JP4353229B2 - 燃料噴射制御装置 - Google Patents

燃料噴射制御装置 Download PDF

Info

Publication number
JP4353229B2
JP4353229B2 JP2006267898A JP2006267898A JP4353229B2 JP 4353229 B2 JP4353229 B2 JP 4353229B2 JP 2006267898 A JP2006267898 A JP 2006267898A JP 2006267898 A JP2006267898 A JP 2006267898A JP 4353229 B2 JP4353229 B2 JP 4353229B2
Authority
JP
Japan
Prior art keywords
amount
internal combustion
combustion engine
oxygen
fresh air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006267898A
Other languages
English (en)
Other versions
JP2008088838A (ja
Inventor
洋平 森本
寛 原口
昭和 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006267898A priority Critical patent/JP4353229B2/ja
Priority to US11/902,870 priority patent/US7574298B2/en
Priority to DE102007000797.5A priority patent/DE102007000797B4/de
Publication of JP2008088838A publication Critical patent/JP2008088838A/ja
Application granted granted Critical
Publication of JP4353229B2 publication Critical patent/JP4353229B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/28Control for reducing torsional vibrations, e.g. at acceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、排気中の空燃比がリーンであるときに窒素酸化物を吸蔵し、該空燃比がリッチであるときに窒素酸化物を放出する吸蔵剤を備える内燃機関について、該内燃機関の燃料噴射弁を操作することで燃料噴射制御を行う燃料噴射制御装置に関する。
この種の燃料噴射制御装置としては、例えば下記特許文献1に見られるように、吸蔵剤に吸蔵されている窒素酸化物(NOx)量が所定以上となるとき、ガソリン機関の空燃比を一時的にリッチとし、吸蔵剤からNOxを放出させるとともに放出されたNOxを還元浄化させるものも提案されている。また、この制御装置では、空燃比をリッチとする際のトルク変動を抑制すべく、点火時期を遅角操作するようにしている。
特開平6−108824号公報
ただし、ガソリン機関の燃焼状態を良好に維持する観点から、点火時期の遅角量に制約が生じる。更に、ディーゼル機関においては、空燃比をリッチとする際のトルクの変動を抑制すべく、噴射時期を遅角させることが考えられるが、この場合にも、ディーゼル機関の燃焼状態を良好に保つ観点から、噴射時期の遅角量に制約が生じる。特にリッチ燃焼時にはディーゼル機関の燃焼状態が不安定化するため、噴射時期を遅角することで失火を招くおそれがある。
本発明は、上記課題を解決するためになされたものであり、その目的は、吸蔵剤から窒素酸化物を放出させるべく空燃比をリッチ化する処理を、トルク変動をより適切に抑制しつつ行うことのできる燃料噴射制御装置を提供することにある。
以下、上記課題を解決するための手段、及びその作用効果について記載する。
請求項1記載の発明は、排気中の空燃比がリーンであるときに窒素酸化物を吸蔵し、該空燃比がリッチであるときに窒素酸化物を放出する吸蔵剤を備える内燃機関について、該内燃機関の燃料噴射弁を操作することで燃料噴射制御を行う燃料噴射制御装置において、前記吸蔵剤から前記窒素酸化物を放出させることが所望される条件下、前記内燃機関の吸気系に吸入される新気量を低減させる新気量低減手段と、前記新気量の低減に際し、前記内燃機関の燃焼室に流入する酸素量の漸減に応じて前記燃料噴射弁の噴射量を漸増させる噴射量漸増手段とを備え、前記噴射量漸増手段は、前記燃焼室に流入する酸素量を推定する手段を備え、該推定される酸素量、前記内燃機関の回転速度、及び要求トルクを定めるパラメータに基づき前記噴射量を漸増させる処理を行うことを特徴とする。
新気量を低減させる処理をしたとしても、実際に燃焼室に流入する新気量が低減するまでには応答遅れがある。このため、新気量の低減にかかる操作がなされると、燃焼室に流入する酸素量は、漸減することとなる。したがって、新気量の低減にかかる操作と同時に噴射量を一気に増大させたのでは、噴射量の増大に起因した出力トルクの増大を招く。この点、上記構成では、燃焼室に流入する酸素量の漸減に応じて噴射燃料量を漸増させるために、一時的に酸素量が十分にある状況で燃料量が増加する現象が生じることを好適に回避することができる。そして、漸減する都度の酸素量にとってトルクを増大させない程度の燃料量を噴射することができる。
