,実施形態例1における上記(1)〜(7)と同様
の処理を行った後,OPCカッパーT-1とOPCカッパ
ーT-2とOPCカッパーT-3(いずれも奥野製薬製)の混
合液をメッキ浴液として用いて無電解メッキを行った。
無電解メッキ条件は,メッキ浴液の温度が60℃,浸漬
時間が30分という条件とした。
(Product E33 of the present invention): An electroless Cu plating film having a hardness of Hv = 40 and a thickness of 2 μm. In the electroless plating in this case, after performing the same processing as the above (1) to (7) in the first embodiment, the OPC copper T-1, the OPC copper T-2, and the OPC copper T-3 (all) Electroless plating was performed using a mixed solution of Okuno Pharmaceutical Co., Ltd.) as a plating bath solution.
The electroless plating conditions were such that the temperature of the plating bath was 60 ° C. and the immersion time was 30 minutes.

【0035】(本発明品E34);硬さHv=500,
厚さ2μmの無電解Niメッキ膜。実施形態例1と同じ
である。 (比較品C31);硬さHv=600,厚さ2μmの無
電解Niメッキ膜。メッキ浴液のP含有量を6%のメッ
キ浴液を用いてメッキ膜の硬度を高めたものである。メ
ッキ浴液は,Pを6%含有したICPニコロンUSD-MとICP
ニコロンUSD-1(奥野製薬製)の混合液である。
(E34 of the invention); hardness Hv = 500,
An electroless Ni plating film having a thickness of 2 μm. This is the same as the first embodiment. (Comparative product C31): An electroless Ni plating film having a hardness of Hv = 600 and a thickness of 2 μm. The hardness of the plating film is increased by using a plating bath solution having a P content of 6% in the plating bath solution. The plating bath solution was ICP Nicoron USD-M containing 6% P and ICP
Nicolon USD-1 (Okuno Pharmaceutical).

【0036】(比較品C32);硬さHv=800,厚
さ2μmの無電解Niメッキ膜。メッキ浴液のP含有量
を0とし,Bの含有量を0.5%としてさらにメッキ膜
の硬度を高めたものである。メッキ浴液は,B(ボロ
ン)を0.5%含有したケミアロイ66-Mとケミアロイ66
-1(奥野製薬製)の混合液である。
(Comparative product C32): An electroless Ni plating film having a hardness of Hv = 800 and a thickness of 2 μm. The hardness of the plating film is further increased by setting the P content of the plating bath solution to 0 and the B content to 0.5%. The plating bath solutions were Chemialloy 66-M and Chemialloy 66 containing 0.5% B (boron).
-1 (Okuno Pharmaceutical).

【0037】次に,各圧電素子(E31〜E34,C3
1,C32)の圧電特性の測定結果を図4及び図5に示
す。図4は,横軸に表面電極2の硬さ(Hv)を,縦軸
にKp(%)をとったものである。図5は,横軸に表面
電極2の硬さ(Hv)を,縦軸に変位量(μm)をとっ
たものである。図4及び図5より知られるごとく,表面
電極2の硬さをHv=500以下にすることにより,K
p及び変位量により示される圧電特性を向上させること
ができることが分かる。
Next, each of the piezoelectric elements (E31 to E34, C3
1, and C32) are shown in FIGS. 4 and 5. FIG. 4 shows the hardness (Hv) of the surface electrode 2 on the horizontal axis and Kp (%) on the vertical axis. FIG. 5 shows the hardness (Hv) of the surface electrode 2 on the horizontal axis and the displacement (μm) on the vertical axis. As is known from FIGS. 4 and 5, by setting the hardness of the surface electrode 2 to Hv = 500 or less, K
It can be seen that the piezoelectric characteristics indicated by p and the amount of displacement can be improved.

【0038】実施形態例4 本例は,実施形態例1における無電解Niメッキ膜より
なる表面電極2に代えて,ろう材よりなる表面電極を用
いた例である。即ち,図1における表面電極2として,
圧電材料10の表面に介在物を介することなくろう材を
直接接合してなる金属により構成した。即ち,BAg系
(JIS)のAgが79%,Cuが21%の合金よりな
るろう材を用いて表面電極を形成した。
Embodiment 4 This embodiment is an example in which a surface electrode made of a brazing material is used instead of the surface electrode 2 made of an electroless Ni plating film in the first embodiment. That is, as the surface electrode 2 in FIG.
The piezoelectric material 10 was made of a metal obtained by directly joining a brazing material to the surface of the piezoelectric material 10 without any intervening material. That is, the surface electrode was formed using a brazing alloy made of a BAg-based (JIS) alloy of 79% Ag and 21% Cu.

【0039】まず,実施形態例1と同様にして圧電材料
10を作製した。次いで,圧電材料10の両面に,BA
g粉末を樹脂と混合してペースト状にし,それをスクリ
ーン印刷により印刷した。その後,大気中で700℃×
10分で焼き付けて樹脂成分を除去して,拡散接合して
表面電極を設けた。得られた表面電極の厚さは2μm,
硬さHvは35であった。
First, a piezoelectric material 10 was manufactured in the same manner as in the first embodiment. Next, on both sides of the piezoelectric material 10, BA
g powder was mixed with a resin to form a paste, which was printed by screen printing. Then, in the air at 700 ℃
The resin component was removed by baking for 10 minutes, and diffusion bonding was performed to provide a surface electrode. The thickness of the obtained surface electrode is 2 μm,
Hardness Hv was 35.

【0040】次に,得られた圧電素子(本発明品E4と
する)の圧電特性として,実施形態例1と同様にKp及
び変位量を測定した。その結果,本発明品E4のKpは
71%,変位量は0.4μmであった。この特性は,実
施形態例1に示した比較品C1と比べて非常に優れたも
のとなった。
Next, as the piezoelectric characteristics of the obtained piezoelectric element (referred to as the product E4 of the present invention), Kp and displacement were measured in the same manner as in the first embodiment. As a result, the product E4 of the present invention had a Kp of 71% and a displacement of 0.4 μm. This characteristic was much better than the comparative product C1 shown in the first embodiment.

【0041】[0041]

【発明の効果】上述のごとく,本発明によれば,表面電
極から圧電材料への電圧の伝達効率に優れ,かつ,圧電
材料の逆圧電効果を効率よく引き出すことができる圧電
素子を提供することができる。
As described above, according to the present invention, it is possible to provide a piezoelectric element which is excellent in voltage transmission efficiency from a surface electrode to a piezoelectric material and can efficiently extract the inverse piezoelectric effect of the piezoelectric material. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1における,圧電素子の構成を示す
説明図。
FIG. 1 is an explanatory diagram illustrating a configuration of a piezoelectric element according to a first embodiment.

【図2】実施形態例2における,表面電極の厚さとKp
との関係を示す説明図。
FIG. 2 shows the thickness of the surface electrode and Kp in Embodiment 2;
FIG.

【図3】実施形態例2における,表面電極の厚さと変位
量との関係を示す説明図。
FIG. 3 is an explanatory diagram showing a relationship between a thickness of a surface electrode and an amount of displacement in a second embodiment.

【図4】実施形態例3における,表面電極の硬さとKp
との関係を示す説明図。
FIG. 4 shows the hardness of the surface electrode and Kp in Embodiment 3;
FIG.

【図5】実施形態例3における,表面電極の硬さと変位
量との関係を示す説明図。
FIG. 5 is an explanatory diagram showing the relationship between the hardness of a surface electrode and the amount of displacement in a third embodiment.

【図6】従来例における,圧電素子の構成を示す説明
図。
FIG. 6 is an explanatory diagram showing a configuration of a piezoelectric element in a conventional example.