また、上記構成では、燃焼室に流入する酸素量を推定する手段を備えるために、酸素量の漸減に応じた噴射燃料量の漸増にかかる処理を好適に行うことができる。
一方、リッチ燃焼状態にあっては、燃料の燃焼に利用される酸素の利用率が回転変動によって変動するために、噴射量によっては出力トルクが一義的に定まらない。上記構成では、この点に着目し、回転速度に応じて噴射量を漸増させるために、出力トルクの変動をより好適に抑制することができる。
請求項2記載の発明は、排気中の空燃比がリーンであるときに窒素酸化物を吸蔵し、該空燃比がリッチであるときに窒素酸化物を放出する吸蔵剤を備える内燃機関について、該内燃機関の燃料噴射弁を操作することで燃料噴射制御を行う燃料噴射制御装置において、前記吸蔵剤から前記窒素酸化物を放出させることが所望される条件下、前記内燃機関の吸気系に吸入される新気量を低減させる新気量低減手段と、前記新気量の低減に際し、前記内燃機関の燃焼室に流入する酸素量の漸減に応じて前記燃料噴射弁の噴射量を漸増させる噴射量漸増手段とを備え、前記噴射量漸増手段は、前記酸素量の漸減に応じた前記噴射量の漸増処理を、前記内燃機関の回転速度及び前記内燃機関に対する要求トルクに基づき前記噴射量を直線的に漸増させるか、または漸増曲線に基づき漸増させるかすることで行うを特徴とする。
新気量を低減させる処理をしたとしても、実際に燃焼室に流入する新気量が低減するまでには応答遅れがある。このため、新気量の低減にかかる操作がなされると、燃焼室に流入する酸素量は、漸減することとなる。したがって、新気量の低減にかかる操作と同時に噴射量を一気に増大させたのでは、噴射量の増大に起因した出力トルクの増大を招く。この点、上記構成では、燃焼室に流入する酸素量の漸減に応じて噴射燃料量を漸増させるために、一時的に酸素量が十分にある状況で燃料量が増加する現象が生じることを好適に回避することができる。そして、漸減する都度の酸素量にとってトルクを増大させない程度の燃料量を噴射することができる。
また、上述したように、新気量の低減にかかる操作によって燃焼室内に流入する酸素量は漸減する。ここで、リッチ燃焼時には燃料の燃焼に利用される酸素の利用率が回転速度に応じて変化するため、出力トルクを変化させないための燃料量は、酸素量によって一義的には定まらない。この点、上記構成では、酸素の利用率を定めるパラメータである回転速度に基づき噴射量の漸増処理を行うために、出力トルクを変動させないうえで適切な態様にて噴射量の漸増処理をすることができる。
請求項3記載の発明は、請求項1又は2記載の発明において、前記噴射量漸増手段は、前記内燃機関の燃焼室に流入する酸素量が漸減する期間内に噴射量の漸増を完了させることを特徴とする。
上記構成では、出力トルクの変動を好適に抑制しつつも、内燃機関の空燃比を、吸蔵剤から前記窒素酸化物を放出させるリッチ燃焼制御による所望の値に迅速に移行させることができる。
請求項記載の発明は、請求項1〜のいずれかに記載の発明において、前記新気量低減手段は、前記内燃機関の新気量を調節するアクチュエータの操作量の指令値及び前記新気量の目標値の少なくとも一方をステップ状に変化させることで前記新気量を低減させる処理を行うことを特徴とする。
上記構成では、上記操作量の指令値や新気量の目標値をステップ状に変化させるために、燃焼室に流入される酸素量をリッチ燃焼時の所望の酸素量に極力迅速に制御することができる。このため、リッチ燃焼期間を極力短縮することができる。
(第1の実施形態)
以下、本発明にかかる内燃機関の燃料噴射制御装置を車載ディーゼル機関の燃料噴射制御装置に適用した第1の実施形態について、図面を参照しつつ説明する。
図1に、本実施形態にかかるエンジンシステムの全体構成を示す。
図示されるように、ディーゼル機関10の吸気通路12の上流には、エアクリーナ14、エアフローメータ16、クーラ18、スロットルバルブ20等が設けられている。また、吸気通路12のうちスロットルバルブ20の下流には、吸気温センサ22及び吸気圧センサ24が設けられている。吸気通路12は、マニホールド25を介して各気筒(ここでは、1番気筒#1〜4番気筒#4の4気筒を例示)の燃焼室26と連通可能とされている。これら燃焼室26には、コモンレール28に蓄えられた高圧の燃料が燃料噴射弁30を介して噴射される。これにより、燃焼室26内の燃料と空気との混合気が燃焼に供され、ディーゼル機関10の回転力が生成される。
一方、燃焼に供された空気である排気は、排気通路32に排出される。排気通路32には、排気中の酸素濃度を検出する酸素濃度センサ34が設けられている。また、排気通路32には、酸化触媒36や、窒素酸化物(NOx)を吸蔵及び還元するためのNOx吸蔵還元触媒38が設けられている。
また、吸気通路12と排気通路32とには、これらを連通可能とする排気還流通路(EGR通路40)が設けられており、吸気通路12とEGR通路40との間の流路面積がEGRバルブ42によって調節可能となっている。
上記エンジンシステムは、ディーゼル機関10の運転状態を検出するセンサとして、上述したものに加えて、ディーゼル機関10のクランク軸の回転角度を検出するクランク角センサ44等を備えている。また、エンジンシステムは、アクセルペダルの操作量を検出するアクセルセンサ46等、ユーザによる要求を検出する各種センサを備えている。
電子制御装置(ECU50)は、ディーゼル機関10の運転状態やユーザの要求を検出する各種センサの検出値に基づき、燃料噴射弁30等の各種アクチュエータを操作することで、ディーゼル機関10の出力特性(出力トルク、排気特性)を制御する。
上記出力制御として、基本的には、燃焼室26内に流入する空気量(酸素量)が過剰な状態で燃焼制御を行ういわゆるリーン燃焼制御を行う。そして、この際、排気中に排出されるNOxは、NOx吸蔵還元触媒38に吸蔵される。そして、NOx吸蔵還元触媒38に吸蔵されたNOx量が所定以上となると、一時的にリッチ燃焼制御を行う。これにより、NOx吸蔵還元触媒38内に吸蔵されたNOxが放出され、且つ放出されたNOxを排気中の未燃燃料によって還元浄化される。
詳しくは、このリッチ燃焼制御は、燃料噴射量の増量と吸気通路12内に吸入される空気量(新気量)の低減とによって実現される。ここで、新気量の低減は、スロットルバルブ20の開度の低減操作とEGRバルブ42の開度の増大操作とからなる。ただし、スロットルバルブ20の開度の低減操作及びEGRバルブ42の開度の増大操作を行なったとしても、燃焼室26内に実際に流入する酸素量が低減するのには応答遅れが生じる。すなわち、上記操作をステップ状に行ったとしても燃焼室26内に流入する酸素量は漸減する。これに対し、噴射量を増量する操作は、上記流入酸素量の変化と比較して迅速に行うことが可能である。このため、リッチ燃焼制御への切り替えに際しては、酸素量の低減量に比較して噴射量の増量量が過大となり、噴射量の増量に起因して出力トルクが増大するおそれがある。
そこで本実施形態では、燃焼室26内に流入する酸素量の漸減に応じて噴射量を漸増させることで、出力トルクの増大の回避を図る。図2に、本実施形態にかかるリッチ燃焼制御の処理を示す。
吸気量目標値設定部B2は、ディーゼル機関10の回転速度と負荷とに関する情報に基づき、吸気量の目標値(目標吸気量)を設定する部分である。本実施形態では、負荷として、要求トルクDTを用いる。ここで、要求トルクは、アクセルペダルの操作量と回転速度によって定まるものとすればよい。
偏差算出部B4は、エアフローメータ16によって検出される吸入空気量MAFと、目標空気量との差ΔMを算出する部分である。そして、スロットル開度設定部B6は、差ΔMに基づき吸入空気量MAFを目標空気量にフィードバック制御するための操作量(スロットルバルブ20の開度θth)を設定する部分である。ここでは、例えば差ΔMに基づく比例項等に基づき、開度θthを設定すればよい。
EGRバルブ開度設定部B8は、ディーゼル機関10の回転速度と負荷とに関する情報に基づき、EGRバルブ42の開度θegを設定する部分である。本実施形態では、負荷として、要求トルクDTを用いる。
吸気酸素量推定部B10は、ディーゼル機関10内における気体の流通態様のモデルを用いて、ディーゼル機関10の運転状態に基づき吸気中の酸素量を予測する部分である。ここで推定に用いるディーゼル機関10の運転状態に関するパラメータとしては、吸気通路12に吸入される吸気についての物理量がある。本実施形態では、エアフローメータ16によって検出される吸入空気量、吸気温センサ22によって検出される吸気温、及び吸気圧センサ24によって検出される吸気圧に基づき推定を行う場合を例示する。
排気酸素濃度予測部B12は、吸気酸素量推定部B10によって推定されるシリンダ流入酸素量や、この推定に際して算出される燃焼室26内に流入される気体の質量流量(シリンダ流入ガス量Mcld)、更には、燃料噴射弁30に対する噴射量の指令値(指令噴射量)に基づき、ディーゼル機関10の運転状態に基づき排気中の酸素濃度の推定値である推定酸素濃度Ceを算出する部分である。
誤差算出部B14は、酸素濃度センサ34の検出する酸素濃度と推定酸素濃度Ceとの差ΔCを算出する部分である。
モデル誤差学習部B16では、上記差ΔCに基づき、モデル誤差学習値LMを学習し、且つモデル誤差を補償すべく推定酸素濃度Ceを補正する部分である。すなわち、モデル誤差学習部B16の出力するモデル誤差学習値LMと推定酸素濃度Ceとの和が推定値補正部B18によって算出される。この推定値補正部B18の出力に基づき、上記吸気酸素量推定部B10では、シリンダ流入酸素量O2cldを算出する。
ここで、吸気酸素量推定部B10の行う処理について、図3を用いて詳述する。この処理は、ECU50により、例えば所定周期で繰り返し実行される。
この一連の処理では、まずステップS10において、上記シリンダ流入ガス量Mcldを算出する。ここではまず、吸気圧Pm及び回転速度NEから体積効率をマップ演算する。そして、吸気温Tm、吸気圧Pm及び体積効率を用いて気体の状態方程式からシリンダ流入ガス量Mcldを算出する。
続くステップS12においては、例えば回転速度NE、吸入空気量MAF、吸気圧Pm及び吸気温Tmに基づき、マニホールド25に流入する新気量を算出する。ここでは、例えば以下のようにして新気量を算出する。エアフローメータ16からスロットルバルブ20までの吸気通路12内の容積VINについて、同容積VIN内の圧力を上記吸気圧Pmで代用する。そして、吸気圧Pmに基づき、同容積VIN内の圧力の変化量ΔPを算出する。この変化量ΔPの算出されるタイムスケールにおける吸気通路12内の質量保存則を用いると、上記マニホールド25に流入する新気量Mmは、下記の式によって算出することができる。