【符号の説明】[Explanation of symbols]

1...圧電素子, 10...圧電材料, 2...表面電極, 3...取り出し電極, 1. . . 10. piezoelectric element, . . 1. Piezoelectric material, . . 2. surface electrode; . . Extraction electrode,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧野 浩明 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hiroaki Makino 41-41, Yokomichi, Nagakute-cho, Aichi-gun, Aichi-gun

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧電材料と該圧電材料の表面に介在物を
介することなく直接接合してなる金属よりなる表面電極
を有してなり,該表面電極はその硬さHvが500以下
であることを特徴とする圧電素子。
1. A surface electrode comprising a piezoelectric material and a metal directly joined to the surface of the piezoelectric material without any intervening material, wherein the surface electrode has a hardness Hv of 500 or less. A piezoelectric element characterized by the above-mentioned.
【請求項2】 請求項1において,上記表面電極の厚さ
は2μm以下であることを特徴とする圧電素子。
2. The piezoelectric element according to claim 1, wherein the thickness of the surface electrode is 2 μm or less.
【請求項3】 請求項1又は2において,上記表面電極
は,無電解メッキ法,スパッタ法,あるいは蒸着法によ
り形成されていることを特徴とする圧電素子。
3. The piezoelectric element according to claim 1, wherein the surface electrode is formed by an electroless plating method, a sputtering method, or a vapor deposition method.
【請求項4】 請求項1において,上記表面電極は,ろ
う材により構成してあることを特徴とする圧電素子。
4. The piezoelectric element according to claim 1, wherein the surface electrode is made of a brazing material.
JP11148221A 1999-05-27 1999-05-27 Piezoelectric element Pending JP2000340851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11148221A JP2000340851A (en) 1999-05-27 1999-05-27 Piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11148221A JP2000340851A (en) 1999-05-27 1999-05-27 Piezoelectric element

Publications (1)

Publication Number Publication Date
JP2000340851A true JP2000340851A (en) 2000-12-08

Family

ID=15447995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11148221A Pending JP2000340851A (en) 1999-05-27 1999-05-27 Piezoelectric element

Country Status (1)

Country Link
JP (1) JP2000340851A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149858A (en) * 2005-11-25 2007-06-14 Seiko Epson Corp Piezoelectric element, liquid jet head using the same, and liquid jet device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149858A (en) * 2005-11-25 2007-06-14 Seiko Epson Corp Piezoelectric element, liquid jet head using the same, and liquid jet device

Similar Documents

Publication Publication Date Title
EP2056442B1 (en) Piezoelectric actuator element for ultrasonic motor
JP4730126B2 (en) Bulk acoustic wave resonance element, manufacturing method thereof, and filter circuit
US6844659B2 (en) Wiring board and method of manufacturing same
JP2006510222A (en) Method for manufacturing ferroelectric single crystal film structure
JP2000340851A (en) Piezoelectric element
JPH06232466A (en) Piezoelectric laminated body
JP4359915B2 (en) Piezoelectric ceramic vibrator and piezoelectric resonator
JP5032791B2 (en) Manufacturing method of electronic parts
JP2001250995A (en) Piezoelectric thin-film element
JP3138190B2 (en) Composite piezoelectric body and composite piezoelectric vibrator
JP2022010828A (en) Vibration power generation element
JP4486127B2 (en) Ultrasonic probe and manufacturing method thereof
JP2826078B2 (en) Piezoelectric / electrostrictive film type actuator
JPH08125245A (en) Piezo-electric element
JPH07298395A (en) Ultrasonic transducer and its manufacture
JPH10117397A (en) Piezoelectric speaker
JP3480561B2 (en) Piezoelectric / electrostrictive element
JPWO2021055324A5 (en) surface acoustic wave devices and their manufacturing methods;
JPH05259525A (en) Piezoelectric element
JPH02132870A (en) Laminated piezoelectric element
JPH11108951A (en) Piezoelectric element
JPS58176918A (en) Ceramics with electrode
JPH07298396A (en) Ultrasonic transducer and its manufacture
JPS6133504B2 (en)
JP2006228783A (en) Piezoelectric thin film element