MAF−Mm=ΔP×VIN/(Tm×R)
続くステップS14においては、例えば上記変化量ΔP、吸気温Tm、上記シリンダ流入ガス量Mcld、上記新気量Mm、及びマニホールド25の容積Vmに基づき、EGR通路40を介してマニホールド25に流入する排気量(EGR量Megr)を算出する。ここでは、マニホールド25における質量保存則から、下記の式にてEGR量Megrを算出する。
Mm+Megr−Mcld=ΔP×Vm/(Tm×R)
続くステップS16においては、例えばEGR量Megr、シリンダ流入ガス量Mcld、新気量Mm及び上記推定酸素濃度Ce等に基づき、燃焼室26内に流入する気体中の酸素濃度を算出する。ここで、推定酸素濃度Ceは、EGR中の酸素濃度として用いられる。これにより、新気がEGRと合流した後の酸素濃度を算出することができる。そして、この酸素濃度にシリンダ流入ガス量Mcldを乗算することで、燃焼室26内に流入する酸素量を算出することができる。
なお、ステップS16の処理が完了すると、この一連の処理を一旦終了する。
先の図2に示す噴射量設定部B20は、アクセルペダルの操作量、回転速度及びシリンダ流入酸素量O2cldに基づき、燃料噴射弁30に対する噴射量の指令値(指令噴射量)を設定する部分である。
図4に、本実施形態にかかるリッチ燃焼制御の処理手順を示す。この処理は、ECU50により、例えば所定周期で繰り返し実行される。
この一連の処理では、まずステップS20において、リッチ燃焼制御条件が成立したか否かを判断する。ここでは、NOx吸蔵還元触媒38に吸蔵されるNOx量が所定以上となって且つ、ディーゼル機関10が定常運転状態にあることを条件の成立とする。リッチ燃焼制御条件が成立すると判断されると、ステップS22に移行する。ステップS22においては、目標吸気量及びEGRバルブ開度を設定する。ここで、目標吸気量は、要求トルク及び回転速度によって定まる値にステップ状に低減される。また、EGRバルブ開度は、要求トルク及び回転速度によって定まる値にステップ状に増大される。
続くステップS24においては、酸素量収束フラグがゼロであるか否かを判断する。酸素量収束フラグは、上記目標吸気量及びEGRバルブ開度をリッチ燃焼制御用に切り替えた後、実際の吸気量が目標吸気量に収束し且つEGR量が開度変更後に定常状態となったか否かを示すパラメータである。そして、酸素量収束フラグがゼロであるときには、未だ目標吸気量への収束及びEGR量の定常状態への移行が実現していないとして、ステップS26に移行する。ステップS26においては、先の図3のステップS16によって算出されるシリンダ流入酸素量を取得する。
続くステップS28においては、回転速度、アクセルペダルの操作量、及びシリンダ流入酸素量に基づき、指令噴射量をマップ演算する。この処理は、吸気量の漸減及びEGR量の漸増によってシリンダ流入酸素量が漸減するのに応じて、指令噴射量を漸増させる処理である。ここで、回転速度やアクセルペダルの操作量を参照するのは、出力トルクの変動のいっそうの抑制を図るためである。すなわち、リッチ燃焼時においては、燃焼に利用される酸素の割合である酸素利用率が回転速度に応じて変化するために、噴射量によっては出力トルクが一義的に定まらない。このため、出力トルクの変動を十分に抑制するように指令噴射量を漸増させるために、回転速度を参照する。また、アクセルペダルは、要求トルクを定めるパラメータである。このため、アクセルペダルの操作量を参照することで、現在要求されているトルクを維持しつつ指令噴射量を定めることができる。
続くステップS30においては、シリンダ流入酸素量と目標酸素量との差の絶対値が所定値以下であるか否かを判断する。この処理は、上記目標吸気量及びEGRバルブ開度をリッチ燃焼制御用に切り替えた後、実際の吸気量が目標吸気量に収束し且つEGR量が開度変更後に定常状態となったか否かを判断するものである。ここで、目標酸素量は、実際の吸気量が目標吸気量に収束し且つEGR量が開度変更後に定常状態となったときに、燃焼室26に流入すると想定される酸素量である。この目標酸素量は、要求トルク及び回転速度に応じてマップ演算される。また、所定値は、実際の吸気量が目標吸気量に収束し且つEGR量が開度変更後に定常状態となったときに、シリンダ流入酸素量と目標酸素量との差の絶対値として生じ得る値に設定されている。
ステップS30において所定値以下であると判断されるときには、換言すれば、実際の吸気量が目標吸気量に収束し且つEGR量が開度変更後に定常状態となったと判断されるときには、ステップS32に移行する。ステップS32においては、酸素量収束フラグを「1」とする。
一方、ステップS24において否定判断されるときには、ステップS34に移行する。ステップS34においては、アクセルペダルの操作量及び回転速度に基づき、指令噴射量をマップ演算する。この処理は、リッチ燃焼制御時における指令噴射量を定めるためのものである。ここでは、アクセルペダルの操作量等から定まる要求トルクを、燃焼室26内に流入する酸素量が目標酸素量であるときに実現可能な噴射量とされる。
なお、上記ステップS20において否定判断されるときには、ステップS36において酸素量収束フラグを「0」とする。また、上記S30において否定判断されるときや、ステップS32,S34,S36の処理が完了するときには、この一連の処理を一旦終了する。
図5に、上記リッチ燃焼制御の態様を示す。詳しくは、図5(a)に、実線にて吸気量の推移を示すとともに、一点鎖線にて目標吸気量の推移を示す。図5(b)に、EGRバルブ開度の指令値の推移を示す。図5(c)に、EGR量の推移を示す。図5(d)に、実線にてシリンダ流入酸素量の推移を示し、一点鎖線にて目標酸素量の推移を示す。図5(e)に、噴射量の推移を示す。図5(f)に、出力トルクの推移を示す。図示されるように、シリンダ流入酸素量の漸減に応じて噴射量を漸増させるために、リッチ燃焼制御への切り替えに際してトルクの変動を好適に抑制することができる。これに対し、図5(g)に示すように、噴射量を、吸気量やEGR量が定常となったときの噴射量にステップ状に切り替えると、図5(h)に示すように出力トルクが一時的に増大する。
このように本実施形態では、スロットルバルブ20やEGRバルブ42の操作によって燃焼室26内に流入する酸素量を低減するに際し、同酸素量の漸減に応じて噴射量を漸増させることで出力トルクを抑制することができるため、目標吸気量の設定態様やEGRバルブ42の開度の操作態様を自由に定めることができる。そして、本実施形態のようにこれらをステップ状に変化させることで、リッチ燃焼制御を行う期間を極力短縮することができる。これは、ディーゼル機関10における燃焼状態の不安定化を極力抑制したり、NOx吸蔵還元触媒38の還元を確実に行ったりする上で極めて有効な設定である。すなわち、リッチ燃焼制御時には、燃焼が不安定化する。このため、リッチ燃焼制御期間は、極力短くすることが望ましい。また、NOx吸蔵還元触媒38の還元処理は、定常時に行うために、アクセルペダルの操作によってユーザから出力トルクの増大要求(加速要求等)があると、これを中断しなければならない。こうした理由から、リッチ燃焼制御期間は、極力短い時間とすることが望ましい。
更に、本実施形態では、先の図5に示されるように、酸素量の漸減が完了するときには噴射量の漸増を完了するように燃料噴射制御態様を設定している。これにより、ディーゼル機関10の空燃比がリッチ燃焼制御時における定常状態となるまでの時間(酸素濃度センサ34が定常状態となるまでの時間)を極力短くすることができる。なお、噴射量の漸増を、酸素量の漸減が完了するより前に完了するようにしてもよい。この場合であっても、出力トルクの変動を好適に抑制することができることが発明者らによって見出されている。特にこの場合には、ディーゼル機関10の空燃比がリッチ燃焼制御時における定常状態となるまでの時間を、先の図5(g)に示したように噴射量をステップ状に増大させたときと同等とすることもできる。
以上詳述した本実施形態によれば、以下の効果が得られるようになる。
(1)NOx吸蔵還元触媒38からNOxを放出させることが所望される条件下、ディーゼル機関10に吸入される新気量(燃焼室26に流入する酸素量)を低減させる操作をし、且つ同操作に伴う酸素量の漸減に応じて噴射燃料量を漸増させた。これにより、漸減する都度の酸素量にとってトルクを増大させない程度の燃料量を噴射することができる。
(2)ディーゼル機関10の燃焼室26に流入する酸素量が漸減する期間内に噴射量の漸増を完了させた。これにより、出力トルクの変動を好適に抑制しつつも、ディーゼル機関10の空燃比を、リッチ燃焼制御による所望の値に迅速に移行させることができる。
(3)推定される酸素量(シリンダ流入酸素量O2cld)に応じて噴射量を漸増させた。これにより、酸素量の漸減に応じた噴射燃料量の漸増にかかる処理を好適に行うことができる。
(4)シリンダ流入酸素量に加えて、ディーゼル機関10の回転速度とアクセルペダルの操作量とに応じて噴射量を漸増させた。これにより、出力トルクの変動をより好適に抑制することができる。
(5)EGRバルブ42の開度指令値及び目標吸気量をステップ状に変化させることで吸入される新気量を低減させた。これにより、リッチ燃焼期間を極力短縮することができる。
(第2の実施形態)
以下、第2の実施形態について、先の第1の実施形態との相違点を中心に図面を参照しつつ説明する。
図6に、本実施形態にかかるリッチ燃焼制御の処理手順を示す。この処理は、ECU50により、例えば所定周期で繰り返し実行される。
この一連の処理では、まずステップS40において、リッチ燃焼制御フラグがゼロであるか否かを判断する。リッチ燃焼制御フラグは、リッチ燃焼制御条件が成立し、リッチ燃焼制御がなされている間「1」となる。ステップS40において否定判断されるときには、ステップS42に移行する。ステップS42においては、リッチ燃焼制御条件が成立するか否かを判断する。この処理は、先の図4のステップS20の処理と同様である。そして、ステップS42において肯定判断されるときには、ステップS44に移行する。ステップS44においては、リッチ燃焼制御フラグを「1」とする。続くステップS46においては、目標吸気量及びEGRバルブの開度の指令値を設定する。この処理は、先の図4のステップS22の処理と同様である。
次に、ステップS48において、回転速度及び要求トルクに応じて噴射量徐変値Nをマップ演算する。この噴射量徐変値Nは、酸素量の漸減に応じて噴射量を漸増させる処理を行うためのパラメータである。ここで、回転速度を用いるのは、リッチ燃焼時の燃焼に利用される酸素の利用率が回転速度に依存するためである。また、要求トルクを用いるのは、要求トルクを維持しつつ噴射量を漸増させるためである。なお、噴射量徐変値Nは、ステップS46の処理によって定められる目標吸気量とEGRバルブ開度とを前提条件として、要求トルク及び回転速度に応じて予め適合されている。
続くステップS50においては、カウンタnの初期値を噴射量徐変値Nにセットする。そして、ステップS52においては、カウンタnがゼロであるか否かを判断する。この処理は、噴射量の漸増処理を完了するか否かを判断するためのものである。そしてステップS52において否定判断されるときには、ステップS54に移行する。ステップS54においては、指令噴射量を漸増させる処理を行なう。すなわち、今回の指令噴射量を下記の式によって算出する。
QFIN=ΔQ×(N−n)/N+Qold
ここで、Qoldは、リッチ燃焼制御への切り替え直前の噴射量、すなわち、リッチ燃焼制御フラグが「1」となる直前の噴射量である。また、ΔQは、リッチ燃焼制御時において吸気量やEGR量が定常状態となったときに所望される噴射量Qaから上記Qoldを減算したものである。これにより、カウンタnがデクリメントされるに伴い、指令噴射量が所望される噴射量Qaへと漸増する。ステップS54の処理が完了すると、ステップS56に移行する。ステップS56においては、カウンタnをデクリメントする。
一方、ステップS52において肯定判断されるときには、ステップS58に移行する。ステップS58においては、指令噴射量を、上記所望の噴射量Qaとする。また、ステップS42において否定判断されるときには、ステップS60において、リッチ燃焼制御フラグを「0」とする。
なお、ステップS56〜60の処理が完了するときには、この一連の処理を一旦終了する。
図7に、上記処理の態様を示す。図7(a)〜図7(f)は、先の図5(a)〜図5(f)と対応しているが、本実施形態ではシリンダ流入酸素量を算出していないため、図7(d)は、実際に燃焼室26内に流入する酸素量としている。図示されるように、本実施形態においても、燃焼室26内に流入する酸素量の漸減に応じて噴射量が漸増することで、出力トルクの変動を好適に抑制することができる。
以上説明した本実施形態によれば、先の第1の実施形態の上記(1)、(5)の効果に加えて、更に以下の効果が得られるようになる。
(6)ディーゼル機関10の回転速度及び要求トルクに基づき、酸素量の漸減に応じた噴射量の漸増処理を行った。これにより、要求されている出力トルクを生成する上で適切な態様にて噴射量の漸増処理を行なうことができる。
(その他の実施形態)
なお、上記各実施形態は、以下のように変更して実施してもよい。
・上記第1の実施形態では、シリンダ流入酸素量と回転速度と負荷(アクセルペダルの操作量)との3つのパラメータから漸増する噴射量をマップ演算したがこれに限らない。例えば負荷として、要求トルクを用いてもよい。また、例えばシリンダ流入酸素量と回転速度との2つのパラメータによって漸増する噴射量をマップ演算してもよい。更に、リッチ燃焼制御を行う領域におけるディーゼル機関10の回転速度が比較的限られた値となるのであれば、シリンダ流入酸素量のみに応じて漸増する噴射量を算出しても、出力トルクを好適に抑制することができる。
・上記第1の実施形態では、シリンダ流入酸素量が目標酸素量と略等しくなるときに噴射量の漸増処理を完了したが、これに限らない。例えば漸増処理期間を定め、同期間の経過によって漸増処理を完了してもよい。この際、漸増処理期間を、回転速度と要求トルクとからマップ演算するようにしてもよい。
・上記第2の実施形態では、噴射量を直線的に漸増させたが、これに限らない。例えば回転速度や要求トルクをパラメータとして、これらの値に応じて噴射量漸増曲線f(t)を適合し、同曲線f(t)にしたがって、噴射量を漸増させてもよい。
・ディーゼル機関10に吸入される新気量を低減すべく、目標吸気量やEGRバルブの開度をステップ状に変化させたが、これに限らず、徐々に変化させてもよい。ただし、リッチ燃焼制御期間を極力短縮する観点からは、極力迅速に変化させることが望ましい。
・ディーゼル機関10に吸入される新気量を低減すべく、目標吸気量を減少させたが、これに限らず、例えばリッチ燃焼制御時においてスロットルバルブ20の開度をオープン制御し、且つ同開度をリッチ燃焼制御時の値にしてもよい。
・ディーゼル機関10に吸入される新気量を低減すべく、EGRバルブ42の開度をオープン制御にて所定開度まで減少させたが、これに限らず、例えばリッチ燃焼制御時において吸入空気量をフィードバック制御すべくEGRバルブ42を操作してもよい。
・ディーゼル機関10に吸入される新気量の低減手法としては、スロットルバルブ20の開度の低減及びEGRバルブ42の開度の増大によって行うものに限らない。例えばいずれか一方の処理のみでもよい。
・内燃機関としては、ディーゼル機関等の圧縮着火式内燃機関に限らず、ガソリン機関等の火花点火式内燃機関であってもよい。
第1の実施形態にかかるエンジンシステムの全体構成を示す図。 同実施形態にかかるリッチ燃焼制御の処理を示すブロック図。 同実施形態にかかる吸気酸素量の推定処理の手順を示すフローチャート。 同実施形態にかかるリッチ燃焼制御処理の手順を示すフローチャート。 同実施形態にかかるリッチ燃焼制御態様を示すタイムチャート。 第2の実施形態にかかるリッチ燃焼制御処理の手順を示すフローチャート。 同実施形態にかかるリッチ燃焼制御態様を示すタイムチャート。
符号の説明
10…ディーゼル機関、30…燃料噴射弁、38…NOx吸蔵還元触媒、50…ECU(燃料噴射制御装置の一実施形態)。

Claims (4)

  1. 排気中の空燃比がリーンであるときに窒素酸化物を吸蔵し、該空燃比がリッチであるときに窒素酸化物を放出する吸蔵剤を備える内燃機関について、該内燃機関の燃料噴射弁を操作することで燃料噴射制御を行う燃料噴射制御装置において、
    前記吸蔵剤から前記窒素酸化物を放出させることが所望される条件下、前記内燃機関の吸気系に吸入される新気量を低減させる新気量低減手段と、
    前記新気量の低減に際し、前記内燃機関の燃焼室に流入する酸素量の漸減に応じて前記燃料噴射弁の噴射量を漸増させる噴射量漸増手段とを備え
    前記噴射量漸増手段は、前記燃焼室に流入する酸素量を推定する手段を備え、該推定される酸素量、前記内燃機関の回転速度、及び要求トルクを定めるパラメータに基づき前記噴射量を漸増させる処理を行うことを特徴とする燃料噴射制御装置。
  2. 排気中の空燃比がリーンであるときに窒素酸化物を吸蔵し、該空燃比がリッチであるときに窒素酸化物を放出する吸蔵剤を備える内燃機関について、該内燃機関の燃料噴射弁を操作することで燃料噴射制御を行う燃料噴射制御装置において、
    前記吸蔵剤から前記窒素酸化物を放出させることが所望される条件下、前記内燃機関の吸気系に吸入される新気量を低減させる新気量低減手段と、
    前記新気量の低減に際し、前記内燃機関の燃焼室に流入する酸素量の漸減に応じて前記燃料噴射弁の噴射量を漸増させる噴射量漸増手段とを備え、
    前記噴射量漸増手段は、前記酸素量の漸減に応じた前記噴射量の漸増処理を、前記内燃機関の回転速度及び前記内燃機関に対する要求トルクに基づき前記噴射量を直線的に漸増させるか、または漸増曲線に基づき漸増させるかすることで行うことを特徴とする燃料噴射制御装置。
  3. 前記噴射量漸増手段は、前記内燃機関の燃焼室に流入する酸素量が漸減する期間内に噴射量の漸増を完了させることを特徴とする請求項1又は2記載の燃料噴射制御装置
  4. 前記新気量低減手段は、前記内燃機関の新気量を調節するアクチュエータの操作量の指令値及び前記新気量の目標値の少なくとも一方をステップ状に変化させることで前記新気量を低減させる処理を行うことを特徴とする請求項1〜3のいずれかに記載の燃料噴射制御装置。
JP2006267898A 2006-09-29 2006-09-29 燃料噴射制御装置 Expired - Fee Related JP4353229B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006267898A JP4353229B2 (ja) 2006-09-29 2006-09-29 燃料噴射制御装置
US11/902,870 US7574298B2 (en) 2006-09-29 2007-09-26 Fuel injection controller
DE102007000797.5A DE102007000797B4 (de) 2006-09-29 2007-09-28 Kraftstoffeinspritzsteuerungsvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006267898A JP4353229B2 (ja) 2006-09-29 2006-09-29 燃料噴射制御装置

Publications (2)

Publication Number Publication Date
JP2008088838A JP2008088838A (ja) 2008-04-17
JP4353229B2 true JP4353229B2 (ja) 2009-10-28

Family

ID=39134560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267898A Expired - Fee Related JP4353229B2 (ja) 2006-09-29 2006-09-29 燃料噴射制御装置

Country Status (3)

Country Link
US (1) US7574298B2 (ja)
JP (1) JP4353229B2 (ja)
DE (1) DE102007000797B4 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297968A (ja) 2007-05-31 2008-12-11 Denso Corp 内燃機関の制御装置
DE102008012547A1 (de) * 2008-03-04 2009-09-10 Robert Bosch Gmbh Vorrichtung und Verfahren zur Luftvorsteuerung bei drehzahlgeführten Verbrennungsmotoren
JP6163837B2 (ja) * 2013-04-04 2017-07-19 いすゞ自動車株式会社 排気ガス浄化システム
JP6656754B2 (ja) * 2016-02-29 2020-03-04 ダイハツ工業株式会社 内燃機関の制御装置
JP6579151B2 (ja) * 2017-04-27 2019-09-25 マツダ株式会社 エンジンの排気浄化装置
FR3101668B1 (fr) * 2019-10-07 2022-06-24 Renault Sas Procede de diagnostic d’un systeme de post-traitement d’un moteur a allumage commande

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2692514B2 (ja) 1992-08-11 1997-12-17 トヨタ自動車株式会社 内燃機関
US5621167A (en) * 1995-06-30 1997-04-15 General Motors Corporation Exhaust gas recirculation system diagnostic
US6085732A (en) * 1999-01-25 2000-07-11 Cummins Engine Co Inc EGR fault diagnostic system
DE19939050B4 (de) 1999-08-18 2013-01-31 Volkswagen Ag Verfahren zur Regelung eines Arbeitsmodus einer Verbrennungskraftmaschine von Kraftfahrzeugen während einer Regeneration eines Speicherkatalysators
JP2001193524A (ja) * 1999-12-28 2001-07-17 Mitsubishi Electric Corp 筒内噴射エンジンの燃料噴射制御装置
JP4244562B2 (ja) 2002-04-26 2009-03-25 日産自動車株式会社 内燃機関の排気浄化装置
EP1617056B1 (en) * 2004-07-14 2014-10-22 Honda Motor Co., Ltd. Control system for internal combustion engine
US7128035B2 (en) * 2005-03-10 2006-10-31 General Motors Corporation Method and apparatus for engine torque disturbance reduction during cranking

Also Published As

Publication number Publication date
DE102007000797B4 (de) 2017-03-02
US20080183368A1 (en) 2008-07-31
US7574298B2 (en) 2009-08-11
JP2008088838A (ja) 2008-04-17
DE102007000797A1 (de) 2008-04-03

Similar Documents

Publication Publication Date Title
JP4760685B2 (ja) 内燃機関の制御装置
JP4251073B2 (ja) 内燃機関の制御装置
US7654252B2 (en) Air-fuel ratio control system and method for internal combustion engine
JP4929966B2 (ja) 燃料噴射制御装置
CN108533409B (zh) 内燃机的控制装置以及控制方法
JP2005201184A (ja) 内燃機関の燃料噴射制御装置
US7886524B2 (en) Method for controlling an internal combustion engine during regeneration of an emission after-treatment device
JP2011027059A (ja) エンジンの制御装置
JP4353229B2 (ja) 燃料噴射制御装置
CN109595086B (zh) 内燃机的控制装置及方法
JP2985578B2 (ja) リーンバーンエンジンの空燃比制御装置
JP3768780B2 (ja) 内燃機関の空燃比制御装置
JP5918702B2 (ja) エンジンの制御装置
JP2011058440A (ja) 内燃機関の制御装置
JP2011085061A (ja) 内燃機関の空燃比制御装置
US10598120B2 (en) Controller for internal combustion engine and method for controlling internal combustion engine
JP4610404B2 (ja) ディーゼルエンジンの制御装置
US6536414B2 (en) Fuel injection control system for internal combustion engine
JP5664463B2 (ja) 内燃機関の制御装置
JP4792453B2 (ja) 吸入空気量検出装置
JP5273224B2 (ja) 内燃機関の空燃比制御装置
JP6314857B2 (ja) 内燃機関の制御装置
JP5260770B2 (ja) エンジンの制御装置
JP5308875B2 (ja) 内燃機関の排ガス浄化装置
JP3982627B2 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees